用示波器测量汽车油门踏板传感器信号及波形分析
示波器波形分析
山东交通学院 焦建刚
示波器的基本作用
现代汽车大量采用了电子部件用于发动机 的电子控制系统,随之,在车辆检测过程 中,对电子器件的检修提出了更高的要求, 以往常规的检测方式已无法适应现代车辆 的要求。特别是在直接点火系统的检查中, 常规的断缸测试已经无法精确判断系统是 否正常,而示波器由于其具有实时性,不 间断性,直观性,而越来越得到广泛的应 用。 早在60年代,第一台运用在汽车上的 专用示波器在美国开始生产使用。
霍尔与光电式传感器的特点
在检测时,应注意其 以下几个特点。
输出电压的幅值不变, 频率随发动机转速变 化而改变。
波形的水平上限应达 到参考电压,水平下 限应几乎达到地电位, 若离地电位太高,说 明电阻太大或接地不 良。
电压的峰-峰值应等于 参考电压。
电压的转变应是垂直 的直线。
怠速马达信号
示波器的基本作用
汽车电子信号的五大基本类型: 1、直流(DC)信号:模拟信号——发动机冷却水温度传感器、燃 油温度传感器、进气温度传感、节气门位置传感器、废气再循环压 强和位置。翼板式或热丝式空气流量计、真空和节气门开关,以及 进气压力传感器。 2、交流(AC)信号:车速传感器(VSS)、防滑制动轮速传感器、磁 电式曲轴转角(CKP)和凸轮轴传感器(CMP)、从模拟压力传感器 (MAP)信号得到的真空平衡波形、爆震传感器(KS) 3、频率信号:数字式空气流量计、福特数字进气压力传感器、光 电式车速传感器(VSS)、霍尔式车速传感器(VSS)、光电式凸轮轴 (CAM)和曲轴转角传感器(CKP)、霍尔式车速传感器、霍尔式凸轮 轴和曲轴转角传感器。 4、脉宽信号 :点火信号初极、点火信号正时电路、废气再循环控 制、净化、涡轮增压和其他控制电磁阀、喷有咀、怠速控制马达和 电磁阀。 5、串行数据信号:电脑控制模块之间的传递信号
曲轴位置传感器波形分析2
曲轴位置传感器波形分析2————————————————————————————————作者:————————————————————————————————日期:曲轴位置传感器波形分析一、磁脉冲式曲轴位置传感器信号波形分析波形检测方法连接示波器,起动发动机,怠速运转,而后加速或按照行驶性能发生故障的需要驾驶等,获得波形, 典型的磁脉冲式曲轴位置传感器信号波形如图所示。
二、对于将发动机转速和凸轮轴位置传感器制成一体的具有两个信号输出端子的曲轴位置传感器可用双通道的示波器同时进行检测其信号波形,其典型信号波形如图所示。
三、波形分析1.触发轮上相同的齿形应产生相同型式的连续脉冲,脉冲有一致的形状、幅值(峰对峰电压)并与曲轴(或凸轮)的转速成正比,输出信号的频率(基于触发的转动速度)及传感器磁极与触发轮之间的间隙对传感器信号的幅值影响极大。
2.靠除去传感器触发轮上一个齿或两个相互靠近的的齿所产生的同步脉冲,可以确定上止点的信号。
3.各个最大(最小)峰值电压应相差不多,若某一个峰值电压低于其他的峰值电压,则应检查触发轮是否有缺角或弯曲。
4.波形的上下波动,不可能在0V电位的上下完美地对称,但大多数传感器的波形相当接近,磁脉冲式曲轴(或凸轮轴)位置传感器的幅值随转速的增加而增加,转速增加,波形高度相对增加。
5.波形的幅值、频率和形状在确定的条件下(如相同转速)应是一致的、可重复的、有规律的和可预测的。
也就是说测得波形峰值的幅度应该足够高,两脉冲时间间隔(频率)应一致,形状一致并可预测。
6.波形的频率应同发动机的转速同步变化。
能使两脉冲间隔时间改变的唯一理由,是触发轮上的齿轮数缺少或特殊齿经过传感器,任何其他改变脉冲间隔时间的波形出现都可能意味着传感器有故障。
7.如果发动机异响和行驶性能故障与波形的异常有关,则说明故障是由该传感器故障造成的。
8.不同类型的传感器的波形峰值电压和形状并不相同。
由于线圈是传感器的核心部分,所以故障往往与温度关系密切,大多数情况是波形峰值变小或变形,同时出现发动机失速、断火或熄火。
汽车LIN总线信号测量及波形分析-示波器
示波器测量汽⻋LIN总线信号及波形分析汽⻋⽹络通信中除了CAN的通信⽅式外,还有另外⼀种低成本通信⽅式——LIN系统。
它的英⽂是“Local Interconnect Network”,LIN总线基于UART/SCI(通⽤异步收发器/串⾏接⼝)的串⾏通信协议,主要⽤于智能传感器和执⾏器的串⾏通信,⻋上各个LIN总线系统之间的数据交换是由控制单元通过CAN数据总线实现的。
LIN特点是⽤作主从控制系统,⼀个主控系统可以带最多16个⼦系统,并且⼦系统只具备与主系统通信的功能,各个⼦系统之间⽆法通信,也不能与LIN⽹络之外的系统模块进⾏通信。
LIN⼀般应⽤于⻋⻔控制系统,⽐如福特蒙迪欧致胜和克鲁兹的⻋⻔电动玻璃控制系统就采⽤LIN控制。
我们这⾥以测量奥迪汽⻋LIN总线控制的⾬刷电机为例。
连接⼀条BNC转⾹蕉头线到示波器的通道⼀上。
连接⼀根刺针到红⾊⾹蕉头,刺⼊到⻋辆上的插头⾥⾯的LIN总线数据信号端⼦上。
⾹蕉头的⿊⾊接头接⼀个鳄⻥夹到蓄电池负极或良好的底盘接地上。
由于LIN总线⼀般最⼤值在12V左右,因此可以设置示波器的垂直档位为2V/div,时基可以设置为500μs左右。
然后打开示波器的解码菜单,进⾏LIN总线配置,选择与被测信号相匹配的波特率。
调节总线阈值电平到波形显示范围内,就可以看到解码数据了。
可以将触发⽅式改为总线解码触发,设置合适的帧ID来稳定波形。
如下图就是奥迪汽⻋⾬刷电机LIN总线控制信号。
LIN总线波形是⼀个⽅波,代表着串⾏数据流⾥的⼆进制状态。
所⻅的波形应该没有明显的变形和噪⾳⽑刺。
解码数据包以⼗六进制显示总线活动时的实时数据内容。
“帧ID”显示颜⾊为⻩⾊,上图中即是23,“数据”显示颜⾊为⽩⾊,“校验和”显示颜⾊为绿⾊,如果校验和错误,以红⾊“E”显示。
如果⽆信息发送到LIN数据总线上(总线空闲)或者发送到LIN数据总线上的是⼀个隐性位,LIN总线信号上的最⼤值即隐性电平。
当传输显性位时,发送控制单元内的收发器将LIN数据总线接地。
利用示波器检测次级点火波形(上)
维修技巧Maintenance Skill栏目编辑:彭蓉霞 ******************54·October-CHINA 利用示波器检测次级点火波形(上)电子部件在现代汽车中的大量使用,让汽修从业人员对电子器件的检修提出了更高的要求。
以往常规的检测方式已无法适应现代车辆的要求,特别是在直接点火系统的检查中,常规的断缸测试已经无法精确判断系统是否正常,而示波器由于其所具备的实时性、不间断性和直观性等特点,被广泛地应用于车辆检测。
本文将从电子次级点火波形测试的主要用途出发,结合具体的汽车故障,具体分析如何利用示波器检测次级点火波形。
◆文/山东 焦建刚利用示波器检测次级点火波形,可以有效地检查车辆行驶性能及排放问题产生的原因。
由于次级点火波形明显地受到发动机的性能、燃油系统的配置和点火条件不同等因素的影响,所以它能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件的故障,一个波形的不同部分还能够分别指明在汽缸中的哪个部件或哪个系统有故障。
一、次级点火波形1.次级点火单缸波形测试主要用途①分析单缸的点火闭合角;②分析点火线圈和次级高压电路性能;③检查单缸混合汽空燃比是否正常;④分析电容性能;⑤查出造成汽缸断火的原因。
图1为次级点火波形,通过观察该波形,可以得到击穿电压、燃烧电压、燃烧时间以及点火闭合角。
情况出现的要求来启动发动机或驾驶汽车,确认各缸幅值、频率、形状和脉冲宽度等,检查对应部件的波形部分的故障。
2.电子次级点火波形分析(1)充磁开始:点火线圈在开始充电时,应保持相对一致的波形下降沿,这表明各缸闭合角相同以及点火正时准确。
(2)点火线:观察击穿电压高度的一致性,如果击穿电压太高,甚至超过了示波器的显示屏,表明在次级点火电压电路中电阻值过高,譬如断路、高压线损坏或是火花塞间隙过大;如果击穿电压太低,表明次级点火电路电阻低于正常值。
(3)跳火或燃烧电压:观察跳火或燃烧电压的相应一致性,它说明火花塞工作各缸空燃比是否正常与否,如果混合汽过稀,燃烧电压就比正常值低一些。
使用示波器进行信号测量技巧
使用示波器进行信号测量技巧在电子领域中,信号测量是一项非常重要的工作。
准确地测量信号的频率、幅度和相位,可以帮助我们分析电路的工作情况,进而改进设计和解决问题。
而在信号测量中,示波器是一种不可或缺的仪器。
本文将探讨几种使用示波器进行信号测量的技巧和注意事项,帮助读者更好地应用示波器。
1. 选择适当的示波器设置在开始信号测量之前,我们需要选择适合的示波器设置。
首先,选择合适的时间基准和垂直灵敏度,以便在示波器屏幕上显示出待测信号的合适波形。
时间基准决定了示波器屏幕上每个小方格所代表的时间,而垂直灵敏度则决定了每个小方格所代表的电压。
其次,调整触发设置。
示波器的触发设置可以帮助我们稳定地观测待测信号。
触发电平可以设置在待测信号的特定水平上,当信号达到触发电平时,示波器才会触发并显示波形。
触发沿也可以设置为上升沿或下降沿,以满足实际测量需求。
2. 正确连接信号源和示波器在进行信号测量之前,我们需要正确地连接信号源和示波器。
通常情况下,信号源的输出端口会连接到示波器的输入端口。
确保连接良好,避免因接触不良或短路等问题导致测量结果不准确。
如果测量的是高频信号,注意信号源和示波器之间的传输线需要具备相应的带宽能力,以确保传输信号时没有过多的损耗和畸变。
合理选择适用于高频测量的传输线材料和长度,同时避免干扰信号的干扰源。
3. 了解采样频率和带宽的关系示波器的采样频率和带宽是影响信号测量的关键参数。
采样频率是指示波器在一秒钟内对信号进行采样的次数,而带宽则是指示波器可以接收和显示的频率范围。
在选择示波器时,需要根据待测信号的频率范围和特性来确定采样频率和带宽。
通常情况下,采样频率应为待测信号频率的两倍以上,以确保准确重建信号波形。
而带宽则应包含待测信号的最高频率成分,以避免信号被截断而无法完整显示。
4. 注意示波器的内部噪声和失真在进行信号测量时,示波器的内部噪声和失真也会对测量结果产生一定的影响。
示波器的内部噪声是由示波器自身电路和元件的热噪声引起的,它会与待测信号叠加在一起,影响信号的准确测量。
汽车电控燃油控制的波形分析
汽车电控燃油控制的波形分析引言在现代汽车中,电控燃油系统起着至关重要的作用。
燃油控制是维持引擎正常运行的关键,而波形分析那么是诊断问题的有力工具。
本文将对汽车电控燃油控制的波形进行分析,帮助了解燃油系统的工作原理、故障诊断方法以及解决问题的技巧。
1. 汽车电控燃油系统简介汽车电控燃油系统主要由燃油泵、进气系统、点火系统、喷油器、传感器等组成。
整个系统通过电子控制单元〔ECU〕协调工作,确保燃油供应的精确控制,并实时调整以满足引擎的需求。
2. 汽车电控燃油控制的波形分析原理燃油控制是通过ECU对燃油喷射时机和量进行精确控制来实现的。
波形分析是诊断燃油控制系统的有效方法之一,主要通过观察和分析传感器和执行器的输出信号波形来判断系统的工作状态和是否存在故障。
在波形分析中,一些常用的输入信号包括: - 氧传感器输出信号 - 空气流量传感器输出信号 - 曲轴位置传感器输出信号 - 进气歧管绝对压力传感器输出信号一些常用的输出信号包括: - 燃油喷射器驱动脉冲信号 - 点火系统的点火脉冲信号 - 燃油泵驱动信号 - 长时燃油修正信号通过对这些信号波形的观察和分析,可以给出诊断结果,判断系统是否正常工作。
3. 汽车电控燃油控制的常见问题和解决方法3.1. 燃油喷射器故障燃油喷射器是汽车燃油系统中的关键部件之一。
当喷油器出现故障时,会导致燃油供应缺乏或过量,引发引擎失火或工作不稳定的问题。
在波形分析中,观察燃油喷射器驱动脉冲信号的波形可以判断其工作状态。
正常情况下,喷油器应该有规律的脉冲信号,且脉冲的持续时间和频率应该符合规格要求。
如果喷油器的脉冲信号出现异常,如持续时间过短或过长,频率异常等,可能需要更换或维修燃油喷射器。
3.2. 传感器故障汽车燃油控制系统中的传感器起着收集和反应关键信息的作用。
常见的传感器包括氧传感器、进气歧管绝对压力传感器和曲轴位置传感器。
通过观察传感器的输出信号波形,可以判断传感器是否工作正常。
油门踏板位置传感器故障排除课件
案例二:传感器内部故障
总结词
传感器内部故障可能是由于传感器本身 的质量问题或使用过程中受到的损坏所 致。
VS
详细描述
当传感器内部出现故障时,传感器无法正 常工作,发动机控制单元(ECU)无法接 收到准确的油门踏板位置信号,导致发动 机性能下降或无法加速。此时,需要更换 损坏的传感器,并检查传感器与ECU之间 的通信是否正常。
要点二
详细描述
油门踏板位置传感器的工作环境较为恶劣,需要承受高温 、高湿和振动等不利因素。使用高品质的配件和油品可以 增强传感器的耐久性和稳定性,降低故障发生的风险。同 时,车主应按照车辆制造商的推荐,使用指定的配件和油 品,以确保最佳的性能和安全性。
CHAPTER 06
常见问题与答疑解惑
问题一:更换传感器后故障仍未排除?
正常。
电压检测
在传感器供电和信号输 出端测量电压,判断是
否正常。
波形分析
使用示波器检测传感器 信号波形,与标准波形
对比分析。
诊断流程图
故障现象确认
确认车辆是否存在油门踏板位置 传感器故障现象。
诊断工具准备
准备数字万用表、示波器、故障 诊断仪等工具。
初步检查
进行外观检查、线路检查等初步 检查。
修复与更换
CHAPTER 05
预防措施与保养建议
定期检查线束状况
总结词
定期检查线束状况是预防传感器故障的重要 措施。
详细描述
油门踏板位置传感器通过线束与车辆其他部 分进行连接,如果线束出现磨损、断裂或接 触不良等问题,传感器将无法正常工作。因 此,车主应定期检查线束的状况,确保线束 完好无损、连接牢固。
保持传感器清洁
数字万用表
用于测量传感器电阻和电压,检查其是否正常工 作。
油门踏板位置传感器的检测方法
油门踏板位置传感器的检测方法油门踏板位置传感器是汽车发动机控制系统中的重要传感器之一,它能够准确地感知油门踏板的位置,并将这些信息传递给发动机控制单元,以控制发动机的工作状态。
因此,油门踏板位置传感器的正常工作对于发动机的性能和燃油经济性至关重要。
本文将介绍油门踏板位置传感器的检测方法,帮助读者了解如何准确地检测和诊断油门踏板位置传感器的工作状态。
首先,我们需要准备一些工具和设备,以便进行油门踏板位置传感器的检测。
通常情况下,我们需要使用数字多用表、示波器和相应的连接线。
在进行检测之前,需要确保车辆处于停车状态,并且发动机已经熄火。
接下来,我们将介绍如何使用数字多用表来检测油门踏板位置传感器。
首先,找到油门踏板位置传感器的连接插头,通常位于发动机舱内。
然后,根据车辆的技术资料,确定传感器的供电电压和信号线的位置。
将数字多用表的正负极分别连接到传感器的供电端和地线端,然后将表笔连接到传感器的信号线端。
在这个过程中,需要注意保持连接稳定,避免短路或断路。
通过数字多用表的读数,我们可以准确地获取油门踏板位置传感器的供电电压和信号线的电压。
这些数据可以帮助我们判断传感器是否正常工作。
一般情况下,传感器的供电电压应该稳定在规定范围内,而信号线的电压则会随着油门踏板位置的变化而变化。
如果供电电压不稳定或者信号线的电压变化异常,那么很可能是油门踏板位置传感器出现了故障。
除了使用数字多用表外,我们还可以使用示波器来检测油门踏板位置传感器。
示波器可以直观地显示传感器信号的波形,帮助我们更准确地判断传感器的工作状态。
通过观察示波器的波形,我们可以判断油门踏板位置传感器的信号是否稳定,是否存在异常波动。
这些信息对于诊断传感器故障非常有帮助。
总的来说,油门踏板位置传感器的检测方法主要包括使用数字多用表和示波器。
通过准确地测量传感器的供电电压和信号线的电压,以及观察示波器的波形,我们可以判断油门踏板位置传感器是否正常工作。
汽车示波器的使用方法
汽车示波器的使用方法
一、介绍
1.汽车示波器是一种用于诊断汽车故障的仪器,它可以实现汽车电源系统、燃油系统、燃油喷射系统等的可视化分析。
2.可以通过它来检查汽车系统的各个部分的电气参数及其波形变化,以便发现故障,提高汽车维修的效率和效果。
二、操作步骤
1.将汽车示波器接入车辆的电源线,并连接地线,启动汽车发动机;
2.按照汽车示波器的操作说明进行设置;
3.在示波器上设置所需要检测的参数,进行示波检测;
4.分析检测结果,判断汽车电气系统是否有问题,并根据检测结果进行相应的故障处理。
三、注意事项
1.在使用汽车示波器时,要注意安全,先断开汽车电源,以免发生意外;
2.要熟悉汽车示波器的特征及功能,避免误操作;
3.在操作汽车示波器时,要遵守操作规程,以免造成不必要的损失。
- 1 -。
示波器在汽车电子中的故障诊断和维修
示波器在汽车电子中的故障诊断和维修随着汽车电子技术的不断发展和普及,现代汽车中集成了大量的电子部件,如发动机控制单元、传感器、执行器等。
这些电子部件对于汽车的性能和安全至关重要。
然而,由于各种原因可能会出现电子系统的故障,给汽车的正常运行带来了很大的困扰。
为了能够准确快速地定位并修复故障,工程师们发展出了一种有效的工具——示波器。
一、示波器的原理和类型1. 示波器的原理示波器利用电子束在荧光屏上的显示原理,通过显示电压随时间变化的波形图,帮助技术人员观察电子信号的波形、频率、相位以及幅度等重要参数。
2. 示波器的类型目前市面上主要有模拟示波器和数字示波器两种类型。
模拟示波器适用于对波形的快速变化进行观察和分析,而数字示波器通过内置的模数转换器将连续的模拟信号转换为数字信号进行分析,更加精确和灵活。
二、示波器在汽车电子中的应用1. 故障诊断示波器可以帮助技术人员准确定位汽车电子系统中的故障。
通过连接到电子模块或传感器的示波器探头,可以实时观察到信号波形并与理论波形进行比较,从而判断是否出现异常。
例如,在发动机控制单元的故障诊断中,示波器可以帮助检测传感器和执行器的工作状态,以及控制信号的稳定性。
2. 信号分析示波器可以实时监测和分析各种传感器信号,如氧气传感器、节气门传感器等。
通过观察信号波形的形状和频率,可以判断传感器的工作状态是否正常,并据此进行进一步的维修和调整。
3. 电路检测示波器还可用于对汽车电子电路的检测和分析。
通过对电路信号的观察,可以判断电路中是否存在电压过高或过低、电流泄漏以及信号干扰等问题,为工程师提供有效的故障排除线索。
三、示波器的使用技巧1. 正确接线在使用示波器进行故障诊断和维修时,正确的接线非常重要。
需要按照汽车电路原理图或者相关资料上的接线示意图,将示波器的探头与被测信号正确地连接。
2. 设置合适的参数根据被测信号的特点和要观测的波形进行合理设置示波器的参数,如时间基准、触发方式、增益等。
油门踏板位置传感器故障排除分解课件
典型故障案例分析
解决方法
检查传感器内部电路,检查传感 器与ECU之间的连接是否正常。
如果存在问题,需要更换传感器 或修复连接线路。
案例二
油门踏板位置传感器信号异常,车 辆加速不稳定
故障现象
车辆在行驶过程中,加速不稳定, 油门踏板位置传感器信号异常。
故障诊断流程
2. 检查油门踏板位 置传感器的线路连 接是否牢固
4. 根据故障码指示, 逐一排查可能的故 障点
1. 确认故障现象, 检查车辆是否有其 他异常表现
3. 使用诊断仪读取 故障码,确定故障 范围
5. 确认故障点后, 进行修复并验证故 障是否排除
常见故障类型与排查
油门踏板位置传感器信号不良 • 传感器线路接触不良或断裂
针对不同的故障现象,需要采取 不同的解决方法。
在维修过程中,需要注意安全, 避免因操作不当而造成其他故障
或损伤。
学员互动与讨论环节
01
学员可以提出自己在维修过程中 遇到的问题或困难,与其他学员 和老师进行交流和讨论。
02
通过互动和讨论,可以加深对油 门踏板位置传感器故障排除的理 解和掌握,提高维修技能和水平。
• 传感器本身故障
ห้องสมุดไป่ตู้
常见故障类型与排查
油门踏板位置传感器信号干扰 • 附近存在电磁干扰源
• 线路与其他电磁部件相互干扰
常见故障类型与排查
油门踏板位置传感器与发动机控制单元不匹配 • 传感器型号与发动机控制单元不匹配
• 线路连接错误或松动
02
感器构与工作理
传感器结构组成
01 02
踏板位置传感器
示波器的波形显示和测量方法
示波器的波形显示和测量方法示波器是一种常用的电子测试设备,用于显示和测量电信号的波形。
它广泛应用于电子工程、通信、医疗、教育和科研等领域。
本文将介绍示波器的波形显示原理和常用的波形测量方法。
一、波形显示原理示波器通过采集被测信号并将其转换为电压值,然后将这些离散的电压值通过水平和垂直扫描进行扫描和显示,从而形成连续的波形图像。
具体的波形显示原理有两种常见的类型:模拟示波器和数字示波器。
1. 模拟示波器模拟示波器使用电子光束和电磁偏转来显示被测信号的波形。
它通过电子束在阴极射线示波管(CRT)屏幕上作二维扫描,利用电磁偏转系统来控制电子束的水平和垂直移动,从而将电压信号转换为可见的波形图像。
2. 数字示波器数字示波器将被测信号转换为数字信号,并通过模数转换器将其转换为离散的电压值。
然后,这些离散的电压值可以通过数字信号处理技术重新恢复成连续的波形,最终在示波器屏幕上显示出来。
数字示波器具有高精度、稳定性好以及多种自动化功能,因此在现代电子测试中得到了广泛应用。
二、波形测量方法示波器不仅可以显示波形,还可以进行各种波形测量。
常用的波形测量方法有以下几种:1. 幅值测量示波器可以测量波形的峰值、峰峰值、平均值和有效值等幅值参数。
通过在示波器上设置合适的垂直量程和触发模式,可以准确地测量波形的幅度。
2. 频率测量示波器可以通过测量波形的周期或脉冲宽度来获取频率信息。
利用示波器上的时间测量功能,可以轻松地获取波形的频率,并通过适当的设置还可以获得频谱分析图。
3. 相位测量对于多个信号或者周期信号,示波器可以通过设置触发源和触发级来测量信号之间的相位关系,从而获取波形的相位信息。
相位测量对于频率合成、通信系统和控制系统等领域非常重要。
4. 上升时间和下降时间测量对于快速变化的信号,示波器可以测量信号的上升时间和下降时间,这对于分析信号的传输特性和约束等参数是至关重要的。
5. 示波器中的数学运算现代数字示波器经常配备各种数学运算功能,例如傅里叶变换、微分、积分和滤波等。
10项目二 2.2 汽车波形检测与分析
项目二 汽车波形检测与分析
任务二:汽车典型传感器波形检测与分析
1、熟悉示波器的操作 2、了解汽车传感器的波形检测方法 3、了解汽车传感器的波形分析方法
项目二 汽车波形检测与分析
为什么要熟练使用示波器?
项目二 汽车波形检测与分析
一、空气流量计波形分析
按结构原理:
➢ 质量型空气流量计: • 热线式 ➢ 体积型空气流量计: • 叶片式 • 光学卡尔曼涡流式
为了确保可靠性,此传感器 还具有不同输出特性的两个 系统输出信号。 加速踏板位置传感器:
➢ 线性型
➢ 霍尔元件型
项目二 汽车波形检测与分析
六、加速踏板位置传感器
项目二 汽车波形检测与分析
六、加速踏板位置传感器
➢ 霍尔元件型
项目二 汽车波形检测与分析
七、爆震传感器
项目二 汽车波形检测与分析
七、爆震传感器
U
t1
1V
Us
0V
t
Us =0-1v t1 =1/s(每10秒8次以上为良好至少要4次)
项目二 汽车波形检测与分析
四、温度传感器 1、负温度系数传感器
项目二 汽车波形检测与分析
四、温度传感器
项目二 汽车波形检测与分析
四、温度传感器
项目二 汽车波形检测与分析
四、温度传感器
项目二 汽车波形检测与分析
➢ 怠速时的电压约为1V; ➢ 油门全开时应超过4V
项目二 汽车波形检测与分析
2、热丝式空气流量计波形
项目二 汽车波形检测与分析
2、热丝式空气流量计波形
项目二 汽车波形检测与分析
2、热丝式空气流量计波形
输出波形电压: ➢ 怠速时的电压约为2V; ➢ 油门全开时应超过4V; ➢ 全减速时输出电压比怠 速时的电压稍低
检测实训项目七(用示波器检测传感器波形)
实训项目七用示波器检测传感器波形一、实训目的及要求1、掌握示波器的使用方法;2、掌握传感器及执行器的波形观测方法.3、根据波形进行故障分析二、实训课时4课时三、实训设备及工具1、桑塔纳轿车一台;2、时代超人试验台一台;3、K81及常用工具一套。
四、实训步骤及要求(一)、主要传感器的波形检测( l )空气流量计空气流量计安装在空气滤清器与节气门之间,用于测量进人气缸的空气流量,并将空气流量变成电信号传输给电子控制器ECU 。
常用的空气流量计有叶片式、热线式和卡门旋涡式三种类型。
限于篇幅,仅以丰田子弹头ZJz 一FE 型发动机叶片式空气流量计为例,介绍对空气流量计进行电压、电阻测量的方法,其测量图如图4 一40 所示。
叶片式空气流量计的波形检测:波形观测利用示波器可以观测到空气流量计输出信号电压(或频率)的变化情况。
需要注意的是,叶片式空气流量计输出的信号电压有两种形式:一种形式是输出的信号电压随发动机进气量的增大而增高,多安装在欧洲、亚洲车型上;另一种形式是输出的信号电压随发动机进气量的增大而降低,多安装在丰田车系上,如上述丰田子弹头ZJZ 一FE 发动机的叶片式空气流量计就是如此。
把示波器的COM 测针连接到空气流量计的搭铁线上,把CHI 测针连接到空气流量计的信号输出线(通往ECU )上,关闭发动机所有附件,起动发动机,即可观测到空气流量计输出信号电压(或频率)的变化情况。
一般情况下,空气流量计输出信号电压的变化范围,在怠速下是 1 . 0V 左右,节气门全开时最大幅值可达 4 . 0 一4 . 5V 。
在节气门从全闭到全开再到全闭动作过程中,叶片式空气流量计(模拟式)输出信号电压的正常变化(输出的信号电压随发动机进气量的增大而增高)情况如图4 一41 所示,热线式空气流量计(模拟式)输出信号电压的正常变化情况如图 4 一42 所示,卡门旋涡式空气流量计(数字式)输出信号频率的正常变化情况如图 4 一43 所示。
加速踏板位置传感器电路的工作原理
加速踏板位置传感器电路的工作原理加速踏板位置传感器是一种用于测量汽车加速踏板位置的重要装置。
它的工作原理是基于电阻变化的原理。
当驾驶员踩下加速踏板时,传感器会根据踏板的位置变化产生相应的电阻值变化,通过电路的处理和转换,最终将踏板位置信号转化为电压信号输出给汽车控制系统。
加速踏板位置传感器的核心部件是一个可变电阻器,通常是采用螺旋线圈或者碳膜材料制成。
当驾驶员踩下加速踏板时,踏板与电阻器之间会产生机械位移,从而改变电阻器的电阻值。
这是因为电阻器的导电材料在踏板位置变化时会发生形变,导致电阻值的改变。
为了测量电阻值的变化,加速踏板位置传感器一般采用电桥电路来实现。
电桥电路由四个电阻和一个电源组成,其中一个电阻为可变电阻器。
当电桥电路平衡时,电流在各个电阻之间分布均匀,电桥的两个对角线电位相等。
而当电桥电路不平衡时,电流在各个电阻之间分布不均匀,导致电桥的两个对角线电位不相等。
为了测量电桥电路的不平衡情况,加速踏板位置传感器通常使用差动放大器来放大电桥电路的输出信号。
差动放大器能够将微小的电桥输出信号放大为较大的电压信号,以提高测量的精度和灵敏度。
经过差动放大器的放大,加速踏板位置传感器的输出信号会被转化为一个与踏板位置成正比的电压信号。
这个电压信号会被传输给汽车控制系统,用于控制发动机的输出功率和车辆的加速度。
为了保证加速踏板位置传感器的精确性和可靠性,它通常还会采用一些辅助电路来提供电源稳定、温度补偿和故障检测等功能。
例如,为了提高电桥电路的稳定性,加速踏板位置传感器会采用稳压电路来保持电源电压的稳定。
而为了抵消温度变化对电阻值的影响,传感器还会加入温度补偿电路来对测量结果进行修正。
总结起来,加速踏板位置传感器的工作原理是基于电阻变化的原理。
通过测量踏板位置引起的电阻值变化,再经过电桥电路和差动放大器的处理,最终将踏板位置信号转化为电压信号输出给汽车控制系统。
这样,汽车控制系统就能根据踏板位置信号调整发动机的输出功率和车辆的加速度,实现驾驶员对车辆的控制。
汽车示波器的使用方法
汽车示波器的使用方法
1.检查示波器的电源和探针是否连接正常。
2.将示波器连接到要测量的电路上。
如果需要对电路进行差分测量,则需要将两个探针连接到不同的接地点上。
3.调整示波器的垂直控制使波形显示在屏幕上。
可以选择不同的通道来显示多个信号。
4.调整水平控件以便在屏幕上显示完整的波形,可以使用触发功能来跟踪周期性信号。
5.调整示波器的时间基准,以确定显示连续波形的速度。
时间尺度可以根据需要缩放。
6.如果需要进行频率分析,则可以使用示波器的FFT 功能。
通过选择一个合适的FFT 分辨率和显示时间,可以获得频谱分布图。
7.在测量过程中需要根据具体情况来选择合适的触发源、垂直放大器、水平扫描速度等参数。
8.测量完成后,记得关闭示波器并按照正确的方法拆卸探针。
汽车诊断示波器 ATO 系列数据手册说明书
汽车诊断示波器ATO系列• 2/4通道• 最大带宽300MHz• 最高采样率2GSa/s• 最大存储深度220Mpts• 7500mAh 锂离子电池• 支持点火测试、CAN(FD)等通信测试• 支持凸轮轴等传感器、冷却风扇等执行器测试支持所有车型电子项目测量产品概述汽车诊断示波器ATO 系列,是一款专用于汽车维修诊断的示波器,内置多种汽车诊断专业功能、采用10.1寸超大高清屏幕、内置长达五个小时以上的续航锂电池、2/4 路通道,最大带宽300MHz,最高采样率2GSa/s,最大存储深度220Mpts,搭载了测试仪器专用的SigtestUI ™多任务系统人性化的用户界面,像操作手机一样操作示波器,让汽车诊断工作更加轻松。
主要参数▶汽车专业功能一键测试,操作便捷▶ 深存储深度,全面掌握测试全局和细节▶ 超大屏全触控、人性化软件操作界面▶ 高波形捕获率,捕捉细节和微小信号▶ 体积小重量轻、外出测试更加便捷▶ 多种串行总线协议触发及解码,全方面满足需求▶ 大容量电池7500mAh,长时间测试无忧▶ 支持Wi-Fi、USB、上位机操控和SCPI 指令▶ 超大32G 空间存储,支持多种数据格式存储▶ 硬件滤波功能,有效去除杂散信号和干扰▶阻抗1MΩ/50Ω可选,满足不同测试需求▶支持分段存储,方便多段波形分析和处理产品特点手感佳,易便携ABS+TPU 包胶防护,专业级TPE 提手,单手可握,含电池仅重1.9KG。
强大硬件核心硬件升级,速度流畅,32G 超大存储,支持视频录制,多种文件存储。
人性化UI 设计极致迅捷的安卓操作体验,大气外观+全新UI 设计,专业随“手”掌握,波形控制得心应手。
手触丝滑10.1寸触控屏,1280*800分辨率,高屏占比,核心硬件升级。
多种协议解码RS-232/422/485/UART、CAN、CAN FD、LIN、SPI、I²CWi-Fi▶ATO 系列支持SCPI 可编程仪器标准命令,支持PC 软件+手机App 远程控制,通过Wi-Fi、USB 连接,可上网进行在线升级,也可通过HDMI 端口投影进行培训和教育演示。
各个传感器的波形图
各个传感器的波形图车速传感器车速传感器检测电控汽车的车速,控制电脑用这个输入信号来控制发动机怠速,自动变速器的变扭器锁止,自动变速器换档及发动机冷却风扇的开闭和巡航定速等其它功能。
车速传感器的输出信号可以是磁电式交流信号,也可以是霍尔式数字信号或者是光电式数字信号,车速传感器通常安装在驱动桥壳或变速器壳内,车速传感器信号线通常装在屏蔽的外套内,这是为了消除有高压电火线及车载电话或其他电子设备产生的电磁及射频干扰,用于保证电子通讯不产生中断,防止造成驾驶性能变差或其他问题,在汽车上磁电式及光电式传感器是应用最多的两种车速传感器,在欧洲、北美和亚洲的各种汽车上比较广泛采用磁电式传感器来进行车速(VSS)、曲轴转角(CKP)和凸轮轴转角(CMP)的控制,同时还可以用它来感受其它转动部位的速度和位置信号等,例如压缩机离合器等。
1)磁电式车速成传感器,参见图16。
磁电式车速传感器是一个模拟交流信号发生器,它们产生交变电流信号,通常由带两个接线柱的磁芯及线圈组成。
这两个线圈接线柱是传感器输出的端子,当由铁质制成的环状翼轮(有时称为磁组轮)转动经过传感器时,线圈里将产生交流电压信号。
磁组轮上的逐个齿轮将产生一一对应的系列脉冲,其形状是一样的。
输出信号的振幅(峰对峰电压)与磁组轮的转速成正比(车速),信号的频率大小表现于磁组轮的转速大小。
传感器磁芯与磁组轮间的气隙大小对传感器的输入信号的幅度影响极大,如果在磁组轮上去掉一个或多个齿就可以产生同步脉冲来确定上止点的位置。
这会引起输出信号频率的改变,而在齿减少时输出信号幅度也会改变,发动机控制电脑或点火模块正是靠这个同步脉冲信号来确定触发电火时间或燃油喷射时刻的。
测试步骤可以将系统驱动轮顶起,来模拟行驶时的条件,也可以将汽车示波器的测试线加长,在行驶中进行测试。
波形结果车轮转动后,波形信号在示波器显示中心处的零伏平线上开始上下跳动,并随着车速的提高跳动越来越高。
波形显示与例子十分相似,这个波形是在大约30英里/小时的速度下记录的,它又不像交流信号波形,车速传感器产生的波形与曲轴和凸轮轴传感器的波形的形状特征十分相似的。
如何利用示波器进行SENT总线测试_汽车行业
SENT总线背景介绍在过去几年里,标准化机构制定了一些规范和标准,为那些希望通过传感器来提高燃油经济性并降低排放的工程师提供指导和帮助。
通用公司制定了SENT(Single Edge Nibble Transmission)标准,后来成为SAE J2716标准。
一些公司如Melexis就在动力系中采用了该标准,其中包括废气再循环、进气歧管执行器、柴油节气门及drive-by-wire油门踏板部件等子系统。
SENT总线定义与特征SENT 全称:Single Edge Nibble Transmission,是一种点对点的、单向传输的方案,被用来在汽车中的传感器和电子控制单元(ECU)之间传输高清传感器数据。
SENT 在信号开始时提供一个参考校准脉冲,在结尾提供一个检验位。
报文的长度随着半字节的值而不同。
SENT(SAE J2716) 为汽车传感器新型接口标准,较模拟输出和PWM 输出相比,具有很好的EMC 特性,节省线束,节省插针结头的低成本方案,并且能传输故障代码从而使传感器系统具有很强的故障诊断能力。
SENT 将在局部系统中广泛取代CAN和LIN。
SENT特征●传感器接口●数字数据:传输速度30kb/s●低成本:无需接收器、集成发射器●单向传输:仅从传感器到ECU●点对点:无需总线●3线路:5V,GND,SENT●J2716 SAE 标准SENT总线的物理构成SENT传输方式•数据以半字节nibble(4bit)方式传输,每条message最多6个nibble•下降沿(单沿)间进行时间测量SENT的帧格式●校准&同步脉冲:用于与接收器同步的固定时长(56个时钟节拍)●状态&通讯nibble:传输内部状态和诊断信息●和校验nibble:只包含数据4位CRC。
状态和通信nibble不包括在CRC中。
如何用示波器支持SENT总线测试DL系列示波器进行SENT协议解码的特点●SENT自动设置触发快速检测和显示解码数据●包括模拟、逻辑和SENT特定触发条件的全面触发功能●独立的双缩放窗口,用于显示模拟波形和SENT波形●实时并同时显示快速和慢速通道的解码●深度内存高达250MPt,即使时钟周期为3us,也可采集100s的数据●可将信息帧解码为半字节或用户定义格式●缩放搜索功能可查找指定的数据或错误帧●可将解码后的数据以CSV文件格式存储到PC或内部存储器●支持2010以上版本DL系列SENT总线技术指标DL系列示波器SENT总线实测图例:进行SENT总线实测的示波器最好具备以下功能:1.超长存储,能够完整捕捉sent总线的整个过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用示波器测量汽车油门踏板传感器
信号及波形分析
汽车的加速踏板位置传感器将踏板踩下的量(角度)转换
成电压信号,从而向发动机控制单元提供加速踏板实际开
启角度的信号。
其工作原理,是发动机控制单元供给加速踏板位置传感器
5V电压,传感器向发动机控制单元发出两路反映加速踏板位置的电压信号。
在发动机启动时,加速路板未被踏下或
轻踏时,节气门在预设程序的控制下开启到一个固定位置,即发动机控制单元根据此信号进行启动控制。
加速踏板位
置传感器共有两个类型:线性型的和霍尔元件型。
新型的发动机电控系统越来越多地采用全电子节气门,配
合全电子节气门需要有加速踏板位置传感器,通过这个传
感器把驾驶员的操作变成电压信号,此电压信号送给发动
机电脑后,发动机电脑输出驱动节气门电机工作的信号,
最终实现对发动机功率的控制。
加速踏板位置传感器设计在发动机室,由一根拉索连接到加速踏板处。
该传感器内部由两个电位计组成,这两个电位计输出两路信号,这两路信号同时送入发动机电脑。
发动机电脑同时监控这两个电压信号,如果这两个电压信号表达的节气门开度一致,则执行命令;如果不一致,则保护性地限制发动机加速。
我们来看下如何用示波器测量汽车油门踏板传感器信号:
连接一根BNC转香蕉头线到示波器的通道一上。
连接一个黑色鳄鱼夹到测试线的黑色接头(负极)上,并将它连接到适当的接地点上。
在正极上连接上一根刺针,刺入加速踏板传感器插头里的其中一条电位计连接线。
连接一根BNC转香蕉头线到示波器的通道二上。
在正极上连接上一根刺针,刺入加速踏板传感器插头里另一条电位计连接线。
如果有适当的汽车引出线,可用它来代替刺入的方法。
连接好后设置示波器通道一二的通道衰减比为1X,垂直档位为1V或者500mV,如果示波器有高低通功能,可以开启低通30KHz,时基打到500ms即可。
有的示波器有内置汽车包软件,可以一键设置。
设置好后,启动汽车,按下油门踏板此时正常情况下,示波器将会显示油门踏板传感器信号波形。
加速器踏板位置传感器是电位计型传感器。
它接收两个来自动力控制模块(PCM)的参考电压,有两条接地线和两条信号线(信号线发送与加速踏板位置相关的变化电压给PCM)。
这发送回PCM的信号电压,不同的汽车会有所不同,但绝不会高于5V。