现代材料分析方法 PPT课件
合集下载
材料的现代分析测试方法幻灯片PPT
三. 波谱仪与能谱仪比较
与波谱仪相比,能谱仪的缺点: 1. 能量分辨率低. 2. 峰背比差、检测极限高,定 量 分析精度差. 3. Be窗. 4. LN2冷却.
作用: 用来获得扫描电子束, 作为 使样品产生各种物理信号
的 激发源.
1. 电子枪 2. 聚光镜(电磁透镜) 3. 光阑 4. 样品室
用于SEM的电子枪有两种类型
热电子发射型: 普通热阴极三极电子枪 六硼化镧阴极电子枪
场发射电子枪: 冷场发射型电子枪 热场发射型电子枪
几种类型电子枪性能
二. 扫描系统
五. 电源系统
组成:稳压、稳流及相应的平安 保护电路等。
作用:提供扫描电子显微镜各部 分所需要的电源。
六. 真空系统
组成:机械泵、扩散泵、空压机、 电磁阀及相应的真空管路等。
作用:建立能确保电子光学系统正 常工作、防止样品污染所必 须的真空度。
第五节 SEM的主要性能
一. 分辨率
分辨率的主要决定因素: 1. 电子束斑直径 2. 入射电子束在样品中的扩展效应 3. 信噪比
Mn)
SEM图象放大倍数:
显象管荧光屏边
长
.
电子束在试样上(一样方向)扫描宽度
三. 景深
第六节 SEM的样品制备
SEM对样品的最重要的要求是 样品要导电.
一. 导电材料试样制备 二. 非金属材料试样制备 三. 生物医学材料试样制备
一. 导电材料试样制备
1. 试样尺寸尽可能小些,以减轻 仪器污染和保持良好真空。
漫散射
漫散射的深度与原子序数有关
二. 放大倍数
显微镜的放大倍数: 象与物大小之比 TEM和OM: M总=M1M2……Mn 式中: M1……Mn——各个透镜的放大倍数 n ——透镜数目
精品现代材料分析-红外吸收光谱介绍PPT课件
H
R1 C
H
H 3040~3010
C R2
R2 3040~3010
C H
1420~1410 1420~1410
895~885
990 910 840~800
965
730~675
1658~1698 1645~1640 1675~1665 1675~1665 1665~1650
(3)炔烃
末端炔烃的C-H伸缩振动一般在3300 cm-1处 出现强的尖吸收带。
对于伸缩振动来说,氢键越强,谱带越宽,吸收强度越 大,而且向低波数方向位移也越大。
对于弯曲振动来说,氢键则引起谱带变窄,同时向高波 数方向位移。
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690
3500
1620-1590
1650
3400
1650-1620
HO O
苯环取代类型在2000~1667cm-1和 900~650cm-1的图形
邻、间及对位二甲苯的红外光谱
(5)醇和酚
在稀溶液中,O-H键的特征吸收带位于3650~3600 cm-1;在纯液体或固体中,由于分子间氢键的关系, 使这个吸收带变宽,并向低波数方向移动,在 3500~3200 cm-1处出现吸收带。
~17ห้องสมุดไป่ตู้0
~1760(游离态)
(5)芳环、C=C、C=N伸缩振动区 1675~1500cm-1
① RC=CR′ 1620 1680 cm-1 强度弱, R=R′(对称)时,无红外活性。
② 芳环骨架振动在1600~1450 cm-1有二到四 个中等强度的峰,是判断芳环存在的重要标 志之一。
R1 C
H
H 3040~3010
C R2
R2 3040~3010
C H
1420~1410 1420~1410
895~885
990 910 840~800
965
730~675
1658~1698 1645~1640 1675~1665 1675~1665 1665~1650
(3)炔烃
末端炔烃的C-H伸缩振动一般在3300 cm-1处 出现强的尖吸收带。
对于伸缩振动来说,氢键越强,谱带越宽,吸收强度越 大,而且向低波数方向位移也越大。
对于弯曲振动来说,氢键则引起谱带变窄,同时向高波 数方向位移。
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690
3500
1620-1590
1650
3400
1650-1620
HO O
苯环取代类型在2000~1667cm-1和 900~650cm-1的图形
邻、间及对位二甲苯的红外光谱
(5)醇和酚
在稀溶液中,O-H键的特征吸收带位于3650~3600 cm-1;在纯液体或固体中,由于分子间氢键的关系, 使这个吸收带变宽,并向低波数方向移动,在 3500~3200 cm-1处出现吸收带。
~17ห้องสมุดไป่ตู้0
~1760(游离态)
(5)芳环、C=C、C=N伸缩振动区 1675~1500cm-1
① RC=CR′ 1620 1680 cm-1 强度弱, R=R′(对称)时,无红外活性。
② 芳环骨架振动在1600~1450 cm-1有二到四 个中等强度的峰,是判断芳环存在的重要标 志之一。
现代材料分析方法第八章_表面分析技术
23
• 目前,测量几KeV以下光电子动能的主要手段是 利用静电场。
• 其中同心半球型能量分析器((CHA)同时装有入 射电磁透镜和孔径选择板,可以进行超高能量分 解光电子测定,高分解能角度分解测定。
24
Monochromator 25
半球型光电子能量分析器
只有能量在选定的很窄范围内的电子可能循着一定的轨道 达到出口孔,改变电势,可以扫描光电子的能量范围。
41
化合态识别
➢ 在XPS的应用中,化合态的识别是最主要的用 途之一。识别化合态的主要方法就是测量X射 线光电子谱的峰位位移。
➢ 对于半导体、绝缘体,在测量化学位移前应首 先决定荷电效应对峰位位移的影响。
42
化合态识别-光电子峰
➢ 由于元素所处的化学环境不同,它们的内层电子 的轨道结合能也不同,即存在所谓的化学位移。
• 随着科技发展,XPS在不断完善。目前,已开 发出的小面积X射线光电子能谱,大大提高了 XPS的空间分辨能力。
5
1. 光电效应
二、XPS原理
在光的照射下,
LIII
电子从金属表面逸
LII
出的现象,称为光
LI
电效应。
h
K
Photoelektron (1s) 2p3/2 2p1/2 2s
1s
6
2、光电子的能量
• 根据Einstein的能量关系式有: h = EB + EK
其中 —— 光子的频率,h ——入射光子能量
EB ——内层电子的轨道结合能或电离能; EK ——被入射光子所激发出的光电子的动能。
7
实际的X射线光电子能谱仪中的能量关系为
h EB EK s A
其中ФS——谱仪的功函数,光电子逸出表面所
• 目前,测量几KeV以下光电子动能的主要手段是 利用静电场。
• 其中同心半球型能量分析器((CHA)同时装有入 射电磁透镜和孔径选择板,可以进行超高能量分 解光电子测定,高分解能角度分解测定。
24
Monochromator 25
半球型光电子能量分析器
只有能量在选定的很窄范围内的电子可能循着一定的轨道 达到出口孔,改变电势,可以扫描光电子的能量范围。
41
化合态识别
➢ 在XPS的应用中,化合态的识别是最主要的用 途之一。识别化合态的主要方法就是测量X射 线光电子谱的峰位位移。
➢ 对于半导体、绝缘体,在测量化学位移前应首 先决定荷电效应对峰位位移的影响。
42
化合态识别-光电子峰
➢ 由于元素所处的化学环境不同,它们的内层电子 的轨道结合能也不同,即存在所谓的化学位移。
• 随着科技发展,XPS在不断完善。目前,已开 发出的小面积X射线光电子能谱,大大提高了 XPS的空间分辨能力。
5
1. 光电效应
二、XPS原理
在光的照射下,
LIII
电子从金属表面逸
LII
出的现象,称为光
LI
电效应。
h
K
Photoelektron (1s) 2p3/2 2p1/2 2s
1s
6
2、光电子的能量
• 根据Einstein的能量关系式有: h = EB + EK
其中 —— 光子的频率,h ——入射光子能量
EB ——内层电子的轨道结合能或电离能; EK ——被入射光子所激发出的光电子的动能。
7
实际的X射线光电子能谱仪中的能量关系为
h EB EK s A
其中ФS——谱仪的功函数,光电子逸出表面所
材料现代分析方法PPT课件
第一篇 总论
(材料现代分析方法基础与概述)
第一章 电磁辐射与材料结构
第一节电磁辐射与物质波
一 电磁辐射与波粒二象性
电磁辐射(光的波动性):在空间传播的交变电 磁场(电磁波)。
特点:不依赖物质存在;横波;同一介质中波速 不变;真空光速极限(c3108m/s)。
主要物理量:振幅;频率(Hz);波长;相位。
• M叫谱线多重性符号,表示n与L一定的 光谱项由M个能量稍有差别的分裂能级 (光谱支项)构成。
• 能级的分裂取决于J,每一个光谱支项对 应于J的一个取值,M为J 可能取值的个 数(LS时,M=2S+1;L<S时,M=2L+1)
塞曼分裂
• 当有外磁场存在时,光谱支项将进一步 分裂为能量差异更小的若干能级,这种 现象叫塞曼(Zeeman)分裂。
真空中的相互关系:
=c
(1-1)
光的粒子性: 斯托列托夫实验(1872年,莫斯科大学)
• 实验结果 :
• (1) 光照使真空管出现自 由电子。
• (2) 入射光的频率必须大 于某一确定值才有电子 出现,该值与真空管阴 极材料有关。
• 波动理论无法解释此现 象。
光电效应表明电磁辐射具有粒子性。
• 爱因斯坦的光电理论(1905年,1916年由 密立根实验证实):
取值:L+S,L+S-1,…,|L-S|。当L<S 时有2L+1个值,当LS时有2S+1个值。
• M量J的称大总小磁,量取子值数:,0表,征±P1J,沿±外2,…磁,场±方J(向J分 为整数)或:0,±1/2,±3/2,…,±J(J 为半整数)。
原子的能级可用符号nMLJ表示,称为光 谱项
• 对应于L=0,1,2,3,4,… 常用大 写字母S,P,D,F,G,…表示。
材料分析方法周玉出社配套PPT课件机械工业出社
(1-4)
= I连 / iU = K1ZU
可见, X 射线管的管电压越高、阳极靶原子序数越大,X 射 线管的效率越高。因 K1 约(1.1~1.4)10-9,即使采用钨阳极
(Z = 74)、管电压100kV, 1%,效率很低。电子击靶时
大部分能量消耗使靶发热
12
第十二页,共四十一页。
第二节 X射线的产生及X射线谱
本教材主要内容
绪论 第一篇 材料X射线衍射分析
第一章 X射线物理学基础
第二章 X射线衍射方向
第三章 X射线衍射强度 第四章 多晶体分析方法 第五章 物相分析及点阵参数精确测定 第六章 宏观残余应力的测定
第七章 多晶体织构的测定
1
第一页,共四十一页。
本教材主要内容
第二篇 材料电子显微分析
第八章 电子光学基础 第九章 透射电子显微镜 第十章 电子衍射 第十一章 晶体薄膜衍衬成像分析
第十二章 高分辨透射电子显微术
第十三章 扫描电子显微镜
第十四章 电子背散射衍射分析技术
第十五章 电子探针显微分析 第十六章 其他显微分析方法
2
第二页,共四十一页。
绪论
本课程的特点:以分析仪器和实验技术为基础
本课程的内容主要包括:X射线衍射仪、电子显微镜等分析仪 器的结构与工作原理、及与此相关的材料微观组织结构和微 区成分的分析方法原理及其应用
一、衰减规律和吸收系数
复杂物质的质量吸收系数
对于多元素组成的复杂物质,如固溶体、化合物和混合
物等,其质量吸收系数仅取决于各组元的质量系数mi及各组 元的质量分数wi ,即
n
m miwi i1
连续谱的质量吸收系数
(1-15)
连续X射线穿过物质时,其质量吸收系数相当于一个有
材料现代分析方法课件- 概论
● 分 辨 率:0.34nm ● 加速电压:75KV-200KV ● 放大倍数:25万倍 ● 能 谱 仪:EDAX-9100 ● 扫描附件:S7010
JEM-2010透射电镜
加速电压200KV LaB6灯丝 点分辨率 1.94Å
CM200-FEG场发射枪电镜
加速电压20KV、40KV、80KV、 160KV、200KV 可连续设置加速电压 热场发射枪 晶格分辨率 1.4Å 点分辨率 2.4Å 最小电子束直径1nm 能量分辨率约1ev 倾转角度α=±20度
a axis (inclination)
Operation range:15~120°
b axis (intraplanar rotation)
Operation range:360°
Z axis (front and back) Operation range:10mm
Z axis
薄膜测试-Thin film measurement 极图测试-Pole figure measurement 残余应力-Residual Stress measurement
镍基合金中第二相(GdNi5)粒子在基体中的分布
母相
透射电镜-位向分析
母相 新相
图像分析的分辨率
(3)表面分析方法及分辨尺度
本课程主要内容
材料X射线衍射分析技术 材料微观结构的电子显微学分析 谱分析技术
1) X射线衍射分析技术
X射线物理学基础 X射线衍射方向 X射线衍射强度 多晶体分析方法 物相分析及点阵参数精确测定 宏观残余应力的测定 多晶体织构的测定
材料分析方法
Analysis Method of Materials
公认的材料科学与工程四大要素
JEM-2010透射电镜
加速电压200KV LaB6灯丝 点分辨率 1.94Å
CM200-FEG场发射枪电镜
加速电压20KV、40KV、80KV、 160KV、200KV 可连续设置加速电压 热场发射枪 晶格分辨率 1.4Å 点分辨率 2.4Å 最小电子束直径1nm 能量分辨率约1ev 倾转角度α=±20度
a axis (inclination)
Operation range:15~120°
b axis (intraplanar rotation)
Operation range:360°
Z axis (front and back) Operation range:10mm
Z axis
薄膜测试-Thin film measurement 极图测试-Pole figure measurement 残余应力-Residual Stress measurement
镍基合金中第二相(GdNi5)粒子在基体中的分布
母相
透射电镜-位向分析
母相 新相
图像分析的分辨率
(3)表面分析方法及分辨尺度
本课程主要内容
材料X射线衍射分析技术 材料微观结构的电子显微学分析 谱分析技术
1) X射线衍射分析技术
X射线物理学基础 X射线衍射方向 X射线衍射强度 多晶体分析方法 物相分析及点阵参数精确测定 宏观残余应力的测定 多晶体织构的测定
材料分析方法
Analysis Method of Materials
公认的材料科学与工程四大要素
材料分析方法 第3版( 周玉) 出版社配套PPT课件 第3章 机械工业出版社
二、几种点阵结构因数计算
2. 体心点阵(同类原子组成)
单胞中有2个原子,坐标分别为(0,0,0)和(1/2,1/2,1/2), 原
子散射因数均为 f
FHKL2 = [f cos2(0) + f cos2(H+K+L)/2 ]2 + [f sin2(0) + f sin2(H+K+L)/2 ]2
三角形式:Acosx+iAsinx
单胞中所有原子散射波振幅的合成就是单胞的散射波振幅Ab
Ab A1ei1 A2ei2 Anein
fa
Aa Ae
一个原子中所有电子相干散射波的合成振幅 一个电子相干散射波的振幅
n
Ab Ae ( f1ei1 f 2ei2 f nein ) Ae f j ei j j 1 9
由于衍射线的相互干涉,某些方向的强度将会有所加强, 某些方向的强度将会减弱甚至消失,习惯上将这种现象称 为系统消光
7
第二节 单位晶胞对X射线的散射与结构因数
一、结构因数公式的推导
如图3-3,取单胞顶点O为坐标原点,单胞中第 j 个原子 A
的位置矢量为,
rj = xj a + yj b + zj c
数(HKL)N平1 方: N和2 :之N3比: N为4,: N5 2 : 4 : 6 : 8 :10
13
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵结构因数计算
3. 面心点阵(同类原子组成)
单胞中有4个原子,坐标分别为(0,0,0)、 (0,1/2,1/2)、
(1/2, 0,1/2)、 (1/2,1/2, 0),原子散射因数均为 f FHKL2 = f 2
材料现代分析方法ppt课件
聚合物分子运动的测定——分子运动方式不同会导致聚 合物所处的力学状态发生改变——转变。每种聚合物都 有其特定的转变。研究聚合物的松弛与转变可以帮助人 们了解聚合物的结构,建立结构与性能之间的关系。
.
31
5.1聚合物结构的分析表征——
链结构——红外光谱、紫外光谱、荧光光谱、拉曼光谱、 电子能谱、核磁共振、顺磁共振、X射线衍射(广角)、 电子衍射、中子散射……;
島津EPMA-1600
.
25
EDS应用举例(能量色散型X射线谱,Energy Dispersive X-Ray Spectroscopy )
不良品
良品
齿轮疲劳失效,是由于 渗碳处理不均匀,根本 原因在于硅的偏聚。
浸炭不 良部
不良品
.
C
良品
Si
26
XPS X射线光电子能谱
.
27
3.4 分子结构分析
光学显微镜
分辨率
1000 0 10
扫描探针显微镜 扫描电子显微镜
观察倍率 ×10000000 ×1000000 ×100000 ×10000 ×1000 ×100 ×10
1000
100
10
1
0.1 nm
1
0.1 0.01 0.001 0.0001 μm
.
13
OM
Ni-Cr合金的铸造组织
.
14
SEM
“材料性能”主要研究性能的评价方法、测试方法及影 响因素。
.
5
材料分析方法定义
广义:包括
技术路线
实验技术
数据分析
狭义:某一种测试方法,如:
X射线衍射方法
电子显微术
红外光谱分析
核磁共振分析等
.
31
5.1聚合物结构的分析表征——
链结构——红外光谱、紫外光谱、荧光光谱、拉曼光谱、 电子能谱、核磁共振、顺磁共振、X射线衍射(广角)、 电子衍射、中子散射……;
島津EPMA-1600
.
25
EDS应用举例(能量色散型X射线谱,Energy Dispersive X-Ray Spectroscopy )
不良品
良品
齿轮疲劳失效,是由于 渗碳处理不均匀,根本 原因在于硅的偏聚。
浸炭不 良部
不良品
.
C
良品
Si
26
XPS X射线光电子能谱
.
27
3.4 分子结构分析
光学显微镜
分辨率
1000 0 10
扫描探针显微镜 扫描电子显微镜
观察倍率 ×10000000 ×1000000 ×100000 ×10000 ×1000 ×100 ×10
1000
100
10
1
0.1 nm
1
0.1 0.01 0.001 0.0001 μm
.
13
OM
Ni-Cr合金的铸造组织
.
14
SEM
“材料性能”主要研究性能的评价方法、测试方法及影 响因素。
.
5
材料分析方法定义
广义:包括
技术路线
实验技术
数据分析
狭义:某一种测试方法,如:
X射线衍射方法
电子显微术
红外光谱分析
核磁共振分析等
材料分析测试方法课件
详细描述
紫外光谱法利用紫外线照射样品,测量样品对不同波长紫外光的吸收或反射,从而获得样品的紫外光谱。紫外光 谱图中,不同波长的峰代表着不同的化学键或官能团,通过比对标准谱图可以确定样品的化学组成和结构。此外 ,紫外光谱法还可以用于研究材料的电子云分布和能级结构。
核磁共振
总结词
核磁共振是一种常用的材料分析方法, 可以提供分子结构和化学键信息,以及 材料的磁学性质。
THANKS
03
布氏硬度
通过测量压痕直径来确定硬度 ,主要适用于硬质材料,如钢
和硬铝合金。
韧性测试
要点一
冲击测试
通过在材料上施加冲击力来测量其韧性,通常使用摆锤冲 击仪进行测试。
要点二
弯曲测试
通过在材料上施加弯曲力来测量其韧性,通常使用三点或 四点弯曲测试仪进行测试。
拉伸测试
弹性模量测试
通过测量材料在拉伸过程中的弹性变形来计算弹性模量 ,通常使用拉伸试验机进行测试。
应用
常用于材料科学、化学、生物学等领域 ,用于研究材料的晶体结构和化学键结 构等。
优点
可以快速、准确地测定晶体结构,且对 样品的损害较小。
缺点
对于非晶体或复杂的多晶材料,分析结 果可能存在误差。
中子衍射分析
原理
中子衍射分析是一种通过测量中子 在晶体中衍射角度的方法,推断晶
体结构的技术。
应用
常用于研究材料内部的结构和化学 键等信息,尤其适用于研究原子序
数较小的元素。
优点
对于某些元素,如氢、硼等,中子 衍射比X射线衍射更具优势。
缺点
需要使用中子源,实验成本较高, 且对样品的损害程度尚不明确。
红外光谱法
01
原理
红外光谱法是一种通过测量样 品对红外光的吸收光谱的方法 ,推断样品分子结构的的技术
紫外光谱法利用紫外线照射样品,测量样品对不同波长紫外光的吸收或反射,从而获得样品的紫外光谱。紫外光 谱图中,不同波长的峰代表着不同的化学键或官能团,通过比对标准谱图可以确定样品的化学组成和结构。此外 ,紫外光谱法还可以用于研究材料的电子云分布和能级结构。
核磁共振
总结词
核磁共振是一种常用的材料分析方法, 可以提供分子结构和化学键信息,以及 材料的磁学性质。
THANKS
03
布氏硬度
通过测量压痕直径来确定硬度 ,主要适用于硬质材料,如钢
和硬铝合金。
韧性测试
要点一
冲击测试
通过在材料上施加冲击力来测量其韧性,通常使用摆锤冲 击仪进行测试。
要点二
弯曲测试
通过在材料上施加弯曲力来测量其韧性,通常使用三点或 四点弯曲测试仪进行测试。
拉伸测试
弹性模量测试
通过测量材料在拉伸过程中的弹性变形来计算弹性模量 ,通常使用拉伸试验机进行测试。
应用
常用于材料科学、化学、生物学等领域 ,用于研究材料的晶体结构和化学键结 构等。
优点
可以快速、准确地测定晶体结构,且对 样品的损害较小。
缺点
对于非晶体或复杂的多晶材料,分析结 果可能存在误差。
中子衍射分析
原理
中子衍射分析是一种通过测量中子 在晶体中衍射角度的方法,推断晶
体结构的技术。
应用
常用于研究材料内部的结构和化学 键等信息,尤其适用于研究原子序
数较小的元素。
优点
对于某些元素,如氢、硼等,中子 衍射比X射线衍射更具优势。
缺点
需要使用中子源,实验成本较高, 且对样品的损害程度尚不明确。
红外光谱法
01
原理
红外光谱法是一种通过测量样 品对红外光的吸收光谱的方法 ,推断样品分子结构的的技术
材料分析方法PPT课件
1
可编辑
主要内容
1 光的折射和光学透镜成像 2 光的衍射与光学显微镜分辨本领理论极限 3 电子波长 4 电磁透镜 5 电磁透镜的像差及其对分辨率的影响 6 景深和焦长
2
可编辑
6-1 光的折射和光学透镜成像
光的折射:光在均匀介质 中直线传播,当从一介质 传播到另一介质时,因光 的传播速度随介质而变, 故光的传播方向在两介质 的分界面发生突变。光在 不同介质中其频率是恒定 不变的。
M(6-1)
7
可编辑
由于光的衍射,使得由物平面内的点O1 、 O2 在象平面形成 一B1 、 B2圆斑(Airy斑)。若O1 、 O2靠得太近,过分重 叠,图象就模糊不清。
L
D
强度
d
O1 O2
B2 Md
B1
(a)
(b)
图(a)点O1 、 O2 形成两个Airy斑; 图(b)是强度分布。
8
可编辑 9
13
可编辑
有效放大倍数
r0 ,2 光学透镜的分辨本领主要取决于照明源的波长。半 波长是光学显微镜分辨率的理论极限。可见光的最短波长 是390nm,也就是说光学显微镜的最高分辨率是 ≈200nm。
一般地人眼的分辨本领是大约0.2mm,光学显微镜的最 大分辨率大约是0.2μm。把0.2μm放大到0.2mm让人眼 能分辨的放大倍数是1000倍。这个放大倍数称之为有效 放大倍数。光学显微镜的分辨率在0.2μm时,其有效放大 倍数是1000倍。
20
0.00859
120
0.00334
40
0.00601
160
0.00285
60
0.00487
200
0.00251
可编辑
主要内容
1 光的折射和光学透镜成像 2 光的衍射与光学显微镜分辨本领理论极限 3 电子波长 4 电磁透镜 5 电磁透镜的像差及其对分辨率的影响 6 景深和焦长
2
可编辑
6-1 光的折射和光学透镜成像
光的折射:光在均匀介质 中直线传播,当从一介质 传播到另一介质时,因光 的传播速度随介质而变, 故光的传播方向在两介质 的分界面发生突变。光在 不同介质中其频率是恒定 不变的。
M(6-1)
7
可编辑
由于光的衍射,使得由物平面内的点O1 、 O2 在象平面形成 一B1 、 B2圆斑(Airy斑)。若O1 、 O2靠得太近,过分重 叠,图象就模糊不清。
L
D
强度
d
O1 O2
B2 Md
B1
(a)
(b)
图(a)点O1 、 O2 形成两个Airy斑; 图(b)是强度分布。
8
可编辑 9
13
可编辑
有效放大倍数
r0 ,2 光学透镜的分辨本领主要取决于照明源的波长。半 波长是光学显微镜分辨率的理论极限。可见光的最短波长 是390nm,也就是说光学显微镜的最高分辨率是 ≈200nm。
一般地人眼的分辨本领是大约0.2mm,光学显微镜的最 大分辨率大约是0.2μm。把0.2μm放大到0.2mm让人眼 能分辨的放大倍数是1000倍。这个放大倍数称之为有效 放大倍数。光学显微镜的分辨率在0.2μm时,其有效放大 倍数是1000倍。
20
0.00859
120
0.00334
40
0.00601
160
0.00285
60
0.00487
200
0.00251
现代材料分析-X射线衍射介绍PPT课件
产生机理
❖ 能量为eV的电子与阳极靶的原子碰撞 碰撞一次产生一个能量为hv的光子
短波限
❖ 连续X射线谱在短波方向有一个波长极限,称为短 波限λ0,它是由光子一次碰撞就耗尽能量所产生的 X射线。它只与管电压有关,不受其它因素的影响。
❖ 相互关系为:
❖ 式中:ee为V电子h电ma荷x ,he=0c1.662 18920×110V.-2194C;(nm)
样品托
5.4 X射线衍射方法在材料研究中的应用
5.4.1 结晶高分子材料的定性鉴别
HDPE和LDPE的X射线衍射谱 (a)HDPE(高密度聚乙烯) (b)LDPE(低密度聚乙烯)
(a)含α型晶体的IPP X射线衍射图 (b)含β型晶体的IPP X射线衍射图 (c)被鉴定的IPP X射线衍射图
5.4.2 取向度测定
❖ 非相干散射分布在各个方向,强度一般很低, 但无法避免,在衍射图上成为连续的背底, 对衍射工作带来不利影响。
5.2 X射线衍射原理(布拉格方程)
1913年英国布拉格父子(W.H .bragg .WL Bragg)建立了一个公式—布拉格公式。能用于对晶体 结构的研究。
布拉格父子认为当能量很高的X射线射到晶 体各层面的原子时,原子中的电子将发生强迫 振荡,从而向周围发 射同频率的电磁波, 即产生了电磁波的 散射,而每个原子 则是散射的子波波 源。
❖ 晶体的定义:由原子、分子或离子等微粒在空间按 一定规律、周期性重复排列所构成的固体物质。
晶态结构示意图
非晶态结构示意图
布拉格反射
入射波
散射波
o
dA B
C
晶格常数 d 掠射角
Δ A C CB
2dsin
相邻两个晶面反射的两 X射线干涉加强的条件
《材料分析》课件
绿色环保
发展可再生、可循环利用的材料,降 低材料生产和使用过程中的环境污染 ,实现可持续发展。
复合化
通过材料的复合化,实现各材料之间 的优势互补,提高材料的综合性能和 应用范围。
THANKS
感谢观看
析有助于提高飞行器和航天器的性能和安全性。
02
CATALOGUE
材料分析方法化学分析法总结词通过化学反应对材料进行定性和定量分析的方法。
详细描述
化学分析法是利用化学反应来测定材料中组分的含量。它通常包括滴定分析、重 量分析和气体分析等方法。这些方法可以确定材料中各种元素的含量,以及化合 物或离子的存在与否。
《材料分析》 ppt课件
contents
目录
• 材料分析概述 • 材料分析方法 • 材料性能分析 • 材料结构分析 • 材料成分分析 • 材料应用与发展趋势
01
CATALOGUE
材料分析概述
材料分析的定义
总结词
材料分析是对材料进行测试、表征和鉴别的过程,旨在了解材料的性质、结构 和性能。
详细描述
X射线衍射分析
电子衍射分析
利用电子在晶体中的衍射现象,进行 晶体结构分析和测定。
利用X射线在晶体中的衍射现象,分 析晶体的晶格常数、晶面间距等晶体 结构参数。
分子结构分析
01
02
03
分子几何构型
根据分子中原子之间的连 接方式和空间排列,确定 分子的几何构型,如直线 型、平面型、立体型等。
分子光谱分析
利用分子吸收光谱和发射 光谱的特性,分析分子内 部的结构和运动状态。
分子力学计算
利用量子力学和分子力学 计算方法,模拟分子的结 构和性质,预测分子的物 理和化学性质。