规则桥梁抗震计算方法

合集下载

桥梁抗震设计规范

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法一、引言近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。

因此,专家们预测全球已进入一个新的地震活跃期。

随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。

地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。

以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。

近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。

各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。

日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。

桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。

美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。

与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。

大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。

但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。

与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。

若不进行改进,则必将给中国不少桥梁工程留下地震隐患。

本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。

基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。

桥梁抗震设计计算方法简介

桥梁抗震设计计算方法简介
改进的抗震设计方法基于两级设计地震水平 , 主要包括以下五个阶段 : ①概念设计 ; ②结构初设计 —对应地震水平 I ; ③延性构件二次设计 —对应地 震水平 III ; ④能力保护设计 ; ⑤抗震构造设计 。
抗震概念设计是从结构总体上考虑抗震的工程 决策 。具体设计时 ,可参考以下几点 : ①从几何线形 上看 ,桥梁是直的 ,各墩高度相差不大 ; ②从结构布 局上看 ,上部结构是连续的 ,尽量少用伸缩缝 ;桥梁 保持小跨径 ;弹性支座布置在多个桥墩上 ;各个桥墩 的强度和刚度在各个方向相同 ,基础建造在坚硬的 场地上 ; ③在基础施工困难的地带或深水河床 ,通常 采用大跨 、少墩的布置方案 。 ④对于较细长的桥墩 或小跨桥梁 ,上下部结构之间可考虑采用刚接 。 ⑤ 适当考虑采用减隔震设备 。 ⑥将塑性铰的位置选择 在钢筋混凝土桥墩中 ,将钢筋混凝土桥墩设计成延 性的构件 ,而将其余的构件设计为能力保护构件 。
须采用焊接 ,矩形箍筋应有 135°弯钩 ,并伸入混凝 土核心之内 。对于桥墩与上部结构刚接的方式 ,理 想的做法是钢筋弯曲地通过这个铰梁纵横向 宜设置一定数量的拉筋 。
4 大跨度桥梁抗震设计中几个应注意的问 题
高 ,延性设计比较困难 ,所以大跨度拱桥抗震设计不 宜过分依赖延性抗震 。
(4) 大跨度拱桥的结构构造比较复杂 ,一般需要 采用反映谱分析和时程分析两种方法互相校核 。
(5) 大跨度拱桥反映谱分析时 ,应至少考虑两种 地震动输入方式 。即纵桥向 + 竖向输入和横桥向 + 竖向输入 ,其中竖向反映谱值取水平反映谱值的 2/ 3。
(6) 大跨度拱桥时程分析时 ,地震波应至少考虑 三种输入方式 。
些相关规定 ,以供参考 。 3. 3. 1 延性桥墩中纵向钢筋的规定

桥梁抗震规范

桥梁抗震规范

桥梁抗震规范
桥梁抗震规范是由国家规范性文件控制的,对桥梁结构在地震力作用下的有效抗震性能及设计进行指导和规约。

桥梁抗震规范中分两个部分:一部分为地震力计算和地震力抗震设计;一部分为桥梁结构体系材料性能评定及控制,全面控制桥梁施工抗震性能。

一、地震力计算和地震力抗震设计
1、地震计算:包括津门落差法的应力时程及非线性时程的确定,地震励磁幅值、地震动时程和随机动性质计算,绑定地表震级和桥梁地基质量计算,建立桥梁震源大小及励磁参数等。

2、地震力抗震设计:确定抗震性能要求,确定桥梁抗震设计结构体系,确定抗震结构控制参数,确定桥梁抗震设计分析方法,确定抗震设计措施及其设计方法。

二、桥梁结构体系材料性能评定及控制
1、桥梁结构体系材料性能评定:桥梁抗震规范要求对桥梁用材进行设计有效性能评定,明确桥梁用材形状和尺寸,以及其在正常及地震力作用下有效性能,以及桥梁连接部位评定要求。

2、材料控制:根据公路铁路工程国家规范完善桥梁用材抗震性能控制,包括在桥梁用料质量检验上,充分调动桥梁质量检验人员的责任心,有效控制桥梁施工抗震性能。

总之,桥梁抗震规范的建立和完善,整个桥梁建设施工过程抗震性能得到有效控制,为桥梁安全稳定维护、抵御地震灾害提供可靠的保障。

桥梁结构设计规范要求的抗震性能评估方法

桥梁结构设计规范要求的抗震性能评估方法

桥梁结构设计规范要求的抗震性能评估方法桥梁是现代城市交通中不可或缺的基础设施之一,承载着车辆和行人的重要运输通道。

为确保桥梁在地震发生时能够保持稳定并继续运行,桥梁结构设计规范中要求进行抗震性能评估。

一、建立地震动输入评估桥梁结构的抗震性能时,首先需要建立合适的地震动输入。

通过分析历史地震数据、地质构造和构筑物所在区域的地质条件,确定最具代表性的地震动参数,包括加速度、速度和位移等。

二、选择性能指标选择适当的性能指标对桥梁结构的抗震性能进行评估非常重要。

常用的指标包括位移角、加速度响应和位移响应等。

由于桥梁结构形式和功能的不同,可以根据具体情况选择合适的性能指标。

三、进行结构模型分析建立桥梁结构的数学模型,并进行地震动力学分析,以评估结构在地震作用下的响应情况。

结构模型可以采用等效静力法或者时程分析法,根据实际情况选择合适的计算方法。

四、评估结构的承载力桥梁结构的承载力是评估抗震性能的重要指标。

通过计算结构在地震作用下的受力情况,包括弯矩、剪力等,以评估结构的承载力是否满足设计规范的要求。

五、进行安全性评估利用评估结果,进行桥梁结构的安全性评估。

根据结构的性能指标与规范要求进行对比,评估结构在地震作用下的安全性能,判断结构是否需要进行改造或者加强。

六、提出建议方案根据评估结果,提出合理的建议方案。

如果结构的抗震性能不满足规范要求,可以考虑采取加固、改造等措施以提高结构的抗震性能。

同时,还应考虑方案的经济性、施工难度等因素。

七、编制评估报告在评估完成后,编制详细的评估报告。

报告应准确地描述桥梁结构的抗震性能评估过程、结论和建议,并提供相关的计算数据和图表等。

报告的内容应清晰、简明,并符合相关规范要求。

八、定期维护检测桥梁结构的抗震性能评估是一个动态的过程,随着时间的推移,结构的状况可能发生变化。

为确保桥梁的安全性能,应定期进行维护检测,及时发现和修复潜在的问题。

总结:桥梁结构设计规范要求的抗震性能评估方法是确保桥梁在地震中能够保持稳定和安全运行的重要工作。

公路桥梁抗震规范

公路桥梁抗震规范

中华人民共和国交通行业标准《公路桥梁抗震设计规范》条文框架1 总 则1.0.1 为了贯彻执行中华人民共和国防震减灾法并实行以预防为主的方针,减轻公路桥梁的地震破坏,保障人民生命财产的安全和减少经济损失,更好地发挥公路运输及其在抗震救灾中的作用,特制定本规范。

按本规范进行抗震设计的桥梁,其设防目标是:当遭受桥梁设计基准期内发生概率较高的多遇地震影响时,一般不受损坏或不需修理可继续使用,当遭受桥梁设计基准期内发生概率较低的罕遇地震影响时,应保证不致倒塌或产生严重结构损伤,经加固修复后仍可继续使用。

1.0.2 抗震设防烈度为6度及以上地区的公路桥梁,必须进行抗震设计。

各类桥梁必须进行多遇地震E1作用下的抗震设计,除6度地区以外,A、B、C类桥梁还必须进行罕遇地震E2作用下的抗震设计。

1.0.3 本规范适用于抗震设防烈度为6、7、8和9度地区的常用公路桥梁的抗震设计。

抗震设防烈度大于9度地区的桥梁和行业有特殊要求的大跨度或特殊桥梁,其抗震设计应作专门研究,并按有关专门规定执行。

1.0.4 抗震设防烈度必须按国家规定的权限审批、颁发的文件(图件)确定。

一般情况下,抗震设防烈度可采用中国地震动参数区划图GB18306-2001的地震基本烈度。

对已作过专门地震安全性评价的桥址,可按批准的抗震设防烈度或设计地震动参数进行抗震设防。

1.0.5 公路桥梁的抗震设计,除应符合本规范的要求外,尚应符合国家现行的有关强制性标准的规定。

1.0.6 按本规范进行抗震设计的桥梁结构类型为:(1)主跨径不超过200米的混凝土梁桥(2)主跨径不超过200米的圬工或混凝土拱桥(3)主跨径不超过200米的混凝土斜拉桥和悬索桥主跨径超过200米的大跨径桥梁,本规范只给出抗震设计原则。

2术 语、符 号2.1术语2.1.1 抗震设防烈度 seismic fortification intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。

桥梁抗震算例

桥梁抗震算例

计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10.972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。

以下为该桥采用《公路工程抗震设计规范》(JTJ004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。

一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数(1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴ 2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1=s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2.2 横桥向地震力计算D6号桥墩横桥向水平地震荷载按下式计算(参见D6号墩计算简图):111i h p i z h i iE C C K X Gβγ= (附2-2)式中,3.1=i C ,2.0=z C ,1.0=h K 1、计算i X 1由于5031.14606.474<==B H 故取 ()fi f i X H H X X -⎪⎭⎫⎝⎛+=13/11不考虑地基变形时:0=f X故有 3/11⎪⎭⎫ ⎝⎛=H H X i i得 889.06.4744.3333/111=⎪⎭⎫⎝⎛=X ,621.06.4747.1133/112=⎪⎭⎫ ⎝⎛=X2、计算桥墩各质点重力i GkN G 6.80772/2.161550== kN G 4.32825146.2122.61=⨯⨯=kN G 61.247252.2502.42=⨯⨯= 3、计算横桥向基本振型参与系数1γ011.16.247621.04.328889.06.807716.247621.04.328889.06.80771220201=⨯+⨯+⨯⨯+⨯+⨯==∑∑==ni iini iiG XGX γ 4、计算D6号桥墩振动单元横桥向振动时的动力放大系数1β (1)计算横桥向柔度δ:934.11=I 4m ,700.32=I 4m ,254.103=I 4m32105.06.045.01I I I I e -+= 得 4569.2m I e =H 2H 1HD6号墩计算简图563731076.81/5.11419/10412.1646.5569.2103.333-⨯===+⋅=⨯=⨯⨯⨯==KmkN K K K Ks K m kN l EI K DS De D δ (2)计算桥墩横向振动的基本周期T 1s gG T t 72.122/11=⎪⎪⎭⎫ ⎝⎛=δπ(3)确定动力放大系数1β根据T 1及规范三类场地土动力放大系数函数,得629.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β5、计算各质点的水平地震力根据公式(附2-2)计算作用于D6号桥墩各质点的横桥向水平地震力:kNE kN E kN E hp hp hp 40.26.247586.0011.1629.01.02.03.156.44.328839.0011.1629.01.02.03.155.1336.8077011.1629.01.02.03.1210=⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯= 6、计算横桥向地震剪力和弯矩D6号墩墩底的横桥向地震剪力和弯矩分别如下:kN Q D 51.14040.256.455.1336=++=m kN M D ⋅=⨯+⨯+⨯=34.598137.140.2334.356.4346.455.1336。

桥梁抗震算例

桥梁抗震算例

计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10.972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。

以下为该桥采用《公路工程抗震设计规范》(004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。

一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数(1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1= s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2.2 横桥向地震力计算D6号桥墩横桥向水平地震荷载按下式计算(参见D6号墩计算简图):111i h p i z h iiE C C K X G βγ= (附2-2)式中,3.1=i C ,2.0=z C ,1.0=h K 1、计算i X 1由于5031.14606.474<==B H 故取 ()fi f i X H H X X -⎪⎭⎫⎝⎛+=13/11不考虑地基变形时:0=f X故有 3/11⎪⎭⎫ ⎝⎛=H H X i i得 889.06.4744.3333/111=⎪⎭⎫⎝⎛=X ,621.06.4747.1133/112=⎪⎭⎫ ⎝⎛=X2、计算桥墩各质点重力i GkN G 6.80772/2.161550==kN G 4.32825146.2122.61=⨯⨯=kN G 61.247252.2502.42=⨯⨯=3、计算横桥向基本振型参与系数1γ011.16.247621.04.328889.06.807716.247621.04.328889.06.80771220201=⨯+⨯+⨯⨯+⨯+⨯==∑∑==ni iini iiG XGX γ 4、计算D6号桥墩振动单元横桥向振动时的动力放大系数1β (1)计算横桥向柔度δ:934.11=I 4m ,700.32=I 4m ,254.103=I 4m 32105.06.045.01I I I I e -+= 得 4569.2m I e =H 2H 1HD6号墩计算简图563731076.81/5.11419/10412.1646.5569.2103.333-⨯===+⋅=⨯=⨯⨯⨯==KmkN K K K Ks K m kN l EI K DS De D δ (2)计算桥墩横向振动的基本周期T 1s gG T t 72.122/11=⎪⎪⎭⎫ ⎝⎛=δπ(3)确定动力放大系数1β根据T 1及规范三类场地土动力放大系数函数,得629.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β5、计算各质点的水平地震力根据公式(附2-2)计算作用于D6号桥墩各质点的横桥向水平地震力:kNE kN E kN E hp hp hp 40.26.247586.0011.1629.01.02.03.156.44.328839.0011.1629.01.02.03.155.1336.8077011.1629.01.02.03.1210=⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯= 6、计算横桥向地震剪力和弯矩D6号墩墩底的横桥向地震剪力和弯矩分别如下:kN Q D 51.14040.256.455.1336=++=m kN M D ⋅=⨯+⨯+⨯=34.598137.140.2334.356.4346.455.1336。

桥梁结构抗震计算-1

桥梁结构抗震计算-1

1桥梁结构抗震Seismic Design for Bridge Structures土木工程学院2010.8第三章地震作用计算Seismic Action Calculation3. 1 概述3.2 静力法3.3 单自由度体系的地震反应3.4 单自由度体系的水平地震作用-反应谱法3.5 多自由度体系的地震反应3.6 多自由度体系的水平地震作用-振型分解反应谱法3.7 竖向地震作用计算3.8 地震反应时程分析法的概念3.9 结构自振频率的近似计算3.1 概述一、地震作用二、结构地震反应结构地震反应:三、结构动力计算简图及体系自由度a、水塔建筑d、多、高层建筑3.2 静力法静力法明显的优点是简单,其缺点是完全没有反映地基和结构的动力特征。

静力法只对刚度较大,且较低矮的结构才是合适的。

一般认为对于自振周期小于0.5秒的结构按静力法计算地震作用时,误差不会很大。

日本从20世纪20年代起始用静力法以来,为了表示场地、结构动力特性等众多因素的影响,对静力法作过多次修正,乘以多个系数,称之为震度法,并沿用至今。

我国鉴于当前路基和挡土墙、坝体等土木工程结构的动力观测资料和自振特性的试验研究尚少,故对它们的抗震验算,仍采用静力法计算地震作用。

3.3 单自由度体系的地震反应-----------------------单自由度体系的振动f cv cx=−=− f =−I f ma mx=−=−单自由度体系无阻尼自由振动:mxA:振幅单自由度体系无阻尼自由振动:2ξωωξ特征方程:(3)若一、运动方程二、运动方程的解初始条件:初始位移例题3-12.方程的特解II——冲击强迫振动图地面冲击运动地面冲击运动:⎩⎨⎧>≤≤=dtdt x xg g τττ00)(对质点冲击力:⎩⎨⎧>≤≤−=dtdtx m P g ττ0质点加速度(0~dt):自由振动初速度为t x)(图体系自由振动3.方程的特解III ——动⎪⎩⎪⎨⎧≥−−<=−−ττωωττττξωt t d x e t t dx D D g t )(sin )(0)()( 地面运动脉冲引起的反应tdte xt x D Dtg ωωξωsin )(−−=叠加:体系在t 时刻的地震反应为:⎪⎨≥−−=−−ττωωτξωt t e t dx Dt )(sin )()(单自由度体系的水平地震作用一、水平地震作用的定义二、地震反应谱地震(加速度)反应谱可理解为一个确定的地面运动,通过一组相同但自振周期t地震动的影响频谱:地面运动各种频率(周期)成分与加速度幅值的对应关系不同场地条件下的平均反应谱不同震中距条件下的平均反应谱地震反应谱峰值对应的周期也越长场地越软震中距越大地震动主要频率成份越小(或主要周期成份越长)G —体系的重量;—地震系数;—动力系数。

桥梁抗震 第三讲

桥梁抗震 第三讲
综合影响系数Cz
梁桥桥墩顺桥向和横桥向水平地震荷载的一般公式
采用固定支座和活动支座的简支梁桥和连续梁桥,上部结构的重量顺桥向 产生的地震力主要由设置固定支座的桥墩承受,其余桥墩只承受摩擦力;横 桥向产生的地震力则由设置固定支座和活动支座的桥墩共同承受。桥墩顺桥 向和横桥向水平地震按下式计算,其计算简图如图8-3所示。
对于实体墩横桥向或多排桩基础上的桥墩:
n
Gt
Gi
X
2 1i
i0
δ——在顺桥向或横桥向作用于支座顶面或上部结构质量重心上单位水平力在该
点引起的水平位移(m/kN)。顺桥和横桥方向应分别计算。
6.采用板式橡胶支座的梁桥水平地震荷载
(1)单墩单梁模型
采用板式橡胶支座的多跨简支桥梁,当桥墩为刚性墩时,可以 按单墩单梁计算。
X1,0=1
G0
G1
X1i Gi Gi+1
Gn
H Hi
Xf
图8-3 结构计算简图
Eihp CiCz Kh 1 1X1iGi
式中:Eihp——作用于梁桥桥墩质点i的水平地震荷载(kN);
Ci——重要性修正系数,查表采用;
Cz——综合影响系数,查表采用;
Kh——水平地震系数,基本烈度为7、8、9度时,分别取
Ehtp CiCz K h 1Gt
式中:Ehtp——作用于支座顶面处的水平地震荷载(kN);
Gt——支座顶面处的换算质点重力(kN); Gt Gsp Gcp Gp
Gsp——梁桥上部结构的重力。对于简支梁桥,计算地震荷载时为相应
于墩顶固定支座的一孔梁的重力(kN);
Gcp——盖梁重力(kN); Gp——墩身重力(kN)。对于扩大基础和沉井基础,为基础顶面以上

桥梁常用计算公式

桥梁常用计算公式

桥梁常用计算公式桥梁是道路、铁路、水路等交通工程中非常重要的基础设施。

在设计和施工过程中,需要进行一系列的计算来保证桥梁的稳定性和安全性。

下面是桥梁常用的计算公式和方法,供参考:1.静力平衡计算桥梁的静力平衡是保证桥梁结构稳定的基础。

在计算静力平衡时,常用的公式有:-受力平衡公式:对于简支梁,ΣFy=0,ΣMa=0;对于连续梁,ΣFy=0,ΣMa=0。

-桥墩反力计算公式:P=Q+(M/b),其中P为桥墩反力,Q为桥面荷载,b为桥墩底宽度。

2.梁的弯矩计算桥梁在受到荷载作用时,会出现弯矩。

常用的梁的弯矩计算公式有:-点荷载的弯矩计算公式:M=Px;- 面荷载的弯矩计算公式:M=qx^2/2;-均布载荷的弯矩计算公式:M=qL^2/83.梁的挠度计算挠度是指梁在受荷载作用时的变形程度。

常用的梁的挠度计算公式有:-点荷载的挠度计算公式:δ=Px^2/(6EI);- 面荷载的挠度计算公式:δ=qx^2(6L^2-4xL+x^2)/24EI;-均布载荷的挠度计算公式:δ=qL^4/(185EI)。

4.桥梁的自振频率计算自振频率是指桥梁结构固有的振动频率。

常用的自振频率计算公式有:-单跨梁自振频率计算公式:f=1/2π(1.875)^2(EI/ρA)^0.5/L^2;-多跨梁自振频率计算公式:f=1/2π(π^2(EI/ρA)^0.5/L^2+Σ(1.875)^2(EI/ρA)^0.5/L_i^2)。

5.破坏形态计算桥梁在受到荷载作用时可能发生不同的破坏形态,常用的破坏形态计算公式有:-弯曲破坏计算公式:M=P*L/4;-剪切破坏计算公式:V=P/2;-压弯破坏计算公式:M=P*L/2;-压剪破坏计算公式:V=P。

6.抗地震设计计算在地震区设计的桥梁需要进行抗地震设计,常用的抗地震设计计算公式有:-设计地震力计算公式:F=ΣW*As/g;-结构抗震强度计算公式:S=ηD*ηL*ηI*ηW*A。

其中,ΣW为结构作用力系数,As为地震地表加速度,g为重力加速度,ηD为调整系数,ηL为长度和工况调整系数,ηI为体型和影响系数,ηW为材料和连接性能系数,A为结构抗震强度。

桥梁抗震设计规范

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法一、引言近十年来,世界相继发生了多次重大地震,1989年美国Loma Prieta地震(M7.0)、1994年美国Northridge地震(M6.7)、1995年日本阪神地震(M7.2)、1999年土耳其伊比米特地震(M7.4)、1999年台湾集集地震(M7.6)等等。

因此,专家们预测全球已进入一个新的地震活跃期。

随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。

地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。

以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。

近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。

各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。

日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。

桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。

美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。

与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。

大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。

但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。

与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。

若不进行改进,则必将给中国不少桥梁工程留下地震隐患。

本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。

桥梁检测计算公式

桥梁检测计算公式

桥梁检测计算公式桥梁是人类修筑的一种重要的交通工程构筑物,承担着车辆和行人的通行任务。

为了确保桥梁的安全和可靠性,定期的桥梁检测就显得十分重要。

桥梁检测的目的是评估桥梁的结构健康状况,找出潜在的损坏和缺陷,并提供修复措施和维护方案。

在进行桥梁检测时,需要进行一系列的计算和分析。

下面将介绍一些常见的桥梁检测计算公式。

1.桥梁自重计算公式:桥梁自重的计算是桥梁设计和检测的基础。

桥梁的自重主要包括桥墩、梁、承台、栏杆等结构元件的重量。

桥梁自重计算的公式如下:桥梁自重=单位长度*单位截面面积*单位长度砼密度2.桥梁活载计算公式:桥梁活载是指桥梁在使用过程中承受的动态载荷,包括车辆行驶时的荷载、行人荷载等。

桥梁活载计算公式如下:桥梁活载=车辆重量*车辆轴距*车辆轴数+行人荷载3.桥梁静载计算公式:桥梁静载是指桥梁结构承受的静态载荷,由桥面荷载、桥面自重等静态力组成。

桥梁静载计算公式如下:桥梁静载=桥面自重+桥面荷载4.桥梁抗震计算公式:桥梁在地震作用下容易发生破坏,因此需要进行抗震计算。

桥梁抗震计算公式如下:桥梁抗震力=桥梁质量*设计地震加速度5.桥梁承载能力计算公式:桥梁承载能力是指桥梁结构能够承受的最大载荷。

桥梁承载能力计算公式如下:桥梁承载能力=材料强度*桥梁截面面积桥梁检测计算公式是桥梁检测的重要工具,通过计算和分析,能够准确评估桥梁的结构健康状况和承载能力,为桥梁的维护和修复提供依据。

然而,对于桥梁检测而言,仅仅依靠计算公式是不够的,还需要结合实际情况和专业知识进行综合评估和判断。

同时,不同类型的桥梁和不同的检测目的可能需要使用不同的计算公式和方法。

因此,在进行桥梁检测时,需要根据具体情况选取合适的计算公式,并结合实际情况进行综合分析。

抗震计算大桥抗震计算书

抗震计算大桥抗震计算书

一、工程概况楚雄(连汪坝)至南华县城一级公路K38+890[右24×20/左25×20m] 预应力砼小箱梁桥位于拖木古村北面的龙川江河谷内,为跨山间河流凹地的桥梁。

中心里程为K38+890,起止点里程为右K38+(左K38+)~K39+,桥面净宽2×米,最大墩高米,全长米(单幅计列);上部结构为预应力混凝土箱形连续梁桥,下部结构及基础均为柱式轻型桥台、双柱式桥墩及桩基础.本桥平面分别位于缓和曲线(起始桩号K38+,终止桩号:K38+,参数A:,右偏)、圆曲线(起始桩号:K38+,终止桩号:K39+,半径:457m,右偏)和缓和曲线(起始桩号:K39+,终止桩号:K39+,参数A:,右偏)上,纵断面纵坡%;墩台径向布置。

根据《中国地震动参数区划图》(GB18306-2001)及《云南省地震动峰值加速度区划图》、《云南省地震动反应谱特征周期区划图》,桥位处中硬场Ⅲ类场地,地震动峰值加速度值为,地震动反应谱特征周期为,地震基本烈度值为Ⅶ度,分组为第二组。

本计算书对大桥左幅第三联进行计算,桥型布置图如下图所示。

图桥型布置图图剖面示意二、自振特性分析全桥有限元计算模型示于图,从左到右依次是8号墩、9号墩、10号墩、11号墩、12号墩,8号墩、12号墩为过渡墩,10号墩为固定墩。

其自振周期及相应振型列于表,示于图。

图有限元模型表自振特性一览表第一阶振型第二阶振型第三阶振型第四阶振型第五阶振型第六阶振型图振动模态三、地震输入E1、E2水准地震时,均按反应谱输入。

E1、E2反应谱函数分别如下图、所示。

桥位处中硬Ⅲ类场地,地震动峰值加速度值为,地震动反应谱特征周期为,地震基本烈度值为Ⅶ度。

图 E1反应谱输入函数图 E2反应谱函数四、抗震性能验算E1作用下桥墩的抗震强度验算桥墩截面尺寸如图所示。

图桥墩截面E1作用下桥墩抗压能力验算9号墩底单元截面使用阶段正截面轴心抗压承载能力验算:1)、截面偏心矩为0,做轴心抗压承载力验算:γ0Nd=N n= φ(fcdA+fsd'As') =×××+×=γ0×Nd≤ φ(f cd A+f sd'A s'),轴心受压满足要求。

规则桥梁抗震计算方法

规则桥梁抗震计算方法
规则桥梁抗震计算方法
规则桥梁抗震计算方法
第一章 设计计算的三个阶段
明确 准确 精确
规则桥梁抗震计算方法
第二章 选择合适的抗震计算方法
2.1 可简化为单自由度系统结构
规则桥梁抗震计算方法
第二章 选择合适的抗震计算方法
2.2 等位移准则
1. 一阶振型占主导地位,大多数的规则桥梁 。
2. 当结构的自振周期大于反应谱的特征周期后,对于规则桥梁可采用等位移 原理,即对于相同边界条件,地震作用下,按弹性分析与弹塑性分析(非 线性分析)得出的位移近似相等。(细则条文说明)
3.1 应力应变关系
钢筋应力应变关系:屈后刚度 系数要近似为0。
规则桥梁抗震计算方法
第三章 截面分析:弯矩曲率关系
3.2 几个需要明确的地方
1.首次屈服:计算有效刚度;
规则桥梁抗震计算方法
第三章 截面分析:弯矩曲率关系
3.2 几个需要明确的地方
2.塑性铰定义:初始刚度要采用有 效刚度;
3.一般采用双折线模型是能满足要 求的,屈后刚度系数根据弯 矩曲率曲线得到。
第五章 双柱墩PushOver
5.3 计算位移 1.双柱墩横向Pushover的模型应尽量选取单独的下部结构模
型,而不是直接用整体模型,在用能力谱法进行性能点迭 代时,简单的模型结果更准确。 2.在一般情况下,直接用等位移法计算的位移也是可以接受的。
规则桥梁抗震计算方法
第五章 双柱墩PushOver
谱按强度折减系数法或等效阻尼法转换为加速度-位移关系(需求曲线), 同时荷载位移曲线转换为加速度-位移关系(能力曲线),二者的交点即 为性能点。 (3)容许位移为塑形转角等于塑形容许转角的荷载步对应的位移。
规则桥梁抗震计算方法

三本桥梁抗震规范的反应谱计算方法的比较分析

三本桥梁抗震规范的反应谱计算方法的比较分析

关键 词 : 桥 梁抗震规 范; 反应谱 ; 场地土类别 ; 地震动参数 区划
中图分类号 : U 4 4 2 . 5 5 文献标识码 : B

文章编号 : 1 6 7 3— 6 0 5 2 ( 2 0 1 3 ) 0 7— 0 0 4 2— 0 5
1 前言
的抗震设计工作提供一定的便利条件 。

4 2・
北 方 交 通
2 0 1 3
三 本 桥 梁抗 震 规 范 的反 应 谱 计 算 方 法 的 比较 分 析
赵兴 中 , 马 琳
3 0 0 0 4 5 7 ) ( 天津 市市政工程设计研究 院, 天津 摘
要: 现今 《 城 市桥梁抗震设计规范》 、 《 公路桥 梁抗 震设 计细则》 以及《 公路 工程抗震设计规 范》 中反应 谱计
p i e r s . Co mb i n e d wi t h f ie l d d a t a t o c o mp a r e, t h e r e s u l t s s h o w t h a t t he b e a in r g c o ns t r u c t i o n i s n o t l e v e l i n g
A b s t r a c t T h i s a r t i c l e i s t o s t u d y” Z h o n g T a i P o ”B r i d g e g p i e r s d e l f e c t i o n i s s u e, f r o m t h e n u me i r c a l a n a l y s i s
于2 0 1 2年 3月 1 日起 开 始 实 施 。三 本 桥梁 抗 震 设 计 规 范反应 谱计 算上 差异 较大 。 本文 基 于 三本 桥 梁抗 震 规 范 , 通 过各 反应 谱 的

桥梁结构抗震能力验算

桥梁结构抗震能力验算
上部结构设计:主要由恒载、活载、温度作用等控制。
墩柱设计:在地震作用下将会受到较大剪力和弯矩作 用,由地震反应控制。
另一方面,在强震作用下,通常希望在墩柱中(而不是 在上部结构)形成塑性铰耗散能量,以降低对结构强度 的要求。
墩柱的剪切破坏:脆性破坏,伴随着强度和刚度的急 剧下降。 墩柱的弯曲破坏:延性破坏,多表现为开裂、混凝土剥 落、压溃、钢筋裸露和弯曲等,产生很大的塑性变形。
图5.1给出了得到广泛认可的约束混凝土的应力—应变 曲线,其1 xr
(x c / cc)
(5 1)
式中:fcc 是约束混凝土的峰值纵压应力,εC为混凝土 的纵向压应变,εCC为相应于 fcc 的纵向压应变。
f c 、εCO分别为无约束混凝土的圆柱体抗压强度
延性可分为材料、截面、构件和整体延性等。 延性—般可用以下的无量纲比值μ来表示,其定义为:
式中,Δy和Δmax分 别表示结构首次屈 服和所经历过的最 大变形。延性系数 通常表示成与变形 有关的各种参数的 函数,如挠度、转 角和曲率等。
5.2.2 墩柱容许的最大塑性转角
通过桥梁结构的非线性地震反应时程分析,可得到结 构在强震作用下危险截面的最大塑性转角θp及相应的 轴力水平。
应力—应变关系为: 由平衡条件得:
求和下标j表示截面的第j种材料,Aj为相应面积,积分 号中不是两项相乘,而是函数关系。
由(5.5)和(5.6)可得M—φ关系,一般如下图所示,求解 通常采用数值解法。
对确定的轴向力Np,计算M—φ关系的步骤为:
(b) 选择参考轴,一般选截面形心轴,假定其应变为ε0; (c) 由式(5.4)求出各条带(窄条)的应变ε;
其保守估计值为:
其中,εsu为约束箍筋在最大拉应力时的应变;ρS是

桥梁抗震挡块计算

桥梁抗震挡块计算

桥梁抗震挡块计算是为了增强桥梁结构的抗震能力而进行的计算和设计。

以下是桥梁抗震挡块计算的一般步骤:
1. 确定设计地震参数:首先需要确定设计地震参数,包括地震分区、设计地震加速度、设计地震反应谱等。

这些参数是根据桥梁所在地的地震状况和设计标准来确定的。

2. 确定桥梁结构参数:根据桥梁的类型、跨径、支座类型等确定桥梁的结构参数,如重量、刚度等。

3. 进行动力分析:使用地震动力学分析方法,对桥梁结构进行动力响应分析,计算桥梁在地震作用下的加速度、速度、位移等响应。

4. 确定挡块参数:根据动力分析结果,确定挡块的位置、尺寸、材料等参数。

挡块的作用是通过增加桥梁的质量和刚度,提高桥梁的抗震能力。

5. 进行挡块计算:根据挡块的参数,进行力学计算,包括受力分析、刚度计算等。

通过计算,确定挡块的尺寸和布置方式,以满足桥梁的抗震设计要求。

需要注意的是,桥梁抗震挡块计算是一个复杂的工程计算过程,需要结构工程师或相关专业人士进行详细的计算和设计。

具体的计算方法和规范可能会因地区和桥梁类型而有所不同,因此在进行桥梁抗震挡块计算时,应参考当地的设计规范和标准,并遵循相关的工程实践。

新规范桥梁抗震设计详解

新规范桥梁抗震设计详解

5
二、桥梁场地概况
该桥位于某7度区二级公路上,水平向基本地震加速度值 0.15g。按《中国地震动反应谱特征周期区划图》查的场 地特征周期为:0.4s。经现场勘察测得场地土质和剪切波 速如下:
6
三、基本参数确定
1、判别桥梁类型:
二级公路大桥,故该桥为B类桥梁。
7
三、基本参数确定
2、确定设防烈度:
预应力
钢束(φ15.2 mm×31) 截面面积: Au = 4340 mm2 孔道直径: 130 mm 钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开) 预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa
25
空间动力分析模型的建立
----参见规范6.3
边界条件:各个连接构件(支座、伸
缩缝)及地基刚度的正确模拟。 支座: 普通板式橡胶支座:弹性连接输入刚度。 固定盆式支座:主从约束或弹性连接。 活动盆式支座:理想弹塑性连接单元。 滑板支座:双线性连接单元。 摩擦摆隔震支座、钢阻尼器、液体 阻尼器:程序专门的模拟单元。
2、根据 M 曲线确定屈服弯矩 、屈服曲率 一般采用几何作图法(包括等能量法、通 用屈服弯矩法等)将确定的 M 曲线近视简 化为双折线型或三折线型骨架模型,规范 7.4.4推荐的是几何作图法中的等能量法将 M 曲线转换为双折线骨架模型。
40
MM法
y 4.2、civil程序计算 M y 、
41

桥梁抗震算例【范本模板】

桥梁抗震算例【范本模板】

计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10。

972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。

以下为该桥采用《公路工程抗震设计规范》(JTJ004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。

一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数 (1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴ 2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1=s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2。

公路桥梁抗震设计细则(JTGTB02-01-2008)

公路桥梁抗震设计细则(JTGTB02-01-2008)
4.1.5桥梁工程场地土层剪切波速按下列要求确定:
1 A类桥梁,由工程场地地震安全性评价工作确定。
2 B类桥梁,可通过现场实测确定。现场实测时钻孔数量应满足如下要求:中桥不少于1个,大桥不少于2个,特大桥宜适当增加。
3 C类和D类桥梁,当无实测剪切波速时,可根据岩土名称和性状按表4.1.5划分土的类型,并结合当地的经验,在表4.1.5的范围内估计各土层的剪切波速。
根据抗震概念设计原则,一般不需计算,对结构和非结构各部分必须采取的各种细部要求。
2.1.22常规桥梁ordinary bridge
包括单跨跨径不超过150m的混凝土梁桥、圬工或混凝土拱桥。
2.1.23特殊桥梁special bridge
包括斜拉桥、悬索桥、单跨跨径150m以上的梁桥和拱桥。
2.2符号
工程场地重现期较长的地震作用,对应于第二级设防水准。
2.1.6地震效应seismiceffect
由地震作用引起的桥梁结构内力与变形等效应的总称。
2.1.7设计基本地震动加速度design basic acceleration of ground motion
重现期为475年的地震动加速度的设计取值。
为确保延性抗震设计桥梁可能出现塑性铰的桥墩的非塑性铰区、基础和上部结构构件不发生塑性变形和剪切破坏,必须对上述部位、构件进行加强设计,以保证非塑性铰区的弹性能力高于塑性铰区。
2.1.18能力保护构件capacity protected member
采用能力保护设计原则设计的构件。
2.1.19减隔震设计seismic isolation design
4.1.2在抗震不利地段布设桥位时,宜对地基采取适当抗震加固措施。在软弱黏性土层、液化土层和严重不均匀地层上,不宜修建大跨径超静定桥梁。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.塑形工作状态和弹性工作状态怎 么区分
规则桥梁抗震计算方法
第六章 能力保护构件的相关计算
规则桥梁抗震计算方法
第六章 能力保护构件的相关计算
规则桥梁抗震计算方法
第六章 能力保护构件的相关计算
2.圆形截面的抗剪承载计算
规则桥梁抗震计算方法
第六章 能力保护构件的相关计算
2.圆形截面的抗剪承载计算
规则桥梁抗震计算方法
一 二 三 四 五 六 七
设计计算的三个阶段 选择合适的抗震计算方法 截面分析:弯矩曲率关系 单柱墩的简化分析方法 双柱墩PushOver 能力保护构件的相关计算 进一步的研究
规则桥梁抗震计算方法
第一章
设计计算的三个阶段
明确
准确
精确
规则桥梁抗震计算方法
第二章
选择合适的抗震计算方法
规则桥梁抗震计算方法
第二章
选择合适的抗震计算方法
2.3 PushOver分析
规则桥梁抗震计算方法
第二章
选择合适的抗震计算方法
2.4 不同桥型的简化方法
规则桥梁抗震计算方法
第二章
选择合适的抗震计算方法
2.4 不同桥型的简化方法
规则桥梁抗震计算方法
第三章
截面分析:弯矩曲率关系
3.1 应力应变关系
2.塑性铰定义:初始刚度要采用有 效刚度; 3.一般采用双折线模型是能满足要 求的,屈后刚度系数根据弯 矩曲率曲线得到。
规则桥梁抗震计算方法
第四章 单柱墩的简化分析方法
1.简化为单自由度系统:Excel手算
规则桥梁抗震计算方法
第四章 单柱墩的简化分析方法
1.简化为单自由度系统:Excel手算
规则桥梁抗震计算方法
第四章 单柱墩的简化分析方法
2.等位移准则:规范推荐的简化方法
规则桥梁抗震计算方法
第四章 单柱墩的简化分析方法
3.PushOver:经验证与简化方法非常接近。要明确的是初始刚度必须用有效刚度,而屈 服点和屈后刚度系数要按实际弯矩曲率曲线来简化而不是理想化的弯矩曲率曲线。 另外特别注意的是,用来对比的计算位移,应该是墩顶与墩底的相对位移,即所谓延性 构件的局部需求。
3. 所谓弹性分析,就是延性构件采用有效刚度时的未折减弹性反应谱作用下 的位移E2地震位移,用于系数修正的自振周期也应是有效刚度下计算得到。
4. 规范给出的系数修正方法只适用于近似单自由度系统,其他结构型式有待 于研究,不过一般认为可近似取1.
规则桥梁抗震计算方法
第二章
选择合适的抗震计算方法
2.3 PushOver分析
规则桥梁抗震计算方法
第五章 双柱墩PushOver
5.1 双柱墩的计算思路
容许位移和计算位移的计算,都有必要采用 PushOver计算结果
规则桥梁抗震计算方法
第五章 双柱墩PushOver
5.2 轴力的迭代
双柱墩在Push过程中,随着水平力的变化,墩柱的 轴力会随之变化,有的增加有的减少,一般可以按 照首次产生塑性铰时刻的轴力进行截面分析。
5.4 容许位移
1.Midas可以直接输出特定荷载步的塑性转角,因此 根据塑性容许转角,可以找到相应的荷载步,其对 应的位移就是容许位移。 2.需要明确的是:Midas中输出的是单位长度的塑形 转角,所以实际上是塑形曲率!也就是7.4.3-1中 Lp=0的情况。
规则桥梁抗震计算方法
第六章
能力保护构件的相关计算
规则桥梁抗震计算方法
第三章 截面分析:弯矩曲率关系
3.1 应力应变关系
钢筋应力应变关系:屈后刚度 系数要近似为0。
规则桥梁抗震计算方法
第三章 截面分析:弯矩曲率关系
3.2 几个需要明确的地方
1.首次屈服:计算有效刚度;
规则桥梁抗震计算方法
第三章 截面分析:弯矩曲率关系
3.2 几个需要明确的地方
非约束混凝土应力应变关系
规则桥梁抗震计算方法
第三章 截面分析:弯矩曲率关系
3.1 应力应变关系
约束混凝土应力应变关系: Kent-Park模型,峰值应变选 择和Z取值是需要明确的参数
规则桥梁抗震计算方法
第三章 截面分析:弯矩曲率关系
3.1 应力应变关系
约束混凝土应力应变关系:Mander模型,参数意义明确,而且使用于 各种截结构
规则桥梁抗震计算方法
第二章
选择合适的抗震计算方法
2.2 等位移准则
1. 一阶振型占主导地位,大多数的规则桥梁 。 2. 当结构的自振周期大于反应谱的特征周期后,对于规则桥梁可采用等位移 原理,即对于相同边界条件,地震作用下,按弹性分析与弹塑性分析(非 线性分析)得出的位移近似相等。(细则条文说明6.7.6)
规则桥梁抗震计算方法
第六章 能力保护构件的相关计算
3.双柱墩能力保护检算
规则桥梁抗震计算方法
第七章
进一步的研究
汇报结束
铁道第五勘察设计院
1. 即非线性静力分析方法,规则桥梁,结果更准确 、全面。 2. 有些结构的抗震计算不能避免的要使用PushOver方法,如多柱墩的横向容许 位移和计算位移的计算。 3. 基于塑性铰的PushOver是比较适合于工程师使用的方法,其弯矩曲率关系的 确定和参数选择是关键。 4. 需求和能力:能力谱法的通俗表述。 (1)位移延性比:性能点位移与屈服位移之比 (2)性能点:特定E2地震作用下的结构响应。对应某位移延性比,把弹性反应 谱按强度折减系数法或等效阻尼法转换为加速度-位移关系(需求曲线), 同时荷载位移曲线转换为加速度-位移关系(能力曲线),二者的交点即 为性能点。 (3)容许位移为塑形转角等于塑形容许转角的荷载步对应的位移。
规则桥梁抗震计算方法
第五章 双柱墩PushOver
5.3 计算位移 1.双柱墩横向Pushover的模型应尽量选取单独的下部结构模 型,而不是直接用整体模型,在用能力谱法进行性能点迭 代时,简单的模型结果更准确。 2.在一般情况下,直接用等位移法计算的位移也是可以接受的。
规则桥梁抗震计算方法
第五章 双柱墩PushOver
相关文档
最新文档