材料现代分析方法

合集下载

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。

下面将针对常用的材料分析技术进行详细介绍。

一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。

通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。

2. 热分析:如热重分析、差示扫描量热仪等。

利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。

3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。

4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。

二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。

通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。

2. 质谱分析:如质子质谱、电喷雾质谱等。

通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。

3. 电化学分析:包括电化学阻抗谱、循环伏安法等。

通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。

4. 色谱分析:如气相色谱、高效液相色谱等。

利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。

三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。

2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。

3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。

通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。

四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。

2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。

材料现代分析方法

材料现代分析方法

材料现代分析方法现代分析方法是指在化学、物理、生物等科学领域中广泛应用的一种分析技术。

它通过使用先进的仪器设备和相关的算法,能够快速、准确地对物质的成分、结构以及性质进行分析和表征。

本文将介绍几种常见的材料现代分析方法。

一、质谱分析法质谱分析法是一种非常重要的现代分析方法,广泛应用于有机化学、生物化学和环境科学等领域。

它通过将物质分子离子化,并在一个磁场中进行偏转,最后将其质量进行测定,从而确定物质的分子组成和结构。

质谱分析法具有高灵敏度、高分辨率、多组分分析的能力,可以用于确定物质的组成、确认化合物的结构、鉴定杂质等。

二、红外光谱分析法红外光谱分析法是一种基于不同分子振动产生的红外吸收谱谱图,进行物质分析和表征的方法。

该方法的原理是物质在特定波长的红外光照射下,吸收特定的波长,产生特定的振动谱带。

通过对红外光谱的测定和比对,可以确定物质的功能基团、官能团以及化学键的类型和位置,从而研究物质的组成、结构和化学性质。

三、扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种基于电子束显微技术的分析仪器。

其工作原理是在真空环境中,用电子束扫描样品表面,通过检测扫描电子的反射、散射或透射等信号,来获取样品表面的形貌、成分以及晶体结构等信息。

与光学显微镜相比,SEM具有更高的放大倍数、更高的分辨率和更大的深度。

四、X射线衍射(XRD)X射线衍射(XRD)是一种非常常用的材料分析技术,主要用于分析固体材料的结晶结构和晶体学性质。

该方法的原理是通过将物质置于X射线束中,当X射线与样品中的晶体结构相互作用时,会发生衍射现象。

通过测量样品衍射的位置、强度和形状等信息,可以确定样品的晶体结构、晶格参数和晶体定向等。

五、核磁共振(NMR)核磁共振(NMR)是一种通过检测原子核在磁场中的共振信号来进行物质分析的方法。

其工作原理是利用样品中特定原子核的性质,将其置于强大的磁场中,然后通过外加的射频电磁场来激发核自旋共振。

材料现代分析方法

材料现代分析方法

材料现代分析方法材料现代分析方法是指利用现代科学技术手段对材料进行分析和研究的方法。

随着科学技术的不断发展,材料分析方法也在不断更新和完善。

现代材料分析方法的发展,为材料科学研究提供了更加精准、快速和全面的手段,对于材料的研究和应用具有重要的意义。

首先,光谱分析是材料现代分析方法中的重要手段之一。

光谱分析是利用物质对电磁波的吸收、发射、散射等现象进行分析的方法。

常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱等。

通过光谱分析,可以对材料的结构、成分、性质等进行研究和分析,为材料的研究和应用提供重要的信息。

其次,电子显微镜分析也是材料现代分析方法中的重要手段之一。

电子显微镜是利用电子束来照射样品,通过电子与样品相互作用产生的信号来获取样品的显微结构和成分信息的一种显微镜。

通过电子显微镜分析,可以对材料的微观形貌、晶体结构、成分分布等进行研究和分析,为材料的结构性能和应用提供重要的参考。

此外,质谱分析也是材料现代分析方法中的重要手段之一。

质谱分析是利用质谱仪对物质进行分析的方法,通过对物质中离子的质量和相对丰度进行检测和分析,来确定物质的分子结构和成分。

质谱分析可以对材料的组成、纯度、分子量等进行研究和分析,为材料的质量控制和应用提供重要的支持。

综上所述,材料现代分析方法是利用现代科学技术手段对材料进行分析和研究的方法。

光谱分析、电子显微镜分析、质谱分析等都是材料现代分析方法中的重要手段,通过这些方法可以对材料的结构、成分、性能等进行全面的研究和分析,为材料的研究和应用提供重要的支持。

随着科学技术的不断发展,相信材料现代分析方法将会更加完善和精准,为材料科学研究和应用带来更多的新突破。

材料现代分析方法

材料现代分析方法

1000 1
100
10
0.1 0.01
整理课件
1 0.001
0.1 nm 0.0001 μm
13
OM
Ni-Cr合金的铸造组织
整理课件
14
SEM
整理课件
15
人类血细胞SEM照片
酵母
人类精子
整理课件
16
图为IBM公司的Eigler博士用扫描探针显微镜(SPM)搬动 35个氙原子绘制的“IBM”字样。如果这种原子搬动技术 被巧妙使用的话,就完全可以绘制成美妙的原子艺术画。
结构层次 物体尺寸
研究对象
研究方法
宏观结构 > 100 m 大晶粒、颗粒集 团
显微结构 0.2-100m 多晶集团
肉眼、放大 镜
显微镜
亚显微结 构
微观结构
10-200 nm
< 10 nm
微晶集团 晶格点阵
整理课件
扫描电镜
扫描隧道电 镜
8
2.材料分析的内容
表面和内部组织形貌。包括材料的外观形貌(如纳米 线、断口、裂纹等)、晶粒大小与形态、各种相的尺 寸与形态、含量与分布、界面(表面、相界、晶界)、 位向关系(新相与母相、孪生相)、晶体缺陷(点缺 陷、位错、层错)、夹杂物、内应力。
通过电磁性质变化研究分子运动——介电松弛与核磁共 振;
通过体积变化研究分子运动——热膨胀计
整理课件
34
课程说明
教材与参考书 《材料研究方法》——王培铭,许乾慰主编,科学出版社 《材料现代分析方法》——左演声,陈文哲,梁伟主编,北京工业大学
出版社 《聚合物材料表征与测试》 》——杨万泰主编,中国轻工业出版社
基于其它物理性质或电化学性质与材料的特征 关系建立的色谱分析、质谱分析、电化学分析 及热分析等方法也是材料现代分析的重要方法。 相对而言,上述四大类方法在材料研究中应用 得更加频繁。

材料现代分析测试方法

材料现代分析测试方法

材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。

通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。

下面将介绍几种常用的材料现代分析测试方法。

一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。

质谱分析法适用于分析有机物和无机物。

其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。

二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。

不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。

核磁共振谱学适用于有机物和无机物的分析。

由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。

三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。

不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。

红外光谱学适用于有机物和无机物的分析。

它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。

四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。

不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。

X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。

它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。

五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。

扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。

透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。

材料现代分析方法

材料现代分析方法

3
多尺度分析方法
结合不同尺度的分析方法,实现对材料的全方位、多角度的研究。
总结和结论
材料现代分析方法是理解材料性质和应用的关键工具。通过不断发展和创新,我们将能够更好地 设计和优化各种材料,推动科学和工程的进步。
现代分析方法的优势和局限性
1 优势
提供准确、可靠的分析结果,加速研究进展,优化材料性能。
2 局限性
部分方法需要昂贵的设备,技术要求高,可能无法应用于所有材料。
未来材料分析方法的发展趋势
1
先进成像技术
发展更高分辨率和更快速的成像技术,以更全面、准确地表征材料结构。
2
智能数据分析
利用机器学习和人工智能技术,加速材料数据的分析和解释,提高研究效率。
金属合金研究
使用电子显微镜和X射线衍射等技术,研究金 属合金的晶体结构和相变行为。
聚合物表征
通过红外光谱和质谱等技术,分析聚合物的 分子结构和功能性组。
涂层材料评估
利用表面分析技术,研究涂层材料的附着力、 耐腐蚀性和磨损性能。
航空航天材料检测
使用非破坏性测试方法,检测航空航天材料 的裂纹、疲劳和应力状态。
材料现代分析方法
材料现代分析方法涵盖了各种技术和工具,旨在深入研究和理解不同材料的 特性和性能。通过本次演示,我们将介绍一些常用的分析方法以及它们在材 料研究中的应用。
现代分析方法的定义和作用
现代分析方法是一系列科学和技术的应用,用于研究材料的结构、组成、性能和特性。它们的作 用是帮助科学家和工程师深入了解材料,优化其设计和应用。
常用的材料分析方法
光谱分析方法
通过观察和分析材料的光谱特征,了解其 组成和结构。
表面分析方法
研究材料表面的物理和化学特性,如X射 线光电子能谱。

材料现代分析方法

材料现代分析方法

材料现代分析方法一.绪论1.材料现代分析方法:是关于材料成分、结构、微观形貌与缺陷等的现代分析,测试技术及其有关理论基础的科学。

2.基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析与电子显微分析等四大类方法。

3.各种方法的分析、检测过程均可大体分为信号发生器、检测器、信号处理器与读出装置等几部分组成。

二.核磁共振1.核磁共振(Nuclear Magnetic Resonance,NMR):无线电波照射样品时,使特定化学结构环境中的原子核发生的共振跃迁(核自旋能级跃迁)。

2.拉摩尔进动:外磁场与核自旋磁场的相互作用,导致核自旋轴绕磁场方向发生回旋,称为拉摩尔进动。

3.核磁共振现象的产生机理:主要是由核的自旋运动引起的,核的自旋产生了不同的核自旋能级,当某种频率的电磁辐射与核自旋能级差相同时,原子核从低自旋能级跃迁到高自旋能级,产生了核磁共振现象。

4.描述核自旋运动的量子数I与原子核的质子数和中子数有关,有下列三种情况:(1)偶-偶核,I=0;(2)奇-偶核,I为半整数;(3)奇-奇核,I为整数。

5.核磁共振的条件:(1)原子核有自旋现象(I﹥0);(2)在外磁场中发生能级裂分;(2π)。

(3)照射频率与外磁场的比值υB=γIB。

6.1H核磁共振条件:υO=γI2π7.化学位移:某一质子吸收峰出现的位置,与标准物质质子吸收峰出现的位置之间的差异,称为该质子的化学位移δ。

8.化学位移现象:同一种类原子核,但处在不同的化合物中,或是虽在同一种化合物中,但所处的化学环境不同,其共振频率也稍有不同,这就是所谓的化学位移现象。

9.影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键效应和溶剂效应。

质子周围电子云密度↑,屏蔽效应↑,在较高磁场强度处(高场)发生核磁共振,δ小;电子云密度↓,屏蔽效应↓,在较低磁场强度处(低场)发生核磁共振,δ大。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法是指利用现代科学技术手段对材料进行深入的分析和研究的方法。

随着科学技术的不断发展,材料分析方法也在不断更新和完善,为材料科学研究提供了更加丰富和精准的手段。

本文将介绍几种常见的现代材料分析方法,以及它们在材料科学研究中的应用。

首先,光学显微镜是一种常见的材料分析工具。

通过光学显微镜可以对材料的表面形貌进行观察和分析,了解材料的表面特征和微观结构。

光学显微镜具有成本低、操作简便等优点,广泛应用于材料科学研究中。

其次,扫描电子显微镜(SEM)是一种能够对材料进行高分辨率表面成像的工具。

SEM可以对材料的表面形貌进行观察,同时还可以通过能谱分析等手段对材料的成分进行分析。

SEM具有成像清晰、分辨率高等优点,广泛应用于材料的微观结构表征和分析。

X射线衍射(XRD)是一种常用的材料晶体结构分析方法。

通过X射线衍射可以确定材料的晶体结构、晶格常数等信息,对材料的结晶性质进行分析。

X射线衍射具有高分辨率、非破坏性等优点,广泛应用于材料的晶体结构分析和研究。

核磁共振(NMR)是一种能够对材料的分子结构和动力学性质进行分析的方法。

通过核磁共振可以确定材料中原子核的位置、化学环境等信息,对材料的分子结构进行分析。

核磁共振具有高灵敏度、高分辨率等优点,广泛应用于材料的分子结构表征和分析。

电子顺磁共振(EPR)是一种能够对材料中未成对电子进行分析的方法。

通过电子顺磁共振可以确定材料中未成对电子的数量、种类、环境等信息,对材料的电子结构进行分析。

电子顺磁共振具有高灵敏度、非破坏性等优点,广泛应用于材料的电子结构表征和分析。

综上所述,现代材料分析方法为材料科学研究提供了丰富的手段和工具,为我们深入了解材料的微观结构和性质提供了重要的支持。

随着科学技术的不断发展,相信会有更多更先进的材料分析方法出现,为材料科学研究带来更大的突破和进步。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法是科学家们为了研究材料的性质和结构而开发的一系列技术和手段。

随着科学技术的进步,越来越多的先进分析方法被开发出来,使得人们能够更加深入地了解材料的特性和行为。

以下将介绍一些常见的现代材料分析方法。

1.X射线衍射(XRD):X射线衍射是一种用于确定晶体结构的分析方法。

通过照射材料并观察衍射的X射线图案,可以推导出材料的晶格常数、晶胞结构以及晶体的取向和纯度等信息。

2.扫描电子显微镜(SEM):SEM使用电子束来扫描样品表面,并通过捕获和放大反射的电子来产生高分辨率的图像。

SEM可以提供有关材料表面形貌、尺寸分布和化学成分等信息。

3.透射电子显微镜(TEM):TEM使用电子束透射样品,并通过捕获透射的电子来产生高分辨率的图像。

TEM可以提供有关材料内部结构、晶体缺陷和晶界等信息。

4.能谱仪(EDS):能谱仪是一种与SEM和TEM配套使用的分析设备,用于确定材料的元素组成。

EDS通过测量样品散射的X射线能量来识别和定量分析元素。

5.红外光谱(IR):红外光谱是一种用于确定材料分子结构和化学键的分析方法。

通过测量材料对不同频率的红外辐射的吸收,可以确定样品的功能基团和化学结构。

6.核磁共振(NMR):核磁共振是一种用于研究材料中原子核的分析方法。

通过利用材料中原子核的磁性质,可以确定样品的化学环境、分子结构和动力学信息。

7.质谱(MS):质谱是一种用于确定材料中化合物和元素的分析方法。

通过测量材料中离子生成的质量-电荷比,可以确定样品的分子量、结构和组成。

8.热分析(TA):热分析是一种通过测量材料对温度的响应来研究其热性质和热行为的方法。

常见的热分析技术包括差示扫描量热法(DSC)、热重分析(TGA)和热膨胀分析(TMA)等。

9.表面分析(SA):表面分析是一种研究材料表面化学成分和结构的方法。

常用的表面分析技术包括X射线光电子能谱(XPS)、扫描隧道显微镜(STM)和原子力显微镜(AFM)等。

材料现代分析方法

材料现代分析方法

材料现代分析方法
现代分析方法是指在分析过程中所采用的一系列科学技术和方法,以获得对于材料组成、结构、性质以及处理质量等方面的准确评估和分析。

现代分析方法是材料科学和工程技术领域中的一个重要研究方向,其涉及的技术和方法包括光学显微镜、扫描电子显微镜、X射线衍射、电子能谱、紫外-可见光谱、
红外光谱、质谱等。

光学显微镜是一种常用的现代分析方法,通过观察和记录材料样本的显微结构,可以了解材料的组成、形貌以及微观缺陷等信息。

扫描电子显微镜能够以非常高的分辨率观察到材料表面的微观形貌,通过扫描电子显微镜还可以进行能谱分析,得到材料的元素组成信息。

X射线衍射是一种常用的结构表征方法,通过射线在材料中的衍射现象,可以确定材料的晶体结构和晶格常数。

通过X射
线衍射还可以对材料的晶体缺陷和残余应力进行表征。

电子能谱是用来分析材料表面化学元素和化学结构的方法,通过测量材料在电子束照射下,产生的电子能量损失的谱线,可以获取材料的元素组成和化学结构信息。

紫外-可见光谱和红外光谱是用来分析材料的光学性质的方法,通过测量材料对于不同波长的紫外-可见光和红外光的吸收和
反射,可以了解材料的能带结构、能级布局以及化学键的类型和强度等。

质谱是分析材料中存在的各种离子和分子的方法,通过将材料样品分子或离子化,然后用质谱仪测量其质量-荷质比,可以确定材料中存在的化合物的分子量和组成。

综上所述,现代分析方法为材料科学的发展和应用提供了强大的工具和技术支持。

通过这些方法,科学家们可以深入了解材料的组成、结构和性质,为新材料的合成和应用提供指导和参考,并促进材料科学的发展和创新。

材料现代分析方法

材料现代分析方法

第一章6。

什么叫“相干散射”、“非相干散射”、“荧光辐射"、“吸收限”、“俄歇效应"?答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射.⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。

⑶一个具有足够能量的χ射线光子从原子内部打出一个K电子,当外层电子来填充K空位时,将向外辐射K系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。

或二次荧光。

⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K电子从无穷远移至K层时所作的功W,称此时的光子波长λ称为K系的吸收限。

⑸当原子中K层的一个电子被打出后,它就处于K激发状态,其能量为E k.如果一个L层电子来填充这个空位,K电离就变成了L电离,其能由Ek变成El,此时将释Ek—El的能量,可能产生荧光χ射线,也可能给予L层的电子,使其脱离原子产生二次电离。

即K层的一个空位被L层的两个空位所替代,这种现象称俄歇效应。

(6)俄歇电子:(7)光电子:第二章2. 下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(12-3),(100),(200),(-311),(121),(111),(-210),(220),(130),(030),(2-21),(110)。

答:它们的面间距从大到小按次序是:(100)、(110)、(111)、(200)、(-210)、(121)、(220)、(2-21)、(030)、(130)、(-311)、(12-3)。

3. 什么叫干涉面?当波长为λ的X射线在晶体上发生衍射时,相邻两个(hkl)晶面衍射线的波程差是多少?相邻两个HKL干涉面的波程差又是多少?答:晶面间距为d/n、干涉指数为nh、 nk、 nl的假想晶面称为干涉面.当波长为λ的X 射线照射到晶体上发生衍射,相邻两个(hkl)晶面的波程差是nλ,相邻两个(HKL)晶面的波程差是λ。

材料现代分析方法重点笔记

材料现代分析方法重点笔记

材料现代分析方法重点笔记一、材料X射线衍射分析1、X射线的性质、产生及谱线种类及机理2、X射线与物质的相互作用:几种现象及机理3、X射线衍射方向:布拉格方程及推导,X射线衍射方法4、X射线衍射强度:多晶体衍射图相的形成过程,衍射强度影响因数及积分强度公式5、多晶体分析方法:X射线衍射仪的构造及各部件的作用,实验参数的选择6、物相分析及点阵常数精确测定二、x衍射线知识点1、X射线的本质一种电磁波(波长短:0.01-10nm)2、X射线产生原理由高速运动着的带电粒子与某种物质相撞击后淬然减速,且与该物质中的内层电子相作用而产生的。

3、X射线产生的几个基本条件(1)产生自由电子;(2)使电子作定向高速运动:(3)在电子运动的路径上设置使其突然减速的障碍物4、旋转阳极(用于大功率转靶XRD仪)工作原理:因阳极不断旋转,电子束轰击部位不断改变,故提高功率也不会烧熔靶面。

目前有100kW的旋转阳极,其功率比普通X射线管大数十倍。

5、X射线谱X射线强度与波长的关系曲线6、连续x射线谱管压很低时,例如小于20kv,X射线谱曲线是连续变化的。

7、形成连续x射线谱两种理论解释:1.经典物理学理论:一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。

由于极大数量的电子射到阳极上的时间和条件不可能相8/同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。

量子力学概念:当能量为ev的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,每碰撞一次,产生一个能量为hv的光子,即“韧致辐射”。

大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。

8、特征(标识)X射线谱当管电压等于或高于20KV时,则除连续X射线谱外,位于一定波长处还叠加有少数强谱线,它们即特征X射线谱。

9、形成特征X射线谱的理论解释:原子结构的壳层模型:特征X射线的产生机理与靶物质的原子结构有关。

材料现代分析方法知识点

材料现代分析方法知识点

材料现代分析方法知识点现代分析方法是指在分析领域中应用先进科学技术和设备对材料进行表征、分析和测试的一种方法。

它广泛应用于材料科学、化学、生物学、医学等领域。

本文将重点介绍几种常见的现代分析方法,包括质谱分析、光谱分析、扫描电镜、透射电镜和原子力显微镜等。

质谱分析是一种通过测量被测物质的质量和相对丰度来确定其分子结构和组成的方法。

它可以用来分析有机物、无机物和生物大分子等。

质谱仪通过将样品中的分子离子化,然后对离子进行加速、分选和检测,最终得到质谱图。

质谱图是指将离子的质量与相对丰度作为坐标绘制成的图形。

质谱分析可以用于研究材料的分子结构、元素组成、反应机理等。

光谱分析是一种利用物质与辐射相互作用来研究物质性质的方法。

常见的光谱分析方法有紫外可见吸收光谱、红外光谱和拉曼光谱等。

紫外可见吸收光谱通过测量物质对紫外或可见光的吸收强度与波长之间的关系来研究物质的电子结构和色素成分。

红外光谱通过测量物质对红外光的吸收强度与波数之间的关系来研究物质的分子结构和官能团。

拉曼光谱通过测量物质对激光散射光的频率移动来研究物质的分子振动和晶格结构。

扫描电镜是一种通过扫描样品表面的电子束来获得高分辨率图像的方法。

它可以提供材料的表面形貌、结构和成分等信息。

扫描电镜可以分为传统扫描电镜和透射电镜。

传统扫描电镜通过扫描物质表面的二次电子和反射电子来获得样品表面形貌和成分分布。

透射电镜则通过将电子束穿过样品来获得样品的内部结构和晶格信息。

扫描电镜在材料科学、生物医药和纳米材料等领域有着广泛的应用。

透射电镜是一种通过透射电子来研究材料的内部结构和成分的方法。

透射电镜可以提供更高分辨率的图像和更详细的晶格信息,可以用于研究材料的晶体结构、界面形貌、晶格缺陷等。

透射电镜主要包括透射电子显微镜和扫描透射电镜。

透射电子显微镜使用透射电子束来获得样品的高分辨率图像,可以观察到纳米尺度的细节。

扫描透射电镜则可以对样品进行局部扫描,获得不同区域的成分和结构信息。

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结现代分析测试方法是指在材料研究和应用过程中,通过各种仪器和设备对材料进行精确分析和测试的方法。

这些方法包括物理测试方法、化学测试方法和电子显微镜技术等。

以下是对现代分析测试方法的一些知识的总结。

一、物理测试方法:1.X射线衍射:通过X射线的衍射绘制出材料的结晶结构,确定材料的晶格常数、晶胞参数和晶体的相位等。

2.热重分析:通过加热材料并测量其重量的变化,判断其热稳定性、热分解性和可能的热分解产物。

3.红外光谱:通过测量材料在红外波段的吸收光谱,推断材料的分子结构、官能团以及物质的存在状态和纯度。

4.核磁共振:通过测量核磁共振信号,确定物质的结构、官能团和化学环境。

二、化学测试方法:1.光谱分析:包括紫外可见光谱、原子吸收光谱和发射光谱等,通过测量材料吸收或发射的光的波长和强度,确定材料的化学成分和浓度。

2.色谱分析:包括气相色谱、液相色谱和超高效液相色谱等,通过物质在固定相和流动相之间的相互作用,分离并测定材料中的组分。

3.原子力显微镜:通过测量微米和亚微米级尺寸范围内的力的作用,观察材料表面的形貌和物理特性。

4.微量元素分析:通过原子吸收光谱、荧光光谱和电感耦合等离子体发射光谱等方法,测量材料中的微量元素浓度。

三、电子显微镜技术:1.扫描电子显微镜:通过扫描电子束和样品表面之间的相互作用,观察材料表面的形貌、组成和结构。

2.透射电子显微镜:通过电子束穿透样品并与样品内部的原子发生相互作用,观察材料的晶格结构、晶格缺陷和界面等微观结构。

以上是现代材料分析测试方法的一些知识总结。

通过这些方法,我们可以准确地了解材料的组成、结构和性能,为材料的研究、设计和应用提供有力的支持。

现代材料研究方法

现代材料研究方法

现代材料研究方法一、热分析20分1、热重分析法:控制温度,测量物质重量对温度的关系,随温度的变化,物质发生各种物理化学变化,通过测量其重量随温度的改变,确定受热过程中物质发生的变化类型。

差分热重法:是热重曲线的一次微分曲线,如果失重温度很接近,在热重曲线上的台阶不易区分,做差分热重曲线可以看到明显的温度。

2、DTA与DSC区别:DTA记录的是同一热源加热标样与待测物质,待测物质因受热变化而与标样产生温度差,获得以温度(时间)为横坐标,温差为纵坐标的曲线。

DSC记录的是不同热源加热下的标样与待测物质,保持其温度相同,两者之间存在的功率差,获得以温度(时间)为横坐标,功率差为纵坐标的曲线。

3、吸热反应:熔化、汽化、升华、脱水、分解、去溶剂、还原;放热反应:吸附、结晶、氧化;吸热/放热:多形性转变。

二、光谱45分1、红外光谱原理:分子正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做分子的偶极矩μ=r×q,是分子极性大小的表征。

原子以红外频率振动(有公式),其中振动频率与折合质量,化学键力常数有关,反映物质的组成和结构。

若电磁波的交变电场与偶极矩发生变化了的分子振动相互作用,导致与分子振动频率相同的电磁波的吸收,产生红外光谱。

拉曼光谱原理:单一波长的电磁波与物质相互作用,由于原子振动,发生弹性散射与非弹性散射,弹性散射的频率与入射电磁波频率相同,称为瑞利散射,非弹性散射的频率与入射电磁波频率不相同,称为拉曼散射,显示拉曼光谱。

光致发光原理:入射光与物质相互作用,引起基态能级跃迁,若从高能级向低能级复合时能够发光,能量以光子的形式辐射出来,则可被检测到。

这种复合包括能带间的复合、激子间的复合、能带与激子的复合、施主与受主能级的复合。

以此可测出较微量的掺杂,而且显示掺杂物在能带中的位置。

2、红外活性:偶极矩发生变化的振动;拉曼活性:极化率发生变化的振动,对称分子的对称振动显示拉曼活性。

3、拉曼光谱测量应力原理:当材料中引入应变时,晶格常数变大,键长变长,相互作用力减弱,则化学键力常数变小,由原子振动频率公式,可知原子振动频率减小,拉曼光谱中峰向波数小的一侧偏移,其迁移方向显示应力方向,迁移程度显示应力大小。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法是指利用现代科学技术手段对材料的组成、结构、性能等进行分析的方法。

随着材料科学和表征技术的发展,现代材料分析方法也得到了极大的丰富和完善,下面将介绍几种常见的现代材料分析方法。

首先是扫描电子显微镜(SEM)。

SEM是一种利用电子束照射样品表面并检测所产生的信号来观察材料微观形貌和获得相关信息的方法。

通过SEM可以获得材料表面的形貌、纹理、晶粒大小等信息,对于材料的结构和性能分析非常有用。

其次是透射电子显微镜(TEM)。

TEM是一种利用电子束穿透样品来观察样品内部结构和获得高分辨率图像的方法。

与SEM不同,TEM可以提供材料的原子级分辨率图像,对于研究材料的晶格、晶界、纳米结构等非常重要。

再次是X射线衍射(XRD)。

XRD是一种利用材料对X射线的衍射来分析材料结构的方法。

通过XRD可以得到材料的晶体结构信息,如晶格常数、晶面间距和晶体取向等,对于材料的物相分析、相变研究等具有重要意义。

此外,还有紫外可见光谱(UV-Vis)、红外光谱(IR)、拉曼光谱(Raman)等光谱分析方法。

这些方法通过测量材料对不同波长的光的吸收、散射或发射来研究材料的分子结构、内部结构等性质。

光谱分析方法在材料的成分分析、结构表征、表面修饰等方面具有广泛的应用。

最后,电子能谱(XPS)和扫描隧道显微镜(STM)等表面分析方法也是现代材料分析的重要手段。

XPS可以提供材料表面元素组成和化学状态的信息,而STM则可以直接观察到材料表面的原子和分子结构,对于研究材料表面性质、表面修饰以及表面反应机理等非常重要。

综上所述,现代材料分析方法包括SEM、TEM、XRD、光谱分析方法以及表面分析方法等多种手段,它们能够从不同的角度和层次来研究材料的组成、结构、性能等,为材料科学和工程提供了强有力的工具和方法。

材料现代分析方法

材料现代分析方法

材料现代分析方法1、γ射线核反应产生;X射线内层电子跃迁;紫外线、可见光外层电子跃迁;红外线分子振动能级跃迁;微波分子转动能级跃迁;射频电子自旋、核自旋。

2、晶向指数是表示晶体中点阵方向的指数,由晶向上阵点的坐标值确定。

晶面指数是表示晶体中点阵平面的指数,由晶面与三个坐标轴的截距值所确定。

倒易点阵是由晶体点阵按照一定的对应关系建立的空间点阵,对于一个由点阵基矢ai 定义的点阵,若有另一个由点阵基矢aj定义的点阵满足3、辐射的吸收是值辐射通过物质时,其中某些频率的辐射被组成物质的粒子(分子原子离子等)选择性吸收从而使辐射强度减弱的现象。

辐射的发射是指物质吸收能量后产生电磁辐射的现象,辐射发射的实质在于辐射跃迁。

辐射的散射是指电磁辐射与物质发生相互作用后部分偏离原入射方向而分散传播的现象。

4、分子散射是入射线与线度即尺寸大小远小于其波长的分子或分子聚集体相互作用而产生的散射。

包括:瑞利散射是指入射线与光子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射,该射线与入射线同波长。

拉曼散射是指入射线(单色光)光子与分子发生非弹性碰撞作用,在运动方向改变的同时有能量增加或减少的散射。

5、电子散射包括相干散射和非相干散射。

相干散射是指入射线光子与原子内受核束缚较紧的电子(如内层电子)发生弹性碰撞作用,仅改变运动方向而没有能量损失的散射。

非相干散射是指入射线光子与原子内受核束缚较弱的电子(如外层电子或晶体中自由电子)发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。

6、共振线是指电子在基态与任一激发态之间直接跃迁所产生的谱线。

原子光谱中做容易产生的谱线称为灵敏线,一般主共振线即为灵敏线。

7、原子荧光光谱:受具有特定波长的电磁辐射(单色光)激发,气态原子外层电子从基态或低能态跃迁到高能态并在很短的时间内(10-8s)又跃迁回基态并发射的辐射即为原子荧光。

分为共振荧光和非共振荧光,非共振荧光又分为斯托克斯荧光(分为直跃线荧光和阶跃线荧光)(λf>λa)和反斯托克斯荧光(分为热助直跃线荧光和热助阶跃线荧光)。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法(XPS)是一种非常重要的材料表征技术。

它是通过电子能量的分析来研究材料表面化学组成和电子结构的方法。

XPS技术基于X射线的发射和吸收原理,能够提供有关材料的化学组成、表面态、元素价态等详细信息。

下面将从原理、仪器、应用等方面介绍现代材料分析方法(XPS)。

XPS技术是通过照射材料表面的X射线,使材料表面的原子和分子发生电离,进而产生电子。

这些电子具有不同的能量,并与材料表面原子的化学状态和电子结构有关。

通过测量这些电子的能量和数目,可以获得材料表面的化学组成和电子结构信息。

XPS仪器主要由以下几个部分组成:X射线源、样品台、电子能谱仪和数据系统。

X射线源主要通过产生X射线照射样品表面,激发电子发生电离。

样品台用于支撑和定位样品,通常可旋转和倾斜以改变入射角度。

电子能谱仪用于测量样品发射的电子能量和数目,通常由电子能谱仪和能量分辨仪组成。

数据系统则用于处理和分析测量到的电子能谱数据。

XPS技术在材料科学领域有广泛的应用。

首先,它可以用于表面分析,可以非常详细地了解材料表面的化学组成和电子结构。

这对于材料的表面改性和催化活性等研究具有重要意义。

其次,XPS还可以用于界面分析,如材料与环境中气体或液体接触时的界面反应研究。

此外,XPS还可以用于研究材料的电子结构和能带结构,以及了解材料的导电性和光电性能等。

总结起来,现代材料分析方法(XPS)是一种非常重要的材料表征技术。

它能够提供材料表面的化学组成和电子结构等详细信息。

XPS技术在表面分析、界面分析、材料电子结构研究等方面具有广泛的应用。

随着科技的发展,XPS技术也在不断进步,为材料科学的发展和应用提供了强大的支持。

现代材料分析技术及应用

现代材料分析技术及应用

现代材料分析技术及应用现代材料分析技术是指利用现代科学技术手段对材料进行全面、准确、细致的研究和分析的方法。

它是材料科学领域研究的基础和支撑,广泛应用于材料的研发、生产和质量控制等方面。

现代材料分析技术包括物理性质测试、化学分析、显微成像、表面分析、光谱分析、电子显微镜等多个方面。

下面将介绍几种常见的现代材料分析技术及其应用。

一、物理性质测试技术物理性质测试技术是对材料的物理性能进行测试和分析的方法。

常见的测试技术有强度测试、硬度测试、韧性测试、热膨胀系数测量等。

这些测试技术可以用于评估材料的强度、硬度、韧性、热稳定性等性能。

例如,在金属材料的研发过程中,可以通过硬度测试来评估其抗拉强度和延展性,进而确定最佳的工艺参数。

二、化学分析技术化学分析技术是对材料中化学成分进行定性和定量分析的方法。

常见的化学分析技术包括光谱分析、质谱分析、原子吸收光谱分析等。

这些技术可以确定材料中元素的种类、含量以及化学结构。

化学分析技术在材料研发过程中起到了重要作用,可以选择最佳的原材料组合,提高材料的性能。

三、显微成像技术显微成像技术是观察和研究材料的微观形貌和结构的方法。

常见的显微成像技术有光学显微镜、电子显微镜和原子力显微镜等。

这些技术可以提供高分辨率的图像,揭示材料的表面形貌、内部结构和缺陷等信息。

显微成像技术广泛应用于材料的质量检测、缺陷分析和外观评估等方面。

四、表面分析技术表面分析技术是研究材料表面性质和表面结构的方法。

常见的表面分析技术有扫描电子显微镜、表面拉曼光谱、X射线光电子能谱等。

这些技术可以提供材料表面的化学组成、成分分布、晶体结构等信息。

表面分析技术对于材料的表面改性、涂层质量控制等有重要意义。

五、光谱分析技术光谱分析技术是研究物质的光学特性和结构的方法。

常见的光谱分析技术有红外光谱、紫外-可见吸收光谱、核磁共振光谱等。

这些技术可以通过分析物质与光的相互作用来判断其分子结构、化学键信息等。

光谱分析技术广泛应用于材料的组分分析、质量控制和性能评估等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《材料现代分析方法》课程教学大纲
一、课程基本信息
课程编号:13103105
课程类别:专业核心课程
适应专业:材料物理
总学时:54学时
总学分: 3
课程简介:
本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。

包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。

授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,2005年。

参考书目:
[1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,2003年。

[2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出版社,2003年。

[3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,2001年。

[4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,2001年。

[5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。

[6]《材料结构表征及应用》,吴刚编,化学工业出版社,2001年。

[7]《材料结构分析基础》,余鲲编,科学出版社,2001年。

二、课程教育目标
通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。

学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。

三、教学内容与要求
第一章X射线的物理基础
教学重点:X射线的产生及其与物质作用原理
教学难点:X射线的吸收和衰减、激发限
教学时数:2学时
教学内容:X射线的性质,X射线的产生,X射线谱,X射线与物质的相互作用,X射线的衰减规律,吸收限的应用
教学方式:课堂讲授
教学要求:
(1)了解X射线的性质和产生机制,了解X射线管的结构。

(2)深刻认识X射线谱的两种不同的波谱,即连续X射线谱和特征X射线谱。

(3)深刻理解X射线与物质的相互作用过程,掌握X射线的散射、吸收过程。

(4)掌握X射线的衰减规律。

(5)了解吸收限的应用。

第二章X射线衍射原理
教学重点:布拉格方程、衍射矢量方程及劳埃方程的推导
教学难点:产生X射线衍射的充要条件和多晶衍射积分强度的计算
教学时数:3学时
教学内容:倒易点阵,X射线衍射方向,X射线衍射强度
教学方式:课堂讲授
教学要求:
(1)了解倒易点阵的构建和倒易矢量。

(2)掌握布拉格方程、衍射矢量方程、厄瓦尔德图解、X射线衍射强度。

(3)了解倒易球、等同晶面、多重性因子、半高宽、厄瓦尔德图解等基本概念。

(4)掌握产生衍射的充要条件和多晶衍射积分强度的计算。

(5)掌握影响衍射强度影响的五大因素。

第三章多晶体X射线衍射分析方法
教学重点:X射线衍射仪的构成、工作原理及测量方法
教学难点:德拜法
教学时数:4学时
教学内容:德拜照相法,X射线衍射仪法
教学方式:课堂讲授
教学要求:
(1)了解德拜相机德基本结构。

(2)了解德拜法试样德制备和实验参数选择。

(3)熟练掌握德拜相的指数标定。

(4)了解X射线衍射仪法的仪器结构,了解测角仪的结构。

(5)掌握X射线衍射仪的构成、工作原理及测量方法。

第四章X射线衍射方法的应用
教学重点:物相分析基本原理
教学难点:宏观应力测定
教学时数:4学时
教学内容:点阵常数的精确测定,X射线物相分析,宏观应力测定
教学方式:课堂讲授
教学要求:
(1)掌握点阵常数的测定方法,了解误差来源及其消除方法。

(2)掌握X射线物相分析的方法和步骤,熟练掌握物相定性分析方法。

(3)了解X射线残余应力测定原理、单轴应力测定原理、平面应力测定原理。

(4)掌握X射线在应力测量中的具体应用。

第五章透射电子显微镜结构
教学重点:电磁透镜的景深与焦长,透射电子显微镜的结构
教学难点:电磁透镜的像差及其对分辨率的影响
教学时数:6学时
教学内容:光学显微镜的分辨率,电子波波长,电磁透镜,电磁透镜的像差及其对分辨率的影响,电磁透镜的景深与焦长,透射电子显微镜的结构,透射电镜的主要部
件,透射电镜的功能及发展
教学方式:课堂讲授
教学要求:
(1)了解光学显微镜的分辨率,认识光学显微镜分辨率的局限性。

(2)了解电子波波长,了解电磁透镜。

(3)掌握球差、色差、像散、景深、焦长的基本概念。

(4)掌握电磁透镜的像差及其对分辨率的影响。

(5)掌握透射电子显微镜的结构,能熟练绘出5级成像系统光路图。

(6)了解透射电镜的主要部件及其功能。

(7)了解透射电镜的功能及发展。

第六章电子衍射
教学重点:电子衍射原理,单晶电子衍射花样的标定
教学难点:单晶电子衍射花样的标定,复杂电子衍射花样
教学时数:6学时
教学内容:电子衍射原理,单晶电子衍射花样的标定,多晶电子衍射图的标定,复杂电子衍射花样
教学方式:课堂讲授
教学要求:
(1)掌握布喇格定律和电子衍射基本公式。

(2)熟练掌握单晶电子衍射花样的标定方法,学会查表标定法、d值比较法、标准花样对照法在具体实例中的应用。

(3)了解多晶电子衍射图的标定。

(4)对复杂电子衍射花样,只做一般介绍。

第七章电子显微图像
教学重点:质厚衬度原理,衍衬衬度,相位衬度
教学难点:衍衬衬度,相位衬度
教学时数:6学时
教学内容:质厚衬度原理,衍衬衬度,相位衬度,透射电子显微镜样品制备
教学要求:
(1)掌握质厚衬度原理。

(2)掌握衍衬运动学理论和衍衬图像的基本特征。

(3)掌握相位衬度基本原理,了解高分辨电子显微镜的结构特征。

(4)了解透射电子显微镜样品制备方法。

第八章扫描电子显微镜与电子探针显微分析
教学重点:电子显微镜的工作原理,电子探针X射线显微分析,表面形貌衬度原理及其应用
教学难点:表面形貌衬度原理及其应用
教学时数:7学时
教学内容:电子束与固体样品相互作用时产生的物理信号,扫描电子显微镜的结构和工作原理,表面形貌衬度原理及其应用,原子序数衬度原理及其应用,电子探针X
射线显微分析,扫描电子显微镜的发展
教学方式:课堂讲授
教学要求:
(1)了解电子束与固体样品相互作用时产生的背散射电子、二次电子、吸收电子、透射电子、特征X射线、俄歇电子等物理信号。

(2)了解扫描电子显微镜的结构,掌握其工作原理。

(3)掌握表面形貌衬度原理及其应用,了解原子序数衬度原理及其应用。

(4)掌握电子探针X射线显微分析,特别是能谱仪的结构和工作原理。

(5)了解扫描电子显微镜的发展。

第九章光谱分析简介
教学重点:光谱分析基本原理,紫外、可见光吸收光谱
教学难点:光谱分析基本原理
教学时数:6学时
教学内容:光谱分析基本原理,原子光谱,分子光谱
教学方式:课堂讲授
教学要求:
(1)要求学生充分理解光谱分析基本原理。

(2)了解分子光谱分析的基本原理。

(3)初步了解原子发射光谱、吸收光谱、原子荧光光谱的原理与应用。

(4)了解分子光谱分析原理。

(5)掌握紫外、可见光吸收光谱的原理与应用。

(6)了解红外吸收光谱和分子荧光光谱的原理与应用。

第十章其他显微分析方法简介
教学重点:扫描探针显微镜,软X射线显微术
教学难点:扫描隧道电子显微镜和原子力显微镜的原理及应用
教学内容:扫描隧道电子显微镜和原子力显微镜
教学方式:课堂讲授
教学要求:
(1)掌握扫描隧道电子显微镜和原子力显微镜的工作原理。

(2)了解扫描隧道电子显微镜和原子力显微镜的特点与应用。

(3)了解软X射线显微术基本概念及软X射线全息显微成像技术简介
第十一章电子能谱分析方法简介
教学重点:X射线光电子能谱
教学难点:X射线光电子能谱的分析与应用
教学时数:6学时
教学内容:俄歇电子能谱法,X射线光电子能谱和紫外光电子能谱
教学方式:课堂讲授
教学要求:
(1)了解俄歇电子能谱的基本原理、俄歇电子能谱仪及应用。

(2)了解紫外光电子能谱的原理
(3)了解X射线光电子能谱仪的结构,掌握X射线光电子能谱的基本原理。

(4)熟练掌握X射线光电子能谱的分析与应用。

四、作业
该课程原则上每次课都布置作业,除了教材中的习题,也可以补充一些典型习题。

五、考核方式与成绩评定
考核方式:考试。

成绩评定:总评成绩= 平时成绩(30%)+期末考试(70%),其中平时成绩是平时作业与出勤情况,视具体情况而定。

执笔人:
责任人:
2013年8月。

相关文档
最新文档