2014高等工程数学考试试题 2

合集下载

2014年高考全国2卷理科数学试题(含解析)

2014年高考全国2卷理科数学试题(含解析)

绝密★启用前2014年高考全国2卷理科数学试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题(题型注释)1.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i=+,则12z z =( )A.- 5B.5C.- 4+ iD.- 4 - i 2.设向量a,b 满足|a+b|=10,|a-b|=6,则a ⋅b = ( ) A.1 B.2 C.3 D.53.钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( )A.5B.5C.2D.14.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.455.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.136.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A.4 B.5 C.6 D.77.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= ( ) A.0 B.1 C.2 D.38.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.33B.93C.6332D.949.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A.110B.25 C.30 D.210.设函数()3x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞ D.()(),11,-∞-⋃∞第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题(题型注释)11.()10x a +的展开式中,7x 的系数为15,则a=________.(用数字填写答案)12. 函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.13.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________. 14.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x的取值范围是________. 评卷人得分三、解答题(题型注释)15.已知数列{}n a 满足1a =1,131n n a a +=+.(1)证明{}12na +是等比数列,并求{}na 的通项公式; (2)证明:1231112n a a a ++<…+. 16.如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D-AE-C 为60°,AP=1,AD=3,求三棱锥E-ACD 的体积.17.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份 2 2 2013年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆa y bt =-18.设1F ,2F 分别是椭圆()222210y x a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且15MN F N=,求a,b.19.已知函数()f x =2x x e e x---.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(3)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)20.如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E 。

2014年新课标高考真题全国二卷文科数学

2014年新课标高考真题全国二卷文科数学
试题解析:解:(1)由所给茎叶图知,将50名市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故甲样本的中位数为75,所以该市的市民对甲部门评分的中位数估计值是75.
50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为 ,所以该市的市民对乙部门评分的中位数的估计值是67.
(1) , .曲线 在点 处的切线方程为 .由题设得, ,所以 .
(2)由(1)得, .设 .由题设得 .当 时, , 单调递增, , ,所以 在 有唯一实根.当 时,令 ,则 . , 在 单调递减;在 单调递增.所以 .所以 在 没有实根,综上, 在 上有唯一实根,即曲线 与直线 只有一个交点.
考点:1、导数的几何意义;2、利用导数判断函数单调性;3、利用导数求函数的最值.
, , , .
考点:数列的递推公式.
视频
17.(1) , ;(2) .
【解析】试题分析:(1)连接 .在 和 中,利用余弦定理列等式
和 ,且 ,代入数据得
,求 的值,进而求 和 的值;(2)由(1)知 和 的面积可求,故四边形 等于 和 的面积.
(1)由题设及余弦定理得 .①
.②
由①②得 ,故 , .
【解析】试题分析:因为 ,所以 ………………①,又 ,所以 …………②,①-②得 ,所以 ,故选A.
考点:1.向量模的定义及运算;2.向量的数量积.
5.A
【解析】
试题分析:由已知得, ,又因为 是公差为2的等差数列,故 , ,解得 ,所以 ,故 .
【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.
(2)四边形 的面积

考点:1、余弦定理;2、诱导公式;3、三角形的面积公式.

全国2014年4月自考高等数学(工专)试题和答案

全国2014年4月自考高等数学(工专)试题和答案
正确答案: (3分)
11.连续函数 在区间[1,2]上的平均值为2,则 ________.
正确答案:2(3分)
12.设由参数方程 所确定的函数为 ,则 =________.
正确答案: (3分)
13.线性方程组 的解 =________.
正确答案: (3分)
14. ________.
正确答案: (3分)
正确答案:
20.设 是由方程 确定的隐函数,求 .
正确答案:
21.计算定积分 .
正确答案:
22.设 求 .
正确答案:
23.求解线性方程组
正确答案:
四、综合题(本大题共2小题,每小题6分,共12分)
24.设 ,求f(x)在[0,3]上的最大值与最小值.
正确答案:
25.求由 与y=2所围成的图形绕y轴旋转一周所得的旋转体的体积.
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出Байду номын сангаас四个选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。
1.下列函数中属于基本初等函数的是
A. B.
C. D.
正确答案:B(2分)
2.级数
A.收敛性不能确定B.收敛
C.收敛于eD.发散
正确答案:D(2分)
全国
高等数学(工专)试题和答案
课程代码:
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。

2014年-高等工程数学试题-工程硕士基地班-2014-03-06

2014年-高等工程数学试题-工程硕士基地班-2014-03-06

中南大学工程硕士“高等工程数学”考试试卷(开卷)考试日期:2014年 月 日 时间100分钟注:解答全部写在答题纸上一、填空题(本题24分,每小题3分)1. 若函数()tan 3f x x x =-, 写出Newton 迭代公式 ;2. 建立最优化问题数学模型的三个要素是: 、 、 ;3. 随机变量X 服从参数为λ的指数分布即分布密度为();0x f x e x λλ-=>,X 是样本均值,则2~n X λ ;4. 写出矩阵 468=6101381321A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的乔勒斯基 (Cholesky ) 分解矩阵 L = ; 5. 设由一组观测数据22,,2,1),,( =i y x i i 计算得,125,200,150===xx L y x ,95,75==yy xy L L 则y 对x 的线性回归方程为 ,其误差估计为 ;6.设2)(3-+=x x x f ,则差商=]3,2,1,0[f ;7.对方程 ()ln(2)0f x x x =-+=,给出迭代计算公式,使其收敛到方程的正数根 ;8.已知函数)(x f y =过点(,),0,1,2,,i i x y i n =,[,]i x a b ∈,设函数)(x S 是()f x 的三次样条插值函数,则)(x S 在],[b a 内的 阶导数是连续的。

二、(本题10分)已知)(x f 的数据如表:选用适合的插值法求)(x f 的三次插值多项式,计算)8.2(f 的近似值,给出误差估计式。

三、(本题12分)设有5种治疗荨麻疹的药,要比较它们的疗效。

假定将30个病人分成5组,每组6人,令同组病人使用一种药,并记录病人从使用药物开始到痊愈所需时间,得到下表的记录:试检验不同药物对病人的痊愈时间有无差别?(取05.0=α)四、(本题16分)某厂利用劳动力8个、电力4千瓦、煤2吨可以生产甲产品1吨,获利20万元;利用劳动力3个、煤1吨可以生产乙产品1吨,获利8万元;利用劳动力2个、电力3千瓦可以生产丙产品1吨,获利6万元;工厂现有劳动力250个、电力150千瓦、煤50吨。

2014全国卷一卷二数学试卷及答案

2014全国卷一卷二数学试卷及答案

2014全国卷一数学满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共12小题)1.设集合,则中元素的个数为()A.2B.3C.5D.72.已知角的终边经过点,则()A.B.C.D.3.不等式组的解集为()A.B.C.D.4.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.函数的反函数是()A.B.C.D.6.已知为单位向量,其夹角为,则()A.-1B.0C.1D.27.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.设等比数列的前n 项和为,若则()A .3 1B.32C.63D.649.已知椭圆C :的左、右焦点为、,离心率为,过的直线交C于A、B 两点,若的周长为,则C的方程为()A.B.C.D.10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为()A.B.C.D.11.双曲线C :的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2B.C.4D.12.奇函数的定义域为R ,若为偶函数,且,则()A B.-2.-1C .0D .1二、填空题(共4小题)13.的展开式中的系数为________。

(用数字作答)14.函数的最大值为__________15.设x、y 满足约束条件,则的最大值为__________16.直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切值等于__________三、解答题(共6小题)17.数列满足。

(1)设,证明是等差数列;(2)求的通项公式。

18.的内角A、B、C的对边分别为a、b、c,已知,求B。

19.如图,三棱柱中,点在平面ABC内的射影D在AC上,,。

(1)证明:;(2)设直线与平面的距离为,求二面角的大小。

20.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.函数f(x)=a x3+3x2+3x(a≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(1,2)是增函数,求a的取值范围.22.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.答案部分1.考点:集合的运算试题解析:所以中元素的个数为3答案:B2.考点:同角三角函数的基本关系式试题解析:根据三角函数的定义,角在第二象限,所以答案:D3.考点:一元二次不等式试题解析:,所以不等式组的解集为答案:C4.考点:空间的角试题解析:取AD的中点F,连结EF,CF,在△CEF中,CE与BD所成角等于CE与EF所成角,设正四面体的边长为2a,所以EF=a,CE=CF=,答案:B5.考点:反函数试题解析:根据反函数的定义,原函数的值域为反函数的定义域,所以从C,D中选,,所以答案为D答案:D6.考点:数量积的定义试题解析:答案:B7.考点:组合与组合的运用试题解析:根据组合数的计数公式有答案:C8.考点:等比数列试题解析:根据题意答案:C9.考点:椭圆试题解析:根据题意的周长为,所以有4a=,,离心率为,所以,所以椭圆方程为答案:A10.考点:空间几何体的表面积与体积试题解析:如图2所示,PE为正四棱锥的高,底面为正方形,E为底面中心,PE⊥底面ABCD,根据勾股定理在Rt△PAE中,,所以球的表面积为答案:ALRAMSBSREDF11.考点:双曲线试题解析:,所以C的焦距等于4答案:C12.考点:函数综合试题解析:因为为偶函数,所以,又因为为定义域在R上的奇函数,,所以函数是以4为周期的的函数,答案:D13.考点:二项式定理与性质试题解析:的系数为答案:-16014.考点:三角函数应用试题解析:答案:15.考点:线性规划试题解析:答案:516.考点:直线与圆的位置关系试题解析:本题相当与过点(1,3)做圆的两条切线方程,圆心与交点的连线与其中一条切线成角为,答案:17.考点:数列的递推关系试题解析:(1)由a n+2=2a n+1-a n+2得a n+2- a n+1=a n+1-a n+2,即b n+1=b n+2,又b1=a2-a1=1.所以{b n}是首项为1,公差为2的等差数列;(1)由(1)得b n=1+2(n-1),即a n+1-a n=2n-1.于是于是a n-a1=n2-2n,即a n=n2-2n +1+a1.又a1=1,所以{a n}的通项公式为a n=n2-2n +2.答案:(1)见解析 (2) a n=n2-2n +2.18.考点:恒等变换综合试题解析:由题设和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因为tanA=,所以cosC=2sinC.tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.答案:13519.考点:垂直空间的角试题解析:解法一:(1)∵A 1D⊥平面ABC, A1D平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA 1C1C,BC平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A1E=,因为A1C为∠ACC1的平分线,故A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,由三垂线定理得A1F⊥AB,故∠A1FD为二面角A1-AB&shy;-C的平面角,由AD=,得D为AC的中点,DF=,tan∠A1FD=,所以二面角A1-AB&shy;-C的大小为arctan.解法二:以C为坐标原点,射线CA为x轴的正半轴,以CB的长为单位长,建立如图所示的空间直角坐标系C-xyz,由题设知A1D与z轴平行,z轴在平面AA1C1C内. (1)设A1(a,0,c),由题设有a≤2,A(2,0,0)B(0,1,0),则(-2,1,0),,,由得,即,于是①,所以.(2)设平面BCC1B1的法向量,则,,即,因,故y=0,且(a-2)x-cz=0,令x=c,则z=2-a,,点A到平面BCC1B1的距离为,又依题设,点A到平面BCC1B1的距离为,所以c= .代入①得a=3(舍去)或a=1.于是,设平面ABA1的法向量,则,即.且-2p+q=0,令p=,则q=2,r=1,,又为平面ABC的法向量,故cos,所以二面角A1-AB&shy;-C的大小为arccos答案:(1)见解析;(2)arccos20.考点:古典概型试题解析:记A i表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)D=A 1·B·C+A2·B+A2··CP(B)=0.6,P(C)=0.4,P(A i)=.所以P(D)=P(A 1·B·C+A2·B+A2··C)= P(A1·B·C)+P(A2·B)+P(A2··C)= P(A 1P)·P(B)·P(C)+P(A2)·P(B)+P(A2)·p()·p(C)=0.31.(2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B·C·A2,P(E)=P(B·C·A2)= P(B)·P(C)·P(A2)=0.06;若k=4,则P(F)=0.06<0.1.所以k的最小值为3.答案:(1)0.31 (2)321.考点:利用导数研究函数的单调性试题解析:(1),的判别式△=36(1-a). (i)若a≥1,则,且当且仅当a=1,x=-1,故此时f(x)在R上是增函数.(ii)由于a≠0,故当a<1时,有两个根:,若0<a<1,则当x∈(-,x2)或x∈(x1,+)时,,故f(x)在(-,x2),(x1,+)上是增函数;当x∈(x2,x1)时,,故f(x)在(x2,x1)上是减函数;(2)当a>0,x>0时, ,所以当a>0时,f(x)在区间(1,2)是增函数.若a<0时,f(x)在区间(1,2)是增函数当且仅当且,解得. 综上,a的取值范围是.答案:(1)见解析(2)22.考点:圆锥曲线综合试题解析:(1)设Q(x0,4),代入由中得x0=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E(). 由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.答案:(1)(2)x-y-1=0或x+y-1=0.2014全国卷二数学满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共12小题)1.已知集合,则()A .B.{2}C.{0}D.{-2}2.()A .B.C.D.3.函数在处导数存在,若是的极值点,则()A.是的充分必要条件B .是的充分条件,但不是的必要条件C .是的必要条件,但不是的充分条件D.既不是的充分条件,也不是的必要条件4.设向量,满足,,则A.1B.2C.3D.55.等差数列的公差为2,若,,成等比数列,则的前n项和=()A.B.C.D.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.正三棱柱的底面边长为2,侧棱长为,D为BC 终点,则三棱锥的体积为()A.3B.C.1D.8.执行下面的程序框图,如果如果输入的x,t均为2,则输出的S=()A .4B.5C.6D.79.设x,y 满足的约束条件,则的最大值为()A .8B.7C.2D.110.设F 为抛物线的焦点,过F 且倾斜角为的直线交于C 于两点,则=()A .B.6C.12D.11.若函数在区间(1,+)单调递增,则k的取值范围是()A .B .C.D.12.设点,若在圆上存在点N ,使得,则的取值范围是()A.B.C.D.二、填空题(共4小题)13.甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为______________.14.函数的最大值为___________.15.已知函数的图像关于直线=2对称,=3,则___________.16.数列满足=,=2,则=____________.三、解答题(共8小题)17.四边形ABCD的内角A与C互补,AB=1,BC=3, CD=DA=2.(I)求C和BD;(II)求四边形ABCD的面积。

2014年10月全国自考高等数学(工本)真题试卷(题后含答案及解析)

2014年10月全国自考高等数学(工本)真题试卷(题后含答案及解析)

2014年10月全国自考高等数学(工本)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.平面2x一3y+z一1=0的法向量为( )A.{2,3,一1}B.{4,一6,2}C.{一2,一3,一1}D.{2,3,1}正确答案:B解析:平面2x一3y+z一1=0的法向量为n={2,一3,1},所以{4,一6,2}也是其法向量.2.设函数f(x,y)=φ(x)g(y)在点(x0,y0)的某邻域内有定义,且存在一阶偏导数,则fx(x0,y0)= ( )A.B.C.D.正确答案:D解析:3.设积分区域D:1≤x2+y2≤4,则二重积分( )A.πB.2πC.3πD.4π正确答案:C解析:积分区域D:1≤x2+y2≤4,如图所示,则二重积分=∫θ2πdθ∫12rdr=3π.4.微分方程y”=sinx的通解是y= ( )A.sinx+C1x+C2B.sinx+C1+C2C.一sinx+C1x+C2D.一sinx+C1+C2正确答案:C解析:y”=sinx,则y’=∫y”dx=∫sinxdx=-cosx+C1 y=∫y’dx=∫(-cosx+C1)dx=-sinx+C1x+C2.5.设无穷级数发散,则在下列数值中p的取值为( )A.1B.2C.3D.4正确答案:A解析:填空题请在每小题的空格中填上正确答案。

错填、不填均无分。

6.已知向量a={2,1,2},b={一1,3,5},则a.(2b)=_______.正确答案:22解析:a.(2b)=2a.b=2×[2×(一1)+1×3+2×5]=22.7.函数f(x,y)=+ln(x2+y2一1)的定义域是________.正确答案:1<x2+y2≤4解析:由题意知得1<x2+y2≤4.8.设积分区域D:0≤x≤2,|y|≤1,则二重积分正确答案:解析:积分区域D:0≤x≤2,|y|≤1,则9.微分方程y”+y=e-2x的特解y*=______.正确答案:解析:齐次微分方程y”+y=0的特征方程r2+1=0,显然λ=一2不是特征方程的根,则设特解y*=Ae-2x.y*”=4Ae-2x,代入原微分方程得5Ae-2x=e-2x,10.已知无穷级数,则un=______.正确答案:解析:计算题11.求过点A(一2,1,4)及点B(6,一5,7)的直线方程.正确答案:直线过点A(一2,1,4)和B(6,一5,7),则其方向向量n=(8,一6,3),则直线方程为=t,化简得直线方程为12.求函数z=e2ycos3x的全微分dz.正确答案:z=e2ycos3x,z’x=一3e2ysin3x,z’y=2e2ycos3x,则dz=z’xdx+z’ydy=一3e2ysin3xdx+2e2ycos3xdy.13.求曲面z=3xy在点处的切平面方程.正确答案:F(x,y,z)=z—3xy,则Fx=-3y,Fy=一3x.Fz=1,则所以法向量n=(一1,一3,1),所求切平面方程为一1×(x一1)一3×+1×(z一1)=0,即x+3y—z一1=0.14.求函数f(x,y)=的梯度gradf(x,y).正确答案:15.计算二重积分.其中D是由y=x,=2及xy=1所围成的区域.正确答案:积分区域D如图所示.=∫12一4x+4x3dx=(-2x2+x4)|12=9.16.计算三重积分,其中Ω是由x2+y2=1,z=0及z=1所围成的区域.正确答案:积分区域如图示在柱面下的积分区域Ω:0≤r≤1,0≤θ<2π,0≤z≤1,17.计算对弧长的曲线积分∫C(x2y一2)ds,其中C为从点A(一2,1)到B(1,1)的直线段.正确答案:C为直线y=1,则C的参数方程所以∫C(x2y一2)ds=∫-21(x2一2)dx=一3.18.计算对坐标的曲线积分∫C(y2一xy)dy,其中C为抛物线y=x2上从点A(一1,1)到点B(1,1)的一段弧.正确答案:曲线C的方程为y=x2,则dy=2xdx,于是∫C(y2一xy)dy=∫-11(x4一x3)2xdx=19.求微分方程=e3x-2y的通解.正确答案:,得e2ydy=e3xdy,两边同时程分得∫e2ydy=∫e3xdx,则20.求微分方程y”+2y’+2y=0的通解.正确答案:微分方程y”+2y’+2y=0的特征方程为r2+2r+2=0,解之得r1,2=一1±i,所以微分方程的通解为y=e-x(C1cosx+C2sinx).21.判断无穷级数的敛散性.正确答案:22.已知f(x)是周期为2π的周期函数,它在[一π,π)上的表达式为求f(x)傅里叶级数(ancosnx+bnsinnx)中的系数b4.正确答案:综合题23.求函数f(x,y)=14x+32y一8xy一2x2一10y2一26的极值.正确答案:求对x,y的偏导数得fx=14—8y一4x,fy=32-8x-20y,二阶偏导数A=fxx(x0,y0)=一4,B=fxy=一8,C=fyy=一20,△=B2-AC=-16<0则点是函数的极值点,A<0,此驻点为极大值点,代入函数得极大值为24.证明对坐标的曲线积分∫C(3x2y+8xy2一20)dx+(x3+8x2y+14)dy在整个xOy面内与路径无关.正确答案:P=3x2y+8xy2一20,Q=x3+8x2y+14,25.将函数f(x)=展开为x的幂级数.正确答案:已知=1一x+x2+…+(一1)nxn+…(一1<x<1),用2x代替x得=1—2x+(2x)2+…+(一1)n(2x)n+…=1—2x+4x2+…+(一2)nxn+…(一1<x<1).。

(完整版)2014年高等工程数学真题完整版

(完整版)2014年高等工程数学真题完整版

华中科技大学研究生课程考试试卷课程名称: 课程类别考核形式学生类别______________考试日期______________学生所在院系_______________ 学号__________________姓名__________________任课教师___________________ 一、填空题(任选10小题,每小题2分,共计20分,多答不加分。

)1. 设33}{⨯=ij A A 的最小多项式为)3)(2)(1()(---=λλλλA m 则与A 相似的对角阵⎥⎦⎤⎢⎣⎡=B . 2. 设矩阵n n C A ⨯∈满足等式:I A A 22=+,问A 是否可对角化_________. 3. 矩阵的谱半径是指________________________.4. 矩阵特征值的根空间维数等于_____________________________.5. 对任何非奇异矩阵A ,都有p A cond )( 1,当A 为正交矩阵时2)(A cond =___.6. 已知 9923606797742.=5,则其近似值2.23607有________位有效数字,通过四舍五入得到其有四位有效数字的近似值为___________.7. 已知14223+-=x x x f )(,则=],,,[3210f ___________,=],,,,[43210f __________. 8. 当n 为奇数时,等距节点的插值型)(C N -求积公式∑=-=ni i i n x f C a b I 1)()(至少有____次代数精度.9. )()(32-+=x x x λϕ,要使迭代法)(k k x x ϕ=+1局部收敛到3=*x ,则λ的取值范围是_____________.10. 试写出方程03=-=a x x f )(的牛顿迭代格式__________________.11. 设),,(n X X 1为),(~10N X 的样本,)()()(n X X X ≤≤≤ 21为次序统计量,则~)()()(22221n X X X +++ ____________.研究生 2014-12-16 应用高等工程数学12. 给出点估计评价的三个标准_________.13. 给出假设检验中显著性水平α与统计假设0H 的关系________.14. 设),,(n X X 1为),(~2σμN X 的样本,μ未知,2σ已知,μ的置信水平为α-1的双侧区间估计为___________.15. 使用方差分析时对数据的要求是_______.二、计算证明题(任选4题,每小题10分,满分40分,多答不加分。

2014年高考全国2卷理科数学试题及答案(word精校详细解析版)

2014年高考全国2卷理科数学试题及答案(word精校详细解析版)

2014年高考数学试题(理)第1页【共11页】2014年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合M ={0, 1, 2},N ={}2|320x x x -+£,则MN = A .{1} B .{2} C .{0,1} D .{1,2} 2. 设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A .- 5 B .5 C .- 4 + i D .- 4 -i3. 设向量a,b rr 满足10|a b |+=r r ,6|a b |-=r r ,则a b ×r r =A .1 B .2 C .3 D .5 4. 钝角三角形ABC 的面积是12,AB =1,BC =2,则AC = A .5 B .5C .2 D .15. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是A .0.8 B .0.75 C .0.6 D .0.45 6. 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A .1727B .59C .1027D .137. 执行右面程序框图,如果输入的x ,t 均为2,则输出的S = A .4 B .5 C .6 D .7 8. 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a = A .0 B .1 C .2 D .3 9. 设x ,y 满足约束条件70310350x y x y x y +-£ìï-+£íï--³î,则2z x y =-的最大值为A .10 B .8 C .3 D .2 结束输出S 1M =,3S =开始输入x ,t1k =k t£M M xk=S M S=+1k k =+是否10. 设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为的面积为A .334B .938C .6332D .9411. 直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为所成的角的余弦值为A .110B .25C .3010D .2212. 设函数()3sin x f x m p =,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是值范围是A .(,6)(6,+)-¥-¥UB .(,4)(4,+)-¥-¥UC .(,2)(2,+)-¥-¥UD .(,1)(4,+)-¥-¥U第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:(本大题共4小题,每小题5分.)13. 10()x a +的展开式中,7x 的系数为15,则a =________. (用数字填写答案用数字填写答案) 14. 函数()sin(2)2sin cos()f x x x j j j =+-+的最大值为_________. 15. 已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. 16. 设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________. 三、解答题:(解答应写出文字说明,证明过程或演算步骤.)17.(本小题12分)已知数列{a n }满足a 1 =1,a n +1 =3a n +1. (Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;的通项公式;(Ⅱ)证明:123111 (2)n a a a +++<. 18. (本小题12分)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,AD =3,求三棱锥E -ACD 的体积. 19. (本小题12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:据如下表:年份年份2007 2008 2009 2010 2011 2012 2013 年份代号t1 2 3 4 5 6 7 人均纯收入y2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y 关于t 的线性回归方程;的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ˆni i i ni i t t y y bt t ==--=-åå,ˆˆa y bt=-. 20. (本小题12分)设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b . 21. (本小题12分)已知函数()2x xf x e e x -=--. (Ⅰ)讨论()f x 的单调性;的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001). 请考生在第22、23、24题中任选一题做答,如果多做,按所做的第一题计分,做答时请写清题号.22.(本小题10分)【选修4-1:几何证明选讲】如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B 、C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E . 证明:(Ⅰ)BE = EC ;(Ⅱ)AD ·DE = 2PB 2. 23.(本小题10分)【选修4-4:坐标系与参数方程】在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,轴为极轴建立极坐标系,半圆半圆C 的极坐标方程为2cos r q =,[0,]2p q Î. (Ⅰ)求C 的参数方程;的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标. 24. (本小题10分)【选修4-5:不等式选讲】设函数1()||||(0)f x x x a a a=++->. (Ⅰ)证明:f (x ) ≥ 2;(Ⅱ)若f (3) < 5,求,求a 的取值范围. 2014年普通高等学校招生全国统一考试(全国卷Ⅱ)理 科 数 学参考答案一、选择题:1.【答案:D 】 解析:∵2={|320}{|12}N x x x x x -+£=££,∴{1,2}M N =. 2.【答案:A 】解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-. 3.【答案:A 】解析:2222||10||6210,26,a b a b a b a b a b a b +=-=\++×=+-×=,两式相减得:1a b ×=. 4.【答案:B 】 解析:∵1||||sin 2ABC S AB BC B D =××,即:1112sin 22B =×××,∴2sin 2B =,即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-××,∴2||1AC =或5,又∵ABC D 为钝角三角形,∴2||5AC =,即:||5AC =. 5.【答案:A 】解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P AB P B A P A ===. 6.【答案:C 】解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛坯体积的比值为20105427p p =. 7.【答案:D 】解析:输入的x ,t 均为2.判断12£?是,1221M =×=,235S =+=,112k =+=;判断22£?是,2222M =×=,257S =+=,213k =+=,判断32£?否,输7. 8.【答案:D 】解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =. 9.【答案:B 】解析:作出x ,y 满足约束条件70310350x y x y x y +-£ìï-+£íï--³î所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值. 当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=ìí+-=î得C (5,2),此时z 取最大值为2×5-2=8. 10.【答案:D 】解析:∵3(,0)4F ,∴设直线AB 的方程为33()34y x =-,代入抛物线方程得:22190216x x -+=,设11(,)A x y 、22(,)B x y ,∴12212x x +=,12916x x ×=,由弦长公式得221212||(1)[()4]12AB k x x x x =++-=,由点到直线的距离公式得:O 到直线AB 的距离2233|00|33483()(1)3d ´--==+-,∴13912284OAB S D =´´=. 【另解】直线AB 的方程33()34y x =-代入抛物线方程得:2412390y y --=,∴1233y y +=,1294y y ×=-,∴21212139()4244OAB S y y y y D =´´+-=. 11.【答案:C 】解析:取BC 的中点P ,连结NP 、AP , ∵M ,N 分别是A 1B 1,A 1C 1的中点,∴四边形NMBP 为平行四边形,∴BM //PN ,∴所求角的余弦值等于∠ANP 的余弦值,不妨令BC =CA =CC 1=2,则AN =AP =5,NP =MB=6,∴222||||||cos 2||||AN NP AP ANP AN NP +-Ð=´×l 0l 1 3x-y-5=0yxo 1 2 x-3y+1=0l 2x+y-7=05 2 CAB ACB1A 1C1BNMP222(5)(6)(5)3010256+-==´´. 【另解】如图建立坐标系,令AC =BC =C 1C =2,则A (0, 2, 2),B (2, 0, 2),M (1, 1, 0),N (0, 1, 0), (1,1,2)(0,1,2),BM AN \=--=--,01430cos .10||||65BM AN θBM AN ×-+===×12.【答案:C 】 解析:∵()3cosxf x mmpp ¢=,令()3c o s0xf x mm pp ¢==得1(),2x m k k Z =+Î,∴01(),2x m k k Z =+Î,即01|||||()|22m x m k =+³,m x x f πsin 3)(= 的极值为3±,∴3)]([20=x f ,,34)]([22020+³+\mx f x 22200[()]x f x m +<,2234∴m m<+,即:24m >,故:2m <-或2m >. 二、填空题: 13.【答案:12】 解析:∵10110r r rr T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =. 14.【答案:1 】解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x j j j j j j j =+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x xj j j j j j j j j j =+++-+=+-+=∵x R Î,∴()f x 的最大值为1. 15.【答案:(1,3)- 】解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->Û->=,又∵()f x 在[0,)+¥单调递减,∴|1|2x -<,解得:13x -<< 16.【答案:[1,1]-】解析:由图可知点M 所在直线1y =与圆O 相切,又1ON =,由正弦定理得sin sin ON OM OMN ONM =ÐÐ,∴1sin 22OM ONM=Ð,即2sin OM ONM =Ð,∵0ONM p £Ð£,2OM 2012x 011x . 【另解】过OA ⊥MN ,垂足为A ,因为在Rt △OMA 中,|OA|≤1,∠OMN =45º,所以||||sin 45OA OM =o=2||12OM £,解得||2OM £,因为点M (x 0, 1),所以20||12O M x=+£,解得011x -££,故0x 的取值范围是[1,1]-. 三、解答题:17.解析:(Ⅰ)证明:∵131n n a a +=+,∴1113()22n n a a ++=+,即:112312n n a a ++=+, 又11322a +=,∴1{}2n a +是以32为首项,3为公比的等比数列.∴113322n n a -+=×,即312nn a -=. (Ⅱ)证明:由(Ⅰ)知312n n a -=,∴11231()3133n n n n n a -=£=Î-N*, ∴21211()11111131331[1()]133323213n n n na a a -++×××+£+++×××+==-<-故:1211132n a a a ++×××+< 18.解析:(Ⅰ)证明:连结BD 交AC 于点O ,连结OE .∵底面ABCD 为矩形, ∴点O 为BD 的中点,又E 为PD 的中点,∴//OE PB ,∵OE Ì平面AEC ,PB Ë平面AEC ,∴PB //平面AEC . (Ⅱ)以A 为原点,直线AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系,设AB a =,则(0,3,0)D ,(0,0,0)A ,31(0,,)22E ,(,3,0)C a ,∴31(0,,)22AE =,(,3,0)AC a =,设(,,)n x y z =是平面AEC 的法向量,则3102230n AE y z n AC ax y ì×=+=ïíï×=+=î,解得:33a y x z y ì=-ïíï=-î,令3x =,得(3,,3)n a a =--,PBCDEA又∵(,0,0)AB a =是平面AED 的一个法向量,∴231|cos ,|cos60234a AB n a a<>===×+, 解得32a =,∴11111313||||||332232228E ACD V AD CD AP -=´´´´=´´´´=. 19.解析:(Ⅰ)由题意得:4t =, 2.9 3.3 3.6 4.4 4.8 5.2 5.9 4.37y ++++++==, ∴2222222(3)(1.4)(2)(1)(1)(0.7)00.110.520.93 1.60.5(3)(2)(1)0123b -´-+-´-+-´-+´+´+´+´==-+-+-++++,∴ˆ 4.30.54 2.3a y bt =-=-´=,故所求线性回归方程为:ˆ0.5 2.3yt =+. (Ⅱ)由(Ⅰ)中的回归方程的斜率0.50k =>可知,2007年至2013年该地区农村居民家庭人均纯收入逐渐增加.令9t =得:0.59 2.3 6.8y =´+=,故预测该地区2015年农村居民家庭人均纯收入为6.8千元。

2014年全国高考新课标Ⅱ数学(文)试卷及答案【精校版】

2014年全国高考新课标Ⅱ数学(文)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A. ∅B. {}2C. {0}D. {2}- (2)131i i+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i -- (3)函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件(4)设向量,a b 满足a b +=a b -=a b ⋅=( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,学科 网高为6cm 的圆柱体毛坯切削得到, 则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥 11A B DC -的体积为(A )3 (B )32(C )1 (D(8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB = (A(B )6 (C )12 (D)(11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取 值范围是(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D),22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、学科 网白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.(16) 数列}{n a 满足2,1181=-=+a a a n n ,则=1a ________. 三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点.(1)证明:PB //平面AEC ;(2)设1,AP AD ==P ABD 的体积4V =,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机 访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙 两部门的评价.(20)(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .(21)(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.23.(5分)设向量,满足|+|=,|﹣|=,则•=()解答:解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=().C解答:解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.解答:解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()解答:解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.解答:解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,.B.C.D.解答:解:由y2=3x,得2p=3,p=,则F().∴过A,B的直线方程为y=,即.联立,得.设A(x1,y1),B(x2,y2),则,.∴==.故选:D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,.B.C.D.解答:解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC 的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,解答:解:由题意可得,f(x0)=±,且=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.解答:解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.取值范围是(﹣1,3).16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].∴x0的取值范围是[﹣1,1].故答案为:[﹣1,1].三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.解答:证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N+时,++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.解答:(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.解:(Ⅰ)由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)答:=4.3,∴===0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;解答:解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,设N(x1,y1),由题意知y1<0,则,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).解答:解:(Ⅰ)由f(x)得f'(x)=e x+e﹣x﹣2,即f'(x)≥0,当且仅当e x=e﹣x即x=0时,f'(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g'(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x﹣2b+2).①∵e x+e﹣x≥2,e x+e﹣x+2≥4,∴当2b≤4,即b≤2时,g'(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即时,g'(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b ﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程ρ=2cosθ,θ∈[0,].(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.解答:解:(Ⅰ)半圆C的极坐标方程ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,化为直角坐标方程为(x﹣1)2+y2=1,x∈[0,2]、y∈[0,1].令x﹣1=cosα∈[﹣1,1],y=sinα,α∈[0,π].故半圆C的参数方程为,α∈[0,π].(Ⅱ)由于点D在C上,半圆C在D处的切线与直线l:y=x+2垂直,∴直线CD和直线l平行,故直线CD和直线l斜率相等.设点D的坐标为(1+cosα,sinα),∵C(1,0),∴=,解得tanα=,即α=,故点D的坐标为(,).六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.解答:解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2 =2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).。

2014级成人高等教育《工程数学》复习题与答案

2014级成人高等教育《工程数学》复习题与答案

2014级《工程数学》复习题与答案一、单项选择题1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( B )成立.A . AB A B +=+ B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( A )成立时,n 元线性方程组AX b =有惟一解.A.r(A)=nB.r(A)<nC.|A|=0D.b=03.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( B )。

A .0,2 B .0,6C .0,0D .2,64. 设12,,,n x x x 是来自正态总体()N μσ2,的样本,则 ( B ) 是统计量.A . 2x σμ+B .11n i i x n =∑ C . 1x μσ- D .1x μ 5.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( B )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发6.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( C )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)7.下列各函数中可以作为某个随机变量的概率密度函数的是( D )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x f C. 00021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x , 8.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( A )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 29.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( A )A .D(X+c)=D(X). B. D(X+c)=D(X)+c.C. D(X-c)=D(X)-cD. D(cX)=cD(X)10. 设A ,B 都是n 阶方阵,则等式( C )成立.A . AB A B +=+ B .AB BA =C . AB BA =D .22()()A B A B A B +-=-11. 已知2维向量组1234,,,,αααα则1234(,,,)r αααα至多是( B )。

2014年高考新课标_II_数学(理)真题试题及答案

2014年高考新课标_II_数学(理)真题试题及答案

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学试题卷(理工类)第Ⅰ卷一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{0,1,2}M =,2{|320}N x x x =-+≤,则M N =I ( ) (A ){1} (B ){2} (C ){0,1} (D ){1,2}2.设复数12,z z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) (A )5- (B )5 (C )4i -+ (D )4i --3.设向量a ,b 满足10|a +b |=,6-|a b |=,则⋅a b =( )(A )1 (B )2 (C )3 (D )5 4.钝角三角形ABC 的面积是12,1AB =,2BC =,则AC =( ) (A )5 (B )5 (C )2 (D )15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) (A )0.8 (B )0.75 (C )0.6 (D )0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )(A )1727(B )59(C )1027(D )137.执行右图程序框图,如果输入的,x t 均为2,则输出的S =() (A )4 (B )5 (C )6 (D )7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =, 则a =( )(A )0 (B )1 (C )2 (D )39.设,x y 满足约束条件70,310,350,x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩则2z x y =-的最大值为( )开始结束是t k ≤输出S 否 M←1,S←3 输出x,t k←1S←M+S k←k+1x kM M ←(A )10 (B )8 (C )3 (D )210.设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30o的直线交C 于A ,B 两点,O 为坐标原点,则OAB ∆的面积为( ) (A )334(B )938 (C )6332 (D )9411.直三棱柱111ABC A B C -中,90BCA ∠=o,M ,N 分别是11A B ,11A C 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )(A )110(B )25(C )3010(D )2212.设函数()3sin x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )(A )()(),66,-∞-+∞U (B )()(),44,-∞-+∞U (C )()(),22,-∞-+∞U (D )()(),11,-∞-+∞U第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是________. 16.设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ∠=o ,则0x 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设二面角D AE C --为60o,1AP =,3AD =,求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121nii i ni i tty y bt t ==--=-∑∑$,$ay bt =-$. C DE B AP20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a ,b .21.(本小题满分12分)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln 2的近似值(精确到0.001).请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O e 外一点,PA 是切线,A 为切点,割线PBC 与O e 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O e 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =g .23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,ρθ=[0,]2πθ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||f x x x a a=++-(0)a >. (Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.COEBPA D2014年普通高等学校招生全国统一考试(课标卷Ⅱ卷)数学(理科)参考答案一、选择题 1.D解析:把0,1,2代人2203x x +≥-验证,只有1,2满足不等式,故选D. 考点:考查集合与一元二次不等式的知识.简单题. 2.A解析:12i z =+Q 与2z 关于虚轴对称,22z i ∴=-+,∴12(2i)(2i)5z z =+-+=-,故选A. 考点:考查复数的基本知识.简单题. 3.A解析:||10,||6a b a b +=-=Q ,平方相减得1a b ⋅=,故选A.考点:考查平面向量的数量积.中等题. 4.B解析:因为11sin 22ABC S ac B ==V ,所以2sin 2B =,所以4B π=或34B π=. 当4B π=时,经计算ABC V 为等腰直角三角形,不符合题意,舍去;34B π=时,由余弦定理,得2222cos b a c ac B =+-5=,故选B. 考点:考查正余弦定理的应用.中等题. 5.A解析:设第i 天空气优良记为事件i A ,则1(A )0.75,(A A )0.6(i 1,2,)i i i P P +===L , ∴第1天空气优良,第2天空气也优良这个事件的概率为12211()0.60.8((|).75)0A A P A A P P A ===,故选A.考点:考查条件概率.简单题. 6.C解析:毛胚的体积23654V ππ⋅⋅==,制成品的体积221322434V πππ⋅⋅+⋅⋅==,∴切削掉的体积与毛胚体积之比为13454101127V V ππ-=-=,故选C. 考点:考查三视图于空间几何体的体积.中等题.7.D解析:第1次循环,1221M =⨯=,235S =+=,2k =; 第2次循环,2222M =⨯=,257S =+=,3k =. 退出循环,7S =,故选D.考点:考查算法的基本知识.简单题. 8.D解析:考察导数的几何意义,复合函数求导1','(0)12,31y a y a a x =-=-==+,故选D. 考点:考查导数的几何应用.中等题. 9.B解析:画出可行域,利用线性规划知识可得y x z -=2的最大值为8,故选B. 考点:考查二元一次不等式组的应用.中等题. 10.D解析1:抛物线C 的焦点的坐标为()3,04F ,所以直线AB 的方程为330an )t (4y x ︒-=,233(),3,34x y y x ⎧-==⎪⎨⎪⎩从而2122161689012x x x x -+=+=⇒,∴弦长12||=3122x x AB ++=. 又∵O 点到直线43:430AB x y --=的距离2238(43=3)4d =+,∴13129428OAB S ⋅⋅==,故选D.解析2:由已知得焦点坐标为3(,0)4F ,因此直线AB 方程为33(),4433034y x x y =---=即,与抛物线方程联立化简得2412390y y --=,因此2()46A B A B A B y y y y y y -=+-=,于是113962244OAB A B S OF y y ∆=-=⨯⨯=,故选D. 考点:综合考查抛物线的知识,弦长计算与分析直线和圆锥曲线位置关系的能力.困难题.11.C解析1:分别以11111,C B C C A C ,为,,x y z 轴,建立直角坐标系.不妨设12BC CA CC ===,则(0,2,2)A ,(2,0,2)B ,(1,1,0)M ,(0,1,0)N ,所以(1,1,2)BM =--u u u u r ,(0,1,2)AN =--u u u r.01430cos ,10||||65BM AN BM AN BM AN ⋅-+<>===⋅⋅u u u u r u u u r u u u u r u u u r u u u u r u u u r ,故选C.解析2:如图所示,取BC 的中点P ,连结NP 、AP . ∵M ,N 分别是11A B ,11A C 的中点,∴四边形NMBP 为平行四边形,∴BM PN P , ∴所求角的余弦值等于ANP ∠的余弦值. 不妨令12BC CA CC ===,AC B1A1C1BNMP则5AN AP ==,6NP MB ==,∴222222||||||(5)(6)(5)30cos 2||||10256AN NP AP ANP AN NP +-+-∠===⨯⋅⨯⨯,故选C. 考点:考查空间夹角问题.中等题.12.C解析1:3()3sin ()cos xx f x f m mx mπππ=⇒'=Q . 令()0cos0()2xxx k k Z mf mππππ'=⇒=⇒=+∈,(21)2k m x +=∴,即f (x )的极值点0(2)1()2mx k k Z =+∈. ∵存在f (x )的极值点0x ,满足22200[()]f x x m +<,∴2220(2)31[]2sin x m k m mπ++<. ∴存在k Z ∈,使得221[]2(2)m 3k m ++<,即223(2)141k m +<-,∴223(21)13[1]|m |24414max k m +<-=⇒->=,故选C. 解析2:∵'()3cosxf x m m ππ=,令'()3cos0xf x m m ππ==得1()(2x m k k =+∈Z),∴01()(2x m k k =+∈Z),又∵22200[()]x f x m +<,∴22221()[3sin()]22m k k m ππ+++<,即2213[1()]2m k <-+,∴211()02k -+>,故0k =或1-,∴2213[1()]2m <-,即24m >,故2m <-或2m >,故选C.考点:考查导数与极值,三角函数,不等式的知识.困难题. 二、填空题13.12解析:1010110(0(),1,,10)r r rr T C x r x a a -+==+Q L 展开式的通项为, ∴10()x a +展开式中7x 的系数为31031125C a a ⇒==.考点:考查二项展开式的通项公式.简单题. 14.1解析:()sin(2)2sin cos()f x x x ϕϕϕ=+-+sin()cos cos()sin 2sin cos()x x x ϕϕϕϕϕϕ=+++-+ sin()cos sin cos()x x ϕϕϕϕ=+-+sin x =,因此()f x 的最大值为1.考点:本题考查和差角公式.中等题.15.(1,3)-解析:偶函数在对称区间上单调性相反,数形结合易得212,13x x -<-<-<<. 考点:本题考查函数的单调性与奇偶性.简单题.16.]1,1[-解析:过点M 作圆O 的切线,切点为N .设θ=∠OMN ,则︒≥45θ,22sin ≥θ, 即22≥OM ON ,2120≤+x ,.110≤≤-x 考点:三角不等式,两点间距离公式.困难题. 三、解答题17.解析:(Ⅰ)由131n n a a +=+得13(11)22n n a a ++=+. 又11322a +=,所以{12}n a +是首项为32,公比为3的等比数列.1322nn a +=,因此{}n a 的通项公式为312n n a -=.(Ⅱ)由(Ⅰ)知,1231n n a =-. 因为当1n ≥时,13123nn --≥⨯,所以121313n n -≤-. 于是12111113131n n a a a -+++≤+++L L 313(1).223n =-< 所以2111132n a a a +++<L . 考点:考查等比数列的通项公式,求和公式,放缩法证明不等式.中等题. 18.解析:(Ⅰ)连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .因为EO ⊂平面AEC ,PB ⊂/平面AEC ,所以PB ∥平面AEC . (Ⅱ)因为PA ABCD ⊥平面,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB uuu r的方向为x 轴的正方向,||AP uuu r为单位长,建立空间直角坐标系A xyz -,CD EB APOyz则(0,3,0)D ,31(0,,)22E ,31(0,,)22AE =u u u r . 设(,0,0)B m (0m >),则(,3,0)C m ,(,3,0)AC m =u u u r.设1(,,)n x y z =u r为平面ACE 的法向量,则110,0,n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r 即30,310,22mx y y z ⎧+=⎪⎨+=⎪⎩可取13(,1,3)n m =-u r . 又2(1,0,0)n =u u r为平面DAE 的法向量,由题设121|cos ,|2n n <>=u r u u r ,即231342m =+,解得32m =. 因为E 为PD 的中点,所以三棱锥E ACD -的高为12, 三棱锥E ACD -的体积11313332228V =⨯⨯⨯⨯=. 考点:考查空间线面关系,椎体的体积计算和向量法解决立体几何问题的技能.中等题. 19.解析:(Ⅰ)由所给数据计算得1(1234567)47t =++++++=, 1(2.9 3.3 3.6 4.4 4.8 5.2 5.9) 4.37y =++++++=,721()941014928i i t t =-=++++++=∑,71()()ii i tt y y =--∑(3)( 1.4)(2)(1)(1)(0.7)00.110.520.93 1.6=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯14=,71721()()140.528()iii i i t t y y bt t ==--===-∑∑$,$ 4.30.54 2.3ay bt =-=-⨯=$, 所求回归方程为$0.5 2.3y t =+.(Ⅱ)由(Ⅰ)知,0.50b=>$,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加, 平均每年增加0.5千元.将2015年的年份代号9t =代入(Ⅰ)中的回归方程,得$0.59 2.3 6.8y =⨯+=, 故预测该地区2015年农村居民家庭人均纯收入为6.8千元. 考点:考查线性回归方程,线性相关的概念的应用.中等题.20.解析:(Ⅰ)根据22c a b =-及题设知2(,)b M c a ,223b ac =. 将222b a c =-代入223b ac =,解得12c a =,2c a =-(舍去).故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a =. ① 由1||5||MN NF =得11||2||DF F N =.设11(,)N x y ,由题意知10y <,则112(),22,c x c y --=⎧⎨-=⎩即113,21.x c y ⎧=-⎪⎨⎪=-⎩ 代入C 的方程,得222911c a b+=. ② 将①及22c a b =-代入②得229(4)1144a a a a -+=. 解得7a =,2428b a ==.故7a =,27b =.考点:考查椭圆的几何性质以及直线与椭圆的位置关系.难题.21.解析:(Ⅰ)()20x x f x e e -'=+-≥,等号仅当0x =时成立,所以()f x 在R 上单调递增.(Ⅱ)()(2)4()g x f x bf x =-224()(84)x x x x e e b e e b x --=---+-,22()2[2()(42)]x x x x g x e e b e e b --'=+-++-2(2)(22)x x x x e e e e b --=+-+-+.①当2b ≤时,()0g x '≥,等号仅当0x =时成立,所以()g x 在(,)-∞+∞单调递增.而(0)0g =,所以对任意0x >,()0g x >.②当2b >时,若x 满足222x x e e b -<+<-,即20ln(12)x b b b <<-+-时,()0g x '<. 而(0)0g =,因此当20ln(12)x b b b <<-+-时,(0)0g <.综上,b 的最大值为2. (Ⅲ)由(Ⅱ)知,3(ln 2)222(21)ln 22g b b =-+-. 当2b =时,3(ln 2)426ln 202g =-+>,823ln 20.692812->>; 当3214b =+时,2ln(12)ln 2b b b -+-=,3(ln 2)22(322)ln 202g =--++<,182ln 20.693428+<<. 所以ln 2的近似值为0.693.考点:本题考查利用导数研究函数性质的能力,考查分类讨论的能力及误差估计的思想,思路背景为常规思路,构建函数()g x 的图像即可,难度压轴题.22.解析:(Ⅰ)连结AB ,AC .由题设知PA PD =,故PAD PDA ∠=∠.因为PDA DAC DCA ∠=∠+∠, PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而»»BEEC =,因此BE EC =. (Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =.由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.考点:考查与圆有关的角的知识和圆幂定理的应用.中等题.23.解析:(Ⅰ)C 的普通方程为2201)1(1()x y y -+=≤≤. 可得C 的参数方程为,n 1i cos s y x tt =+⎧⎨=⎩(t 为参数,0t π≤≤).(Ⅱ)设D (1cos n ),si t t +.由(Ⅰ)知C 是以(1,0)G 为圆心,1为半径的上半圆.因为C 在D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan 3t =,3t π=,故D 的直角坐标为(1cos ,sin )33ππ+,即3(3,22). 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用.中等题.24.解析:(Ⅰ)由0a >,有111()|||||()|2f x x x a x x a a a a a =++-≥+--=+≥, ∴()2f x ≥. (Ⅱ)1(3)|3||3|f a a=++-. 当3a >时,1(3)f a a=+,由(3)5f <得52123a <<+. C O E B P AD当03a <≤时,(3)61af a =-+,由(3)5f <得1532a +<≤. 综上,a 的取值范围是15521(,)22++. 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系.中等题.。

2014年高等考试数学江苏卷【整编-含答案解析】

2014年高等考试数学江苏卷【整编-含答案解析】

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:cl S =圆柱侧,其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:Sh V =圆柱, 其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 . 3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7.在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 . 8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 . 9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 .(第3题)100 80 90 110 底部周长/cm(第6题)10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是 .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第16题)PDCEFBA17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by ax 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.O C(第18题)20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.数学Ⅱ(附加题)21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域...................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.内作答...A.[选修4-1:几何证明选讲](本小题满分10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点.证明:∠OCB= ∠D.B.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1 2 1 1,1 x2 -1A B-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,向量2ay⎡⎤=⎢⎥⎣⎦,x,y为实数.若Aa =Ba,求x+y的值.C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,已知直线l的参数方程为1222xy⎧=-⎪⎪⎨⎪=+⎪⎩(t为参数),直线l与抛物线24y x=相交于A,B两点,求线段AB的长.D.[选修4-5:不等式选讲](本小题满分10分)已知x>0,y>0,证明:22(1)(1)9x y x y xy++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同. (l)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出 4个球其中红球、黄球、绿球的个数分别记为123,,x x x ,随机 变量X 表示123,,x x x 中的最大数,求X 的概率分布和数学期望E(X).23.(本小题满分10分) 已知函数 0sin ()(0)xf x x x=>,设 ()n f x 为 1()n f x -的导数,n N *∈. (1)求 122222f f πππ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的值;(2)证明:对任意的 n N *∈,等式 14442n n nf f πππ-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭都成立.2014年江苏高考数学试题参考答案数学Ⅰ试题一、填空题1、{13}-,2、213、54、13 5、6π 6、24 7、4 8、329255 10、20⎛⎫ ⎪⎝⎭11、3- 12、22 13、()102, 1462- 二、解答题15. 本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能力. 满分14分.(1)∵()5sin 2ααπ∈π=,,,∴225cos 1sin αα=--=()210sin sin cos cos sin sin )444αααααπππ+=+=+=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=16. 本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥PA∵PA ⊄平面DEF ,DE ⊂平面DEF ∴PA ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC ==∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E =I ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17. 本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力. 满分14分.(1)∵()4133C ,, ∴22161999a b+=∵22222BF b c a =+=,∴22(2)2a ==,∴21b = ∴椭圆方程为2212x y +=(2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称, ∴()A x y -, ∵2B F A ,,三点共线, ∴b yb c x+=--,即0bx cy bc --=①∵1FC AB ⊥, ∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴5c a = 518. 本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤ ∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x x m ---+-≤对(0)x ∈+∞,恒成立令e (1)x t t =>,则211tm t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+ ∵e-1e 111ln ln ln e (e 1)ln 1ea a aa a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2ea m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增; 当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<;当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20. 本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分.(1)当2n ≥时,111222n n n n n n a S S ---=-=-= 当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}n a 的公差为d 令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)参考答案21.【选做题】A.【选修4-1:几何证明选讲】本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:∵B , C 是圆O 上的两点,∴OB =OC . 故∠OCB =∠B .又∵C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, ∴∠B =∠D . ∴∠OCB =∠D . B.【选修4-2:矩阵与变换】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分. 222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】满分10分.本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力. 直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||82AB =D.【选修4-5:不等式选讲】本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分. 证明:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y≥0>, 所以(1+x +y 2)( 1+x 2+y )≥=9xy.22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++ (1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立. 综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+=n ∈*N ).。

(word完整版)2014年高考全国Ⅱ理科数学试题及答案(word解析版),推荐文档

(word完整版)2014年高考全国Ⅱ理科数学试题及答案(word解析版),推荐文档

2014年普通高等学校招生全国统一考试(全国II )数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2014年全国Ⅱ,理1,5分】设集合{}0,1,2M =,{}2320N x x x =-+≤,则M N =I ( ) (A ){}1 (B ){}2 (C ){}0,1 (D ){}1,2 【答案】D【解析】把{}0,1,2M =中的数代入不等式2320x x -+≤,经检验1,2x =满足,故选D .(2)【2014年全国Ⅱ,理2,5分】设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )(A )5- (B )5 (C )4i -+ (D )4i -- 【答案】A【解析】12i z =+Q ,1z 与2z 关于虚轴对称,22z i ∴=-+,12145z z =--=-,故选A . (3)【2014年全国Ⅱ,理3,5分】设向量,a b 满足10+=a b 6-=a b ,则⋅=a b ( )(A )1 (B )2 (C )3 (D )5 【答案】A【解析】||10a b +=r r Q ||6a b -=r r ,22210a b ab ∴++=r r r r ,2226a b ab +-=r r r r ,联立方程解得1ab =r r,故选A . (4)【2014年全国Ⅱ,理4,5分】钝角三角形ABC 的面积是12,1AB =,2BC =,则AC =( )(A )5 (B 5 (C )2 (D )1 【答案】B【解析】ΔABC 111sin 21sin 222S ac B B ==⋅=Q ,2sin B ∴,π4B ∴=或3π4B =,当π4B =时,经计算ABC∆为等腰直角三角形,不符合题意,舍去;当3π4B =时,使用余弦定理,222-2cos b a c ac B =+,解得5b =故选B .(5)【2014年全国Ⅱ,理5,5分】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) (A )0.8 (B )0.75 (C )0.6 (D )0.45 【答案】A 【解析】设某天空气质量优良,则随后一个空气质量也优良的概率为p ,则据题意有0.60.75p =⋅,解得0.8p =,故选A .(6)【2014年全国Ⅱ,理6,5分】如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )(A )1727 (B )59 (C )1027 (D )13【答案】C【解析】Q 加工前的零件半径为3,高6,∴体积19π654πv =⋅=,Q 加工后的零件,左半部为小圆柱,半径2,高4,右半部为大圆柱,半径为3,高为2,∴体积2449π234πv π=⋅+⋅=,∴消掉部分的体积与原体积之比=54π34π1054π27-==,故选C . (7)【2014年全国Ⅱ,理7,5分】执行右图程序框图,如果输入的,x t 均为2,则输出的S =( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】2x =,2t =,变量变化情况:1 3 12 5 22 7 3M S K,故选D .(8)【2014年全国Ⅱ,理8,5分】设曲线()ln 1y ax x =-+在点()0,0处的切线方程为2y x =,则a =( ) (A )0 (B )1 (C )2 (D )3 【答案】D【解析】()ln(1)f x ax x =-+Q ,1()1f x a x '∴=-+,(0)0f ∴=,且(0)2f '=,联立得3a =,故选D .(9)【2014年全国Ⅱ,理9,5分】设,x y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )(A )10 (B )8 (C )3 (D )2 【答案】B【解析】画出区域,可知区域为三角形,经比较斜率,可知目标函数2z x y =-在两条直线310x y -+=与70x y +-=的交点()5,2处,取得最大值8z =,故选B .(10)【2014年全国Ⅱ,理10,5分】设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30︒的直线交C 于A ,B两点,O 为坐标原点,则OAB ∆的面积为( )(A(B(C )6332 (D )94 【答案】D【解析】设点A ,B 分别在第一和第四象限,2AF m =,2BF n =,则由抛物线的定义和直角三角形可得:3224m =⋅,3224n =⋅,解得3(22m =,32n =,6m n ∴+=,ΔOAB 139()244S m n ∴=⋅⋅+=,故选D .(11)【2014年全国Ⅱ,理11,5分】直三棱柱111ABC A B C -中,90BCA ∠=︒,M ,N 分别是11A B ,11A C 的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为( )(A )110 (B )25 (C(D【答案】C【解析】如图,分别以11C B ,11C A ,1C C 为,,X Y Z 轴,建立坐标系.令12AC BC C C ===,则(0,2,2)A ,(2,0,2)B ,(1,1,0)M ,(0,1,0)N ,(1,1,2BM ∴=u u u u r --),(0,1,2AN =-u u u r -),cos θ||||BM AN BM AN ⋅===⋅u u u u r u u u ru u u u r u u u r ,故选C . (12)【2014年全国Ⅱ,理12,5分】设函数()x f x mπ=,若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是( )(A )()(),66,-∞-∞U (B )()(),44,-∞-∞U (C )()(),22,0-∞-U (D )()(),14,0-∞-U 【答案】C【解析】π()x f x m Q的极值为,即20[()]3f x =,0||||2m x ≤,22200[()]34m x f x ∴+≥+,2234m m ∴+<,解得||2m >,故选C .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(13)【2014年全国Ⅱ,理13,5分】()10x a +的展开式中,7x 的系数为15,则a =______.【答案】12【解析】37371015C x a x =Q ,331015C a ∴=,12a =. (14)【2014年全国Ⅱ,理14,5分】函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为______.【答案】1【解析】()sin(2)-2sin φcos()sin()cos cos()sin 2sin cos()sin()cos cos()sin sin 1f x x x x x x x x x ϕϕϕϕϕϕϕϕϕϕϕϕ=++=+⋅++⋅-+=+⋅-+•=≤Q ,最大值为1.(15)【2014年全国Ⅱ,理15,5分】已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是_______. 【答案】()1,3-【解析】Q 偶函数()f x 在[)0,+∞单调递减,且()20f =,()0f x ∴>的解集为||2x <,(1)0f x ∴->的解集为|1|2x -<,解得()1,3x ∈-.(16)【2014年全国Ⅱ,理16,5分】设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是_______. 【答案】[1,1]-【解析】在坐标系中画出圆O 和直线1y =,其中()0,1M x 在直线上,由圆的切线相等及三角形外角知识,可得0[1,1]x ∈-.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2014年全国Ⅱ,理17,12分】已知数列{}n a 满足11a =,131n n a a +=+.(1)证明{}12n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112n a a a ++<…+.解:(1)11a =Q ,131,N *n n a a n +=+∈,n 1111313()222n n a a a +∴+=++=+, 1{}2n a ∴+是首项为11322a +=,公比为3的等比数列.1322n n a +=,因此{}n a 的通项公式为312n n a -=. (2)由(1)可知312n n a -=,1231n n a ∴=-,111a =,当1n >时,1121313nn n a -=<-, 121123111111111313311133323213n n n n a a a a --∴++++<++++==-<-L L (),123111132n a a a a ∴++++<L . (18)【2014年全国Ⅱ,理18,12分】如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设二面角D AE C --为60︒,1AP =,3AD =,求三棱锥E ACD -的体积. 解:(1)设AC 的中点为G , 连接EG .在三角形PBD 中,中位线//EG PB ,且EG 在平面AEC 上,所以//PB 平面AEC .(2)设CD m =,分别以AD ,AB ,AP 为X ,Y ,Z 轴建立坐标系,则(0,0,0)A ,(3,0,0)D ,31()2E ,(3,,0)C m ,∴(3,0,0)AD =u u u r ,31()2AE =u u u r ,(3,,0)AC m =u u ur . 设平面ADE 的法向量为1111(,,)n x y z =u u r ,则10n AD ⋅=u u r u u u r,10n AE ⋅=u u r u u u r ,解得一个1(0,1,0)n =u u r .同理设平面ACE 法向量为2222(,,)n x y z =u u r ,则20n AC ⋅=u u r u u u r ,20n AE ⋅=u u r u u u r ,解得一个2(,3,3)n m m =--u u r , 22222222||31cos |cos ,|32||||33n n n n n n m m π⋅=<>===⋅++u u r u u ru u r u u r u u r u u r Q ,解得32m =.设F为AD的中点,则//PA EF,且122EFPA==,EF⊥面ACD,即为三棱锥E ACD-的高.-Δ1113133222E ACD ACDV S EF=⋅⋅=⋅⋅E ACD-.(19)【2014年全国Ⅱ,理19,12分】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据(1)求(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ni iiniit t y ybt t∧==--=-∑∑,ˆˆa y bt=-.解:(1)12747t+++==LQ,2.93.3 3.64.4 4.85.2 5.94.37y++++++==,设回归方程为y bt a=+,代入公式,经计算得:31420.700.5 1.8 4.8141(941)21422b⨯++++++===++⨯⨯,14.34 2.32a y bt=-=-⨯=,所以y关于t的回归方程为0.5 2.3y t=+.(2)12b=>Q,∴2007年至2013年该区人均纯收入稳步增长,预计到2015年,该区人均纯收0.59 2.3 6.8y=⋅+=(千元),所以,预计到2015年,该区人均纯收入约为6.8千元.(20)【2014年全国Ⅱ,理20,12分】设1F,2F分别是椭圆()222210x ya ba b+=>>的左右焦点,M是C上一点且2MF与x轴垂直,直线1MF与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且15MN F N=,求a,b.解:(1)Q由题知,11234MFF F=,21324ba c∴⋅=,且222a b c=+.联立整理得:22320e e+-=,解得12e=.C∴的离心率为12.(2)由三角形中位线知识可知,222MF=⋅,即24ba=.设1F N m=,由题可知14MF m=.由两直角三角形相似,可得M,N两点横坐标分别为c,32c-.由焦半径公式可得:1MF a ec=+,13()2NFa e c=+-,且11:4:1MF NF=,cea=,222a b c=+.联立解得7a=,b=(21)【2014年全国Ⅱ,理21,12分】已知函数()2x xf x e e x-=--.(1)讨论()f x的单调性;(2)设()()()24g x f x bf x=-,当0x>时,()0g x>,求b的最大值;(3)已知1.4142 1.4143,估计ln2的近似值(精确到0.001).解:解法一:(1)-()2x xf x e e x=--Q,x R∈,∴-1()2220x x xxf x e e ee'=+-=+-≥=.所以,()f x 在R 上单增.(2)22()(2)4()44(2)0x x x x g x f x bf x e e x b e e x --=-=----->,0x >.令22()44(2)x x x x h x e e x b e e x --=-----,0x >,则(0)0h =.22()2244(2)x x x x h x e e b e e --'=+--+-, ()0,x m ∴∃∈,0m >,使()0h x '≥,即2-22244(2)0x x x x e e b e e -+--+-≥,即2-222(2)0x x x x e e b e e -+--+-≥.同理,令22()22(2)x x x x m x e e b e e --=+--+-,()0,x m ∈,0m >, 则这(0)0m =.22()222()x x x x m x e e b e e --'=---,()0,x t ∴∃∈,0t >,使()0m x ≥.即22222()0x x x x e e b e e -----≥,即()()()0x x x x x x e e e e b e e ---+---≥,且0x x e e -->,即x x e e b -+≥, 即22x x x x e e e e b --+>⋅=≥,所以b 的最大值为2.(3)设ln 20x =>,则(ln 2)0f >,即2(ln 2)22ln 2ln 202f =--=->,解得2ln 2<. 由(2)知,(2)8()f x f x >,令ln 20x =>,则(2ln 2)8(ln 2)f f >,即(ln 2)8(ln 2)f f >,即122ln 2822ln 2)22-->--(,36ln 2422>-,解得21ln 2234>-,所以2122ln 2342-<<. 解法二:(1)()20x x f x e e -'=+-≥,等号仅当0x =时成立.所以()f x 在(),-∞+∞单调递增. (2)()()()()()2224484x x x x g x f x bf x e e b e e b x --=-=---+-,()()()()()2222422222x x x xxx x x g x e e b e e b ee e e b ----⎡⎤'=+-++-=+-+-+⎣⎦.(ⅰ)当2b ≤时,()0g x '≥,等号仅当0x =时成立,所以()g x 在(),-∞+∞单调递增.而()00g =,所以对任意0x >,()0g x >.(ⅱ)当2b >时,若x 满足222x x e e b -<+<-,即()20ln 12x b b b <<-+-时,()0g x '<.而()00g =,因此当()20ln 12x b b b <≤-+-时,()0g x <.综上所述,b 的最大值为2. (3)由(2)可知,()()3ln 222221ln 22g b b =-+-,当2b =时,()3ln 2426ln 202g =-+>,823ln 20.6928->>;当321b =+时,()2ln 12ln 2b b b -+-=,()()3ln 222322ln 202g =--++<,182ln 20.6934+<<.所以ln2的近似值为0.693.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个 题目计分,做答时请写清题号. (22)【2014年全国Ⅱ,理22,10分】(选修4-1:几何证明选讲)如图,P 是O e 外一点,PA 是切线,A 为切点,割线PBC 与O e 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的 延长线交O e 于点E .证明: (1)BE EC =;(2)22AD DE PB ⋅=. 解:解法一:(1)2PC PA =Q ,PD DC =,PA PD ∴=,PAD ∆为等腰三角形.连接AB ,则PAB DEB β∠=∠=BCE BAE α∠=∠=.PAB BCE PAB BAD PAD PDA DEB DBE ∠+∠=∠+∠=∠+∠=∠+∠Q , DBE βαβ∴+=+∠,即a DBE =∠,即BCE DBE ∠=∠,所以BE EC =.(2)AD DE =BD DC ⋅⋅Q ,2PA PB PC =⋅,PD DC PA ==,()BD DC PA PB PA PB PC PB PA PB PC PA ∴⋅=-=⋅-⋅=⋅-(),222PB PA PB PB PB ⋅=⋅=, 22AD DE PB ∴⋅=.解法二:(1)连接AB ,AC .由题意知PA PD =,故PAD PDA ∠=∠.因为PDA DAC DCA ∠=∠+∠, PAD BAD PAB ∠=∠+∠,DAC PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =. (2)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =. 由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=. (23)【2014年全国Ⅱ,理23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D的坐标.解:(1)C 的普通方程为:()()221101x y y -+=≤≤.可得C 的参数方程为1cos sin x t y t =+⎧⎨=⎩()0t π≤≤.(2)设()1cos ,sin D t t +,由(1)知C 是以()1,0G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t 3t π=.故D 的直角坐标为1cos ,sin 33ππ⎛⎫+ ⎪⎝⎭,即32⎛ ⎝⎭. (24)【2014年全国Ⅱ,理24,10分】(选修4-5:不等式选讲)设函数()1(0)f x x x a a a=++->.(1)证明:()2f x ≥;(2)若()35f <,求a 的取值范围.解:(1)由0a >,有()()1112f x x x a x x a a a a a=++-≥+--=+≥,所以()2f x ≥.(2)()1333f a a =++-,当3a >时,()13f a a=+,由()35f <得3a <.当03a <≤时,()136f a a=-+,由()35f <3a <≤.综上所述,a 的取值范围是⎝⎭.。

2014年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(理科)解析版

2014年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(理科)解析版

2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =I ( ) A 、{1,0}- B 、{0,1} C 、{2,1,0,1}-- D 、{1,0,1,2}- 1、解:A={x|(x+1)(x ﹣2)≤0}={x|﹣1≤x ≤2},又集合B 为整数集, 故A ∩B={﹣1,0,1,2}, 故选D2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( ) A 、总体 B 、个体C 、样本的容量D 、从总体中抽取的一个样本 2、解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度 3、解:∵由y=sinx 到y=sin (x+1),只是横坐标由x 变为x+1,∴要得到函数y=sin (x+1)的图象,只需把函数y=sinx 的图象上所有的点向左平行移动1个单位长度.故选:A4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2 CD 、1侧视图俯视图112222114、解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2, ∴三棱锥的体积V=××2××=1.故选:D .5、若0a b >>,0c d <<,则一定有( ) A 、a b d c > B 、a b d c <C 、a b c d >D 、a bc d< 5、解:不妨令a=3,b=1,c=﹣3,d=﹣1, 则,∴C 、D 不正确;,∴A 不正确,B 正确. 故选:B6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0 B 、1 C 、2 D 、36、解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y 的最大值,画出可行域如图:当时,S=2x+y 的值最大,且最大值为2.故选:C .7、已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是( ) A 、d ac = B 、a cd = C 、c ad = D 、d a c =+ 7、解:由5d =10,可得,∴cd=lgb1lg 5=log 5b=a . 故选:B .8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75o ,30o ,此时气球的高是60m ,则河流的宽度BC 等于( )A 、240(31)m -B 、180(21)m -C 、120(31)m -D 、30(31)m +8、解:如图,由图可知,∠DAB=15°,∵tan15°=tan (45°﹣30°)===23.在Rt △ADB 中,又AD=60,∴DB=AD •tan15°=60×(23)=120﹣3 在Rt △ADB 中,∠DAC=60°,AD=60, ∴DC=AD •tan60°3∴BC=DC ﹣3120﹣3)=1203-1)(m ).30°75°60mA∴河流的宽度BC 等于120(3-1)m . 故选:C .9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A 、[5,25]B 、[10,25]C 、[10,45]D 、[25,45] 9、解:由题意可知,动直线x+my=0经过定点A (0,0),动直线mx ﹣y ﹣m+3=0即 m (x ﹣1)﹣y+3=0,经过点定点B (1,3),∵动直线x+my=0和动直线mx ﹣y ﹣m+3=0始终垂直,P 又是两条直线的交点, ∴PA ⊥PB ,∴|PA|2+|PB|2=|AB|2=10.由基本不等式可得|PA|2+|PB|2≤(|PA|+|PB|)2≤2(|PA|2+|PB|2), 即10≤(|PA|+| PB|)2≤20,可得10≤(|PA|+|PB|)2≤25, 故选:B10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=u u u r u u u r (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3C 、1728D 、10 10、解:设直线AB 的方程为:x=ty+m ,点A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M ((0,m ),21·cn ·jy ·com 由⇒y 2﹣ty ﹣m=0,根据韦达定理有y 1•y 2=﹣m ,∵OA OB u u u r u u u rg=2,∴x 1•x 2+y 1•y 2=2,从而,∵点A ,B 位于x 轴的两侧,∴y 1•y 2=﹣2,故m=2. 不妨令点A 在x 轴上方,则y 1>0,又, ∴S △ABO +S △AFO ==.当且仅当,即时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3,故选B .第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。

2014全国卷二高考数学真题试卷

2014全国卷二高考数学真题试卷

2014全国卷二数学满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共12小题)1.已知集合,则()A.B.{2}C.{0}D.{-2}2.()A.B.C.D.3.函数在处导数存在,若是的极值点,则()A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D .既不是的充分条件,也不是的必要条件4.设向量,满足,,则A.1B.2C.3D.55.等差数列的公差为2,若,,成等比数列,则的前n项和=()A.B.C.D.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()B.C.D.A.7.正三棱柱的底面边长为2,侧棱长为,D为BC终点,则三棱锥的体积为()A.3B.C.1D.8.执行下面的程序框图,如果如果输入的x,t均为2,则输出的S=()B.5C.6D.7A.49.设x,y满足的约束条件,则的最大值为()A.8B.7C.2D.110.设F为抛物线的焦点,过F且倾斜角为的直线交于C于两点,则=()A.B.6C.12D.11.若函数在区间(1,+)单调递增,则k的取值范围是()A.B.C.D.12.设点,若在圆上存在点N,使得,则的取值范围是()A.B.C.D.二、填空题(共4小题)13.甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为______________.14.函数的最大值为___________.15.已知函数的图像关于直线=2对称,=3,则___________.16.数列满足=,=2,则=____________.三、解答题(共8小题)17.四边形ABCD的内角A与C互补,AB=1,BC=3, CD=DA=2.(I)求C和BD;(II)求四边形ABCD的面积。

2014年普通高等学校招生全国统一考试(江苏卷)数学试题

2014年普通高等学校招生全国统一考试(江苏卷)数学试题

2014年普通高等学校招生全国统一考试综合能力测试数学试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.(2014江苏,1)已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=.答案:{-1,3}解析:由题意,得A∩B={-1,3}.2.(2014江苏,2)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.答案:21解析:由题意,得z=(5+2i)2=25+20i-4=21+20i,其实部为21.3.(2014江苏,3)下图是一个算法流程图,则输出的n的值是.答案:5解析:本题实质上是求不等式2n>20的最小整数解,2n>20的整数解为n≥5,因此输出的n=5.4.(2014江苏,4)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是.答案:13解析:从1,2,3,6这4个数中随机地取2个数,不同的取法为{1,2},{1,3},{1,6},{2,3},{2,6},{3,6}共6个基本事件,其中乘积为6的有{1,6},{2,3}两个基本事件,因此所求事件的概率为P=26=13.5.(2014江苏,5)已知函数y=cos x与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为π的交点,则φ的值是.答案:π解析:由题意cosπ3=sin2×π3+φ ,即sin2π3+φ =12,2π3+φ=kπ+(-1)k·π6(k∈Z).因为0≤φ<π,所以φ=π.6.(2014江苏,6)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.答案:24解析:由题意,在抽测的60株树木中,底部周长小于100cm的株数为(0.015+0.025)×10×60=24.7.(2014江苏,7)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.答案:4解析:设公比为q,则由a8=a6+2a4,得a1q7=a1q5+2a1q3,q4-q2-2=0,解得q2=2(q2=-1舍去),所以a6=a2q4=4.8.(2014江苏,8)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且S1S2=94,则V1V2的值是. 答案:32解析:设甲、乙两个圆柱底面半径和高分别为r1,h1,r2,h2,则2πr1h1=2πr2h2,ℎ12=r21.又S12=πr1222=9,所以r12=3,则V1 2=πr12ℎ1222=r1222·ℎ12=r12=3.9.(2014江苏,9)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为. 答案:2555解析:圆(x-2)2+(y+1)2=4的圆心为C(2,-1),半径r=2,圆心C到直线x+2y-3=0的距离为d=1+2=5,所求弦长l=2r2-d2=24-95=2555.10.(2014江苏,10)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.答案:-2,0解析:根据题意,得f(m)=m2+m2-1<0,f(m+1)=(m+1)2+m(m+1)-1<0,解得-22<m<0.11.(2014江苏,11)在平面直角坐标系xOy中,若曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.答案:-3解析:由曲线y=ax2+b过点P(2,-5),得4a+b=-5.①又y'=2ax-bx2,所以当x=2时,4a-b4=-72,②由①②得a=-1,b=-2,所以a+b=-3.12.(2014江苏,12)如图,在平行四边形ABCD中,已知AB=8,AD=5,CP=3PD,AP·BP=2,则AB·AD的值是.答案:22解析:由题意知,AP=AD+DP=AD+14AB,BP=BC+CP=BC+34CD=AD−34AB,所以AP·BP= AD+1AB· AD-3AB=AD2−12AD·AB−316AB2,即2=25-1AD·AB−3×64,解得AB·AD=22.13.(2014江苏,13)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)= x2-2x+12.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是.答案:0,12解析:作出函数f(x)= x2-2x+1,x∈[0,3)的图象(如图),f(0)=1,当x=1时,f(x)极大值=1,f(3)=7,方程f(x)-a=0在[-3,4]上有10个根,即函数y=f(x)的图象和直线y=a在[-3,4]上有10个交点.由于函数f(x)的周期为3,则直线y=a与f(x)的图象在[0,3)上应有4个交点,因此有a∈0,1.14.(2014江苏,14)若△ABC 的内角满足sin A+ 2sin B=2sin C ,则cos C 的最小值是 . 答案:6- 24解析:由sin A+ 2sin B=2sin C 及正弦定理可得a+ 2b=2c.故cos C=a 2+b 2-c 22ab =a 2+b 2-a + 2b222ab=3a 2+2b 2-2 2ab ≥2 6ab -2 2ab= 6- 2,当且仅当3a 2=2b 2,即ab = 2 3时等号成立.所以cos C 的最小值为 6- 2.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)(2014江苏,15)已知α∈ π2,π ,sin α= 55. (1)求sin π+α 的值;(2)求cos 5π-2α 的值.分析:(1)先结合范围,运用平方关系求出cos α,再用两角和的正弦公式求值;(2)由(1)运用二倍角公式求出sin 2α,cos 2α,再用两角差的余弦公式求值. 解:(1)因为α∈ π2,π ,sin α= 55,所以cos α=- 1-sin 2α=-2 55. 故sin π4+α =sin π4cos α+cos π4sin α= 22× -2 55 + 22× 55=- 1010.(2)由(1)知sin 2α=2sin αcos α=2× 55× -2 55 =-45,cos 2α=1-2sin 2α=1-2× 5 2=3,所以cos 5π6-2α =cos 5π6cos 2α+sin 5π6sin 2α= - 32 ×35+12× -45 =-4+3 310.16.(本小题满分14分)(2014江苏,16)如图,在三棱锥P-ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA=6,BC=8,DF=5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC.分析:(1)证明线面平行可由线线平行证得,由条件中中点较多,故可用中位线构造线线平行证明;(2)证明面面垂直可由线面垂直证得.利用中位线结合勾股定理证明DE ⊥EF ,再由(1)结合已知可证DE ⊥AC ,用线面垂直的判定定理证得DE ⊥平面ABC ,从而证明面面垂直. 证明:(1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA.又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF.(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA=6,BC=8,所以DE ∥PA ,DE=1PA=3,EF=1BC=4. 又因为DF=5,故DF 2=DE 2+EF 2, 所以∠DEF=90°,即DE ⊥EF. 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC.因为AC ∩EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC. 又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC.17.(本小题满分14分)(2014江苏,17)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a2+y 2b2=1(a>b>0)的左、右焦点,顶点B 的坐标为(0,b ),连结BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结F 1C. (1)若点C 的坐标为 4,1 ,且BF 2= 2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.分析:(1)利用椭圆的几何性质可得BF 2=a= 2,再把点C 的坐标代入即可求出椭圆方程;(2)写出B ,F 2的坐标,用b ,c 表示直线AB 的方程,联立椭圆方程表示出点A 的坐标,利用点A 与点C 的对称性,表示出点C 的坐标,利用直线F 1C 的斜率及k F 1C ·k AB =-1建立a ,b ,c 的关系,再结合平方关系求离心率. 解:设椭圆的焦距为2c ,则F 1(-c ,0),F 2(c ,0).(1)因为B (0,b ),所以BF 2=2+c 2=a. 又BF 2= 2,故a= 2. 因为点C 4,1 在椭圆上, 所以169a 2+19b2=1.解得b 2=1.故所求椭圆的方程为x 2+y 2=1. (2)因为B (0,b ),F 2(c ,0)在直线AB 上, 所以直线AB 的方程为x c+y b=1.解方程组 x c +y b =1,x 22+y 2b 2=1,得 x 1=2a 2c 22,y 1=b (c 2-a 2)a 2+c2, x 2=0,y 2=b .所以点A 的坐标为 2a 2c 22,b (c 2-a 2)22 .又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为 2a 2c 22,b (a 2-c 2)22. 因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2ca 2+c 2-(-c )=b (a 2-c 2)3a 2c+c 3,直线AB 的斜率为-b c,且F 1C ⊥AB , 所以b (a 2-c 2)3a 2c+c 3· -bc =-1. 又b 2=a 2-c 2,整理得a 2=5c 2. 故e 2=15. 因此e= 5.18.(本小题满分16分)(2014江苏,18)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=4.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?分析:法一:(1)运用坐标法求BC的长,由已知建立以O为坐标原点,OC所在直线为x轴的直角坐标系.设出点B 坐标,利用A,C坐标分别表示出k AB,k BC,建立方程组求出点B坐标,利用两点间的距离公式求解即可;(2)求圆形保护区的最大面积,即求圆的最大半径.由条件知,可转化为求点M到直线BC距离的最大值.由(1)可先求出直线BC的方程,设点M的坐标为(0,d),则半径r可用d表示,利用已知和r,d的关系求出d的范围,就可求出r的最大值,即可求圆形保护区面积的最大值.法二:(1)延长CB,OA交于点F,在△OCF中,利用条件求OF,CF.利用AF=OF-OA求AF的长,再借助∠AFB+∠OCF=90°的关系,在△ABF中,求出BF的长,进而利用CB=CF-BF求值;(2)设MD=r m(半径),OM=d m,在△MDF中,利用sin∠CFO建立r,d的关系,利用已知和r,d的关系求出d的范围,就可求出r的最大值,即可求圆形保护区面积的最大值.解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0,60),C(170,0),直线BC的斜率k BC=-tan∠BCO=-43.又因为AB⊥BC,所以直线AB的斜率k AB=34.设点B的坐标为(a,b),则k BC=b-0=-4,k AB=b-60=3.解得a=80,b=120.所以BC=(170-80)2+(0-120)2=150.因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为r m,OM=d m(0≤d≤60).由条件知,直线BC的方程为y=-4(x-170),即4x+3y-680=0.由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即r=4+3680-3d5.因为O和A到圆M上任意一点的距离均不少于80m,所以r-d≥80, r-(60-d)≥80,即680-3d5-d ≥80,680-3d-(60-d )≥80.解得10≤d ≤35. 故当d=10时,r=680-3d最大,即圆面积最大. 所以当OM=10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA ,CB 交于点F. 因为tan ∠FCO=4, 所以sin ∠FCO=45,cos ∠FCO=35.因为OA=60,OC=170, 所以OF=OC tan ∠FCO=6803,CF=OCcos ∠FCO=8503,从而AF=OF-OA=5003. 因为OA ⊥OC ,所以cos ∠AFB=sin ∠FCO=4. 又因为AB ⊥BC ,所以BF=AF cos ∠AFB=400,从而BC=CF-BF=150.因此新桥BC 的长是150 m .(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD=r m,OM=d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO=cos ∠FCO. 故由(1)知sin ∠CFO=MD=MD OF -OM=r6803-d=3,所以r=680-3d. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以 r -d ≥80,r -(60-d )≥80,即680-3d-d ≥80,680-3d-(60-d )≥80.解得10≤d ≤35. 故当d=10时,r=680-3d5最大,即圆面积最大. 所以当OM=10 m 时,圆形保护区的面积最大.19.(本小题满分16分)(2014江苏,19)已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m-1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 03+3x 0)成立.试比较e a-1与a e -1的大小,并证明你的结论.分析:(1)利用偶函数定义判断即可;(2)原不等式恒成立可分离参数转化为m ≤e -x -1e x +e -x -1恒成立,即求e -x -1e x +e -x -1的最小值.设t=e x >1,换元后利用基本不等式求最小值;(3)由条件构造函数g (x )=f (x )-a (-x 3+3x ),利用导数求出g (x )的最小值,利用g (x )min <0,求出a 的取值范围. 判断e a-1与a e -1的大小,即判断ln e a-1与ln a e -1的大小,即判断(a-1)-(e -1)ln a 的符号. 构造函数h (x )=x-1-(e -1)ln x ,利用导数求出h (x )在(0,+∞)上的单调区间和最小值. 利用h (1)=h (e)=0,对a 的值分三种情况讨论h (x )的符号,从而确定e a-1与a e -1的大小.(1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)解:由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令t=e x (x>0),则t>1,所以m ≤-t -1t 2-t+1=-1t -1+1t -1+1对任意t>1成立.因为t-1+1t -1+1≥2 (t -1)·t -1+1=3, 所以-1t -1+1t -1+1≥-13, 当且仅当t=2,即x=ln 2时等号成立. 因此实数m 的取值范围是 -∞,-1 .(3)解:令函数g (x )=e x +1ex -a (-x 3+3x ),则g'(x )=e x -1ex +3a (x 2-1).当x ≥1时,e x -1x >0,x 2-1≥0.又a>0,故g'(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a.由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 03+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e -1-2a<0,即a>e+e -1. 令函数h (x )=x-(e -1)ln x-1,则h'(x )=1-e -1. 令h'(x )=0,得x=e -1.当x ∈(0,e -1)时,h'(x )<0,故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h'(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0. 所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈e+e -12,e ⊆(1,e)时,h (a )<0,即a-1<(e -1)ln a ,从而e a-1<a e -1;②当a=e 时,e a-1=a e -1;③当a ∈(e,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a-1>(e -1)ln a ,故e a-1>a e -1. 综上所述,当a ∈e+e -12,e 时,e a-1<a e -1;当a=e 时,e a-1=a e -1;当a ∈(e,+∞)时,e a-1>a e -1.20.(本小题满分16分)(2014江苏,20)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d<0.若{a n }是“H 数列”,求d 的值;(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.分析:在第(1)问中,先利用a n 与S n 的关系求出a n ,再根据“H 数列”的定义即可证明结论;在第(2)问中,可采用由特殊到一般的方法,先取n=2,结合“H 数列”的定义求出d 的值,然后可求出a n 与S n ,再根据“H 数列”的定义验证结论对任意的n 成立;在第(3)问中,a n =a 1+(n-1)d ,考虑到非零常数列不是“H 数列”,因而应考虑将a n 分解改写为两个等差数列和的形式a n =na 1+(n-1)(d-a 1),然后再分别按“H 数列”的定义证明{na 1}和{(n-1)(d-a 1)}为“H 数列”,即可证得结论.(1)证明:由已知,当n ≥1时,a n+1=S n+1-S n =2n+1-2n =2n .于是对任意的正整数n ,总存在正整数m=n+1,使得S n =2n =a m .所以{a n }是“H 数列”.(2)解:由已知,得S 2=2a 1+d=2+d.因为{a n }是“H 数列”,所以存在正整数m ,使得S 2=a m ,即2+d=1+(m-1)d ,于是(m-2)d=1.因为d<0,所以m-2<0,故m=1,从而d=-1.当d=-1时,a n =2-n ,S n =n (3-n )是小于2的整数,n ∈N *.于是对任意的正整数n ,总存在正整数m=2-S n =2-n (3-n ),使得S n =2-m=a m .所以{a n }是“H 数列”. 因此d 的值为-1.(3)证明:设等差数列{a n}的公差为d,则a n=a1+(n-1)d=na1+(n-1)(d-a1)(n∈N*).令b n=na1,c n=(n-1)(d-a1),则a n=b n+c n(n∈N*).下证{b n}是“H数列”.设{b n}的前n项和为T n,则T n=n(n+1)a1(n∈N*).于是对任意的正整数n,总存在正整数m=n(n+1),使得T n=b m.所以{b n}是“H数列”.同理可证{c n}也是“H数列”.所以,对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.数学Ⅱ(附加题)21.(2014江苏,21)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4—1:几何证明选讲](本小题满分10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.分析:要证明∠OCB=∠D,因∠OCB=∠B,只需证∠B=∠D,而同弧所对的圆周角相等,即∠B=∠D成立,因此得证.证明:因为B,C是圆O上的两点,所以OB=OC.故∠OCB=∠B.又因为C,D是圆O上位于AB异侧的两点,故∠B,∠D为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB=∠D.B.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A=-121x ,B=112-1,向量α=2y,x,y为实数.若Aα=Bα,求x+y的值.分析:要求x+y的值,只需分别求出x,y的值,而根据等式Aα=Bα,结合矩阵的乘法可得到关于x,y的一个方程组,解出即可.解:由已知,得Aα=-121x 2y=-2+2y2+xy,Bα=112-12y=2+y4-y.因为Aα=Bα,所以-2+2y2+xy =2+y4-y.故-2+2y=2+y,2+xy=4-y.解得x=-1,y=4.所以x+y=72.C.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,已知直线l的参数方程为x=1-22t,y=2+22t(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.分析:求直线被抛物线所截弦长,可利用直线参数方程的几何意义解决.将直线的参数方程与抛物线方程联立可解得参数的值,代入即可.解:将直线l的参数方程x=1-22t,y=2+22t代入抛物线方程y2=4x,得2+2t 2=41-2t.解得t1=0,t2=-82.所以AB=|t1-t2|=82.D.[选修4—5:不等式选讲](本小题满分10分)已知x>0,y>0,证明:(1+x+y2)(1+x2+y)≥9xy.分析:可利用算术几何平均不等式:a+b+c≥3abc3(a,b,c>0),将左边因式中的和化为积,实现不等式的证明.证明:因为x>0,y>0,所以1+x+y 2≥3 xy 23>0, 1+x 2+y ≥3 x 2y 3>0,故(1+x+y 2)(1+x 2+y )≥3 xy 23·3 x 2y 3=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(2014江苏,22)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数.求X 的概率分布和数学期望E (X ).分析:在第(1)问中,考虑到“2个球颜色相同”可分为3种情况:“同为红球”“同为黄球”“同为绿球”,故可用互斥事件的概率公式,结合排列组合及古典概型求得结果;在第(2)问中,先分析4个球中各类球的个数情况,确定X 的所有可能的取值,然后利用超几何分布求出各个概率值,列出表格即得X 的概率分布,最后根据数学期望的定义计算求得结果.解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P=C 42+C 32+C 22C 92=6+3+1=5. (2)随机变量X 所有可能的取值为2,3,4.{X=4}表示的随机事件是“取到的4个球是4个红球”,故P (X=4)=C 44C 94=1126; {X=3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P (X=3)=C 43C 51+C 33C 61C 94=20+6126=1363; 于是P (X=2)=1-P (X=3)-P (X=4)=1-1363−1126=1114. 所以随机变量X 的概率分布如下表:因此随机变量X 的数学期望E (X )=2×1114+3×1363+4×1126=209. 23.(本小题满分10分)(2014江苏,23)已知函数f 0(x )=sin x(x>0),设f n (x )为f n-1(x )的导数,n ∈N *.(1)求2f 1 π +πf 2 π 的值;(2)证明:对任意的n ∈N *,等式 nf n -1 π +πf n π = 2都成立.分析:在第(1)问中,先由已知条件通过求导数得到f 1(x )和f 2(x )的解析式,然后代入自变量的值即可求得结果;在第(2)问中,先将f 0(x )=sin xx改写为xf 0(x )=sin x ,然后对该式两边求导,整理后再继续对所得的式子两边求导,依次下去,可归纳猜想得到nf n-1(x )+xf n (x )=sin x +nπ对所有的n ∈N *都成立,再用数学归纳法证明其正确性.最后将该式中的变量x 换为π4,结合三角函数的诱导公式即可证得结论成立.(1)解:由已知,得f 1(x )=f'0(x )=sin x '=cos x −sin x2, 于是f 2(x )=f'1(x )= cos x '- sin x 2 '=-sin x −2cos x 2+2sin x3,所以f 1 π2 =-4π2,f 2 π2 =-2π+16π3.故2f 1 π2 +π2f 2 π2=-1.(2)证明:由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf'0(x )=cos x ,即f 0(x )+xf 1(x )=cos x=sin x +π2,类似可得 2f 1(x )+xf 2(x )=-sin x=sin x +π ,3f 2(x )+xf 3(x )=-cos x=sin x +3π2 ,4f 3(x )+xf 4(x )=sin x=sin(x+2π).下面用数学归纳法证明等式nf n-1(x)+xf n(x)=sin x+nπ对所有的n∈N*都成立.①当n=1时,由上可知等式成立.②假设当n=k时等式成立,即kf k-1(x)+xf k(x)=sin x+kπ.因为[kf k-1(x)+xf k(x)]'=kf'k-1(x)+f k(x)+xf'k(x)=(k+1)f k(x)+xf k+1(x),sin x+kπ'=cos x+kπ· x+kπ'=sin x+ (k+1)π,所以(k+1)f k(x)+xf k+1(x)=sin x+(k+1)π2.因此当n=k+1时,等式也成立.综合①,②可知等式nf n-1(x)+xf n(x)=sin x+nπ2对所有的n∈N*都成立.令x=π4,可得nf n-1π4+π4f nπ4=sinπ+nπ(n∈N*).所以 nf n-1π+πf nπ=2(n∈N*).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国民航大学 2014 年 2 学期研究生课程考试试题
考 试 科 目:高等工程数学. 学生所在学院:航空自动化学院 学生所在学科:控制工程 航空工程
一.设:321,,e e e 是三维空间的标准正交基,证明:
)22(3
1)22(31),22(3132132123211e e e e e e e e e n --=+-=-+=εεε 是标准正交基。

二.求三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=163053064A 的相似对角形及100A . 注 三.设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=201034011A ,求A e 。

意 四.用直接三角分解法求解方程组⎪⎪⎪⎭
⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-713542774322321x x x .
行 五.随机过程t X t X ωcos )(=,ω是常数,X 服从正态分布随机变量且,0)(=X E ,1)(=X D 求))((t X E 的期望,方差和协方差函数
为 六.钢板的重量指标平日服从正态分布,它的制造规格规定:钢板重量的方差不得
规 超过016.020=σ,现由25块钢板组成一个随机样本,给出025.02
*=S ,从这 范 些数据能否得出钢板不合格结论.)05.0,01.0(==αα
遵 七.已知矩阵函数⎪⎪⎪⎪⎭
⎫ ⎝⎛=t e t t t t t t A cos 1412sin )(2
,求:⎰21)(dt t A ,)(t A ',)(t A dt d ,)(lim 2t A t '→. 守 八 某种零件质量服从正态分布,抽取16件,测质量的平均值为
89.377,856.416
12==∑=i i x x ,求平均质量的置信区间.置信度为0.95.
场 九.通过某十字路口的车流是一个泊松过程.设在一分钟内没有车辆通过的概率
2.0,求两分钟内有多于一辆车通过的概率.


(共2页)。

相关文档
最新文档