应变计测量混凝土支撑轴力的计算方法

合集下载

混凝土应变计(组)应力计算方法

混凝土应变计(组)应力计算方法

混凝土应变计(组)应力计算方法1、 应力计算方法大坝混凝土应变主要包含了由温度荷载和各种动静力外荷载引起的结构应力应变、徐变和自由体积变形造成的无应力应变(或称自由应变)。

自由体积变形是大坝混凝土在不受外力作用时发生的变形,其主要包括由于温度变化引起的热胀冷缩变形及温度变化引起的湿涨干缩变形以及水泥水化作用引起的自生体积变形等。

在单向受力条件下,混凝土试件在时间t 的总应变)(t ε可表示为:)()()()()()(t t t t t t g w T c e εεεεεε++++= 式(1) 式中:)(t e ε——应力引起的瞬时应变;)(t c ε——混凝土的徐变应变,与应力值、加荷龄期及荷载持续时间有关; )(t T ε——温度变化引起的应变;)(t w ε——湿度变化引起的应变;)(t g ε——混凝土自生体积变形引起的应变。

上式中前两项,)(t e ε和)(t c ε是由应力引起的,后三项即为无应力应变(无应力计测值)。

本文主要阐述混凝土应力的计算方法,无应力计资料分析将另文阐述。

混凝土应力计算方法主要是利用应变计(组)观测到的混凝土应变,扣除配套的无应力计应变测值后,并根据广义胡克定律换算成单轴应变,然后利用混凝土弹模及徐变试验资料,用变形法计算各方向正应力,再由正应力计算剪应力,并求得主应力及其方向余弦。

技术路线如下:(1)根据应变计(组)邻近无应力计测值或回归方程,扣除应变计(组)测值中的无应力应变(式(1)中的后三项)。

(2)根据弹性力学应变第一不变量原理——空间中一点三个互相正交方向的应变之和为常量,对应变计测值进行平衡检查。

(3)根据广义胡克定律将空间应力状态下的应变换算成单轴应变。

(4)应用变形法由单轴应变计算各方向正应力。

(5)剪应力计算。

(6)主应力计算。

图1 应变计组埋设示意图混凝土应力计算方法和步骤如下:1.1 无应力应变扣除根据应变计(组)邻近无应力计测值或回归方程,扣除应变计(组)测值中的无应力应变,按式(2)计算。

轴力计算公式

轴力计算公式

计算公式3、钢板桩、H型钢应力计算公式:δ=Es·K(fi2-f2)○1应变传感器计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);Es—钢的弹性模量(KPa);碳钢:2.0—2.1×108 KPa混凝土:0.14—×108 KPa K—应变传感器的标定系数(10-6/Hz2);f i—应变传感器任一时刻观测值(Hz)f—应变传感器的初始观测值(零值)δ= K(fi 2-f2)○2测力传感器(钢筋计)计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);K—测力传感器的标定系数(KPa /Hz2);f i—测力传感器任一时刻观测值(Hz)f—测力传感器的初始观测值(零值)(Hz)4、钢筋砼支撑轴力计计算公式:4.1 N= Ec·A【K(fi2-f2)+b(Ti-T)】○1砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变化值(KN);Ec—砼弹性膜量(KPa);A—钢筋砼支撑截面积(mm2);fi—应变传感器任一时刻的观测值(Hz);f—应变传感器的初始观测值(零值)(Hz);K—应变传感器的标定系数(10-6/Hz2);b —应变传感器的温度修正系数(10-6/Hz2);Ti—应变传感器任一时刻的温度观测值(℃);T—应变传感器的初始温度观测值(℃);4.2 Ni =EsFc(AsA-1)【K(fi2-f2)+b(Ti-T)】○2钢筋测力传感器计算公式(基坑施工监测规程中公式)式中:Es—钢筋弹性膜量(KPa);As—钢筋的截面积(mm2);N i—单根钢筋测力传感器的计算出的支撑轴力值(KN);b —钢筋测力传感器的温度修正系数(KN/℃)K—钢筋计的标定系数(KN /Hz2)4.3 根据相关规范、规程要求,每道钢筋砼支撑轴力测试,一般可分为4个测点,故该式为:N= (N1+N2+N3+N4)/4 ○3式中:N—钢筋砼支撑轴力值(KN);Ni—钢筋砼支撑某测点受力值(KN)。

轴力计算公式

轴力计算公式

轴力计算公式Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】计算公式3、钢板桩、H型钢应力计算公式:δ=Es·K(fi2-f2)○1应变传感器计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);Es—钢的弹性模量(KPa);碳钢:—×108 KPa混凝土:—×108 KPa K—应变传感器的标定系数(10-6/Hz2);fi—应变传感器任一时刻观测值(Hz)f—应变传感器的初始观测值(零值)δ= K(fi 2-f2)○2测力传感器(钢筋计)计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);K—测力传感器的标定系数(KPa /Hz2);fi—测力传感器任一时刻观测值(Hz)f—测力传感器的初始观测值(零值)(Hz)4、钢筋砼支撑轴力计计算公式:N= Ec·A【K(fi2-f2)+b(Ti-T)】○1砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变化值(KN);Ec—砼弹性膜量(KPa);A—钢筋砼支撑截面积(mm2);fi—应变传感器任一时刻的观测值(Hz);f—应变传感器的初始观测值(零值)(Hz); K—应变传感器的标定系数(10-6/Hz2);b —应变传感器的温度修正系数(10-6/Hz2);Ti—应变传感器任一时刻的温度观测值(℃);T—应变传感器的初始温度观测值(℃);Ni =EsFc(AsA-1)【K(fi2-f2)+b(Ti-T)】○2钢筋测力传感器计算公式(基坑施工监测规程中公式)式中:Es—钢筋弹性膜量(KPa);As—钢筋的截面积(mm2);Ni—单根钢筋测力传感器的计算出的支撑轴力值(KN);b —钢筋测力传感器的温度修正系数(KN/℃)K—钢筋计的标定系数(KN /Hz2)根据相关规范、规程要求,每道钢筋砼支撑轴力测试,一般可分为4个测点,故该式为:N= (N1+N2+N3+N4)/4 ○3式中:N—钢筋砼支撑轴力值(KN);Ni—钢筋砼支撑某测点受力值(KN)。

轴力计算公式

轴力计算公式

计算公式之马矢奏春创作3、钢板桩、H型钢应力计算公式:δ=E s·K(f i2-f02)○1应变传感器计算公式式中:δ—钢板桩(H型钢)应力变更值(KPa);E s ——×108 KPa—×108 KPaK—应变传感器的标定系数(10-6/Hz2);f i—应变传感器任一时刻观测值(Hz)f0—应变传感器的初始观测值(零值)δ= K(f i2-f02)○2测力传感器(钢筋计)计算公式式中:δ—钢板桩(H型钢)应力变更值(KPa);K—测力传感器的标定系数(KPa /Hz2);f i—测力传感器任一时刻观测值(Hz)f0—测力传感器的初始观测值(零值)(Hz)4、钢筋砼支撑轴力计计算公式:4.1 N= E c·A【K(f i2-f02)+b(T i-T0)】○1砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变更值(KN);E c—砼弹性膜量(KPa);A—钢筋砼支撑截面积(mm2);f i — 应变传感器任一时刻的观测值(Hz );f 0— 应变传感器的初始观测值(零值)(Hz );K — 应变传感器的标定系数(10-6/Hz 2);b — 应变传感器的温度修正系数(10-6/Hz 2);T i — 应变传感器任一时刻的温度观测值(℃);T 0— 应变传感器的初始温度观测值(℃);4.2 N i =Es Fc (As A-1)【K (f i 2-f 02)+b (T i -T 0)】 ○2钢筋测力传感器计算公式(基坑施工监测规程中公式) 式中:E s — 钢筋弹性膜量(KPa );A s — 钢筋的截面积(mm 2);N i — 单根钢筋测力传感器的计算出的支撑轴力值(KN ); b — 钢筋测力传感器的温度修正系数(KN/℃)K — 钢筋计的标定系数(KN /Hz 2)4.3 根据相关规范、规程要求,每道钢筋砼支撑轴力测试,一般可分为4个测点,故该式为:N= (N 1+N 2+N 3+N 4)/4 ○3 式中:N — 钢筋砼支撑轴力值(KN );N i —钢筋砼支撑某测点受力值(KN )。

基坑支护结构混凝土支撑轴力计算方法及报警值设置浅析王幼明1张鹏宇2吴清3

基坑支护结构混凝土支撑轴力计算方法及报警值设置浅析王幼明1张鹏宇2吴清3

基坑支护结构混凝土支撑轴力计算方法及报警值设置浅析王幼明1 张鹏宇2 吴清3发布时间:2023-05-31T07:16:18.862Z 来源:《工程建设标准化》2023年6期作者:王幼明1 张鹏宇2 吴清3 [导读] 针对厚层软土地区深基坑工程混凝土支撑轴力监测数据报警情况,为科学研判基坑支护结构稳定性,对基坑监测中常用的混凝土支撑轴力计算方法进行分析。

指出了采用混凝土线性本构关系计算混凝土支撑轴力的不足之处,采用了更加符合客观情况的混凝土非线性本构关系计算混凝土支撑轴力。

同时,提出了考虑混凝土压应变发展水平的混凝土支撑轴力报警值设置原则。

深圳市建研检测有限公司深圳市 518049摘要:针对厚层软土地区深基坑工程混凝土支撑轴力监测数据报警情况,为科学研判基坑支护结构稳定性,对基坑监测中常用的混凝土支撑轴力计算方法进行分析。

指出了采用混凝土线性本构关系计算混凝土支撑轴力的不足之处,采用了更加符合客观情况的混凝土非线性本构关系计算混凝土支撑轴力。

同时,提出了考虑混凝土压应变发展水平的混凝土支撑轴力报警值设置原则。

提高了混凝土支撑轴力监测数据对研判基坑支护结构的可靠性。

关键词:基坑监测;混凝土支撑;支撑轴力;本构关系;基坑支护1 引言随着我国城市建设的发展,各大城市涌现出大量高层及超高层建筑,相应的地下空间开发展迅速。

因此涌现了大量的深基坑工程项目。

由于岩土性质的复杂多变性和和计算模型的局限性,基坑工程需要根据施工过程的工况变化和监测信息实行动态设计和信息化施工[1-2]。

软土地区因其不良地质条件以及周边环境的复杂性,深基坑工程面临的诸多挑战。

因此,基坑工程的信息化施工具有举足轻重的作用。

基坑监测数据作为基坑工程信息化施工的要素,受到了相关领域的专家及学者的关注。

其中,王卫东等[3]对上海软土地区基坑典型案例进行了研究分析,安关峰等[4]对广州地区深基坑监测数据进行分析。

混凝土支撑作为深基坑支护结构常用的关键构件,其轴力监测数据是研判基坑安全的关键信息之一。

混凝土支撑轴力监测分析

混凝土支撑轴力监测分析

混凝土支撑轴力监测分析摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。

在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。

关键词:钢筋混凝土;支撑轴力;监测;分析引言我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。

只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。

通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。

结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。

1工程概况该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。

基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。

内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在灌梁和斜撑上共埋设 13 个钢筋混凝土支撑轴力监测点。

基坑监测点平面位置见图1。

由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。

轴力计算公式资料

轴力计算公式资料

学习资料
计算公式
3、钢板桩、H 型钢应力计算公式:
S =E s・K (f i2-f 0) CD应变传感器计算公式
式中:S—钢板桩(H型钢)应力变化值(KPa;
E s —钢的弹性模量(KPa);碳钢:2.0 —2.1 x 108 KPa
8
混凝土:0.14—x 108 KPa K—应变传感器的标定系数( 10-6/Hz2);
f i—应变传感器任一时刻观测值( Hz)
f 0—应变传感器的初始观测值(零值)
S = K (f i2-f o2) ②测力传感器(钢筋计)计算公式
式中:s—钢板桩(H型钢)应力变化值(KPa;
K—测力传感器的标定系数( KPa /Hz2);f i—测力传感器任
一时刻观测值( Hz)
f 0—测力传感器的初始观测值(零值) ( Hz)
4、钢筋砼支撑轴力计计算公式:
4.1 N= E -A【K (f i2-f o2) +b (T i-T。

)】C砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变化值(KN;
E c—砼弹性膜量( KPa);
A—钢筋砼支撑截面积( mm2);
f i—应变传感器任一时刻的观测值( Hz);
f0—应变传感器的初始观测值(零值) (Hz);
仅供学习与参考。

轴力计算公式

轴力计算公式

计算公式3、钢板桩、H型钢应力计算公式:δ=E s·K(f i2-f02)应变传感器计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);E s—钢的弹性模量(KPa);碳钢:2.0—2.1×108KPa混凝土:0.14—×108KPaK—应变传感器的标定系数(10-6/Hz2);fi—应变传感器任一时刻观测值(Hz)f—应变传感器的初始观测值(零值)δ=K(f i2-f02)测力传感器(钢筋计)计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);K—测力传感器的标定系数(KPa/Hz2);fi—测力传感器任一时刻观测值(Hz)f—测力传感器的初始观测值(零值)(Hz)4、钢筋砼支撑轴力计计算公式:4.1N=Ec·A【K(fi2-f2)+b(Ti-T)】砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变化值(KN);Ec—砼弹性膜量(KPa);A—钢筋砼支撑截面积(mm2);fi—应变传感器任一时刻的观测值(Hz);f—应变传感器的初始观测值(零值)(Hz);K—应变传感器的标定系数(10-6/Hz2);b—应变传感器的温度修正系数(10-6/Hz2);Ti—应变传感器任一时刻的温度观测值(℃);T—应变传感器的初始温度观测值(℃);4.2Ni =EsFc(AsA-1)【K(fi2-f2)+b(Ti-T)】钢筋测力传感器计算公式(基坑施工监测规程中公式)式中:Es—钢筋弹性膜量(KPa);As—钢筋的截面积(mm2);N i—单根钢筋测力传感器的计算出的支撑轴力值(KN);b—钢筋测力传感器的温度修正系数(KN/℃)K—钢筋计的标定系数(KN/Hz2)4.3根据相关规范、规程要求,每道钢筋砼支撑轴力测试,一般可分为4个测点,故该式为:N=(N1+N2+N3+N4)/4式中:N—钢筋砼支撑轴力值(KN);Ni—钢筋砼支撑某测点受力值(KN)。

轴力计算公式

轴力计算公式

计算公式欧阳学文3、钢板桩、H型钢应力计算公式:δ=Es·K(fi2f02)○1应变传感器计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);Es —钢的弹性模量(KPa);碳钢:2.0—2.1×108 KPa混凝土:0.14—×108 KPaK—应变传感器的标定系数(106/Hz2);fi—应变传感器任一时刻观测值(Hz)f0—应变传感器的初始观测值(零值)δ= K(fi2f02)○2测力传感器(钢筋计)计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);K—测力传感器的标定系数(KPa /Hz2);fi—测力传感器任一时刻观测值(Hz)f0—测力传感器的初始观测值(零值)(Hz)4、钢筋砼支撑轴力计计算公式:4.1 N= Ec·A【K(fi2f02)+b(TiT0)】○1砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变化值(KN);Ec—砼弹性膜量(KPa);A—钢筋砼支撑截面积(mm2);fi—应变传感器任一时刻的观测值(Hz);f0—应变传感器的初始观测值(零值)(Hz);K—应变传感器的标定系数(106/Hz2);b —应变传感器的温度修正系数(106/Hz2);Ti—应变传感器任一时刻的温度观测值(℃);T0—应变传感器的初始温度观测值(℃);4.2 Ni=(-1)【K(fi2f02)+b(TiT0)】○2钢筋测力传感器计算公式(基坑施工监测规程中公式)式中:Es—钢筋弹性膜量(KPa);As—钢筋的截面积(mm2);Ni—单根钢筋测力传感器的计算出的支撑轴力值(KN);b —钢筋测力传感器的温度修正系数(KN/℃)K—钢筋计的标定系数(KN /Hz2)4.3 根据相关规范、规程要求,每道钢筋砼支撑轴力测试,一般可分为4个测点,故该式为:N= (N1+N2+N3+N4)/4 ○3式中:N—钢筋砼支撑轴力值(KN);Ni—钢筋砼支撑某测点受力值(KN)。

轴力计算公式资料

轴力计算公式资料

计算公式3、钢板桩、H型钢应力计算公式:δ=Es·K(fi2-f2)○1应变传感器计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);Es—钢的弹性模量(KPa);碳钢:2.0—2.1×108 KPa混凝土:0.14—×108 KPa K—应变传感器的标定系数(10-6/Hz2);f i—应变传感器任一时刻观测值(Hz)f—应变传感器的初始观测值(零值)δ= K(fi 2-f2)○2测力传感器(钢筋计)计算公式式中:δ—钢板桩(H型钢)应力变化值(KPa);K—测力传感器的标定系数(KPa /Hz2);f i—测力传感器任一时刻观测值(Hz)f—测力传感器的初始观测值(零值)(Hz)4、钢筋砼支撑轴力计计算公式:4.1 N= Ec·A【K(fi2-f2)+b(Ti-T)】○1砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变化值(KN);Ec—砼弹性膜量(KPa);A—钢筋砼支撑截面积(mm2);fi—应变传感器任一时刻的观测值(Hz);f—应变传感器的初始观测值(零值)(Hz);K—应变传感器的标定系数(10-6/Hz2);b —应变传感器的温度修正系数(10-6/Hz2);Ti—应变传感器任一时刻的温度观测值(℃);T—应变传感器的初始温度观测值(℃);4.2 Ni =EsFc(AsA-1)【K(fi2-f2)+b(Ti-T)】○2钢筋测力传感器计算公式(基坑施工监测规程中公式)式中:Es—钢筋弹性膜量(KPa);As—钢筋的截面积(mm2);N i—单根钢筋测力传感器的计算出的支撑轴力值(KN);b —钢筋测力传感器的温度修正系数(KN/℃)K—钢筋计的标定系数(KN /Hz2)4.3 根据相关规范、规程要求,每道钢筋砼支撑轴力测试,一般可分为4个测点,故该式为:N= (N1+N2+N3+N4)/4 ○3式中:N—钢筋砼支撑轴力值(KN);Ni—钢筋砼支撑某测点受力值(KN)。

205077桥梁施工监控中混凝土实测应变徐变应变的计算方法1

205077桥梁施工监控中混凝土实测应变徐变应变的计算方法1

桥梁施工监控测试中混凝土实测徐变应变的计算方法江 湧1荆秀芬1石雪飞2(1.中铁大桥局集团武汉桥梁科学研究院有限公司,武汉430034;2.同济大学桥梁工程系,上海200092)摘要:对于大跨度混凝土桥梁施工监控测试中混凝土实测应变的徐变应变,采用按龄期调整的等效弹性模量法进行计算,得出梁体混凝土应力实测结果与理论计算结果吻合较好的结论,进一步完善了混凝土应力的实测技术。

关键词:监控测试 徐变应变 等效弹性模量法 应力实测技术1 引言—问题的提出随着桥梁向大跨度方向发展,桥梁结构施工阶段的监控监测成为控制桥梁施工质量必不可少的主要手段,监控与监测形成一个相互关联的反馈系统,准确的应力测试不仅是控制结构安全的重要依据,也是进行监控计算、确定监控指令的基本参数。

因此,准确测试大跨度混凝土桥梁的施工应力就显得十分必要和紧迫。

混凝土长期观测的基本原理是在混凝土内部埋入特制的应变计,通过无应力计补偿无应力应变,再将实测应变换算为混凝土的实测应力。

但是,由于施工过程中施工荷载的不断变化,混凝土的龄期也在不断发生变化,加上环境温度、湿度的影响,混凝土的应变在施工过程中是复杂多变的,如何将无应力应变从实测的总应变中分离出来,尤其是混凝土徐变对实测应力的影响,尚未完全解决。

因此,现有的应力测试结果与混凝土的实际受力状态尚有较大偏差。

本文结合笔者多年在施工现场实际监控的技术积累,从桥梁结构的受力特点,观测仪器、混凝土应力观测的力学基础、试验观测方法等基础上总结出桥梁施工监控中混凝土实测应变徐变应变的计算方法,进一步完善了混凝土应力的实测技术。

2 混凝土应变测试力学基础和方法现代的大跨度预应力混凝土桥梁通常采用双向或三向预应力技术,在这种情况下,桥梁的顶、底板及腹板可假定处于复杂的平面应力状态,需用广义虎克定律表达其应力~应变关系:)(12y x x E μεεμσ+-=)(12x y yEμεεμσ+-= 这就要求在现场测试平面应力场两个应力方向的应变x ε、y ε。

混凝土支撑轴力计算方法

混凝土支撑轴力计算方法

混凝土支撑轴力监测范本1工程概况该工程包括盾构始发井兼轨排井及后明挖段,设计为1~3 跨得闭合框架结构, 其中盾构始发井基坑开挖深度约为18、9 m, 明挖段基坑开挖深度约17、5 m; 基坑深度范围内大部分为砂层, 以淤泥质粉细砂层为主, 基坑底部几乎全部位于淤泥质粉细砂层。

基坑设计采用800 mm 厚得地下连续墙+内支撑得围护结构体系。

内支撑采用3 道支撑体系,第一道为具有一定刚度得冠梁, 第二、三道为Ф 600、t=14 得钢管, 在灌梁与斜撑上共埋设13 个钢筋混凝土支撑轴力监测点。

基坑监测点平面位置见图1。

由于基坑开挖深度较大且附近有一级公路高架桥与铁路双线桥, 属于一级基坑, 必须通过监测随时掌握土层与支护结构得内力变化情况, 将监测数据与设计预估值进行分析对比, 以判断前一步施工工艺与施工参数就是否符合预期值, 以确定优化下一步施工参数, 以此达到信息化施工得目得, 确保工程安全。

2轴力监测得原理对于混凝土支撑, 目前实际工程采用较多得就是钢弦式应力计方法测量钢筋得应力, 其基本原理就是利用振动频率与其应力之间得关系建立得。

受力后, 钢筋两端固定点得距离发生变化, 钢弦得振动频率也发生变化, 根据所测得得钢弦振动频率变化即可求得弦内应力得变化值。

其计算公式如下: P g=K ( ) + b ⑴P g 平均= (P1+P2+P3+P4+…+P n) /n ⑵δg=P g 平均/S g⑶P混凝土=δg·S混凝土·E混凝土/E g ⑷式中P g———钢筋计轴力; P g 平均———钢筋计荷载平均值; δg———钢筋计应力值; S g———钢筋计截面积; P混凝土———混凝土桩荷载值; E混凝土———混凝土弹性模量; E g———钢筋弹性模量;S混凝土———混凝土桩横截面积。

在监测中由于内外部温差变化以及混凝土徐变特性会使钢筋应力计产生一定得伸缩变形, 引起其自振动频率变化, 因此必须采取必要得修正参数进行温差改正, 以提高监测结果得可靠性。

浅析基坑工程中支撑轴力的监测方法

浅析基坑工程中支撑轴力的监测方法

浅析基坑工程中支撑轴力的监测方法摘要:本文介绍了基坑工程中,对钢支撑、钢混支撑的轴力监测方法。

包括点位布设原则,以及轴力计算方法等。

关键词:监测;基坑工程;支撑轴力1前言基坑工程往往因其地质条件复杂、施工困难、设计计算理论尚不完善等诸多方面的问题,在建设过程中会出现工程质量难以保证、工程进度难以把握、工程风险难以控制的情况。

为确保工程安全施工,对施工全过程进行实时、有效的监测,能够及早发现事故苗子,杜绝事故隐患,使工程处于一个安全可控的状态。

这对于保证工程质量和基坑施工安全具有极其重要意义;同时可为后续类似工程提供有用的资料,积累宝贵经验。

基坑围护体系监测过程中支撑轴力监测是重要的一个环节。

2支撑轴力布点方式及计算方法A、钢筋混凝土支撑轴力监测钢筋混凝土支撑轴力监测点一般采用安装钢筋内力计的方法进行埋设,内力计连接杆直径须与钢筋主筋相同,在埋设位置截断主筋用钢筋内力计置换:把500mm左右长钢筋内力计串联其中,两头与钢筋碰焊。

内力计导线在钢筋笼内用软绳统一固定在主筋上,引出地面,在连续墙顶部用钢套管进行保护,避免施工破坏。

fi为钢筋计的本次频率(Hz)f0为钢筋计的初始频率(Hz)K为钢筋计的标定系数(kN/Hz2)采用振弦式频率读数仪作为二次读数仪,将由公式⑵解得的F作为混凝土支撑轴力。

B、钢管支撑轴力监测(应变计)监测点采用安装表面应变计的方法进行埋设时,应变计安装在支撑长度的1/3处;采用电焊的方法,在支撑的左右两侧各安装1个表面应变计,表面应变计应保持水平,且与支撑轴心线在同一水平面上,应变计导线先水平引至连续墙,再紧贴着连续墙引至墙顶位置,并用钢套管进行保护,避免施工破坏。

钢支撑反力计安装示意图计算公式:P=K(fi2-fo2)式中:P:作用在传感器上的物理量,单位KNK:率定系数fo:初始读数或零读数,一般为安装前获得,单位Hzfi:当前读数,单位Hz3支撑轴力监测过程中细节事项(1)应变计、应力计或轴力计可采用电阻应变片、振弦式传感器,量程应大于预估值的2倍,分辨率不小于0.2%(F.S),精度应大于0.5%(F.S);(2)支撑轴力测点的布设应选择受力较大的杆件监测,在立面上各道支撑的轴力测点应设置在同一平面位置;(3)支撑轴力监测点应沿基坑纵向每2个开挖段(不得大于50m)布1组,环境要求较高时适当加密;(4)通过钢筋应力计测量混凝土支撑轴力的,每根支撑不得少于4个钢筋应力计,宜布设在混凝土支撑4个中部的主筋上,宜布置在支撑长度1/3位置。

混凝土支撑轴力测定及计算的相关问题探讨

混凝土支撑轴力测定及计算的相关问题探讨

混凝土支撑轴力测定及计算的相关问题探讨摘要:为保证深基坑的安全,需要对基坑进行监测。

本文对采用钢筋计或应变计测定混凝土支撑轴力时,就传统的支撑轴力计算公式的适用范围等问题做了一些探讨。

关键词:钢筋计 支撑轴力 监测 1 引言对于钢筋混凝土支撑,主要采用钢筋计测量钢筋的应力或采用混凝土应变计测量混凝土的应变,然后通过钢筋与混凝土共同工作、变形协调条件反算支撑的轴力。

采用混凝土应变计测量混凝土的应变后反算支撑轴力,其计算公式如下:[]s s c c i A E A E N +=ε对于采用钢筋计测量钢筋应力后反算支撑轴力,传统轴力计算公式为:⎥⎦⎤⎢⎣⎡+=s c s c s i A A E E N σ (1)式中i N —支撑杆件测量轴力;ε-混凝土应变计测量出的混凝土应变均值,∑=nii n /εε;s σ—钢筋计测出的应力平均值,∑=nii s n /σσ或s s E εσ=;n —一个量测断面内布置的钢筋计数目; s c E E 、—混凝土、钢筋的弹性模量;s c A A 、—支撑的混凝土截面面积、钢筋截面面积。

对于由式(1)计算出的轴力,存在以下一些问题:① 当所量测支撑为纯受压杆件或小偏心受压杆件时,采用式(1)计算轴力所得结果较能反映实际轴力值;② 当所量测支撑为大偏心受压杆件时,若支撑混凝土未产生裂缝,利用式(1)计算出的轴力仍能较好地反映实际轴力;若支撑混凝土已经产生裂缝,此时再用式(1)求得的轴力值会与实际轴力值产生较大的差别。

这样,监测轴力值就不能正确反映支撑的实际受力状态,而且若监测值小于实际值,往往会造成错误的判断,给围护工程的安全带来隐患。

造成这种问题的原因是,在这种情况下,支撑截面上已经出现了比较大的弯矩,混凝土已经产生裂缝,式(1)已不再适用。

2 支撑轴力计算探讨针对以上几个问题,本文做了以下一些探索:① 当实测断面均为压应力时,仍然采用式(1)计算支撑轴力; ② 当实测断面的应力值异号时,可考虑以下处理措施:1)调整测试点位置来监测支撑的安全;对于混凝土支撑沿支撑轴线方向如图1所示的弯矩分布,当测试点布置在a 点附近时,由于此范围的弯矩很小,测得的轴力值能较好地反映实际轴力值;当测试点布置在b 点附近或c 点附近时,由于此范围的弯矩较大,测得的轴力值将存在一定程度的偏差,但此时能测得钢筋的最大应力值,对判断支撑的安全是较为有利的。

深基坑混凝土支撑轴力报警原因分析

深基坑混凝土支撑轴力报警原因分析

深基坑混凝土支撑轴力报警原因分析郝玉强【摘要】地铁基坑混凝土支撑轴力值超出设计值的现象频繁出现,轴力报警原因一直存在不同观点.笔者通过对不同地质情况下混凝土支撑报警情况进行研究,得出在不同地质的基坑施工中混凝土轴力报警原因亦不同.土质基坑中轴力报警多为温度原因报警,在石质基坑中轴力报警多为在爆破振动作用下的主动土压力过大而产生.但不管哪种轴力报警,其报警原因都需要结合相关的其它监测项目进行综合分析、判定.研究表明:气温较高且能被太阳长时间照射的混凝土支撑,混凝土轴力报警的主要原因多为温度应力引起,建议对混凝土支撑采取遮阳防晒或浇水降温措施以减少其温度应力;对石质基坑,采用混凝土支撑会产生较大的轴力,建议采用柔性支撑.【期刊名称】《铁道建筑技术》【年(卷),期】2018(000)008【总页数】5页(P97-100,127)【关键词】基坑;混凝土支撑;轴力;报警【作者】郝玉强【作者单位】中铁十七局集团有限公司山西太原030006【正文语种】中文【中图分类】U231+.4;TU4711 前言随着经济的发展,城市变得越来越拥堵。

为缓减地面交通的拥堵,修建地铁越来越成为城市发展的首选。

在地铁车站修建过程中,深基坑的支护形式主要为围护桩+支撑或连续墙+支撑的形式[1]。

而第一道支撑多采用混凝土支撑,因其既具有支撑作用又兼具抗拉作用,可极大地保证基坑的安全。

但近年来,在各地地铁基坑施工过程中,均出现过混凝土支撑轴力超限报警的现象,有认为是混凝土徐变引发的,有认为是基坑周围附加荷载引起的,有认为是温度变化引起的,原因多种多样[2]。

笔者通过对两个不同城市不同地质的地铁车站基坑混凝土支撑轴力报警原因分析,认为在不同地质的基坑施工中,混凝土支撑轴力报警的主要原因是不同的,需根据各种监测数据,进行综合判定,进而确定混凝土轴力报警原因。

2 石家庄地铁混凝土支撑轴力报警分析2.1 设计概况石家庄轨道交通3号线东里站全长223.62 m,结构标准段总宽度21.1 m,标准段开挖深度约18.0 m,车站中间设轨排井。

基坑工程混凝土支撑轴力监测方法的讨论

基坑工程混凝土支撑轴力监测方法的讨论

基坑工程混凝土支撑轴力监测方法的讨论1.混凝土支撑轴力监测的问题及现状国内明挖基坑工程的监测中,混凝土支撑系统的轴力监测结果异常(轴力监测值过大,但实际工程结构中并非内力过大或不稳定;如:一根C351m ×1m截面的钢筋混凝土支撑,有时轴力监测值会达到20000~30000kN,而依然处于正常工作状态)问题普遍地存在着,时常会对监测结果分析及工程施工的进行造成不必要的阻碍。

如苏州轨道交通一号线广济·站基坑混凝土支撑轴力监测数据,在实际监测过程中发现随着基坑开挖深度的加深,基坑支撑的监测轴力值变化较快并远大于设计值,有的甚至好几倍,以标准段8-2道混凝土支撑轴力为例,最大监测轴力值接近15000kN,远远超过该段8700kN的设计值。

广州地铁五号线员村站基坑工程,在D101监测点处支撑横断面下表面钢筋所测应力为负值,即为拉应力,说明斜撑在土压力的作用下已向下弯曲,且下表面混凝土拉应力为2.51MPa,超过了混凝土的设计抗拉强度,就现场观看支撑上表面有细微裂缝,而轴力平均值才达到1440.44kN,还远δ达到轴力设计报警值3000kN。

广州某地铁基坑工程混凝土支撑系统的轴力监测结果起初均为负值,随着基坑的开挖轴力值持续增大,一直到基坑开挖结束,最大值达到设计允许值的6倍,而支撑系统一直处于正常工作的状态。

天津某轨道换乘中心⑩轴~⑩轴工程截至2009年8月6日,⑦轴轴力值为18247kN,占设计值204%;⑦轴轴力值为18994kN,占设计值213%;已大大超过支撑的安全报警值,但支撑一直安全工作,δ出现裂缝等不安全、失稳迹象。

上海虹桥国际商城基坑开挖深度13.70m,3道混凝土支撑,第2道支撑(C351200mm×l000mm)轴力监测值最大处曾达到30500kN,已大大超过支撑的安全报警值,但支撑一直安全工作,δ出现裂缝等不安全、失稳迹象,直至支撑拆除;南京地铁指挥中心基坑开挖深度15.40m,4道钢筋混凝土支撑,施工过程中第3道支撑(C351200mm×1000mm)轴力监测值最大处达到21000kN,已超出轴力安全报警值,但并δ出现不安全工作的迹象,直至支撑拆除。

混凝土支撑轴力计算方法

混凝土支撑轴力计算方法

混凝土支撑轴力监测范本1工程概况该工程包括盾构始发井兼轨排井及后明挖段,设计为 1〜3跨的闭合框架结构,其中盾构始发井基坑开挖深度约为18.9 m,明挖段基坑开挖深度约 17.5 m ;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。

基坑设计采用800 mm厚的地下连续墙+内支撑的围护结构体系。

内支撑采用3道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为①600、t=14的钢管,在灌梁和斜撑上共埋设 13个钢筋混凝土支撑轴力监测点。

基坑监测点平面位置见图1。

團1幕址濃擁土支撑器測点平面右齐图由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。

2轴力监测的原理对于混凝土支撑,目前实际工程采用较多的是钢弦式应力计方法测量钢筋的应力,其基本原理是利用振动频率与其应力之间的关系建立的。

受力后,钢筋两端固定点的距离发生变化,钢弦的振动频率也发生变化,根据所测得的钢弦振动频率变化即可求得弦内应力的变化值。

其计算公式如下:P g= K (纭-乍)+ b ⑴P g 平均=(P 1+P2+P3+P4 +…+P n) /n ⑵S g = P g 平均/S g (3)P混凝土= S g S混凝土E混凝土/Eg (4)式中P g --------- 钢筋计轴力;P g平均---------------- 钢筋计荷载平均值;S g ------- 钢筋计应力值;S g -------- 钢筋计截面积;P混凝土 ---------------- 混凝土桩荷载值;E混凝土------------- 混凝土弹性模量;E g --------- 钢筋弹性模量;S混凝土------------------ 混凝土桩横截面积。

混凝土支撑轴力计算方法

混凝土支撑轴力计算方法

【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】混凝土支撑轴力监测范本1工程概况该工程包括盾构始发井兼轨排井及后明挖段,设计为1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。

基坑设计采用800 mm 厚的地下连续墙+内支撑的围护结构体系。

内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、t=14 的钢管,在灌梁和斜撑上共埋设13 个钢筋混凝土支撑轴力监测点。

基坑监测点平面位置见图1。

由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。

2轴力监测的原理对于混凝土支撑,目前实际工程采用较多的是钢弦式应力计方法测量钢筋的应力,其基本原理是利用振动频率与其应力之间的关系建立的。

受力后,钢筋两端固定点的距离发生变化,钢弦的振动频率也发生变化,根据所测得的钢弦振动频率变化即可求得弦内应力的变化值。

其计算公式如下:P g=K ( ) + b ⑴P g 平均= (P1+P2+P3+P4+…+P n) /n ⑵δg=P g 平均/S g⑶P混凝土=δg·S混凝土·E混凝土/E g ⑷式中P g———钢筋计轴力;P g 平均———钢筋计荷载平均值;δg———钢筋计应力值;S g———钢筋计截面积;P混凝土———混凝土桩荷载值;E混凝土———混凝土弹性模量;E g———钢筋弹性模量;S混凝土———混凝土桩横截面积。

在监测中由于内外部温差变化以及混凝土徐变特性会使钢筋应力计产生一定的伸缩变形,引起其自振动频率变化,因此必须采取必要的修正参数进行温差改正,以提高监测结果的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凝土有裂缝;○2 支撑有拱效应;○3 支撑的截面和长度等等。
3、若要计算位移量时,可按下式换算:
1με=0.0001mm
上述是应变计测量混凝土支撑轴力的一般计算方法,仅供参考!
需作温度修正时,可采用公式(5)来进行计算,它适用于测量点温度变化较大的场合。用户
可根据具体情况来分别对待。
2、在取支撑混凝土弹性模量时,一般情况下应根据混凝土试块的强度,然后按降低一级混
凝土强度来取弹性模量,如支撑混凝土强度为C40,应取C35的弹性模量来计算支撑应力。在
特殊情况下,混凝土强度需取得更低些,这要根据测试者的现场经验来判断,如: ○1 混
注:ε传为正值时,应变计在受拉状态;ε传为负值时,在受压状态。
三、 求支撑应变量的公式:
ε支=ε传·10-6
……………………………………………………(3)
四、 求支撑轴力的计算公式:
F支=σ支·S支
……………………………………………………(4)
应变计测量凝土支撑轴力的计算方法
一、 求支撑应力计算公式:
σ支=ε支·Ε支
………………………………………………………(1)
式中:σ支-混凝土支撑的应力(N/mm2);
ε支-混凝土支撑的应变量(ε);
Ε支-混凝土支撑的混凝土弹性模量(N/mm2);
式中:F支-支撑轴力(N);
S支-支撑截面积(mm2)。
五、 几点说明:
1、在整个测量过程中,若考虑到温度落差比较大时,应采取温度修正,其计算过程如下:
1) 在安装后测取零点模数时,请同时记录下测量点的温度(或当时的气温),用温度
表测量,
其值设为T0;
二、 求应变计的应变量的计算公式:
ε传= K·(fi2- f02) ………………………………………………………(2)
式中:ε传-应变计测得的应变量(με);
f0-应变计安装后的零点读数(频率);
fi-应变计受力后测得的读数(频率);
K-应变计的标定系数,厂家给定的(με/HZ2);
2) 在受力后测取模数时,可采取同样的方法测一下温度,其值设为T i;
3) 其计算公式(2)应改为:
ε传=K(fi2-f02)+ (Ti-T0)×11.5 …………………………………(5)
应变量的计算,当不作温度修正时,可采用公式(2),适用于测量温度变化不大的场合;若
相关文档
最新文档