江苏省宜兴市和桥联盟2019-2020学年八年级下学期期中数学试题
2019-2020学年江苏省无锡市宜兴市环科园联盟八年级(下)期中数学试卷
2019-2020学年江苏省无锡市宜兴市环科园联盟八年级(下)期中数学试卷一.选择题(每小题3分,共24分)1.(3分)下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.2.(3分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国七年级学生身高的现状C.了解市民对“垃圾分类知识”的知晓程度D.检查一枚用于发射卫星的运载火箭的各零部件3.(3分)为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力情况,就这个问题来说,下面说法正确的是()A.9800名学生是总体B.每个学生是个体C.100名学生是所抽取的一个样本D.样本容量是1004.(3分)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是()A.事件A,B都是必然事件B.事件A,B都是随机事件C.事件是A必然事件,事件B是随机事件D.事件是A随机事件,事件B是必然事件5.(3分)下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个B.2个C.3个D.4个6.(3分)顺次连接对角线相等的四边形各边中点,所形成的四边形是()A.梯形B.矩形C.菱形D.正方形7.(3分)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.24B.3.6C.4.8D.58.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE 的中点.若△CEF的周长为18,则OF的长为()A.B.C.3D.4二.填空题(每空2分,共22分)9.(4分)平行四边形ABCD中,∠A=50°,∠B=,∠C=.10.(4分)若菱形的面积为24,一条对角线长为8,则另一条对角线长为,边长为.11.(2分)要反映无锡一周内每天的最高气温的变化情况,宜采用统计图.12.(2分)在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是.13.(2分)如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为a(0°<a <90°).若∠1=110°,则a=.14.(2分)如图,在矩形ABCD中,对角线AC,BD相交于点O,如果∠AOD=120°,AB=2,那么BC 的长为.15.(2分)如图,在△ABC中,点D,E分别是边AB,BC的中点,若DE的长是3,则AC的长为.16.(2分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为cm.17.(2分)如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为.三.解答题(共54分)18.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.19.(8分)我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:成绩段频数频率160≤x<17050.1170≤x<18010a180≤x<190b0.14190≤x<20016c200≤x<210120.24根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c=;(2)补全图(2);(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?20.(8分)如图所示,在▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.21.(8分)如图,在菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,∠E=50°.(1)求证:BD=EC;(2)求∠BAO的大小.22.(6分)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m70128171302481599903摸到白球的频率0.750.640.570.6040.6010.5990.602(1)请估计:当n很大时,摸到白球的概率约为.(精确到0.1)(2)估算盒子里有白球个.(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x最有可能是.23.(8分)如图,在矩形ABCD中,BD的垂直平分线交AD于E,交BC于F,连接BE、DF.(1)判断四边形BEDF的形状,并说明理由;(2)若AB=8,AD=16,求BE的长.24.(10分)数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.2019-2020学年江苏省无锡市宜兴市环科园联盟八年级(下)期中数学试卷参考答案与试题解析一.选择题(每小题3分,共24分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.2.【解答】解:A.了解一批圆珠笔的寿命,适合抽样调查;B.了解全国七年级学生身高的现状,适合抽样调查;C.了解市民对“垃圾分类知识”的知晓程度,适合抽样调查;D.检查一枚用于发射卫星的运载火箭的各零部件,适合全面调查;故选:D.3.【解答】解:A、总体是七年级学生的视力情况,故选项错误;B、个体是七年级学生中每个学生的视力情况,故选项错误;C、所抽取的100个学生的视力情况是一个样本,选项错误;D、样本容量是100,故选项正确.故选:D.4.【解答】解:事件A:367人中至少有2人生日相同,是必然事件;事件B:抛掷一枚均匀的硬币,落地后正面朝上,是随机事件.故选:C.5.【解答】解:①对角线互相平分的四边形是平行四边形,故正确;②对角线互相垂直平分的四边形是菱形,故错误;③对角线互相垂直且相等的平行四边形是正方形,故正确;④对角线相等的平行四边形是矩形,故正确;故选:C.6.【解答】解:已知,如图:E、F、G、H分别是四边形ABCD各边AB、BC、CD、DA的中点,对角线AC=BD,求证:四边形EFGH是菱形.证明:∵E、F、G、H分别是四边形ABCD各边AB、BC、CD、DA的中点,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,又∵EF=AC,EH=AC,AC=BD,∴EH=EF,∴平行四边形EFGH是菱形,∴四边形EFGH是菱形.故选:C.7.【解答】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.8.【解答】解:∵四边形ABCD是正方形,∴∠DCE=90°,OD=OB,∵DF=FE,∴CF=FE=FD,∵EC+EF+CF=18,EC=5,∴EF+FC=13,∴DC==12,∴BC=CD=12,∴BE=BC﹣EC=7,∵OD=OB,DF=FE,∴OF=BE=,故选:A.二.填空题(每空2分,共22分)9.【解答】解:在▱ABCD中∵∠A=∠C,∠B=∠D,∠A+∠D=180°∴∠C=50°,∠B=130°故答案为130和50.10.【解答】解:如图所示:∵菱形ABCD的面积=AC•BD=24,AC=8,∴BD,=6;∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,OA=AC=4,OB=BD=3,∴AB===5;故答案为:6;5.11.【解答】解:要反映无锡一周内每天的最高气温的变化情况,宜采用折线统计图,故答案为:折线.12.【解答】解:∵摸到红球的频率稳定在25%,∴摸到红球的概率为25%,而m个小球中红球只有4个,∴推算m大约是4÷25%=16.故答案为:16.13.【解答】解:∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD=180°﹣∠2,而∠2=∠21=110°,∴∠BAD=180°﹣110°=70°,∴∠DAD′=90°﹣70°=20°,即α=20°.故答案为20°.14.【解答】解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD为矩形,∴AO=OC=OB,∴△AOB为等边三角形,∴AO=OB=OC=AB=2,∴AC=4,在Rt△ABC中,由勾股定理可得BC=2,故答案为:2.15.【解答】解:∵点D,E分别是边AB,BC的中点,∴AC=2DE=6,故答案为:6.16.【解答】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8,故答案为:8.17.【解答】解:如图,取AB的中点E,连接OE、CE,则BE=×2=1,在Rt△BCE中,由勾股定理得,CE==,∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值=+1.故答案为:+1.三.解答题(共54分)18.【解答】解:(1)作图如下:△A1B1C1即为所求;(2)作图如下:△A2B2C2即为所求;(3)P点如下x的值为6或7.19.【解答】解:(1)根据题意得:5÷0.1=50;a=10÷50=0.2;b=50×0.14=7;c=16÷50=0.32;故答案为:50;0.2;7;0.32;(2)成绩段180≤x<190的频数为7,补全图2,如图所示:;(3)根据题意得:1000×(0.14+0.32+0.24)=700(名),则估计全校九年级有700名学生在此项成绩中获满分.20.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.(2)证法1:∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.证法2:如图,连接AC,与BD相交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵BE=DF,∴OB﹣BE=OD﹣DF,∴OE=OF.∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形).21.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵四边形BECD是平行四边形,∴BD∥CE,∴∠ABO=∠E=50°,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠BAO=90°﹣∠ABO=40°.22.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.故答案为0.6;(2)根据(1)得:40×0.6=24(个),答:盒子里有白球24个;故答案为:24;(3)根据(2)得:=50%,解得:x=10,答:可以推测出x最有可能是10;故答案为:10.23.【解答】解:(1)四边形BEDF是菱形;理由如下:∵EF是BD的垂直平分线,∴BE=DE,BF=DF,∴∠EBD=∠EDB,∵四边形ABCD是矩形,∴AD∥BC,∴∠DBF=∠EDB,∴∠EBD=∠DBF,∵BD⊥EF,∴BE=BF,∴BE=DE=DF=BF,∴四边形BEDF是菱形;(2)∵四边形ABCD是矩形,∴∠A=90°,由(1)知:BE=DE设BE=DE=x,则AE=AD﹣x=16﹣x,在Rt△ABE中,AB2+AE2=BE2,即82+(16﹣x)2=x2,解得:x=10,∴BE的长为10.24.【解答】解:(1)四边形ABCD与四边形AEFG是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1,延长EB交DG于点H,∵△ADG中∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∵△DEH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,∴DG⊥BE;(2)∵四边形ABCD与四边形AEFG是正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,∴∠DAG=∠BAE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD是正方形ABCD的对角线,∴∠MDA=∠MDA=∠MAB=45°,BD=2,∴AM=BD=1,在Rt△AMG中,∵AM2+CM2=AG2,∴GM=2,∵DG=DM+GM=1+2=3,∴BE=DG=3.。
江苏省2019-2020学年八年级数学下学期期中测试卷一(含答案)
江苏省2019-2020学年下学期期中测试卷八年级数学一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个4.若把一个分式中的m、n同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A.2mm n+B.m nm n+-C.2m nm+D.m nm n-+5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B.12C.34D.16.点O是矩形ABCD的对角线AC的中点,E是BC边的中点,8AD=,3OE=,则线段OD的长为()A.5 B.6 C.8 D.10二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.若分式12020xx--有意义,则x的取值范围是.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是.9.方程11233xx x--=--的解是.10.如图,在Rt ABC∆中,90BAC∠=︒,且6BA=,8AC=,点D是斜边BC上的一个动点,过点D分别作DM AB⊥于点M,DN AC⊥于点N,连接MN,则线段MN的最小值为.第10题图第12题图11.在PC机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为cm.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.第13题图第14题图14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是 .15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 .16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 .三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷--18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =.19.解方程:2533322 x xx x--+=--.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1),估计摸一次球能摸到黑球的概率是;袋中黑球的个数约为只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.21.如图,平行四边形ABCD中,8B∠=︒,G是CD的中点,E=,60BC cmAB cm=,12是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?25.如图,在由边长为1的小正方形组成的56∆的三个顶点均在格点上,⨯的网格中,ABC请按要求解决下列问题:(1)通过计算判断ABC∆的形状;(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出ABCDY 的面积.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是.性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD==的性质进行探究,以下判断正确的有(填序号).①AC BD⊥;②AC、BD互相平分;③AC平分BAD∠和BCD∠;④ABC ADC∠=∠;⑤180BAD BCD∠+∠=︒;⑥筝形ABCD的面积为12AC BD⨯.(3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由. 判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).期中测试卷(解析版)一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.【解答】A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况【解答】A、调查某航空公司飞行员实力的达标率是准确度要求高的调查,适于全面调查;B、调查乘坐飞机的旅客是否携带了违禁物品是准确度要求高的调查,适于全面调查;C、调查某品牌圆珠笔芯的使用寿命如果普查,所有笔芯都报废,这样就失去了实际意义,适宜抽样调查;D、调查你组6名同学对太原市境总面积的知晓情况,人数少,适宜全面调查.故选:C.3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球; ③13个人中至少有两个人的生日是在同一个月份; ④射击运动员射击一次,命中靶心; ⑤水中捞月; ⑥冬去春来.其中是必然事件的有( ) A .1个B .2个C .3个D .4个【解答】①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件; ③13个人中至少有两个人的生日是在同一个月份,是必然事件; ④射击运动员射击一次,命中靶心,是随机事件; ⑤水中捞月,是不可能事件; ⑥冬去春来,是必然事件; 故选:B .4.若把一个分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A .2m m n+B .m nm n+- C .2m nm + D .m nm n-+ 【解答】A 、22(3)333m m m n m n=++,故分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,故符合题意;B 、3333m n m nm n m n ++=--,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意; C 、2233(3)3m n m n m m ++=,把一个分式中的m 、n 同时扩大3倍,分式的值也扩大13倍,故不符合题意;D 、3333m n m nm n m n--=++,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意, 故选:A .5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )A .0B .12C .34D .1【解答】掷一枚质地均匀的硬币,前3次都是正面朝上,则掷第4次时正面朝上的概率是12; 故选:B .6.点O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8AD =,3OE =,则线段OD 的长为( )A .5B .6C .8D .10【解答】Q 在矩形ABCD 中,8AD =,3OE =,O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8BC AD ∴==,26AB OE ==,90B ∠=︒,22226810AC AB BC ∴=++=, Q 点O 为AC 的中点,90ADC ∠=︒,152OD AC ∴==, 故选:A .二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上) 7.若分式12020x x --有意义,则x 的取值范围是 2020x ≠ .【解答】由题意得:20200x -≠, 解得:2020x ≠, 故答案为:2020x ≠.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是 100 .【解答】为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是100. 故答案为:1009.方程11233x x x--=--的解是 6x = . 【解答】方程整理得:11233xx x --=--, 去分母得:12(3)1x x --=-, 去括号得:1261x x -+=-, 移项合并得:6x -=-, 解得:6x =,经检验6x =是分式方程的解, 故答案为:6x =10.如图,在Rt ABC ∆中,90BAC ∠=︒,且6BA =,8AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为245.【解答】90BAC ∠=︒Q ,且6BA =,8AC =,2210BC BA AC ∴+,DM AB ⊥Q ,DN AC ⊥,90DMA DNA BAC ∴∠=∠=∠=︒,∴四边形DMAN 是矩形,MN AD ∴=,∴当AD BC ⊥时,AD 的值最小,此时,ABC ∆的面积1122AB AC BC AD =⨯=⨯, 245AB AC AD BC ∴==g , MN ∴的最小值为245; 故答案为:245. 11.在PC 机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是扇形统计图.【解答】根据题意,得要反映出磁盘“已用空间”与“可用空间”占“整个磁盘空间”的百分比,需选用扇形统计图.故答案为:扇形统计图.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为 3 cm.【解答】Q菱形ABCD的面积为26cm,BD的长为4cm,∴1462AC⨯⨯=,解得:3AC=,故答案为:3.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:66121.5x x+=.【解答】小明通过AB时的速度是x米/秒,根据题意得:66121.5x x+=,故答案为:66121.5x x+=.14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是13.【解答】51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是2163=, 故答案为:13.15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 34︒ .【解答】Q 四边形ABDE 是矩形, 90BAE E ∴∠=∠=︒, 62ADE ∠=︒Q , 28EAD ∴∠=︒, AC CD ⊥Q , 90C E ∴∠=∠=︒AE AC =Q ,AD AD =,Rt ACD Rt AED(HL)∴∆≅∆ 28EAD CAD ∴∠=∠=︒, 90282834BAF ∴∠=︒-︒-︒=︒,故答案为:34︒.16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 ( 1.5,0)-或( 3.5,0)-或(6.5,0) .【解答】Q 点Q 在x 轴上,点P 在直线AB 上,以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,当11A C 为平行四边形的边时, 112PQ AC ∴==,P Q 点在直线25y x =+上,∴令2y =时,252x +=,解得 1.5x =-,令2y =-时,252x +=-,解得 3.5x =-,∴点Q 的坐标为( 1.5,0)-,( 3.5,0)-,当11A C 为平行四边形的对角线时, 11A C Q 的中点坐标为(3,2),P ∴的纵坐标为4,代入25y x =+得,425x =+, 解得0.5x =-, (0.5,4)P ∴-,11A C Q 的中点坐标为:(3,2),∴直线PQ 的解析式为:42677y x =-+, 当0y =时,即426077x =-+,解得: 6.5x =,故Q 为( 1.5,0)-或( 3.5,0)-或(6.5,0). 故答案为( 1.5,0)-或( 3.5,0)-或(6.5,0).三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷-- 【解答】1(1)122xx x x ++÷-- (1)(1)12(1)1x x x x x+-+-=-g21121x x -+=g221x x=g 2x =.18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =. 【解答】原式211(1)(1)1(2)a a a a a --+-=--g22(1)(1)1(2)a a a a a -+-=--g12a a +=-, 当2020a =时,原式202012021202022018+==-. 19.解方程:2533322x x x x --+=-- 【解答】去分母,得:253(2)33x x x -+-=-, 去括号,得:253633x x x -+-=-, 移项,合并,得:28x =, 系数化为1,得:4x =,经检验,当4x =时,20x -≠,即4x =是原分式方程的解, 所以原方程的解是4x =.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近 (精确到0.1),估计摸一次球能摸到黑球的概率是 ;袋中黑球的个数约为 只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.【解答】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4,Q摸到黑球的频率会接近0.4,∴黑球数应为球的总数的25,∴估计袋中黑球的个数为250205⨯=只,故答案为:0.4,0.4,20;(2)设放入黑球x个,根据题意得:200.6 50xx+=+,解得25x=,经检验:25x=是原方程的根,故答案为:25;21.如图,平行四边形ABCD中,8AB cm=,12BC cm=,60B∠=︒,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).【解答】(1)证明:Q四边形ABCD是平行四边形,//AD BC∴,DEG CFG∴∠=∠,GDE GCF∠=∠.G Q 是CD 的中点,DG CG ∴=,在EDG ∆和FCG ∆中,DEG CFG GDE GCF DG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EDG FCG AAS ∴∆≅∆. ED FC ∴=. //ED CF Q ,∴四边形CEDF 是平行四边形.(2)①当8AE cm =时,四边形CEDF 是矩形.理由如下: 作AP BC ⊥于P ,如图所示: 8AB cm =Q ,60B ∠=︒, 30BAP ∴∠=︒, 142BP AB cm ∴==, Q 四边形ABCD 是平行四边形,60CDE B ∴∠=∠=︒,8DC AB cm ==,12AD BC cm ==, 8AE cm =Q , 4DE cm BP ∴==,在ABP ∆和CDE ∆中,AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩,()ABP CDE SAS ∴∆≅∆, 90CED APB ∴∠=∠=︒,∴平行四边形CEDF 是矩形(有一个角是直角的平行四边形是矩形),故当8AE cm =时,四边形CEDF 是矩形; 故答案为:8.②当4AE cm =时,四边形CEDF 是菱形.理由如下: 4AE cm =Q ,12AD cm =. 8DE cm ∴=.8DC cm =Q ,60CDE B ∠=∠=︒.CDE∴∆是等边三角形.DE CE∴=.∴平行四边形CEDF是菱形(有一组邻边相等的平行四边形是菱形).故当4AE cm=时,四边形CEDF是菱形;故答案为:4.22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?【解答】(1)这次调查的总人数是:5226%200÷=(人),故答案为:200;(2)选择B的学生有:2005234165840----=(人),补全的条形统计图如右图所示,扇形统计图中E所对应的圆心角是:58 360104.4200︒⨯=︒,故答案为:104.4;(3)341700289200⨯=(人),答:选择C有289人.23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.【解答】(1)如图1,ABCDY即为所求;(2)如图2,正方形AECF即为所求,其面积为222(26)40+=.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?【解答】设两种机器人需要x 小时搬运完成,9006001500kg kg kg +=Q ,A ∴型机器人需要搬运900kg ,B 型机器人需要搬运600kg . 依题意,得:90060030x x -=, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.25.如图,在由边长为1的小正方形组成的56⨯的网格中,ABC ∆的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断ABC ∆的形状;(2)在图中确定一个格点D ,连接AD 、CD ,使四边形ABCD 为平行四边形,并求出ABCD Y 的面积.【解答】(1)由题意可得,22125AB =+=,222425AC =+=,22345BC =+=, 222(5)(25)255+==Q ,即222AB AC BC +=,ABC ∴∆是直角三角形.(2)过点A 作//AD BC ,过点C 作//CD AB ,直线AD 和CD 的交点就是D 的位置,格点D 的位置如图,ABCD ∴Y 的面积为:52510AB AC ⨯=⨯=.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD ==的性质进行探究,以下判断正确的有 (填序号). ①AC BD ⊥;②AC 、BD 互相平分;③AC 平分BAD ∠和BCD ∠;④ABC ADC ∠=∠;⑤180BAD BCD ∠+∠=︒;⑥筝形ABCD 的面积为12AC BD ⨯. (3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由.判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .【解答】(1)因为两组邻边分别相等的四边形是筝形,所以菱形或正方形符合题意. 故答案是:菱形或正方形;(2)正确的有①③④⑥.故答案为:①③④⑥;(3)选①.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.选③.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.BAC DAC ∴∠=∠,BCA DCA ∠=∠.AC ∴平分BAD ∠和BCD ∠.选④.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.ABC ADC ∴∠=∠.选⑥.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.∴筝形ABCD 的面积为12AC BD ⨯. (4)当筝形ABCD 满足90ADC ∠=︒时,四边形PNDM 是正方形.理由如下: PM AD ⊥Q ,PN CD ⊥,90PMD PND ∴∠=∠=︒.又90ADC ∠=︒Q ,∴四边形MPND 是矩形.Q 在筝形ABCD 中,AB BC =,AD CD =,同(3)得:()ABD CBD SSS ∆≅∆,ADB CDB ∴∠=∠.又PM AD ⊥Q ,PN CD ⊥,PM PN ∴=.∴四边形MPND 是正方形.故答案为:90ADC ∠=︒;(5)一条对角线垂直且平分另一条对角线的四边形是筝形.理由如下:如图1:若AC 垂直平分BD ,则AB AD =,BD CD =,∴四边形ABCD 是筝形.故答案为:一条对角线垂直且平分另一条对角线的四边形是筝形.(答案不唯一)27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).【解答】(1)①延长FD 到G ,使得DG DF =,连接BG 、EG .(或把CFD ∆绕点D 逆时针旋转180︒得到)BGD ∆, CF BG ∴=,DF DG =,DE DF ⊥Q ,EF EG ∴=.在BEG ∆中,BE BG EG +>,即BE CF EF +>. ②若90A ∠=︒,则90EBC FCB ∠+∠=︒, 由①知FCD DBG ∠=∠,EF EG =, 90EBC DBG ∴∠+∠=︒,即90EBG ∠=︒, ∴在Rt EBG ∆中,222BE BG EG +=, 222BE CF EF ∴+=;(2):①F Q 是AD 的中点,AF FD ∴=,Q 在ABCD Y 中,2AD AB =,AF FD CD ∴==,DFC DCF ∴∠=∠,//AD BC Q ,DFC FCB ∴∠=∠,DCF BCF ∴∠=∠, 12DCF BCD ∴∠=∠,故此选项正确; ②延长EF ,交CD 延长线于M , Q 四边形ABCD 是平行四边形, //AB CD ∴,A MDF ∴∠=∠,F Q 为AD 中点,AF FD ∴=,在AEF ∆和DFM ∆中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF DMF ASA ∴∆≅∆,FE MF ∴=,AEF M ∠=∠, CE AB ⊥Q ,90AEC ∴∠=︒,90AEC ECD ∴∠=∠=︒,FM EF =Q ,FC EF FM ∴==,故②正确; ③EF FM =Q ,EFC CFM S S ∆∆∴=,MC BE >Q ,2BEC EFC S S ∆∆∴<故2BEC CEF S S ∆∆=错误;④设FEC x ∠=,则FCE x ∠=, 90DCF DFC x ∴∠=∠=︒-, 1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒-, 90AEF x ∠=︒-Q ,3DFE AEF ∴∠=∠,故此选项正确. 故答案为①②④.。
江苏省无锡市宜兴市和桥联盟2019-2020学年八年级下学期期中数学试卷 (解析版)
2019-2020学年八年级第二学期期中数学试卷一、选择题1.以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.了解一批灯泡的使用寿命C.学校招聘教师,对应聘人员面试D.了解“神舟二号”飞船零部件的状况2.为了解无锡市2017年中考数学学科各分数段成绩分布情况,从中抽取150名考生的数学成绩进行统计分析.在这个问题中,样本是指()A.150B.无锡市2017年中考数学成绩C.被抽取的150名考生D.被抽取的150名考生的中考数学成绩3.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.下列分式中是最简分式的是()A.B.C.D.5.下列性质中,平行四边形一定具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直6.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.07.分式(a、b均为正数),字母的值都扩大为原来的2倍,则分式的值()A.不变B.扩大为原来的2倍C.缩小为原来的D.缩小为原来的8.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20B.﹣=20C.﹣=500D.﹣=5009.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.10.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE =CF,连接BF、DE,则BF+DE的最小值为()A.B.C.D.二、填空题(本大题共8题,每题2分,共16分.请把答案直接填写在答题卡相应位置上.)11.若分式有意义,则实数x的取值范围是.12.一个不透明的口袋中有质地均匀大小相同的1个白球和2个黑球,从中任意摸出1个球,摸出白球的概率是.13.如图,在▱ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件,使▱ABCD是菱形.14.若x﹣y≠0,x﹣2y=0,则分式的值.15.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为.16.已知菱形ABCD的对角线AC=10,BD=24,则此菱形的周长为.17.如图,矩形ABCD的对角线AC与BD相交点O,AC=12,P,Q分别为AO,AD的中点,则PQ的长度为.18.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连结AC,若AC=10,则四边形ABCD的面积为.三、解答题(本大题共8小题,共54分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)19.化简:(1);(2).20.解方程:(1);(2)=1.21.先化简代数式再求值:,其中a=3.22.如图,在▱ABCD中,E、F分别是边BC、AD的中点,求证:∠ADE=∠CBF.23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.24.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.25.如图,在10×10的网格中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(友(1)将△ABC绕点C旋转180°,得到△A′B′C,请直接画出旋转后的△A′B′C.情提醒:别忘了标上相应的字母!)(2)在网格中以AB为一边作格点△ABD(顶点在小正方形的顶点处的三角形称为格点三角形),使它的面积是△ABC的2倍,则点D的个数有个.26.如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转α°(0°<α<180°),分别交直线BC、AD于点E、F.(1)当α=°时,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形:①当α=°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.参考答案一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)1.以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.了解一批灯泡的使用寿命C.学校招聘教师,对应聘人员面试D.了解“神舟二号”飞船零部件的状况【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解:A、了解全班同学每周体育锻炼的时间,数量不多,全面调查所获数据较为准确,适合普查;B、了解一批灯泡的使用寿命,具有破坏性,适合抽样调查;C、学校招聘教师,对应聘人员的面试是事关重大的调查适合普查;D、对“神舟二号”飞船零部件状况的检查要求精确度高,适宜于普查;故选:B.2.为了解无锡市2017年中考数学学科各分数段成绩分布情况,从中抽取150名考生的数学成绩进行统计分析.在这个问题中,样本是指()A.150B.无锡市2017年中考数学成绩C.被抽取的150名考生D.被抽取的150名考生的中考数学成绩【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:为了解无锡市2017年中考数学学科各分数段成绩分布情况,从中抽取150名考生的数学成绩进行统计分析.在这个问题中,样本是指:被抽取的150名考生的中考数学成绩,故选:D.3.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.4.下列分式中是最简分式的是()A.B.C.D.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选:A.5.下列性质中,平行四边形一定具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【分析】直接利用平行四边形的性质、矩形的性质、菱形的性质分别分析得出答案.解:A、矩形的对角线相等,平行四边形的对角线不相等,故此选项不符合题意;B、平行四边形的对角线互相平分,故此选项符合题意;C、菱形的对角线互相垂直,平行四边形的对角线不一定互相垂直,故此选项不符合题意;D、矩形的邻边互相垂直,平行四边形的邻边不一定互相垂直,故此选项不符合题意;故选:B.6.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0【分析】直接利用分式的值为零则分子为零进而得出答案.解:∵分式的值为0,∴x﹣3=0,解得:x=3,故选:A.7.分式(a、b均为正数),字母的值都扩大为原来的2倍,则分式的值()A.不变B.扩大为原来的2倍C.缩小为原来的D.缩小为原来的【分析】要使字母的值都扩大为原来的两倍,即a=2a,b=2b,根据这个可以求出原式的值.解:∵=,∴分式的值缩小为原来的.故选:C.8.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20B.﹣=20C.﹣=500D.﹣=500【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.9.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.10.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE =CF,连接BF、DE,则BF+DE的最小值为()A.B.C.D.【分析】连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH=,∴BF+DE最小值为.故选:D.二、填空题(本大题共8题,每题2分,共16分.请把答案直接填写在答题卡相应位置上.)11.若分式有意义,则实数x的取值范围是x≠3.【分析】根据分母不能为零,可得答案.解:由题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.12.一个不透明的口袋中有质地均匀大小相同的1个白球和2个黑球,从中任意摸出1个球,摸出白球的概率是.【分析】直接利用概率公式求出答案.解:∵一个不透明的口袋中有1个白球和2个黑球,它们除颜色外完全相同,∴从中任意摸出一个球,摸出的是白球的概率是:.故答案为:.13.如图,在▱ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件AB=BC(答案不唯一),使▱ABCD是菱形.【分析】根据菱形的判定方法即可得出答案.解:∵四边形ABCD为平行四边形,∴当AB=BC或AC⊥BD或AC平分∠DAB时,四边形ABCD为菱形.故答案为:AB=BC(答案不唯一).14.若x﹣y≠0,x﹣2y=0,则分式的值9.【分析】利用已知x﹣2y=0,则x=2y,即可代入原式求出即可.解:∵x﹣2y=0,∴x=2y,∴===9.故答案为:9.15.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为0.4.【分析】根据总数计算出第5组的频数,用第5组的频数除以数据总数就是第5组的频率.解:第5组的频数:50﹣2﹣8﹣15﹣5=20,频率为:20÷50=0.4,故答案为:0.4.16.已知菱形ABCD的对角线AC=10,BD=24,则此菱形的周长为52.【分析】由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.解:∵菱形ABCD中,BD=24,AC=10,∴OB=BD=12,OA=AC=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故答案为:52.17.如图,矩形ABCD的对角线AC与BD相交点O,AC=12,P,Q分别为AO,AD的中点,则PQ的长度为3.【分析】根据矩形的性质可得AC=BD=12,BO=DO=6,再根据三角形中位线定理可得PQ=DO=3.解:∵四边形ABCD是矩形,∴AC=BD=12,BO=DO=BD,∴OD=BD=6,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=DO=3.故答案为:3.18.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连结AC,若AC=10,则四边形ABCD的面积为50.【分析】作AM⊥BC、AN⊥CD,交CD的延长线于点N;证明△ABM≌△ADN(AAS),得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N,∵∠BAD=∠BCD=90°,∴四边形AMCN为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN,在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN;∴△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;设AM=a,由勾股定理得:AC2=AM2+MC2,而AC=10;∴2a2=100,a2=50,所以四边形ABCD的面积为50.故答案为50.三、解答题(本大题共8小题,共54分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)19.化简:(1);(2).【分析】(1)先通分,再根据分式的减法法则计算可得;(2)先计算括号内分式的减法,再因式分解、约分即可得.解:(1)原式=﹣=;(2)原式=•=•=﹣.20.解方程:(1);(2)=1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)去分母得:x+3=5x,解得:x=,经检验x=是分式方程的根;(2)去分母得:3﹣x+1=x﹣4,解得:x=4,经检验是增根,方程无解.21.先化简代数式再求值:,其中a=3.【分析】先把分式中分子分母能分解因式的分解因式,再把括号内的分式通分,然后把分式的除法转化为分式的乘法进行约分,最后代入数值求解.解:原式==当a=3时,原式==3.22.如图,在▱ABCD中,E、F分别是边BC、AD的中点,求证:∠ADE=∠CBF.【分析】根据平行四边形的性质以及全等三角形的性质即可求出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C,∠ADC=∠ABC∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,∴△ABF≌△CDE(SAS)∴∠ABF=∠CDE,∴∠ADE=∠CBF.23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【分析】(1)用不剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供50人用一餐,再根据全校的总人数是18000人,列式计算即可.解:(1)这次被调查的学生共有600÷60%=1000人,故答案为:1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.24.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.25.如图,在10×10的网格中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC绕点C旋转180°,得到△A′B′C,请直接画出旋转后的△A′B′C.(友情提醒:别忘了标上相应的字母!)(2)在网格中以AB为一边作格点△ABD(顶点在小正方形的顶点处的三角形称为格点三角形),使它的面积是△ABC的2倍,则点D的个数有5个.【分析】(1)根据旋转的性质即可将△ABC绕点C旋转180°,得到△A′B′C;(2)根据网格即可作格点△ABD,使它的面积是△ABC的2倍,进而得点D的个数.解:(1)如图,△A′B′C即为所求;(2)如图,点D的个数有5个.故答案为:5.26.如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转α°(0°<α<180°),分别交直线BC、AD于点E、F.(1)当α=90°时,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形:①当α=45或90°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.【分析】(1)根据平行四边形的判断方法即可解决问题.(2)①分两种情形分别解决问题即可.②根据对角线相等的四边形是矩形,分两种情形讨论求解即可.解:(1)当α=90°,四边形ABEF是平行四边形.理由:∵AB⊥AC,∴∠BAO=∠AOF=90°,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形.故答案为90.(2)①当α=45°时,四边形BEDF是菱形.∵AD∥BC,∴∠FDO=∠EBO,∵∠FOD=∠BOE,OD=OB,∴△FDO≌△EBO(ASA),∴DF=BE,∵DF∥BE,∴四边形BEDF是平行四边形,∵OA=OC=2,AB=2,∴AB=OA,∴∠AOB=45°,∴∠BOF=45°+45°=90°,∴BD⊥EF,∴四边形BEDF是菱形.当α=90时,同法可证四边形AFCE是菱形.故答案为45或90.②∵AB⊥AC,AB=2,AC=4,∴BC=2,根据条件可知AD与BC之间的距离h为.知识像烛光,能照亮一个人,也能照亮无数的人。
江苏省2019-2020八年级下学期期中考试数学试题5
精选资料江苏省 八年级放学期期中考试数学试题一、 (每小 3分,共 24分)1.民 剪 在我国有着悠长的 史,以下 案是中心 称 形的是()AB CD2.以下 方式,你 最适合的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()A . 市 上某种白酒的塑化的含量,采纳普 方式B .认识我市每日的流 人口数,采纳抽 方式C . 鞋厂生 的鞋底能蒙受的弯折次数,采纳普 方式D .游客上 机前的安 ,采纳抽 方式3、今日我 全区1500 名初二学生参加数学考 , 从中抽取300 名考生的数学成行剖析, 在 中, 本指的是 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 300 名考生的数学成B . 300C .1500 名考生的数学成x 2y2D . 300 名考生4、以下各式:1 1 x , 4x , ,1 a, 5x 2 ,此中分式共有⋯⋯⋯⋯⋯⋯( )53 2b yA .5 个B .4 个C .3 个D .2 个5、 次 矩形四 的中点所得的四 形是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.矩形B. 菱形C. 正方形D . 以上都不6 、把分式 xy中的 x 和 y都 大 本来的 2 倍, 分式的··············()x3yA .不B . 大 本来的2 倍C . 小 本来的1 D . 大 本来的4 倍27、如 , □ABCD 中, EF 角 的交点 O 分 与 CD 、 AB 交于点 E 、F , AB=4,AD=3,OF=1.3 , 四 形 BCEF 的周()DECOAFB(第 7题)(第18 题)8.如 , 手操作:1, a 的 方形 片(<a<l ),如 那 折一下,剪下一个2等于 方形 度的正方形(称 第一次操作) ;再把剩下的 方形如 那 折一下,剪下一个 等于此 方形 度的正方形(称 第二次操作) ;这样频频操作下去.若在第n 此操作后, 剩下的 方形 正方形, 操作 止.当n = 3 , a 的 ( )A .2B .3或2C .3D .3或334 354 5二、填空(每空 2 分,共 26 分.)9、当 x _________时, 1存心义;若分式x 2- 4的值为零,则x 的值为 ______.x+1 x+210、 以下 4 个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必定事件是 ,不行能事件是.(将事件的序号填上即可)11、若菱形的两条对角线分别为 2 和 3,则此菱形的面积是.1a 2- 2a12、计算 m ÷n · n=;化简2=.13、4- aABCD ,P 、R 分别是 BC 和 DC 上的动点, E 、 F 分别是 PA 、 PR 的中 如图,已知矩形 点.假如 DR=3 ,AD=4 ,则 EF 的长为 ________.14、 如图, □ ABCD 的对角 线订交于点 O ,且 AB ≠AD ,过 O 作 OE ⊥ BD 交 BC 于点 E .若□ ABCD 的周长为 10cm ,则 CDE 的周长为cm .A DEFR BPC第13题 第14题 第16题 第18题15、 x 2 3有增根,那么增根为 ________。
2019—2020学年第二学期初二数学期中模拟试卷(含答案)
2019—2020学年第二学期初二数学期中模拟试卷 考试范围:苏科版八下第七、八、九、十、十一、十二章内容一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1. 为了了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析.在这个问题中,样本容量是 ( ) A. 500B. 被抽取的500名考生C. 被抽取的500名考生的中考数学成绩D. 我市2018年中考数学成绩2.在下列函数中表示y 关于x 的反比例函数的是( )A .2x y =B . 21y x =+C . 2y x =D . 22y x=3.下列汽车标志中,是中心对称图形的是( )A B C D 4.矩形具有而菱形不具有的性质是( )A.两组对角分别相等B.对角线相等C.对角线互相平分D.对角线互相垂直 5. 对于反比例函数5y x=-,下列说法中不正确的是( )A. 图象经过点(1,5)-;B. 当0x >时,y 的值随x 的值的增大而增大C. 图像分布在第二、四象限;D. 若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.6.在反比例函数1ky x-=的图象的每一条曲线上,y 随x 的增大而增大,则k 的值可以是( ) A .-1 B .0 C .1 D .2 7.已知1112a b -=,则ab a b-的值是( ) A .12 B . 12- C . 2 D . 2-8.如图,在四边形ABCD 中,,,,E F G H分别是,,,AB BD CD AC 的中点,要使四边形EFGH 是矩形,则四边形ABCD 只需要满足一个条件是( )A.四边形ABCD 是梯形;B.四边形ABCD 是菱形;C.对角线AC BD =; D. AD BC ⊥第8题 第10题 9.已知点123(2,),(1,),(3,)A y B y C y --都在反比例函数4y x=的图象上,则123,,y y y 大小关系是( ) A.123y y y <<; B. 321y y y <<; C. 213y y y <<; D. 312y y y <<10.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上,反比例函数k y x=(0)x >的图象经过顶点B ,则k 的值为( )A . 12; B.20; C . 24; D .32二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上) 11.当x 时,分式121xx -+有意义.12.图像经过点(1,-1)的反比例函数的表达式是 .13. 某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是 . 14.已知,在梯形ABCD 中,//,4,6,60AD BC AD AB CD B ===∠=︒,那么下底BC 的长为 . 15.若反比例函数22(21)m y m x -=-的图象在第二、四象限,则m 的值为 .16.平行四边形ABCD 的周长是30,,AC BD 相交于点,O OAB ∆的周长比⊿OBC 的周长大3,则AB = .第16题 第18题1 7.关于x 的方程122x a x x +=--有增根,则a 的值为 . 18.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线//l y 轴,且直线l 分别与反比例函数8(0)y x x =>和(0)ky k x=>的图像交于,P Q 两点,若12POQ S ∆=,则k 的值为 .三、解答题(本大题共10小题,共76分。
2019-2020学年八年级下学期期中数学试卷(含解析)
2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3 分)计算6X24^=.2.(3分)已知一个直角三角般的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子J市有意义,则x的取值范围是.4.(3分)如国,在ZUBC中,。
、E分别为A3、4c边的中点,若DE=2,则8c边的长为.5.(3分)如图,一棵大树在离地面3加、5加两处折成三段,中间一段43恰好与地面平行,大树顶部落在离大树底部6加处,则大树折断前的高度是.6.(3分)菱形A3CO的对角线AC=4, 30=2,以AC为边作正方形ACEF,则3尸的长为____ 二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.任B.C. V2QD./8.(4分)判断下列各组数能作为直角三角形三边的是()A. 3, 4, 6B. 4, 5, 7C. 2, 3, ^7D. 7, 6, A/139.(4分)如图,已知菱形A3CD的对角线交于点O, DB=6f AD=5,则菱形A3CD的面积为()10. (4 分)在 RtAABC 中,ZABC=90° , 0 为斜边 AC 的中点,30=5,则 AC=()11. (4分)下列计算中,正确的是( A.收-3) 2二 ±3 B.历+ 如二9C.D.卑一心V 212. (4分)不能判定四边形A3CD 为平行四边形的条件是(13. (4分)如图,延长翅形A5co 的边BC 至点E,使CE=CA,连接AE,若N5AC=三、解答题(本大题共9小题,共70分)15. (6分)计算:倔+(证-3)°-导(2%)216. (6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60々加小,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m 处有一个车速检测仪, 过了 4s 后,测得小汽车距禺测速仪65m.这辆小汽车超速了吗?通过计算说明理由(lw/s=3.6k”i/h)17. (8分)如图,四边形43。
苏科版2019-2020学年八年级数学第二学期期中测试题及答案
八年级数学下册期中测试卷(考试时间:120分钟,满分120分)一、选择题(每小题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.去年济川中学有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量3.反比例函数2yx的图象位于( ).A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限4.下列说法正确的是( )(1)抛一枚硬币,正面一定朝上;(2)掷一颗骰子,点数一定不大于6;(3)为了解一种灯泡的使用寿命,宜采用普查的方法;(4)“明天的降水概率为80%”,表示明天会有80%的地方下雨.A. 1个B. 2个C. 3个D. 4个5. 顺次连接矩形四边中点所组成的四边形是( )A.平行四边形B.菱形C.矩形D.以上图形都不是6. 如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°第6题第6题第7题第8题7. 在矩形ABCD中,已知AD=4,AB=3,P是AD上任意一点,PE⊥BD于E,PF⊥AC于F,则PE+PF的值为( ).A.3 B.245C.5 D.1258.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对二、填空题(每空3分,共30分)9. “一个有理数的绝对值是负数”是 .(填 “必然事件”或“不可能事件”或“随机事件”) 10. 一个四边形的边长依次是a 、b 、c 、d ,且满足22(a )(b )0c d -+-=,则这个四边形是 .11. 已知P 1(﹣1,y 1)、P 2(1,y 2)、P 3(2,y 3)是反比例函数y=的图象上的三点,则y 1、y 2、y 3的大小关系是(用“<”连接) 新- 课-标 -第 -一-网 12.如图,在菱形ABCD 中,∠BAD =60°,BD =4,则菱形ABCD 的周长是___________.第12题 第13题 第14题 第16题 13.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为___________.14. 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,除此以外小方格地面完全相同.一只自由飞行的小鸟,将随意落在图中所示的方格地面上,则小鸟落在草坪上的概率为 .15. 要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设这个三角形中 .16. 如图,090,Rt ABC ACB ∆∠=在中,D 、E 、F 分别是AB 、BC 、CA 的中点,若5CD cm =,则EF .17.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .18.如图,在平面直角坐标系xoy 中,一次函数24y x =-的图象经过正方形OABC 的顶点和C ,则正方形OABC的面积为 . 第18题 三、解答题:(共66分)19.(本题6分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO . 求证:四边形ABCD 是平行四边形.20.(本题共6分)已知y=y 1+y 2,若y 1与x -1成正比例,y 2与x+1成反比例,当x=0时,y=-5;当x=2时,y=1. (1) 求y 与x 的函数关系式; (2) 求当x=-2时,y 的值.21.(本题8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别 为A(﹣2,2),B(0,5),C(0,2).(1) 画△A 1B 1C ,使它与△ABC 关于点C 成中 心对称;(2) 平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),画出平移后对应的△A 2B 2C 2;(3) 若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,则旋转中心的坐标为______.22.(本题8分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1) 图1中“统计与概率”所在扇形的圆心角为 度; (2) 图2、3中的a = ,b = ;23. (本题8分)一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数n 200 300 400 500 600 700 800 1000 摸到红球次数 m 151221289358429497568 701 摸到红球频率m n0.75 0.74 0.72 0.72 0.72 0.71ab图1 45%5%实践与综合应统计与概率数与代数空间与图形40%67a 44数与式函数数与代数(内容)图2课时数方程(组)与不等式(组)A 一次方程B 一次方程组C 不等式与不等式组D 二次方程E 分式方程 图318b12A BC D369121518方程(组) 与不等式(组)课时数133EP N M GE D C B A O (1) 表格中a= ,b= ;(2) 估计从袋子中摸出一个球恰好是红球的概率约为 ;(精确到0.1) (3) 如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?24. (本题8分)如图,在平面直角坐标系中,正比例函数y=3x 与反比例函数y =的图象交于A ,B 两点,点A 的横坐标为2,AC ⊥x 轴,垂足为C ,连接BC . (1) 求反比例函数的表达式; (2) 求△ABC 的面积;25.(本题10分)如图,菱形ABCD 的边长为48cm ,∠A=60°,动点P 从点A 出发,沿着线路AB ﹣BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC ﹣CB ﹣BA 做匀速运动.(1) 求BD 的长; (2) 已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s .经过12秒后,P 、Q 分别到达M 、N 两点,试判断△AMN的形状,并说明理由,同时求出△AMN 的面积; (3) 设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 为直角三角形,试求a 的值.26.(本题满分12分)如图,正方形OEFG 绕着边长为a 的正方形ABCD 的对角线的交点O旋转,边OE 、OG 分别交边AD 、AB 于点M 、N . (1) 求证:OM =ON ;(2) 问四边形OMAN 的面积是否随着a 的变化而变化?若不变,请用a 的代数式表示出来,若变化,请说明理由;(3) 试探究PA 、PN 、BN 三条线段之间有怎样的数量关系,并写出推理过程.参考答案一、CCBA BDDA二、9.不可能事件10.平行四边形11. y1<y3<y2 12.1613.45014.15.三角形的三个内角都大于60016.517.150或75018.三、19.略20. (1)(2)-3 (3分+3分)21.(1)(2)略(3)(0,-2) (3分+3分+2分)22.(1)36 (2分) (2)60,14 (2分+2分) (3)27 (2分)23.(1)0.71 0.71 (2分+2分)(2)0.7 (2分) (3)6(2分)24.(1)(2)12 (4分+4分)25.(1)48(2分)(2)直角三角形(1分)理由(2分)面积(2分)(3)4, 12, 24(共3分,对一个1分)26.(1)略(3分)(2)不变,(2分+2分)(3)理由略(2分+3分)。
江苏省2019-2020八年级下学期期中考试数学试题6
FEDCBA江苏省2019-2020年八年级下学期期中考试数学试题(满分:100分,时间:120分钟)一、选择题(本大题共8小题,每小题2分,共16分,每小题仅有一个答案正确 )1.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ ) A .角 B .等边三角形 C .平行四边形 D .矩形 2.下列调查中,适合采用全面调查(普查)方式的是( ▲ )A .对某食品质量的调查.B .对数学课本中印刷错误的调查.C .对学校建立英语角看法的调查.D .对公民保护环境意识的调查. 3.下列各式正确的是( ▲ )A .a m a n m n --=B .22x y x y =C .11++=++b a x b x aD .()0≠=a ma na m n4.下列命题中,正确的个数是( ▲ )①13个人中至少有2人的生日是同一个月是必然事件②为了解我班学生的数学成绩, 从中抽取10名学生的数学成绩是总体的一个样本③一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次④小颖在装有10个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频率在0.6附近波动,据此估计黑球约有6个.A .1B .2C .3D .45.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( ▲ )A .AB//DC ,AD//BCB .AB//DC ,AD=BC C .AO=CO ,BO=DOD .AB=DC ,AD=BC第5题 第6题 第8题 6. 如图,在△ABC 中,E 、D 、F 分别是AB 、BC 、CA 的中点, AB =AC =5,BC=8,则四边形AEDF •的面积是 ( ▲ ) A .10B .12C .6D .207.在500个数据中,用适当的方法抽取50个为样本进行统计, 频率分布表中54.5~57.5这一组的频率是0.15,那么估计总体数据在54.5~57.5之间的约有( ▲ ) A .150个B .75个C .60个D .15个8.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ▲ ) A .4个B .3个C .2个D .1个二、填空题(本题共10小题,每小题2分,共20分) 9.当x =___ ▲ ___时,分式11x x +-无意义. F ABCD OE10.222()11,(2)21()y yx y y y +==-++ 11. 若分式21-x 的值为正数,则x 的范围是 ▲ . 12. 某班在大课间活动中抽查了10名学生每分钟跳绳次数,得到如下数据(单位:次):88,9l ,93,102,108,117,121,130,146,188.则跳绳次数在90~110这一组的频率是 ▲ .第14题 第16题 第17题13. 小明想了解自己一学期数学成绩的变化趋势,应选用 ▲ 统计图来描述数据. 14. 如图ABCD 中,∠ABC 的平分线交边AD 于E,DC=4,DE=2,ABCD 的周长_ ▲ __.15. E 、F 、G 、H 分别为四边形ABCD 各边的中点,添加_ ▲ _条件,四边形EFGH 为菱形。
2019-2020学年无锡市宜兴市和桥联盟八年级(下)期中数学试卷(含答案解析)
2019-2020学年无锡市宜兴市和桥联盟八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列调查方式,你认为最合适的是()A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B. 旅客上飞机前的安检,采用抽样调查方式C. 了解娄底市居民日平均用水量,采用全面调查方式D. 对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式2.某厂生产上第世博会吉祥物:“海宝”纪念章10万个,质检部门为检测这批纪念章质量的合格情况,从中随机抽查500个,合格499个.下列说法正确的是()A. 总体是10万个纪念章的合格情况,样本是500个纪念章的合格情况B. 总体是10万个纪念章的合格情况,样本是499个纪念章的合格情况C. 总体是500个纪念章的合格情况,样本是500个纪念章的合格情况D. 总体是10万个纪念章的合格情况,样本是1个纪念章的合格情况3.下列轴对称图形中,有三条对称轴的是()A. 线段B. 角C. 等腰直角三角形D. 等边三角形4.下列分式为最简分式的是()A. 1−aa−1B. 2xy−3y5xyC. m+nn2−m2D. a2+b2a+b5.如图,平行四边形ABCD的对角线AC、BD相交于点O,E为AD边中点,若△OED的周长为6,则△ABD的周长是()A. 3B. 6C. 12D. 246.若分式x2−1x−1的值为0,则()A. x=1B. x=−1C. x=±1D. x≠17.将3a中的a、b都变为原来的3倍,则分式的值()A. 不变B. 扩大为原来的3倍C. 扩大为原来的9倍D. 缩小到原来的138.某学校号召同学们为灾区学生自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x人,那么x满足的方程是()A. 4800x =5000x−20B. 4800x=5000x+20C. 4800x−20=5000xD. 4800x+20=5000x9.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A. 10B. 5C. 12D. 5√310.如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为().A.B.C.D.二、填空题(本大题共8小题,共16.0分)11.若分式(x+3)(x−2)|x|−3有意义,则x的取值范围是______ .12.在一个不透明的口袋里,装了若干个除颜色不同外其余都相同的红球和黑球,如果口袋中有8个红球,且摸到红球的概率为14,那么口袋中黑球的个数为______.13.如图,在▱ABCD中,DB=AB,AE⊥BD,垂足为点E,若∠EAB=40°,则∠C=______°.14.如果15是一个正整数,则x的最大的整数值为______ .15.对50个数据进行分组,其中一组数据的频数为15,则这组数据的频率为.16.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第7个菱形的边长是______.17.如图,矩形ABCD对角线AC、BD交于点O,边AB=6,AD=8,四边形OCED为菱形,若将菱形OCED绕点O旋转一周,旋转过程中OE与矩形ABCD的边的交点始终为M,则线段ME的长度可取的整数值为______ .18.如图,AB是⊙O的直径,CD是弦,且CD⊥AB,垂足是P.如果CD=4,PB=1,那么直径AB=______ .三、计算题(本大题共1小题,共6.0分)19.(1)计算:(2010−π)−.(2)先化简,再求值:,其中a=+1.四、解答题(本大题共7小题,共48.0分)20.计算:(1)|−32|−(−2011)0+4÷(−2)3(2)(1+1x )÷x2−1x.21.解分式方程:x−1x+1=1x+1.22.已知:点D是△ABC边BC上的中点,DE⊥AC,DF⊥AB,垂足分别是点E、F.(1)若∠B=∠C,BF=CE,求证:△BFD≌△CED.(2)若∠B+∠C=90°,求证:四边形AEDF是矩形.23.某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:阅读时间t(单位:组别频数(人数)小时)A0≤t<18B1≤t<220C2≤t<324D3≤t<4mE4≤t<58F t≥54(1)图表中的m=______,n=______;(2)扇形统计图中F组所对应的圆心角为______度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?24.列方程,解应用题甲乙两人相约周末到影院看电影,他们的家分别距离影院1200米和2000米,两人分别从家中同时出发,已知甲和乙的速度比是3:4,结果甲比乙提前4分钟到达影院.(1)求甲、乙两人的速度?(2)在看电影时,甲突然接到家长电话让其15分钟内赶回家,时间紧迫改变速度,比来时每分钟多走25米,甲是否能按要求时间到家?25.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)写出点A1、B1的坐标.26.如图(1),在直角梯形OABC中,BC//OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=3.5(1)写出顶点A、B、C的坐标;(2)如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM=x,四边形OMPN的面积为y.①求出y与x之间的函数关系式,并写出自变量x的取值范围;②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P的坐标;如果不存在,说明理由.【答案与解析】1.答案:D解析:本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:A.日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,本选项说法错误;B.旅客上飞机前的安检,采用全面调查方式,本选项说法错误;C.了解娄底市居民日平均用水量,采用抽样调查方式,本选项说法错误;D.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式,本选项说法正确;故选:D.2.答案:A解析:解:总体是10万个纪念章的合格情况,样本是500个纪念章的合格情况.故选:A.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.答案:D解析:解:A、线段有两条对称轴:线段的垂直平分线和线段本身所在的直线;B、角有一条对称轴:角平分线所在的直线;C、等腰直角三角形一条对称轴:斜边的垂直平分线;D、等边三角形有三条对称轴:三边的垂直平分线.故选D.根据轴对称图形的性质分别写出各图形的对称轴的条数,然后选择即可.本题考查了轴对称图形,熟练掌握各种常见图形的对称轴的条数是解题的关键,要注意对称轴是直线.4.答案:D解析:本题考查了对最简分式,关键是理解最简分式的定义.最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解:A、该分式的分子、分母中含有公因式a−1,则它不是最简分式.故本选项错误;B、分子、分母中含有公因式y,则它不是最简分式.故本选项错误;C、分子为m+n,分母为(n+m)(n−m),所以该分式的分子、分母中含有公因式(m+n),则它不是最简分式.故本选项错误;D、该分式符合最简分式的定义.故本选项正确该分式的分子、故选:D.5.答案:C解析:解:∵四边形ABCD是平行四边形,∴OD=OB,∵AE=ED,∴AB=2OE,BD=2OD,AD=2DE,∵OE+OD+DE=6,∴2OE+2OD+2DE=12,∴AB+BD+AD=12,∴△ABD的周长为12,故选:C.根据三角形的中位线定理,可得AB=2OE,由题意BD=2OD,AD=2DE,根据OE+OD+DE=6,可得2OE+2OD+2DE=12,即AB+BD+AD=12.本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.答案:B解析:解:由题意得,x2−1=0且x−1≠0,解得,x=−1,故选:B.直接利用分式的值为零,则分子为零,且分母不为零列出方程和不等式,进而得出答案.本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.7.答案:A解析:解:由分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变,得分式的值不变,故选:A.依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.8.答案:B解析:解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意得4800 x =5000x+20=,故选B如果设第一次有x人捐款,那么第二次有(x+20)人捐款,根据两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此列出方程,求解即可.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.9.答案:A解析:解:连接OC,如图,设AE=x,∵AE:BE=1:4,∴BE=4x,∴OC=2.5x,∴OE=1.5x,∵CD⊥AB,∴CE=DE,∵CD=8,∴CE=4,Rt△OCE中,OE2+CE2=OC2,∴(1.5x)2+42=(2.5x)2,∴x=2,∴AB=10,故选A.连接OC,设AE=x,表示出半径,在Rt△OCE中,用勾股定理得出x的值,从而得出AB的长.本题考查了勾股定理以及垂径定理,掌握勾股定理以及垂径定理的用法是解题的关键.10.答案:B解析:此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键.作NF⊥AD,垂足为F,连接DD′,ND′,根据图形折叠的性质得出DD′⊥MN,先证明△DAD′∽△DEM,再证明△NFM≌△DAD′,然后利用勾股定理的知识求出MN的长.解:作NF⊥AD,垂足为F,连接DD′,ND′,∵将正方形纸片ABCD折叠,使得点D落在边AB上的D′点,折痕为MN,∴DD′⊥MN,∵∠A=∠DEM=90°,∠ADD′=∠EDM,∴△DAD′∽△DEM,∴∠DD′A=∠DME,在△NFM和△DAD′中∴△NFM≌△DAD′(AAS),∴FM=AD′=2cm,又∵在Rt△MNF中,FN=6cm,∴根据勾股定理得:MN=.故选B.11.答案:x≠±3解析:解:由题意得:|x|−3≠0,解得:x≠±3,故答案为:x≠±3.根据分式有意义的条件可得:|x|−3≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.答案:24解析:解:设黑球有x个,∵口袋中装有8个红球且摸到红球的概率为14,∴88+x =14,∴x=24,即口袋中黑球的个数为24个,故答案为24.设黑球有x个,根据口袋中装有8个红球且摸到红球的频率为1列出x的方程,求出x即可.4此题考查概率的求法及利用频率估计概率的知识:如果一个事件有n种可能,而且这些事件的可能.性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn13.答案:65解析:解:在△ABE中,∵AE⊥BD,垂足为E,∠EAB=40°,∴∠ABE=90°−∠EAB=50°.∵四边形ABCD是平行四边形,∴AB//CD,∴∠BDC=∠ABE=50°,∵DB=DC,(180°−∠BDC)=65°,∴∠C=12故答案为:65.先在△ABE中根据直角三角形两锐角互余求出∠ABE=90°−∠EAB=50°.再根据平行四边形的性质得出AB//CD,那么∠BDC=∠ABE=50°,然后根据等边对等角的性质以及三角形内角和定理求出∠C=1(180°−∠BDC)=65°.2此题考查了平行四边形的性质,三角形内角和定理,平行线的性质,等腰三角形的性质,掌握各性质是解题的关键.14.答案:18是一个正整数,x为整数,解析:解:∵15x−3∴x−3是一个正整数,又∵15=1×15=3×5,∴x−3=1或x−3=15或x−3=3或x−3=5,解得:x=4或x=18或x=6或x=8.∴x的最大的整数值是18,故答案为:18.由x−3为正整数可知,把15进行分解得出15=1×15=3×5,推出方程x−3=1,x−3=15,x−3=3,x−3=5,求出方程的解,找出最大值即可.本题考查了分式的值和解一元一次方程的应用,关键是根据题意得出关于x的方程,注意:不要漏解,用的数学思想是分类讨论思想.15.答案:0.3解析:本题考查的是频率、频数、数据总数的关系,解答本题的关键是熟练掌握频率、频数、数据总数的关系:频率=频数÷数据总数.由题意知,频率为15/50=0.316.答案:27解析:解:连接BD交AC于O,连接CD1交AC1于E,如图所示:∵四边形ABCD是菱形,∠DAB=60°,∴ACD⊥BD,∠BAO=12∠DAB=30°,OA=12AC,∴OA=AB⋅cos30°=1×√32=√32,∴AC=2OA=√3,同理AE=AC⋅cos30°=√3⋅√32=32,AC1=3=(√3)2,…,第n个菱形的边长为(√3)n−1,∴第7个菱形的边长为(√3)6=27;故答案为27.先求出第一个菱形和第二个菱形的边长,得出规律,根据规律即可得出结论.本题考查了菱形的性质、含30°角的直角三角形以及锐角三角函数的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.17.答案:3,4,5解析:解:∵AB=6,AD=8,∴BD√AB2+AD2=√36+64=10,∵四边形ABCD是矩形,∴AO=CO=BO=DO=5,如图,当OE与OD重合时,ME有最大值为5,当OE′与AD或(BC)垂直时,OM′有最小值,∵OA=OD,OM′⊥AD,∴AM′=DM′=4,∴OM′=√OD2−M′D2=√25−16=3,∴3≤OM′≤5,∵四边形ODEC是菱形,∴CD⊥ME,OC//DE,∴AD//OE,∴四边形ADEO是平行四边形,∴OE=AD=8,∵ME=OE−OM,∴3≤ME≤5,∴线段ME的长度可取的整数值为3,4,5,故答案为:3,4,5.由矩形和菱形的性质求出OM的取值范围,通过证明四边形ODEC是平行四边形,可得OE=AD=8,可求解.本题考查了旋转的性质,矩形的性质,菱形的性质,灵活运用这些性质解决问题是本题的关键.18.答案:5解析:解:连接OC,设OC=OB=r,则OP=r−1,在Rt△OCP中,由勾股定理得:OC2=OP2+CP2,∴r2=(r−1)2+22,r=5,2∴AB=2r=5,故答案为:5.连接OC,设OC=OB=r,由勾股定理得出关于r的方程,求出方程的解即可.本题考查了解一元一次方程,垂径定理,勾股定理等知识点的应用,解此题的关键是构造直角三角形后得出关于r的方程,用的数学思想是方程思想,是一道比较典型的题目,难度也不大.19.答案:解:(1)原式=1−2+1−(−2)=−+2=2−.(2)原式===.当a=+1时,原式=.解析:略20.答案:解:(1)|−32|−(−2011)0+4÷(−2)3,=32−1+4÷(−8),=12−12,=0;(2)(1+1x )÷x2−1x,=x+1x ⋅x(x+1)(x−1),=1x−1.解析:(1)利用绝对值,0指数幂的知识,首先求得|−32|与(−2011)0的值,然后利用有理数的混合运算法则求解即可求得答案;(2)利用分式的混合运算法则求解即可求得答案,注意运算顺序.此题考查了实数的混合运算与分式的混合运算法则.题目难度不大,注意解题需细心,还要注意运算顺序.21.答案:解:去分母得:x(x−1)=x+1+x(x+1),整理得:x2−x=x+1+x2+x,解得:x=−13,经检验x=−13是分式方程的解.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.答案:证明:(1)∵点D是△ABC边BC上的中点∴BD=CD又∵DE⊥AC,DF⊥AB,垂足分别是点E、F∴∠BFD=∠DEC=90°∵BD=CD,∠BFD=∠DEC,BF=CE∴△BFD≌△CED(SAS)(2)∵∠B+∠C=90°,∠A+∠B+∠C=180°∴∠A=90°∵∠BFD=∠DEC=90°∴∠A=∠BFD=∠DEC=90°∴四边形AEDF是矩形解析:(1)由“SAS”可证△BFD≌△CED;(2)由三角形内角和定理可得∠A=90°,由三个角是直角的四边形是矩形可判定四边形AEDF是矩形.本题考查了矩形的判定,全等三角形的判定和性质,熟练运用矩形的判定是本题的关键.23.答案:16 30 18解析:解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×48÷10%=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.答案:解:(1)设甲的速度为3x米/分,则乙的速度为4x米/分,根据题意得:20004x −12003x=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:甲的速度是75米/分,乙的速度是100米/分.(2)∵120075+25=12<15,所以甲能按要求时间到家.解析:(1)设甲的速度为3x米/分,则乙的速度为4x米/分,根据时间=路程÷速度结合甲比乙提前4分钟到达影院,即可得出关于x的分式方程,解之经检验后即可得出结论.(2)根据路程÷速度=时间,进而比较解答即可.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.答案:解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(2,1),B1(1,3).解析:(1)分别作出各点关于点C的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出点A1、B1的坐标即可.本题考查的是作图−旋转变换,熟知图形旋转不变性的性质是解答此题的关键.26.答案:解:(1)由图得,A(6,0),B(3,4),C(0,4),做BD⊥OA,所以,BD=OC,BC=OD;由OA=6,AB=5,cos∠OAB=35得,AD=3,BD=4,即,BC=3,OC=4;故坐标为:A(6,0),B(3,4),C(0,4);(2)①∵设PM=x,由图得,0<x<4,则,AM=34x,所以,y=(6−34x)x,整理得,y=−34x2+6x;故y与x之间的函数关系式是:y=−34x2+6x(0<x<4);②由−34x2+6x=12×[(3+6)×4÷2]整理得,x2−8x+12=0,解得,x 1=2,x 2=6(舍去),OM =6−2×34=92, 故点P 的坐标为(92,2).解析:(1)点A 的坐标,由图可直接得出;求出BC 、OC 的长,即可得到点B 、C 的坐标;(2)①PM =x ,由图得,0<x <4,由cos∠OAB =35,得到MA =34x ,由矩形的面积,可求出y 与x 之间的函数关系式;②根据S 矩形OMPN =12S 梯形OABC 可得到一点;。
宜兴市环科园联盟2019-2020学年八年级下学期期中数学试题(含答案)
宜兴市环科园联盟2019-2020学年八年级下学期期中数学试题一.选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形,是中心对称图形的是( ) A.B.C.D.2.下列调查中,适宜采用普查方式的是( ) A. 了解一批圆珠笔的寿命 B. 了解全国七年级学生身高的现状C. 了解市民对“垃圾分类知识”的知晓程度D. 检查一枚用于发射卫星的运载火箭的各零部件 3.为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力,就这个问题来说,下列说法正确的是( ) A. 9800名学生是总体B. 每个学生是个体C. 100名学生是所抽取的一个样本D. 样本容量是100 4.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是( )A. 事件A ,B 都是必然事件B. 事件A ,B 都是随机事件C. 事件是A 必然事件,事件B 是随机事件D. 事件是A 随机事件,事件B 是必然事件5.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形. A. 1个 B. 2个C. 3个D. 4个 6.顺次连结对角线相等的四边形各边中点所得的四边形是( )A. 正方形B. 菱形C. 矩形D. 梯形7.如图,在△ABC 中,∠C =90°,AC =8,BC =6,点P 为斜边AB 上一动点,过点P 作PE ⊥AC 于E ,PF ⊥BC 于点F ,连结EF ,则线段EF 的最小值为( )A. 24B.3.6 C.4.8 D. 58.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为( )A. 3B. 4C.52D.72二.填空题(每空2分,共22分)9.如图所示,在Y ABCD中,∠A=50°,则∠B=________,∠C=_________.10.若菱形的面积为24,一条对角线长为8,则另一条对角线长为__,边长为__.11.要反映无锡一周内每天的最高气温的变化情况,宜采用______统计图.12.在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是_____.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .14.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°,AB=2,则BC的长为___________.15.如图,在△ABC中,点D,E分别是边AB,BC的中点,若DE的长是3,则AC的长为___________.16.如图,□ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为________17.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为_____.三.解答题(共54分)18.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2;(3)作出点C关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.19.我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a= ,b= c= ;(2)补全图2;(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分.20.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.(1)求证:AE=CF;(2)求证:四边形AECF 是平行四边形.21.如图,在菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,∠E=50°.(1)求证:BD=EC;(2)求∠BAO的大小.22.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 70 128 171 302 481 599 903摸到白球的频率n m0.75 0.64 0.57 0.604 0.601 0.599 0.602 (1)请估计:当n很大时,摸到白球的概率约为.(精确到0.1)(2)估算盒子里有白球个.(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x最有可能是.23.如图,在矩形ABCD中,BD 的垂直平分线交AD于E,交BC于F,连接BE 、DF.(1)判断四边形BEDF的形状,并说明理由;(2)若AB=8,AD=16,求BE的长.24.数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为5的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.一.选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形,是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念:轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合;并结合图形的特点求解.【详解】A选项,是轴对称图形,不是中心对称图形,故选项错误;B选项,不是轴对称图形,是中心对称图形,故选项正确;C选项,是轴对称图形,不是中心对称图形,故选项错误;D选项,是轴对称图形,不是中心对称图形,故选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,熟练掌握,即可解题.2.下列调查中,适宜采用普查方式的是()A. 了解一批圆珠笔的寿命B. 了解全国七年级学生身高的现状C. 了解市民对“垃圾分类知识”的知晓程度D. 检查一枚用于发射卫星的运载火箭的各零部件【答案】D【解析】【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.了解一批圆珠笔的寿命,适合抽样调查,故A错误;B.了解全国七年级学生身高的现状,适合抽样调查,故B错误;C.了解市民对“垃圾分类知识”的知晓程度,适合抽样调查,故C错误;D.检查一枚用于发射卫星的运载火箭的各零部件,适合普查,故D正确;故选:D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力,就这个问题来说,下列说法正确的是( )A. 9800名学生是总体B. 每个学生是个体C. 100名学生是所抽取的一个样本D. 样本容量是100【答案】D【解析】【分析】根据总体、个体、样本、样本容量的定义即可判断.【详解】A.总体是七年级学生的视力情况,故选项错误;B.个体是七年级学生中每个学生的视力情况,故选项错误;C.所抽取的100个学生的视力情况是一个样本,故选项错误;D.样本容量是100,故选项正确.故选D.【点睛】本题考查了总体、个体、样本、样本容量.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”正确理解总体、个体、样本的概念是解决本题的关键.4.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是()A. 事件A,B都是必然事件B. 事件A,B都是随机事件C. 事件是A必然事件,事件B是随机事件D. 事件是A随机事件,事件B是必然事件【答案】C【解析】【分析】运用必然事件和随机事件的定义判断即可.【详解】解:事件A:367人中至少有2人生日相同,是必然事件;事件B:抛掷一枚均匀的硬币,落地后正面朝上,是随机事件;故答案为C.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,掌握这三种事件的区别和联系是解答本题的关键..5.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.6.顺次连结对角线相等的四边形各边中点所得的四边形是()A. 正方形B. 菱形C. 矩形D. 梯形【答案】B【解析】【分析】根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,再根据四边形对角线相等即可判断.【详解】解:根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,而四边形对角线相等,则中点四边形的四条边均相等,即可为菱形,故选B.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.7.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF ⊥BC于点F,连结EF,则线段EF的最小值为()A. 24B. 3.6C. 4.8D. 5【答案】C【解析】【分析】连接PC ,当CP ⊥AB 时,PC 最小,利用三角形面积解答即可. 【详解】解:连接PC ,∵PE ⊥AC ,PF ⊥BC , ∴∠PEC=∠PFC=∠C=90°, ∴四边形ECFP 是矩形, ∴EF=PC ,∴当PC 最小时,EF 也最小, 即当CP ⊥AB 时,PC 最小, ∵AC=8,BC=6, ∴AB=10, ∴PC的最小值为:AC BCAB=4.8.∴线段EF 长的最小值为4.8. 故选C .【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答. 8.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为( )A. 3B. 4C.52D.72【答案】D 【解析】 【分析】先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论.【详解】∵CE=5,△CEF 的周长为18, ∴CF+EF=18-5=13. ∵F 为DE中点,∴DF=EF . ∵∠BCD=90°,∴CF=12DE , ∴EF=CF=12DE=6.5,∴DE=2EF=13,∴CD=2212DE CE-=,∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=12(BC-CE)=12(12-5)=3.5,故选D.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.使用勾股定理是解决这个问题的关键.二.填空题(每空2分,共22分)9.如图所示,在Y ABCD中,∠A=50°,则∠B=________,∠C=_________.【答案】130°,50°【解析】【分析】根据平行四边形的性质即可得到结果.【详解】解:∵Y ABCD,∠A=50°,∴∠B=130°,∠C=50°.【点睛】本题考查的是平行四边形的性质,解答本题的关键是熟练掌握平行四边形的对角相等,邻角互补.10.若菱形的面积为24,一条对角线长为8,则另一条对角线长为__,边长为__.【答案】(1). 6 (2). 5【解析】【分析】根菱形面积等于对角线积的一半,即可求得另一条对角线的长度,然后根据勾股定理即可求得菱形的边长.【详解】解:如图:∵菱形ABCD的面积为24∴12AC·BD=24,∵AC=8,∴BD=6;∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴OA=12AC=4,OB=12BD=3,∴222234OA OB++.故答案为6,5.【点睛】本题考查了菱形的性质、面积的计算方法以及勾股定理的应用;熟练菱形的面积等于对角线积的一半是解答本题的关键.11.要反映无锡一周内每天的最高气温的变化情况,宜采用______统计图.【答案】折线【解析】【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此判定即可.【详解】解:∵折线统计图表示的是事物的变化情况,∴反映无锡一周内每天的最高气温的变化情况,应选择折线统计图.故答案为:折线.【点睛】本题考查了统计图的选择,解题的关键是根据统计图的特点结合生活的实际情况进行选择.12.在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是_____.【答案】16【解析】【分析】由于摸到红球的频率稳定在25%,由此可以确定摸到红球的概率为25%,而m个小球中红球只有4个,由此即可求出m.【详解】∵摸到红球的频率稳定在25%,∴摸到红球的概率为25%,而m个小球中红球只有4个,∴推算m大约是4÷25%=16.故答案为:16.【点睛】本题考查了利用频率估计概率,其中解题时首先通过实验得到事件的频率,然后利用频率估计概率即可解决问题.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .【答案】020.【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°, ∴∠4=90°﹣70°=20°, ∴∠α=20°. 故答案为20°.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOD=120°, AB=2,则BC 的长为___________.【答案】23【解析】 【分析】由条件可求得AOB V 为等边三角形,则可求得AC 的长,在Rt ABC V 中,由勾股定理可求得BC 的长.【详解】Q120AOD ∠=︒, ∴60AOB ∠=︒, Q 四边形ABCD 为矩形 ∴AO OC OB ==, ∴AOB V 为等边三角形,∴2AO OC OB AB ====, ∴4AC =,在Rt ABC V 中,由勾股定理可求得23BC =. 故答案为:23.【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.15.如图,在△ABC 中,点D ,E 分别是边AB ,BC 的中点,若DE 的长是3,则AC 的长为___________.【答案】6 【解析】 【分析】根据三角形中位线定理计算即可.【详解】∵点D ,E 分别是边AB ,BC 的中点, ∴AC=2DE=6, 故答案为6.【点睛】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________【答案】8 cm【解析】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8cm,故答案为8cm.点睛:此题考查了平行四边形的性质以及线段的垂直平分线的性质,解答本题的关键是判断出EO示线段BD的中垂线.17.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为_____.5+1【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,22215+=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值5.5.【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.三.解答题(共54分)18.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2;(3)作出点C关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.【答案】⑴作图见解析;(2)作图见解析;(3)5.5<x<8.【解析】【分析】(1)利用网络特点和旋转的性质画出点B、C的对应点B1、C1,则可得到△AB1C1;(2)根据关于原点的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)先利用关于x轴的对称点的坐标特征写出P点坐标,再描点得到P点,然后观察图形可判断x的取值范围.【详解】解:(1)如图△AB1C1为所作;(2)如图△A2B2C2为所作;(3)如图,点P为所作;x的取值范围为5.5<x<8.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查另外平移变换.19.我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了 名学生进行体育测试,表(1)中,a= ,b= c= ; (2)补全图2;(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分.【答案】(1)50, 0.2, 7, 0.32;(2)作图见解析;(3)700人 【解析】 【分析】(1)根据成绩段160≤x<170的频数与频率求出抽取学生总数,进而求出a ,b ,c 的值即可; (2)根据成绩段180≤x<190的频数,补全图2即可;(3)根据)“跳绳”数在180(包括180)以上人数的频率乘以1000即可得到结果.【详解】解:(1)根据题意得:5÷0.1=50;a=10÷50=0.2;b=50×0.14=7;c=16÷50=0.32; 故答案为50;0.2;7;0.32;(2)成绩段180⩽x<190的频数为7,补全图2,如图所示:;(3)根据题意得:1000×(0.14+0.32+0.24)=700(名), 则估计全校九年级有700名学生在此项成绩中获满分. 20.如图,在□ ABCD 中,点E 、F 在对角线BD 上,且BE =DF. (1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.【答案】(1)证明见试题解析;(2)证明见试题解析. 【解析】 【分析】(1)根据平行四边形的性质可得AB=CD ,AB ∥CD ,然后可证明∠ABE=∠CDF ,再利用SAS 来判定△ABE ≌△DCF ,从而得出AE=CF .(2)首先根据全等三角形的性质可得∠AEB=∠CFD ,根据等角的补角相等可得∠AEF=∠CFE ,然后证明AE ∥CF ,从而可得四边形AECF 是平行四边形. 【详解】(1)∵四边形ABCD 是平行四边形, ∴AB=CD ,AB ∥CD . ∴∠ABE=∠CDF . 在△ABE 和△CDF 中,AB CD ABE CDF BE DF =∠=∠=⎧⎪⎨⎪⎩,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.21.如图,在菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,∠E=50°.(1)求证:BD=EC;(2)求∠BAO的大小.【答案】(1)见解析;(2)40°【解析】【分析】(1)先证明四边形BECD是平行四边形,再利用平行四边形的性质即可证明;(2)先说明BD//CE,再利用平行线的性质得到∠ABO=∠E=50°;再由菱形的性质可得AC⊥BD,最后根据直角三角形的性质即可解答.【详解】(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵四边形BECD是平行四边形,∴BD∥CE,∴∠ABO=∠E=50°,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠BAO=90°﹣∠ABO=40°【点睛】本题考查了菱形的性质、平行四边形的判定与性质、平行线的性质、直角三角形的性质;熟练掌握菱形的性质是解答本题的关键.22.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 70 128 171 302 481 599 903摸到白球的频率nm0.75 0.64 0.57 0.604 0.601 0.599 0.602(1)请估计:当n 很大时,摸到白球的概率约为 .(精确到0.1) (2)估算盒子里有白球 个.(3)若向盒子里再放入x 个除颜色以外其它完全相同的球,这x 个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x 最有可能是 . 【答案】(1)0.6;(2)24;(3)10 【解析】 【分析】(1)求出所有试验得出来的频率的平均值即可; (2)用总球数乘以摸到白球的概率即可解答;(3)根据概率公式和摸到白球的个数,即可确定x 的值.【详解】解:(1)摸到白球的频率为:(0.75+0.64+0.57+0.604+0.601+0.599+0.602)÷7≈0.6 则当n 很大时,摸到白球的频率将会接近0.6. (2)40×0.6=24(个) 答:盒子里有白球24个; 故答案为24. (3)由题意得:24150%40x+=+ ,解得:x=10.答:可以推测出x 最有可能是10; 故答案为:10.【点睛】本题考查了利用频率估计概率,理解概率的定义和概率公式是解答本题的关键. 23.如图,在矩形ABCD 中,BD 的垂直平分线交AD 于E ,交BC 于F ,连接BE 、DF.(1)判断四边形BEDF 的形状,并说明理由; (2)若AB=8,AD=16,求BE 的长.【答案】(1)四边形BEDF 是菱形,理由见解析;(2)BE 的长为10. 【解析】 【分析】(1)如图,由垂直平分线的性质可得,BE DE BF DF ==,再由等边对等角和平行线的性质得13∠=∠,根据三线合一的性质可知BEF ∆是等腰三角形,且BE BF =,从而得出四边形BEDF 是菱形; (2)设BE x =,由题(1)的结论可得DE 的长,从而可得AE 的长,在Rt ABE ∆中利用勾股定理即可得.【详解】(1)四边形BEDF 是菱形,理由如下:EF Q 是BD 的垂直平分线,,BE DE BF DF BD EF ∴==⊥ 12∠∠∴=∵四边形ABCD 是矩形//AD BC ∴32∴∠=∠13∠∠∴=,即BD 是EBF ∠的角平分线BD EF ⊥QBEF ∴∆是等腰三角形,且BE BF = BE DE DF BF ∴===∴四边形BEDF 是菱形; (2)设BEx =,由(1)可得DE BE x ==则16AE AD DE x =-=-又∵四边形ABCD 是矩形90A ∴∠=︒在Rt ABE ∆中,222AB AE BE +=,即2228(16)x x +-=,解得10x =所以BE 的长为10.【点睛】本题考查了角平分线的性质、等腰三角形的性质、菱形的定义、勾股定理,掌握灵活运用这些性质和定理是解题关键.24.数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为5的正方形AEFG 按图1位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由.(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长.【答案】(1)详见解析;(2)3. 【解析】 【分析】(1)根据正方形的性质,得△ADG ≌△ABE ,所以∠AGD =∠AE B. 延长EB 交DG 于点H .由图形及题意,得到∠DHE =90°,所以,DG BE ⊥.(2)根据正方形的性质等,先证明△ADG ≌△ABE (SAS ) ,得到DG=BE . 过点A 作AM ⊥DG 交DG 于点M .由题意,得AM =12BD =1,再由勾股定理,得到GM =2,所以DG =DM +GM =1+2=3,最后得到BE =DG =3. 【详解】(1)Q 四边形ABCD 与四边形AEFG 正方形∴AD =AB ,∠DAG =∠BAE =90°,AG =AE ∴△ADG ≌△ABE ∴∠AGD =∠AEB如图1,延长EB 交DG 于点HQ △ADG 中 ∠AGD +∠ADG =90°∴∠AEB +∠ADG =90°Q △DEH 中, ∠AEB +∠ADG +∠DHE =180°∴∠DHE =90° ∴DG BE(2)Q 四边形ABCD 与四边形AEFG 是正方形∴AD =AB , ∠DAB =∠GAE =90°,AG =AE∴∠DAB +∠BAG =∠GAE +∠BAG ∴∠DAG =∠BAEQ AD =AB , ∠DAG =∠BAE ,AG =AE∴△ADG ≌△ABE (SAS ) ∴DG =BE如图2,过点A 作AM ⊥DG 交DG 于点M , ∠AMD =∠AMG =90°Q BD 是正方形ABCD 的对角线∴∠MDA =∠MDA =∠MAB =45°, BD =2 ∴AM =12BD =1 在Rt △AMG 中, ∵222AM GM AG +=∴GM =2∵DG =DM +GM =1+2=3 ∴BE =DG =3【点睛】本题考查了三角形全等判定定理及勾股定理在图形证明中的综合运用,熟练掌握三角形全等判定定理及勾股定理在图形证明中的综合运用.。
江苏省宜兴实验学校2019学年初二下学期期中考试数学试卷【含答案及解析】
江苏省宜兴实验学校2019学年初二下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列手机软件图标中,属于中心对称图形的是()A. B. C. D.2. 下列各式:中,分式有()A. 1个B. 2个C. 3个D. 4个二、选择题3. 分式的值为0,则x的值为()A.-3 B.3 C.0 D.±3三、单选题4. 如果把中的x与y都扩大为原来的5倍,那么这个代数式的值()A. 不变B. 扩大为原来的5倍C. 缩小为原来的D. 扩大为原来的10倍5. 下列约分正确的是()A. B. C. D.6. 已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A. 选①②B. 选选①③C. 选②③D. 选②④7. 对于函数,下列说法错误的是()A. 它的图像分布在一、三象限B. 它的图像关于原点对称C. 当x>0时,y的值随x的增大而增大D. 当x<0时,y的值随x的增大而减小8. 如图,在等边三角形ABC中,AB =6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,当以A,E,F,C为顶点的四边形是平行四边形时,运动时间t的值为()A. 2sB. 6sC. 2s或6sD. 8s四、选择题9. 如图,正比例函数和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1五、单选题10. 如图,矩形BCDE的各边分别平行于轴或轴,物体甲和物体乙由点(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标是()A. (-1,1)B. (1,-1)C. (-2,0)D. (-1,-1)六、填空题11. 如果分式有意义,那么x的取值范围是 ___________.分式的最简公分母是_______________.12. 关于x的方程的解是正数,则a的取值范围是_________.13. 如图,在四边形ABCD中,已知AB∥DC, AB=DC,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是_____________.(填上你认为正确的一个答案即可)14. 如图,菱形ABCD中,AC =6, BD =8,则菱形的周长是____,菱形的面积是____.15. 如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为_________.16. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为_______________.17. 如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为_______.18. 如图,在平面直角坐标系中,函数 (x>0,常数k>0)的图象经过点A(1,2)、B(m,n)(m>1).过点B作y轴的垂线,垂足为C若△ABC的面积为2,则点B的坐标为________.七、解答题19. 计算或化简(1)(2)先化简,再求值:,其中=1.20. 已知,与成正比例,与成反比例,且当时,,当时,,求与之间的函数关系式.21. 解方程22. 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2 ;(3)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标 .23. 如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?24. 如图,已知反比例函数的图像与一次函数的图像交于A、B两点,A (1,n),B(,-2).(1)求反比例函数和一次函数的解析式;(2)求AOB的面积.25. 某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年4月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.(1)今年4月份A款汽车每辆售价为多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为6.5万元,B款汽车每辆进价为5万元,公司预计用不少于90万元且不多于96万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为7万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所购进汽车全部售完,且所有方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?26. 我们定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,在△ABC中,AB=BC,且BC≠AC,请你在图1中用尺规作图作出△ABC的一条“等分积周线”;(2)在图1中,过点C能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由.(3)如图3,在△ABC中,AB=BC=6cm,AC=8cm,请你不过△ABC的顶点,画出△ABC的一条“等分积周线”,并说明理由.27. 如图,在平面直角坐标系中,直线y=﹣分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),四边形ABCD是正方形.(1)填空:b= ;(2)点D的坐标为;(3)点M是线段AB上的一个动点(点A、B除外),在x轴上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案及解析第2题【答案】第3题【答案】第5题【答案】第6题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。
2019-2020学年八年级下学期期中考试数学试卷(含答案)
2019-2020学年八年级下学期期中考试数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1、下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③ B.①③⑤ C.①②③ D.①②③⑤2、在菱形ABCD中,如果∠B=110°,那么∠D的度数是A.35° B.70° C.110° D.130°3、在三边分别为下列长度的三角形中,是直角三角形的是()A.9,12,14 B.2,, C.4,3, D.4,3,54、化简的结果是()A.﹣ B.﹣ C.﹣ D.﹣5、如图,在▱ABCD中,∠ODA=90°,AC=20cm,BD=12cm,则AD的长为()A.8cm B.10cm C.12cm D.16cm6、已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形形状是(A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形 D.直角三角形7、下列运算正确的是()A.﹣= B. =2 C.﹣= D. =2﹣8、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2 B.3 C.4 D.59、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,则BE的长为()A. B.2 C.4﹣4 D.4﹣210、已知a<b,则化简二次根式的正确结果是()A.B.C.D.11、实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定12、已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,BP长为()A.1 B.2 C.2.5 D.3二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上13、小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?(填对或错).14、已知x=+1,则x2﹣2x+4= .15、如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD的面积.16、如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.17、如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若EF=2,BC=10,则AB的长为.18、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= .三、解答题(共66分。
江苏省2019-2020年八年级下学期期中考试数学试卷9
江苏省2019-2020年八年级下学期期中考试数学试卷一、细心选择(本大题共8小题,每小题3分,共24分.)1.下列调查中:①调查你所在班级同学的年龄情况;②检测无锡的空气质量;③为保证“风云二号08星”成功发射,对其零部件进行检查;④对乘坐某航班的乘客进行安检.其中适合采用抽样调查的是( ▲ ) A .① B . ② C . ③ D . ④2. 每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了10%进行调查.在这次调查中,样本容量是( ▲ ) A .500 B. 10% C .50 D.53. 下列约分正确的是 ( ▲ )A.632a a a = B.a x a b x b+=+ C.22a b a b a b +=++ D.1x y x y --=-+ 4. 分式nm nn m mn n m m -+-+,,2)(的最简公分母是 (▲ ) A.)()(2n m n m -+ B.)()(3n m n m -+ C.))((n m n m -+ D.222)(n m - 5.已知x-y ≠0,且2x-3y=0,则分式2x yx y--的值为 ( ▲ ) A .-6 B. -1 C .2 D. 4 6.已知□ABCD 中,∠B=4∠A ,则∠D=(▲ ) A .18° B .36° C .72° D .144°7.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ,②AD =BC ,③OA =OC ,④OB =OD ,从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( ▲ ) A .3种 B .4种 C .5种 D .6种8.如图,Rt △ABC 中,∠C=90°,AC =12,BC=5,分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABDE 、ACFG 、BCIH,四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则S 1+S 2+S 3+ S 4 等于 ( ▲ ) A .60 B .90 C .144 D . 169 二、精心填空(本大题共9小题,每空2分,共22分.)9.某班50名学生在适应性考试中,分数段在90-100分的频率为0.1,则该班在这个分数段的学生有 ▲ 人.10.现有一个不透明的布袋中装有6个小球,分别为1个黑球、2个白球和3个红球,现从中随机摸出3个球.请写出一个不可能事件: ▲ .11.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才所想数字,把乙所猜数字记为b ,且a 、b 分别取0、1、2,若a 、b 满足1a b -≤,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,得出“心有灵犀”的概率为 ▲ . 12. 当x ▲ 时,分式5x -2有意义;若分式x -3x +4的值为0,则x = ▲ .S 4S1S 3A CB D E F G H I S 2第8题13.不改变分式的值,将分式12231223x yx y -+的分子、分母的各项系数化为整数得 ▲ ; 计算111m m m+--的结果为 ▲ . 14. 观察:111a m=-,a 2=1﹣,a 3=1﹣,a 4=1﹣,…,则a 2015= ▲ (用含m 的代数式表示).15.如图,将△ABC 沿它的中位线MN 折叠后,点A 落在点A ’处,若∠A=30°,∠B=115°,则∠A ’NC= ▲ °.16.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=1,则图中阴影部分的面积为▲ .17.如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm,BC=10cm,则折痕EF 的最大值是 ▲ .三、用心解答(本大题共54分) 18.(本题8分,每小题4分)计算:⑴ 3155m m m-+⑵ 211a a a ---19.(本题6分)先化简,再求值:222a b b a b a b a b +-+--,将32a b =代入求值.20.(本题8分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 ▲ 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数; (4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?第15题第16题第17题ACB E F DB‘21.(本题6分)如图所示的正方形网格中,△AB C的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.(提醒:每个小正方形边长为1个单位长度)22.(本题8分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?23.(本题8分)如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.24.(本题10分)在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD 与∠POD重叠部分的面积为y.①求当t=4,8,14时,y的值.②求y关于t的函数解析式.(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.①P,Q两点在第__▲____秒相遇;正方形ABCD的边长是__▲____.②点P的速度为__▲____单位长度/秒;点Q的速度为___▲___单位长度/秒.八年级数学参考答案及评分标准一、细心选择(本大题共8小题,每小题3分,共24分.)1、B ;2、C ;3、D ;4、A ;5、D ;6、D ;7、B ;8、B . 二、精心填空(本大题共9小题,每空2分,共22分.)9、5; 10、 摸到3个黑球(答案不唯一); 11、79; 12、≠2 3; 13、3434x y x y -+ 1;14、11m -; 15、 110; 16、3 17三.用心解答(本大题共54分)解答应写出演算步骤.18、⑴原式=151555m m m-+(2分) ⑵原式= 2(1)(1)11a a a a a +---- (2分) =51 (4分) =11-a (4分) 19、原式=2222222a b b a b a b +---(2分) =222a ab - (4分) 代入计算得95,计算正确再得2分.20、(1)200(2分) (2)图形正确(4分)(图略)(3)C 级所占圆心角度数:360°⨯15%=54°(6分) (4)达标人数约有8000⨯(25%+60%)=6800(人)(8分)21、⑴图略(2分) (2)图略(4分) (3)5.5<x<8(6分)22、(1)∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线.∴DE ∥BC. (2分) 又∵EF ∥AB ,∴四边形DBFE 是平行四边形. (4分)(2)当AB=BC 时,四边形DBEF 是菱形.理由如下:(5分)∵D 是AB 的中点,∴BD=AB.∵DE 是△ABC 的中位线,∴DE=BC. ∵AB=BC ,∴BD=DE.又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形.(8分) 23、(1)答:AE ⊥GC ;(1分)证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,(2分)∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(4分)答:成立;(5分)证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,(6分)∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(8分)24.解:(1)∵正方形ABCD的边长为12,∴S正方形ABCD=122=144.∵O是AD的中点,∴OA=OD=6.①(Ⅰ)当t=4时,如图1①.∵AP=2×4=8,OA=6,∴S△OAP=×AP×OA=24,∴y=S正方形ABCD﹣S△OAP=144﹣24=120;(1分)(Ⅱ)当t=8时,如图1②.∵AB+BP=2×8=16,AB=12,∴BP=4,∴CP=12﹣4=8,∴y=(OD+CP)×CD=×(6+8)×12=84;(2分)(Ⅲ)当t=14时,如图1③.∵AB+BC+CP=2×14=28,AB=BC=CD=12,∴DP=12×3﹣28=8,∴y=S△ODP=×DP×OD=24;(3分)②分三种情况:(Ⅰ)当0≤t≤6时,点P在边AB上,如图1①.∵AP=2t,OA=6,∴S△OAP=×AP×6=6t,(4分)∴y=S正方形ABCD﹣S△OAP=144﹣6t;(Ⅱ)当6<t≤12时,点P在边BC上,如图1②.∵AB+BP=2t,AB=CD=12,∴CP=24﹣2t,∴y=(OD+CP)×CD=×(6+24﹣2t)×12=180﹣12t;(5分)(Ⅲ)当12<t≤18时,点P在边CD上,如图1③.∵AB+BC+CP=2t,AB=BC=CD=12,∴DP=36﹣2t,∴y=S△ODP=×DP×OD=108﹣6t.(6分)综上可知,y=;(2)①∵t=0时,S=S正方形ABCD=16,∴正方形ABCD的边长=4.(7分)∵t=4时,S=0,∴P,Q两点在第4秒相遇;(8分)②∵S与t的函数图象由5段组成,∴P,Q相遇于C点,∵时间相同时,速度之比等于路程之比,而点P运动的路程=点Q运动的路程的2倍,∴点P的速度=点Q的速度的2倍.设点Q的速度为a单位长度/秒,则点P的速度为2a单位长度/秒.∵t=4时,P,Q相遇于C点,正方形ABCD的边长为4,∴4(a+2a)=4×3,∴a=1.故点P的速度为2单位长度/秒,点Q的速度为1单位长度/秒.(10分)。
苏科版2019-2020学年初二数学第二学期期中测试卷及答案
八年级数学下册期中测试卷(考试时间:120分钟,满分120分)一、选择题(每小题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.去年济川中学有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量3.反比例函数2yx的图象位于( ).A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限4.下列说法正确的是( )(1)抛一枚硬币,正面一定朝上;(2)掷一颗骰子,点数一定不大于6;(3)为了解一种灯泡的使用寿命,宜采用普查的方法;(4)“明天的降水概率为80%”,表示明天会有80%的地方下雨.A. 1个B. 2个C. 3个D. 4个5. 顺次连接矩形四边中点所组成的四边形是( )A.平行四边形B.菱形C.矩形D.以上图形都不是6. 如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°第6题第6题第7题第8题7. 在矩形ABCD中,已知AD=4,AB=3,P是AD上任意一点,PE⊥BD于E,PF⊥AC于F,则PE+PF的值为( ).A.3 B.245C.5 D.1258.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对二、填空题(每空3分,共30分)9. “一个有理数的绝对值是负数”是 .(填 “必然事件”或“不可能事件”或“随机事件”) 10. 一个四边形的边长依次是a 、b 、c 、d ,且满足22(a )(b )0c d -+-=,则这个四边形是 .11. 已知P 1(﹣1,y 1)、P 2(1,y 2)、P 3(2,y 3)是反比例函数y=的图象上的三点,则y 1、y 2、y 3的大小关系是(用“<”连接) 新- 课-标 -第 -一-网 12.如图,在菱形ABCD 中,∠BAD =60°,BD =4,则菱形ABCD 的周长是___________.第12题 第13题 第14题 第16题 13.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为___________.14. 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,除此以外小方格地面完全相同.一只自由飞行的小鸟,将随意落在图中所示的方格地面上,则小鸟落在草坪上的概率为 .15. 要用反证法证明命题“三角形中必有一个内角小于或等于60°”,首先应假设这个三角形中 .16. 如图,090,Rt ABC ACB ∆∠=在中,D 、E 、F 分别是AB 、BC 、CA 的中点,若5CD cm =,则EF .17.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .18.如图,在平面直角坐标系xoy 中,一次函数24y x =-的图象经过正方形OABC 的顶点和C ,则正方形OABC的面积为 . 第18题 三、解答题:(共66分)19.(本题6分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO . 求证:四边形ABCD 是平行四边形.20.(本题共6分)已知y=y 1+y 2,若y 1与x -1成正比例,y 2与x+1成反比例,当x=0时,y=-5;当x=2时,y=1. (1) 求y 与x 的函数关系式; (2) 求当x=-2时,y 的值.21.(本题8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别 为A(﹣2,2),B(0,5),C(0,2).(1) 画△A 1B 1C ,使它与△ABC 关于点C 成中 心对称;(2) 平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),画出平移后对应的△A 2B 2C 2;(3) 若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,则旋转中心的坐标为______.22.(本题8分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1) 图1中“统计与概率”所在扇形的圆心角为 度; (2) 图2、3中的a = ,b = ;23. (本题8分)一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数n 200 300 400 500 600 700 800 1000 摸到红球次数 m 151221289358429497568 701 摸到红球频率m n0.75 0.74 0.72 0.72 0.72 0.71ab图1 45%5%实践与综合应统计与概率数与代数空间与图形40%67a 44数与式函数数与代数(内容)图2课时数方程(组)与不等式(组)A 一次方程B 一次方程组C 不等式与不等式组D 二次方程E 分式方程 图318b12A BC D369121518方程(组) 与不等式(组)课时数133EP N M GE D C B A O (1) 表格中a= ,b= ;(2) 估计从袋子中摸出一个球恰好是红球的概率约为 ;(精确到0.1) (3) 如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?24. (本题8分)如图,在平面直角坐标系中,正比例函数y=3x 与反比例函数y =的图象交于A ,B 两点,点A 的横坐标为2,AC ⊥x 轴,垂足为C ,连接BC . (1) 求反比例函数的表达式; (2) 求△ABC 的面积;25.(本题10分)如图,菱形ABCD 的边长为48cm ,∠A=60°,动点P 从点A 出发,沿着线路AB ﹣BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC ﹣CB ﹣BA 做匀速运动.(1) 求BD 的长; (2) 已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s .经过12秒后,P 、Q 分别到达M 、N 两点,试判断△AMN的形状,并说明理由,同时求出△AMN 的面积; (3) 设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 为直角三角形,试求a 的值.26.(本题满分12分)如图,正方形OEFG 绕着边长为a 的正方形ABCD 的对角线的交点O旋转,边OE 、OG 分别交边AD 、AB 于点M 、N . (1) 求证:OM =ON ;(2) 问四边形OMAN 的面积是否随着a 的变化而变化?若不变,请用a 的代数式表示出来,若变化,请说明理由;(3) 试探究PA 、PN 、BN 三条线段之间有怎样的数量关系,并写出推理过程.参考答案一、CCBA BDDA二、9.不可能事件10.平行四边形11. y1<y3<y2 12.1613.45014.15.三角形的三个内角都大于60016.517.150或75018.三、19.略20. (1)(2)-3 (3分+3分)21.(1)(2)略(3)(0,-2) (3分+3分+2分)22.(1)36 (2分) (2)60,14 (2分+2分) (3)27 (2分)23.(1)0.71 0.71 (2分+2分)(2)0.7 (2分) (3)6(2分)24.(1)(2)12 (4分+4分)25.(1)48(2分)(2)直角三角形(1分)理由(2分)面积(2分)(3)4, 12, 24(共3分,对一个1分)26.(1)略(3分)(2)不变,(2分+2分)(3)理由略(2分+3分)。
宜兴市初二年级数学下册期中重点试卷(含答案解析)-学习文档
宜兴市2019初二年级数学下册期中重点试卷(含答案解析)宜兴市2019初二年级数学下册期中重点试卷(含答案解析)一、选择题(共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形是()A. B. C. D.2.下列分式中是最简分式的是()A. B. C. D.3.下列调查中,适合普查的是()A.中学生最喜欢的电视节目B.某张试卷上的印刷错误C.质检部门对各厂家生产的电池使用寿命的调查D.中学生上网情况4.下列各式中,与是同类二次根式的是()A. B. C. D.5.在平面中,下列说法正确的是()A.四边相等的四边形是正方形B.四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形6.已知点P(x1,﹣2)、Q(x2,2)、R(x3,3)三点都在反比例函数y= 的图象上,则下列关系正确的是()A. x1<x3<x2 B. x<1x2<x3 C. x3<x2<x1 D. x2<x3<x17.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A. 22 B. 18 C. 14 D. 118.如图,由25个点构成的5×5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A,B 为顶点,面积为2的阵点平行四边形的个数为()A. 3 B. 6 C. 7 D. 9二、填空题(共10小题,每小题2分,满分20分)9.在分式中,当x=时分式没有意义.10.任意选择电视的某一频道,正在播放动画片,这个事件是事件.(填“必然”“不可能”或“不确定”)11.若x<0,则的结果是.12.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有个球.13.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.14.已知,则的值是.15.如图,?ABCD的对角线相交于点O,BC=7cm,BD=10cm,AC=6cm,则△AOD的周长为cm.16.如图,矩形OBCD的顶点C的坐标为(1,3),则线段BD 的长等于.17.在四边形ABCD中,对角线AC⊥BD且AC=6、BD=8,E、F 分别是边AB、CD的中点,则EF=.18.如图.两双曲线y= 与y=﹣分别位于第一、第四象限,A是y轴上任意一点,B是y=﹣上的点,C是y= 上的点,线段BC⊥x轴于点D,且3BD=2CD,则△ABC的面积为.三、解答题(本题共8小题,写出必要的演算或解答过程)19.(1)计算(﹣)×(2)解方程: + =1.20.先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.21.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.22.2019年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A 食品安全 80B 教育医疗 mC 就业养老 nD 生态环保 120E 其他 60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?23.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.24.如图,点B(3,3)在双曲线y= (x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴、y轴的正半轴上,且点A、B、C构成的四边形为正方形(1)求k的值;(2)求点A的坐标.25.宜兴紧靠太湖,所产百合有“太湖人参”之美誉,今年百合上市后,甲、乙两超市分别用12019元以相同的进价购进质量相同的百合,甲超市销售方案是:将百合按分类包装销售,其中挑出优质的百合400千克,以进价的2倍价格销售,剩下的百合以高于进价10%销售.乙超市的销售方案是:不将百合分类,直接包装销售,价格按甲超市分类销售的两种百合售价的平均数定价.若两超市将百合全部售完,其中甲超市获利8400元(其它成本不计).问:(1)百合进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.26.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A 运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.宜兴市2019初二年级数学下册期中重点试卷(含答案解析)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分。
江苏省2019-2020八年级下学期期中考试数学试题3
江苏省 八年级下学期期中考试数学试题一、选择题(每题3分,共24分.)1. 下列图形中,既是轴对称图形又是中心对称图形的是 ( )2.使分式24xx -有意义的x 的取值范围是 ( )A .x =2B .x ≠2C .x =-2D .x ≠-23. 若323xyx y+中的x 和y 都扩大到原来的2倍,那么分式的值 ( )A.缩小为原来的一半B.不变C.扩大到原来的2倍D.扩大到原来的4倍 4. 顺次连接矩形四边中点所得的四边形一定是 ( ) A.平行四边形 B.矩形 C.菱形 D.正方形5、矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )6、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A 、8 B 、10 C 、8或10 D 、无法确定7、如图,在一张矩形纸片ABCD 中,AB =4,BC =8,点E ,F 分别在AD ,BC上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF =2.以上结论中,你认为正确的有( )个. A . 1 B . 2 C . 3 D . 48. 如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =和y =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:A .B .C .D .QDCP BA①=; ②阴影部分面积是(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称. 其中正确的结论是( )A .①②③B .②④C .①③④D . ①④二、填空题(每空2分,共20分)9、已知双曲线x k y 1+=经过点(-1,2),那么k 的值等于 .10、若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 。
江苏省宜兴和桥镇第二中学2019-2020学年八年级下数学期中复习(无答案)
八年级数学第二学期期中复习一、选择题1、.为了了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,那么这批电视机中,每台电视机的使用寿命是这个问题的 ( )A .个体B .总体C .总体的一个样本D .样本容量2.、把分式2x -y2x +y中的x 、y 都扩大到原来的4倍,则分式的值 ( ) A .扩大原来的8倍 B .扩大到原来的4倍 C .缩小到原来的14D .不变3、.以下说法正确的是 ( )A .在367人中至少有两个人的生日相同B .一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C .一副扑克牌中,随意抽取一张是红桃K ,这是必然事件D .一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性4.若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1、2、3这三个数字构成的,数字不重复的三位数是“凸数”的概率是………………………( ) A .13B .12C .23D .565.下列各式从左到右的变形正确的是( )A .a 2-0.2a a 2-0.3a 3 =a 2-2a a 2-3a 3B .-x +1x -y = x -1x -yC .1-12a a +13 = 6-3a 6a +2D .b 2-a 2a +b =a -b 6. 规定★为:x ★))(1(11A y x xy y +++=.已知2★1=23.则25★26的值为 ( )A .2675-B . 4675C . 22-675675或D . 26757.下列说法中错误的是 ( ) A .平行四边形的对边相等B .对角线相等的四边形是矩形C .矩形的对角线相等D .两组对边分别相等的四边形是平行四边形8. 顺次连结菱形各边中点所得的四边形一定是 ( ) A .正方形 B .菱形 C .等腰梯形 D .矩形 9. 若要使分式()2122++x x 的值为整数,则整数x 可取的个数为 ( )A .5个B .2个C .3个D .4个第18题10、某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x 米,则可得方程153000103000=--xx ,根据此情景,题中用“…”表示的缺失的条件应补为( )A .每天比原计划多铺设10米,结果延期15天完成.B .每天比原计划少铺设10米,结果延期15天完成.C .每天比原计划多铺设10米,结果提前15天完成.D .每天比原计划少铺设10米,结果提前15天完成. 11.今年我市工业试验区投资50 760万元开发了多个项目,今后还将投资106 960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目的平均投资是x 万元,那么下列方程符合题意的是( )A .106960x +500-50760x =20B . 50760x -106960x +500=20C . 106960x +20-50760x =500D .50760x -106960x +20=500二、填空1、小燕抛一枚硬币10次,有7次正面朝上,当她抛第 11次时,正面向上的概率为______________2.下列4个分式:①a +3a 2+3 ;②x -y x 2-y 2 ;③m 2m 2n ;④2m +1 ,中最简分式有___ _个.3. 要使关于x 的方程)1)(2(121-+=--++x x ax x x x 的解是正数,a 的取值范围是__.. 4.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为 ,,面积为 . 5. 若顺次连接四边形ABCD 四边中点形成的四边形为矩形,则四边形ABCD 满足的条件为6.如图,在长方形ABCD 中,E 是AD 的中点,F 是CE 的中点,若△BDF 的面积为6平方厘米,则长方形ABCD 的面积是 平方厘米.7.如图正方形ABCD 中,点E 在边DC 上,DE =2,EC =1 ,把线段AE 绕点A 旋转,使点E 落在直线..BC 上的点F 处,则F 、C 两点的距离为 .8. 如图,平行四边形ABCD 中,AB=8cm ,AD=12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有 次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2020学年度第二学期期中试卷
初二数学 2020年5月
本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为100分钟.试卷满分100分.
一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........
涂黑.) 1.以下问题,不适合用普查的是 ( ▲ ) A .了解全班同学每周体育锻炼的时间 B .了解一批灯泡的使用寿命
C .某区教育局招聘教师,对应聘新教师面试
D .了解“神舟十号”飞船零部件的状况 2.为了解无锡市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的 数学成绩进行统计分析.在这个问题中,样本是指 ( ▲ )
A .150
B .无锡市2017年中考数学成绩
C .被抽取的150名考生
D .被抽取的150名考生的中考数学成绩
3.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是 ( ▲ )
4.下列分式中是最简分式的是 ( ▲ )
A .2x
x
2
+1 B .42x C .x -1x 2-1 D .1-x x -1 5.下列性质中,平行四边形一定具有的性质是 ( ▲ )
A .
B .
C .
D .
A .对角线相等
B .对角线互相平分
C .对角线互相垂直
D .邻边互相垂直 6.若分式33
x x -+的值为0,则x 的值为 ( ▲ ) A .3 B .―3 C .3或―3 D .0
7.分式a +b ab (a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值 ( ▲ )
A .不变
B .扩大为原来的2倍
C .缩小为原来的12
D .缩小为原来的14
8.今年我市工业试验区投资50 760万元开发了多个项目,今后还将投资106 960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目的平均投资是x 万元,那么下列方程符合题意的是
( ▲ ) A .106960x +500-50760x =20 B .
50760x -106960x +500=20 C . 106960x +20-50760x =500 D .50760x -106960x +20=500
9.矩形ABCD 与矩形CEFG 如图放置,点B 、C 、E 共线,点C 、D 、G 共线,连接AF ,取AF 的中点H ,连接GH .若BC =EF =2,CD =CE =1,则GH 的长为 ( ▲ )
A . 1
B . 23
C . 2
D . 5
10.如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点,且BE =CF ,连接BF 、DE ,则BF +DE 的最小值为 ( ▲ )
A 12
B 20
C 48
D 80
Q P O D C B A 二、填空题(本大题共8
题,每题2分,共16分.请把答案直接填写在答题卡相应位置.......
上.) 11.要使分式3
5-x 有意义,则x 的取值范围是 ▲ . 12.一个不透明的口袋中有质地均匀大小相同的1个白球和2个黑球,从中任意摸出1个球,摸出白球的概率是 ▲ .
13.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件 ▲ ,使□ABCD 是菱形.
14.若x -y ≠0, x -2y =0,则分式y
x y x --1110的值 ▲ . 15.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频率为 ▲ .
16.已知菱形ABCD 的对角线AC=10,BD=24,则此菱形的周长为 ▲ .
17.如图,矩形ABCD 的对角线AC 与BD 相交点O ,AC=12,P ,Q 分别为AO ,AD 的中点,则PQ 的长度为 ▲ .
18.如图,在四边形ABCD 中,AB=AD ,∠BAD = ∠BCD=900,连结AC ,若AC=10,则四边形ABCD 的面积为 ▲ .
第9题 第10题 第13题
三、解答题(本大题共8小题,共54分,请在答题卡指定区域内作答..........
,解答时应写出必要的文字说明、证明过程或演算步骤.)
19.(本题满分8分)化简:(1)225x x - (2)211(1)(1)1a a
+--
20.(本题满分8分)解方程:(1)153x x =+ (2) 31144x x x
--=--
21.(本题满分6分)先化简代数式再求值2
444222-÷⎪⎭⎫ ⎝⎛+-+-+a a a a a a ,其中3=a .
22.(本题满分5分)如图,在□ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ADE=∠CBF
第17题 第18题
23.(本题满分6分)某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡
导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 人;
(2)补全条形统计图,并在图上标明相应的数据;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一
餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.
24.(本题满分9分)小明用12元买软面笔记本,小丽用21元买硬面笔记本.
(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?
(2)已知每本硬面笔记本比软面笔记本贵a 元,是否存在正整数a
,使得每本硬面笔记本、软面
剩大量60%不剩剩少量剩一半部分同学用餐剩余情况统计图
餐余情况
剩大量不剩
D A A D
F D A 笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;
若不存在,请说明理由.
25.(本题满分4分)如图,在10×10的网格中,有一格点三角形ABC .(说明:顶点都在网格线交点处的三角形叫做格点三角形)
(1)将△ABC 绕点C 旋转180°,得到△A ′B ′C ,请直接画出旋转后的△A ′B ′C .(友情提醒:别忘了标上相应的字母!)
(2)在网格中以AB 为一边作格点△ABD (顶点在小正方形的顶点处的三角形称为格点三角形),使它的面积是△ABC 的2倍,则点D 的个数有 个.
26.(本题满分8分)如图,平行四边形ABCD 中,AB ⊥AC ,AB =2,AC =4.对角线AC 、BD 相交
于点O ,将直线AC 绕点O 顺时针旋转α°(0°<α<180°
),分别交直线BC 、AD 于点E 、F . (1)当α= °时,四边形ABEF 是平行四边形;
(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形,
①当 = °时,构造的四边形是菱形;
②若构造的四边形是矩形,求该矩形的两边长.
(备用图)(备用图)
2019—2020学年度第二学期期中试卷
初二数学2020年5月一、选择题(本大题共10小题,每小题3分,共30分)
二、填空题(每小题2分,共16分)
11、 x≠3 12、1
3
13、 AB=BC或AC⊥BD或AC平分∠DAB等 14、 9
15、 0.4 16、 52 17、 3 18、 50
三、解答题(本大题共8小题,共54分,请在答题卡指定区域内作答,解答时应写出必要的文字说
明、证明过程或演算步骤.)
19、(1)=2x
x2-5
x2
(2分)=2x−5
x2
(2分)
(2)=a
a−1×(a+1(a−1))
a
(2分) =a+1
a
(2分)
20、(1)解得x=3
4
(3分)经检验是根(1分)
(2)解得x=4(3分)经检验是增根,方程无解(1分)
21、化简为a
a−2
(4分)代入a得3(2分)
22、证得四边形BEDF是平行四边形(4分),得出∠ADE=∠CBF(1分)或者证得△ABF≌
△CDE(3分) 得出∠ADE=∠CBF (2分)
23、(1)1000;(2)标出200;(3)900(必须写出答句) (各2分)
24、(1)设软面笔记本每本x 元,列出
12x =21x+1.2 (1分),解得x=1.6(1分),检验(1分)算出本数为7.5舍去(1分)
(2)列出
12x =21x+a (1分) 解得x=43a (1分);a=3,x=4;a=6,x=8,(舍去);a=9,x=12(各1分) 25、(1)画对图形(2分) (2)5(2分)
26、(1)900 (2分);(2)450或900 (2分) (3)85√5和45√5;125√5和45√5(各1分)。