第五章 核磁共振碳谱电子版本

合集下载

波谱原理第五章核磁共振碳谱分析法

波谱原理第五章核磁共振碳谱分析法
3
三、 13C-NMR测定方法
13C-NMR谱中,1J 约100-200Hz,偶合谱的谱线交 CH
迭,谱图复杂。常采用一些特殊的测定方法:
1、质子宽带去偶(噪音去偶)
在扫描的同时,用一个强的可使全部质子共振的去偶射 频的频率区进行照射,使得1H 对13C的偶合全部去掉。
每种碳原子都出一个单峰,互不重叠。
σi值越大, 屏蔽作用越强,δC位于高场端,δC越小 。 以TMS为内标物质。规定TMS的13C信号的δC为零,位于 其左侧的δC为正值,其右侧的δ C为负值。 此外,CS2(δC 192.5)和溶剂峰均可作内标。
δC(TMS) = 192.5 + δC ( CS2)
16
1、化学位移与屏蔽原理 γ C νC = 2π B0 (1-σi )
9
3、质子选择去偶
用一个很小功率的射频以某一特定质子的共振频率进 行照射,观察碳谱。 结果只与被照射质子直接相连的碳发生谱线简并,且由 于NOE效应,峰的强度增强。 连有其它质子的碳,只引起偏共振去偶的作用,谱线压 缩而不发生简并。 是归属碳的吸收峰的重要方法之一
10
C2 C3 CH3 1 C4 2 3
>C=O: 电子跃迁类型为n→π*跃迁, ΔE值较小,δC低场; 炔碳: sp杂化的碳,顺磁屏蔽降低,较sp2杂化碳处于高场。
21
(2)、碳原子的电子云密度
核外电子云密度增大,屏蔽作用增强,化学位移向高场移动。
(CH3)3C+
(CH3)3CH 24
(CH3)3CLi 10.7
δ(ppm)
330
22
对于13C核σdia不是主要的。最大贡献约15ppm 。
18
(2)、 σpara (局部顺磁屏蔽)

第五章 核磁共振碳谱

第五章  核磁共振碳谱
13CNMR
值范围大得多,超过200。每个 C 谱的 δ 值范围大得多,超过 。
值的明显变化, 原子结构上的微小变化都可引起 δ 值的明显变化,因 此在常规宽带质子去偶谱中, 此在常规宽带质子去偶谱中,每一种化学等价的核可 望显示一条独立的谱线。 望显示一条独立的谱线。
三.给出不连氢的碳的吸收峰 原子构成, 有机化合物分子骨架主要由 C 原子构成,因而
4.立体效应 .
13C的化学位移对分子的立体构型十分敏感。对于范 的化学位移对分子的立体构型十分敏感。 的化学位移对分子的立体构型十分敏感
德华效应,当两个 原子靠近时 原子靠近时, 德华效应,当两个H原子靠近时,由于电子云的相互 排斥, 原子移动, 排斥,使电子云沿着 H-C 键向 C 原子移动,C 的屏蔽 作用增加, 向高场移动 向高场移动。 作用增加,δ向高场移动。
3.共轭效应 . 共轭效应会引起电子云 分布的变化, 分布的变化,导致不同位 置C的共振吸收峰发生偏 的共振吸收峰发生偏 移。例如: 例如: 再如: 再如:
C3 H . 1 78 3
N2 O . 1 83 4 .
1 34 2 1 95 2. 1 47 3
1 93 2
.
1 56 2
.
. 1 85 2
2.诱导效应 . 诱导效应使碳的核外电子云密度降低,具有去屏 诱导效应使碳的核外电子云密度降低, 蔽作用。 蔽作用。 化合物 CH4 CH3I CH3Br CH3Cl δC/ppm -2.6 -20.6 10.2 25.1 化合物 CH3F CH2Cl2 CHCl3 CCl4 δC/ppm 75.4 52 77 96
中的自旋-自旋偶合 三.13CNMR中的自旋 自旋偶合 中的自旋 1.13C-13C偶合 . 偶合 因为13C的天然丰度很低,只有1.1%,两个13C核相 的天然丰度很低,只有 , 核相 的天然丰度很低 邻的几率更低,因而13C-13C偶合可以忽略不计。 偶合可以忽略不计。 邻的几率更低, 偶合可以忽略不计 2.13C-1H偶合 . 偶合

核磁共振碳谱

核磁共振碳谱
4(d) 119.2 5(d) 129.1 2(d) 112.3 3(d) 115.9
4 5 3
NH2
7 2 6
CH3 1
7(s) 146.8
6(s) 138.8
1(q) 21.3
3
例2、有一未知物, 分 子 式 为 C8H18 , 宽 带去偶谱图见(a),偏 共振谱图如(b),试推 测其结构。
1
2
CH3 CH3CHCH2CH3
2 3 4 1
2 1 3
CH3
4
CH3CH2CCl CH3
2 1 3
CH3
4
CH3CH2COH CH3
2 1
3
CH3
4
CH3CH2CNH2 CH3
二、烯烃 烯烃sp2杂化的碳的化学位移为100~165, 随取代基的不同而不同。
4 5 3 2 1
CH2=CHCH2CH2CH3
DEPT谱图R、Q及P谱:
核磁共振氢谱在综合光谱解析中的作用
• 核磁共振氢谱(1H—NMR) 在综合光谱解析中主 要提供化合物中所含 ⒈质子的类型:说明化合物具有哪些种类的含氢 官能团。 ⒉氢分布:说明各种类型氢的数目。 ⒊核间关系:氢核间的偶合关系与氢核所处的化学 环境
指核间关系可提供化合物的二级结构信息,如连结方式、 位置、距离;结构异构与立体异构(几何异构、光学异构、 构象)等)。
核磁共振碳谱在综合光谱解析中的作用
在碳谱中: 质 子 噪 音 去 偶 或 称 全 去 偶 谱 (proton noise deeoupling或proton complete deeoupling,缩写 COM,其作用是完全除去氢核干扰) 可提供各
类碳核的准确化学位移
偏共振谱(off resonance de-coupling,OFR,部 分除去氢干扰)可提供碳的类型 。因为C与相连 的H偶合也服从n+1律,由峰分裂数,可以确定 是甲基、 亚甲基、次甲基或季碳。例如在偏共 振碳谱中CH3 、CH2 、CH与季碳分别为四重峰 (q)、三重峰(t)、二重峰(d)及单峰(s)。

第五章核磁共振波谱法-碳谱

第五章核磁共振波谱法-碳谱

OH
O
O
O
206.8ppm
195.8ppm
179.4ppm
14
5、缺电子效应
• 如果碳带正电荷,即缺少电子,屏蔽作用大大减弱,化学 位移处于低场。
•例如:叔丁基正碳离子(CH3)3C+的达到 327.8ppm。这 个效应也可用来解释羰基的13C 化学位移为什么处于较低 场,因为存在下述共振:
O
O
11.4
H
124.2
125.4
HH
H
16.8
18
9、介质效应(测定条件)
• 不同的溶剂、介质,不同的浓度以及不同的 pH 值 都会引起碳谱的化学位移值的改变。变化范围一般 为几到十左右。由不同溶剂引起的化学位移值的变 化,也称为溶剂位移效应。这通常是样品中的 H 与极性溶剂通过氢键缔合产生去屏蔽效应的结果。
• 峰高不能定量地反映碳原子数量。
6
四 13C NMR化学位移
• 一般来说,碳谱中化学位移(C)是最重要的参数。它直接反映了所观 察核周围的基团、电子分布的情况,即核所受屏蔽作用的大小。碳谱的 化学位移对核所受的化学环境是很敏感的,它的范围比氢谱宽得多,一 般在 0-250ppm。对于分子量在 300-500 的化合物,碳谱几乎可以分辨 每一个不同化学环境的碳原子,而氢谱有时却严重重迭。
第五章 核磁共振碳谱
主要内容
一 13C NMR概述 二 核磁共振碳谱的特点 三 13C NMR谱图 四 13C NMR化学位移 五 影响13C化学位移的因素
六 核磁共振碳谱中几种去偶技术
七 各类化合物的13C化学位移
八 碳谱的解析步骤
2
一 13C NMR概述
• 有机化合物中的碳原子构成了有机物的骨架。因此观察和研究碳原子的 信号对研究有机物有着非常重要的意义。

第五章 核磁共振碳谱

第五章 核磁共振碳谱
1. 质子宽带去偶 ( Proton Broad Band decoupling) 又称质子噪音去偶( proton noise band decoupling ) 用一个强的有一定带宽的去偶射频使全部质子去偶,使得 1H对13C的偶合全部去掉。 CH 3、CH2、CH、季C皆是单峰。 特点:图谱简化,所有信号均呈单峰。 其他核如 D、19F、31P对碳的偶合此时一般还存在。峰的重 数由核的个数和自旋量子数Ix确定,用2nIx+1计算。 如ID=1, IF=1/2, IP=1/2
80 Averages
800 Averages
三、核磁共振碳谱特点
1. 化学位移范围宽,
1H 13C
NMR常用的δ值范围为0~10ppm;
NMR常有范围为0~220ppm(正碳离子可达330ppm,而 CI4约为-292ppm),约是氢谱的20倍,其分辨能力远高于 1H NMR。结构上的细微变化可望在碳谱上得到反映。 2. 13C NMR给出不与氢相连的碳的共振收峰; 季碳、C=O、C≡C、C≡N、C=C等基团中的碳不与氢直 接相连,在1H NMR谱中不能直接观测,只能靠分子式及其 对相邻基团值的影响来判断。而在13C NMR谱中,均能给 出各自的特征吸收峰。
羰基碳、双键季碳因T1值很大,故吸收信号非常弱,有时甚 至弱到无法观测的程度。下图所示-紫罗兰酮的9-、6-、5-碳 信号之所以较弱,就是因为这个原因。其中,5-C因附近还存 在连有多质子的基团 (5-CH3及CH2-),多少还受到因照射1H核 引起的NOE效应的影响,故比6-C信号的强度增大许多。
13C化学位移与1H有着相似的平行趋势。
例如:饱和烃的13C和1H均在高场共振,而烯烃和芳烃均在 较低场出现吸收峰。 取代基的诱导、共轭效应、基团屏蔽的各向异性效应等对 13C化学位移的影响也与1H NMR谱相同。 1. 杂化状态 杂化状态是影响C的重要因素,一般说C与该碳上的H 次 序基本上平行。

第五章:核磁共振碳谱

第五章:核磁共振碳谱

5.1 核磁共振碳谱的特点
灵敏度低:为1H 的1/6700,13C的天然丰度只占1.108%,所以含碳 化合物的13C NMR信号很弱,需借助PFT-NMR。缺点:PFT-NMR扭 曲了信号强度,不能用积分高度来计算碳的数目。 注:PFT-NMR:脉冲傅里叶变换核磁共振仪
采用恒定磁场,用一定频率宽度的射频强脉冲辐照试样,激发全 部欲观测的核,得到全部共振信号。当脉冲发射时,试样中每种核都对 脉冲中单个频率产生吸收,接收器得到自由感应衰减信号(FID),这种信 号是复杂的干涉波,产生于核激发态的弛豫过程。FID信号是时间的函 数,经滤波、转换数字化后被计算机采集,再由计算机进行傅里叶变 换转变成频率的函数,最后经过数/模转换器变成模拟量,显示到屏 幕上或记录在记录纸上,得到通常的NMR谱图。
碳杂化轨道 诱导效应 空间效应 超共轭效应 重原子效应 氢键 测定条件:溶解样品的溶剂、溶液的浓度、测定时的温度等
(1)碳杂化轨道
杂化状态是影响 C的重要因素,一般说 C与该碳上的 H 次序基本
上平行
sp3 CH3 < CH2 < CH < 季C 在较高场 0 ~ 50 ppm
sp2 -CH=CH2
第五章:核磁共振碳谱
主要内容
5.1 碳核磁共振谱简介 5.2 13C的化学位移 5.3 偶合谱 5.4 碳核磁共振谱中的实验技术 5.5 碳核磁共振谱的解析及其应用
在有机物中,有些官能团不含氢, 例如C=O, C=C=C和N=C=O, 官能团的信息不能从1H NMR谱 中得到,只能从13C NMR谱中得到
数,帮助指认碳原子;
总结碳谱的特点:
化学位移范围:0 ~ 220 ppm,氢谱0 ~16ppm 提供各种类型碳(伯、仲、叔、季碳)的信息。 不能用积分曲线获取碳的数目信息 邻近有吸电子基团,信号移向低场(左移)

第五章-核磁共振碳谱

第五章-核磁共振碳谱
❖由于自然界中13C核的丰度太低,另外13C的旋磁比只 有1H核的1/4, 13C NMR的灵敏度比1H NMR要低得多;
❖13C NMR由于邻近质子的偶合作用使谱峰变得非常复 杂,必须采用标识技术(去偶技术),实际上13C NMR谱 图若不去偶就不能解析。
5.2 13CNMR 的测定方法
在13CNMR谱中, 因碳与其相连的质子偶合常数很大, 1JCH大约在100~200Hz, 而且2JCCH和3JCCCH等也 有一定程度的偶合, 以致偶合谱的谱线交迭, 使图谱复杂 化。故常采用一些特殊的测定技术, 如质子宽带去偶、 偏共振去偶、门控去偶、反门控去偶等核磁双共振方法 和DEPT技术。
5.3.2 影响化学位移dC的因素
(2)碳核周围的电子云密度 碳核外电子云密度越大, 屏蔽效应越强, dC移向高场; 碳负离子出现在高场, 碳正离子出现在低场。
CH3C(C2H5)2
(CH3)2CC2H5 (CH3)3 333.8
dC 330.0 dC 319.6
24.9 20.0
CH4 dC -2.6
CH3I -20.7
取代基

取代基
的电负性
X CH CH CH
2.1
H0 0 0
2.5
CH3 +9 +10 -2
2.5
SH +11 +12 -6
3.0
NH2 +29 +11 -5
3.0
Cl +31 +11 -4
4.0
F +68 +9 -4
5.3.2 影响化学位移dC的因素
(6)分子内氢键
邻羟基苯甲醛及邻羟基苯乙酮分子内可形 成氢键, 使羰基碳上的电子云密度降低, 从而 增大去屏蔽效应, 化学位移移向低场。

第5章 核磁共振碳谱

第5章 核磁共振碳谱

sp3: sp2: 羰基碳: 羰基碳
δ=0~100 ppm δ=100~210 ppm δ=170~210 ppm
13C
NMR 谱
不一定解析每一个峰 峰的个数⇔分子的对称性 特征共振峰的信息⇒ 特征共振峰的信息⇒可能结构
1) 开链烷烃
δi = −2.6+9.1nα+9.4nβ−2.5nγ δi为i碳原子的化学位移 nα,nβ 和 nγ 分别为i 碳原子α,β 和 γ 位所连碳原 分别为i 碳原子α 子的个数
2p
[ Q AA + ∑ Q AB ]
B
平均电子激发能的倒数 2p电子和核距离立方倒数的平均值 电子和核距离立方倒数的平均值 所考虑核的2p轨道 轨道电子的电子密度 所考虑核的 轨道电子的电子密度 所考虑核与其相连的核的键之键级
负号表示顺磁屏蔽, σ 越大 去屏蔽越强, 越大, 负号表示顺磁屏蔽,|σp|越大,去屏蔽越强,其共振 位置越在低场。 位置越在低场。
2. 脉冲 脉冲Fourier变换核磁共振 变换核磁共振(PFT-NMR)技术 变换核磁共振 技术
脉冲傅立叶变换法( 脉冲傅立叶变换法(Pulse Fourier Transform,简称 , PFT法 是利用短的射频脉冲方式的射频波照射样品, PFT法)是利用短的射频脉冲方式的射频波照射样品, 并同时激发所有的13C核。由于激发产生了各种13C核所 核 核所 引起的不同频率成分的吸收,并被接收器所检测。 引起的不同频率成分的吸收,并被接收器所检测。
顺反异构
17.6
12.1
CH3 H
20.3 ppm
H CH3
H COOH
CH3 H
14.0 ppm
CH3 H
COOH H

第五章 核磁共振碳谱(white)

第五章 核磁共振碳谱(white)

第五章第五章核磁共振碳谱核磁共振碳谱1本章内容5.1 核磁共振碳谱的特点5.25.35.45.55.6 核磁共振碳谱的测定方法13C的化学位移及影响因素sp3、sp2、sp杂化碳的化学位移C NMR的自旋偶合及偶合常数核磁共振碳谱解析及应用第五章核磁共振碳谱213引言C,H:有机化合物的骨架元素有机物中,有些官能团不含氢,如:-C=O,-C三C,-C三N,-N=C=O等官能团信息无法从1H 谱中得到,只能从13C 谱中得到。

12C13C 98.9% 磁矩=0, 没有NMR1.1% 有磁矩(I=1/2),有NMR1灵敏度很低, 仅是H 的1/6700IH与13C偶合,重叠峰多,难解谱计算机的问世及谱仪的不断改进,可得很好的碳谱。

3第五章核磁共振碳谱第一节核磁共振碳谱13C NMR的特点1. 灵敏度低2. 分辨能力高3. 给出不连氢的碳的吸收峰4. 不能用积分高度来计算碳的数目★化学位移范围宽:0~ 300 ppm,1H 谱的20~30 倍★分辨率高:谱线之间分得很开,容易识别如:胆固醇的13C NMR第五章核磁共振碳谱4★13C 自然丰度1.1%:不必考虑13C-13C 之间耦合,1H 的耦合。

只需考虑同第五章核磁共振碳谱5★13C NMR给出不与氢相连的碳的共振吸收峰:季碳、C=O、C≡C、C≡N、C=C等基团中的碳不与氢直接相连,在1H NMR谱中不能直接观测,只能靠分子式及其对相邻基团δ值的影响来判断。

而在13C NMR谱中,均能给出各自的特征吸收峰。

如,羰基碳: =170~210 ppm第五章核磁共振碳谱6★13CNMR灵敏度低,偶合复杂邻溴苯胺的13C NMR谱(未去偶)第二节13C NMR的实验方法及去偶技术◆脉冲傅立叶变换法脉冲傅立叶变换法(Pulse Fourier Transform,简称PFT法)是利用短的射频脉冲方式的射频波照射样品,并同时激发所有的13C核。

由于激发产生了各种13C核所引起的不同频率成分的吸收,并被接收器所检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C=C的碳(100~160),C=O的碳(160~220)
四、碳化学位移的经验计算
五、核磁共振碳谱解析
1.解析方法 (1)根据分子式计算不饱和度 (2)根据质子宽带去偶谱判断分子中有几种等价的碳 (3)根据其他去偶谱判断是什么类型碳 (4)根据化学位移判断是什么杂化方式的碳 (5)综合以上信息得到结构单元,将结构单元合理 组合成分子,再通过化学位移的经验计算排除、验证
2.图谱解析举例
例1: 化合物C7H14O,如下 NMR谱图确定结构。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
第五章 核磁共振碳谱
3.DEPT(不失真地极化转移增强) DEPT45:除季碳(不出峰)外, 所有碳核都出正峰
DEPT90:只出现CH峰,正峰
DEPT135:CH3 和CH为正峰, CH2为负峰,
三、常见化合物中13C化学位移δ的范围
sp3杂化碳的δ范围: 0~60ppm sp杂化碳的δ范围: 60~90ppm sp2杂化碳的δ范围: 100~220ppm
相关文档
最新文档