2017年高考立体几何大题
2017年浙江省高考数学试卷(真题详细解析)
2017年浙江省高考数学试卷(真题详细解析)1.已知集合P={x|-1<x<1},Q={x|1<x<2},则P∪Q=(-1,2)。
2.椭圆+1的离心率是1/2.3.几何体的三视图无法确定,无法计算体积。
4.若x、y满足约束条件z=x+2y,则z的取值范围是[4.+∞)。
5.函数f(x)=x^2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m与a有关,但与b无关。
6.已知等差数列{an}的公差为d,前n项和为Sn,则d>0是S4+S6>2S5的必要不充分条件。
7.函数y=f(x)的图象可能是B。
8.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<1,则E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)。
9.正四面体D-ABC,P、Q、R分别为AB、BC、CA上的点,AP=PB=√2,记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α、β、γ,则α<β<γ。
10.平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=OI2/OC,I2=OI3/OD,I3=OI1/OA,则I3<I1<I2.二、填空题:11.XXX创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位。
割圆术的第一步是计算单位圆内接正六边形的面积S6,S6=3√3/2.12.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2.13.已知多项式(x+1)(x+2)=x2+3x+2,则a4=34,a5=123.14.已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是2√3,cos∠BDC=1/2.15.已知向量a、b满足||a||=1,||b||=2,则|a+b|+|a-b|-|a|-|b|的最小值是0,最大值是4.16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有56种不同的选法。
(新课标)2017高考数学一轮复习 第七章 立体几何 第2讲.
四面体的棱长);
面体的棱长).
●双基自测
1 . 下 列 结 论 正 确 的 打 “√” , 错 误 的 打 “×”. 导学号 25401614 (1)圆柱的一个底面积为 S,侧面展开图是一个正方形,那 么这个圆柱的侧面积是 2πS.( ) ) ) (2)设长方体的长、宽、高分别为 2a,a,a,其顶点都在一 个球面上,则该球的表面积为 3πa2( (3)若一个球的体积为 4 3π,则它的表面积为 12π.(
体积
Sh V=____________
1 V=3Sh
1 1 正棱台 S 侧= (c+c′)h′ V= (S 上+S 下+ S上· S下)h 2 3 球
4πR2 S 球面=______
4 3 V=3πR
2.几何体的表面积 各面面积之和. (1)棱柱、棱锥、棱台的表面积就是____________ 矩形 、_____ 扇形 、 (2)圆柱、圆锥、圆台的侧面展开图分别是_____ 扇环形 ;它们的表面积等于_______ 侧面积 与底面面积之和. ____________
3.几何体的外接球与内切球 (1)长方体的外接球:
a2+b2+c2 2 ①球心:体对角线的交点;②半径:r=____________( a,
b,c为长方体的长、宽、高). (2)正方体的外接球、内切球及与各条棱相切的球: 3 a为正方体的 ①外接球:球心是正方体中心;半径r=____( 2a 棱长); a ②内切球:球心是正方体中心;半径r=____( 2 a为正方体的 棱长);
[ 答案]
1:47
5.(必修 2P36T10 改编)一直角三角形的三边长分别为 6 cm,8 cm,10 cm , 绕 斜 边 旋 转 一 周 所 得 几 何 体 的 表 面 积 为 _______________. 导学号 25401618
2017年普通高等学校招生全国统一考试数学(含答案)
2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<32}B.A∩B=⌀C.A∪B={x|x<32}D.A∪B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π45.已知F是双曲线C:x2-y 23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )7.设x,y满足约束条件{x+3y≤3,x-y≥1,y≥0,则z=x+y的最大值为( )A.0B.1C.2D.38.函数y=sin2x1-cosx的部分图象大致为( )9.已知函数f(x)=ln x+ln(2-x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( )A.π12B.π6C.π4D.π312.设A,B是椭圆C:x 23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= .14.曲线y=x2+1x在点(1,2)处的切线方程为.15.已知α∈(0,π2),tan α=2,则cos(α-π4)= .16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;,求该四棱锥的侧面积.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x )2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x )(y i -y )√∑i=1n (x i -x )√∑i=1n(y i -y ).√0.008≈0.09.20.(12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM⊥BM,求直线AB 的方程.21.(12分)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθ,y =sinθ(θ为参数),直线l 的参数方程为{x =a +4t ,y =1-t(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A 本题考查集合的运算.由3-2x>0得x<32,则B={x |x <32},所以A∩B={x |x <32},故选A.2.B 本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.3.C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i×2i=-2; B.i 2(1-i)=-(1-i)=-1+i; C.(1+i)2=2i;D.i(1+i)=-1+i,故选C. 4.B 本题考查几何概型.设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8,故选B.5.D 本题考查双曲线的几何性质. 易知F(2,0),不妨取P 点在x 轴上方,如图.∵PF⊥x 轴,∴P(2,3),|PF|=3,又A(1,3), ∴|AP|=1,AP⊥PF, ∴S △APF =12×3×1=32.故选D.6.A 本题考查线面平行的判定.B 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;C 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;D 选项中,AB ∥NQ,且AB ⊄平面MNQ,NQ ⊂平面MNQ,则AB ∥平面MNQ.故选A.7.D 本题考查简单的线性规划问题. 作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.8.C 本题考查函数图象的识辨.易知y=sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f(1)=sin21-cos1=√3,故排除A 选项; f(π)=sin2π1-cos π=0,故排除D 选项,故选C.9.C 本题考查函数的图象与性质.函数f(x)=ln x+ln(2-x)=ln[x(2-x)],其中0<x<2,则函数f(x)由f(t)=ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x ∈(0,1)时, f(x)单调递增,x ∈(1,2)时, f(x)单调递减,则A 、B 选项错误;t(x)的图象关于直线x=1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C 选项正确,D 选项错误.故选C. 10.D 本题考查程序框图问题.本题求解的是满足3n-2n>1 000的最小偶数n,判断循环结构为当型循环结构,即满足条件要执行循环体,不满足条件应输出结果,所以判断语句应为A≤1 000,另外,所求为满足不等式的偶数解,因此中语句应为n=n+2,故选D.11.B 本题考查正弦定理和两角和的正弦公式.在△ABC 中,sin B=sin(A+C),则sin B+sin A(sin C-cos C) =sin(A+C)+sin A(sin C-cos C)=0,即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,∴cos Asin C+sin Asin C=0,∵sin C≠0,∴cos A+sin A=0,即tan A=-1,即A=34π. 由a sinA =c sinC 得√22=√2sinC ,∴sin C=12,又0<C<π4,∴C=π6,故选B.12.A 本题考查圆锥曲线的几何性质.当0<m<3时,椭圆C 的长轴在x 轴上,如图(1),A(-√3,0),B(√3,0),M(0,1).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|MO|≤1,即0<m≤1; 当m>3时,椭圆C 的长轴在y 轴上,如图(2),A(0,√m ),B(0,-√m ),M(√3,0)图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|OA|≥3,即√m ≥3,即m≥9.综上,m ∈(0,1]∪[9,+∞),故选A.二、填空题 13.答案 7解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1),∴a+b=(m -1,3),又(a+b)⊥a, ∴(a+b)·a=-(m-1)+6=0,解得m=7. 14.答案 x-y+1=0解析 本题考查导数的几何意义.∵y=x 2+1x,∴y'=2x -1x2,∴y'|x=1=2-1=1,∴所求切线方程为y-2=x-1,即x-y+1=0.15.答案3√1010解析 因为α∈(0,π2),且tan α=sinαcosα=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=2√55,cos α=√55,则cos (α-π4)=cos αcos π4+sin αsin π4=√55×√22+2√55×√22=3√1010.16.答案 36π解析 由题意作出图形,如图.设球O 的半径为R,由题意知SB⊥BC,SA⊥AC,又SB=BC,SA=AC,则SB=BC=SA=AC=√2R.连接OA,OB,则OA⊥SC,OB⊥SC,因为平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,所以OA⊥平面SCB,所以OA⊥OB,则AB=√2R,所以△ABC 是边长为√2R 的等边三角形,设△ABC 的中心为O 1,连接OO 1,CO 1. 则OO 1⊥平面ABC,CO 1=23×√32×√2R=√63R,则OO 1=√R 2-(√63R)2=√33R,则V S-ABC =2V O-ABC =2×13×√34(√2R)2×√33R=13R 3=9, 所以R=3.所以球O 的表面积S=4πR 2=36π.三、解答题17.解析 本题考查等差、等比数列. (1)设{a n }的公比为q,由题设可得{a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n·2n+13.由于S n+2+S n+1=-43+(-1)n·2n+3-2n+23=2[-23+(-1)n·2n+13]=2S n ,故S n+1,S n ,S n+2成等差数列.18.解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB ⊂平面PAB, 所以平面PAB⊥平面PAD.(2)在平面PAD 内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD, 故AB⊥PE,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=√2x,PE=√22x. 故四棱锥P-ABCD 的体积V P-ABCD =13AB·AD·PE=13x 3.由题设得13x 3=83,故x=2.从而PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD 的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC 2sin 60°=6+2√3.19.解析 本题考查统计问题中的相关系数及样本数据的均值与方差. (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x )(i -8.5)√∑i=1(x i -x )2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.20.解析 本题考查直线与抛物线的位置关系. (1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1-y2x 1-x 2=x 1+x 24=1.(2)由y=x 24,得y'=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x 24得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√m+1.从而|AB|=√2|x1-x2|=4√2(m+1).由题设知|AB|=2|MN|,即4√2(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.21.解析本题考查了利用导数研究函数的单调性、最值.(1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.③若a<0,则由f '(x)=0得x=ln(-a2).当x∈(-∞,ln(-a2))时,f '(x)<0;当x∈(ln(-a2),+∞)时, f '(x)>0.故f(x)在(-∞,ln(-a2))单调递减,在(ln(-a2),+∞)单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a 2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln (-a 2)时, f(x)取得最小值,最小值为f (ln (-a2))=a 2[34-ln (-a2)].从而当且仅当a 2[34-ln (-a2)]≥0, 即a≥-2e 34时, f(x)≥0. 综上,a 的取值范围是[-2e 34,1].22.解析 本题考查极坐标与参数方程的应用. (1)曲线C 的普通方程为x 29+y 2=1.当a=-1时,直线l 的普通方程为x+4y-3=0. 由{x +4y -3=0,x 29+y 2=1解得{x =3,y =0或{x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x+4y-a-4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d=√17.当a≥-4时,d 的最大值为√17,由题设得√17=√17,所以a=8;当a<-4时,d 的最大值为√17,由题设得17=√17,所以a=-16.综上,a=8或a=-16.23.解析 本题考查含绝对值不等式的求解问题.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-1+√17.2所以f(x)≥g(x)的解集为}.{x|-1≤x≤-1+√172(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].。
专题19 立体几何中体积与表面积—三年高考(2015-2017)数学(文)真题分项版解析(解析版)
好教育云平台 1.【2017课标3,文9】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A .πB .3π4C .π2D .π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以32r BC ==,那么圆柱的体积是2233124V r h πππ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )(B )(C )(D )【答案】【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.3.【2016高考新课标1文数】平面过正文体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正弦值为()(A)(B)(C)(D)【答案】A【解析】考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【答案】92π 【解析】试题分析:设正方体边长为a ,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=. 【考点】球与几何体的组合体【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单. 5.【2015新课标2文10】已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.B.C.D.【答案】C 【解析】【考点定位】本题主要考查球与几何体的切接问题及空间想象能力. 【名师点睛】由于三棱锥底面AOB 面积为定值,故高最大时体积最大,本题就是利用此结论求球的半径,然后再求出球的表面积,由于球与几何体的切接问题能很好的考查空间想象能力,使得这类问题一直是高考中的热点及难点,提醒考生要加强此方面的训练. 6. [2016高考新课标Ⅲ文数]在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A )4π (B )(C )6π (D )【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.7.【2014全国2,文7】正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为( )(A)(B)(C)(D)【答案】C【考点定位】棱柱、棱锥、棱台的体积【名师点睛】本题考查几何体的体积的求法,属于中档题,求解几何体的底面面积与高是解题的关键,对于三棱锥的体积还可利用换底法与补形法进行处理.8.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)斛(B)斛(C)斛(D)斛【答案】B【解析】设圆锥底面半径为r ,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是圆锥,底面周长是两个底面半径与圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.9.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=【考点】三棱锥外接球【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.10.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 【答案】14π.【解析】球的直径是长方体的体对角线,所以224π14π.R S R ==== 【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11.【2017江苏,6】如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.12【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______. 【答案】【解析】由题意,三棱柱是底面为直角边长为1的 等腰直角三角形,高为1的直三棱柱,底面积为如图,因为AA 1∥PN ,故AA 1∥面PMN , 故三棱锥P -A 1MN 与三棱锥P -AMN 体积相等, 三棱锥P -AMN 的底面积是三棱锥底面积的,高为1故三棱锥P -A 1MN 的体积为【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力. 【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.13.【2016高考浙江文数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40.PC 1B 1A 1NCMBA考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 14.【2017课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅰ)4√3 【解析】试题解析:(1)在平面ABCD 内,因为∠BAD=∠ABC=90°,所以BC ∥AD.又BC PAD ⊄平面,AD PAD ⊂平面,故BC ∥平面PAD.(2)取AD 的中点M ,连结PM ,CM ,由12AB BC AD ==及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM ⊥AD,PM⊥底面ABCD,因为CM ABCD底面,所以PM⊥CM.设BC=x,则CM=x,CD=√2x,PM=√3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以PN=√142x因为△PCD的面积为2√7,所以1 2×√2x×√142x=2√7,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=2√3,所以四棱锥P-ABCD的体积V=13×2(2+4)2×2√3=4√3.【考点】线面平行判定定理,面面垂直性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.15.【2017课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)详见解析;(2)1试题解析:(1)证明:取AC 中点O ,连OB OD , ∵CD AD =,O 为AC 中点, ∴OD AC ⊥,又∵ABC ∆是等边三角形, ∴OB AC ⊥,又∵O OD OB = ,∴⊥AC 平面OBD ,⊂BD 平面OBD , ∴BD AC ⊥.(2)设2==CD AD ,∴22=AC ,22==CD AB , 又∵BD AB =,∴22=BD , ∴≅∆ABD CBD ∆,∴EC AE =, 又∵EC AE ⊥,22=AC , ∴2==EC AE , 在ABD ∆中,设xDE =,根据余弦定理DEAD AE DE AD BD AD AB BD AD ADB ⋅-+=⋅-+=∠22cos 222222 x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACED VV . 【考点】线面垂直判定及性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.16.【2017北京,文18】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA ⊥BD ;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BD E 时,求三棱锥E –BCD 的体积. 【答案】详见解析 【解析】试题解析:证明:(I )因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(II )因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(I )知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(III )因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==. 由(I )知,PA ⊥平面PAC ,所以DE ⊥平面PAC .所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【考点】1.线面垂直的判断和性质;2,。
高考数学在空间建系时,求点的坐标的另一种方法(利用距离公式和中点公式)
在立体几何空间建系时,求点的坐标,我们运用的往往是构造直角三角形等常见的方法。
但是在有些题目里面,这样子做并不容易。
这个时候可以灵活运用已知的距离和中点,利用空间中两点之间的距离公式以及中点公式,来达到迅速求未知点的坐标的目的。
希望这种方法,不要被忽略了。
下面以一道题为例,进行说明。
例1 (浙江2017,19题)如图,已知四棱锥P-ABCD ,三角形PAD 是以AD 为斜边的等腰直角三角形,且//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点(1)证明:CE//面PAB(2)求直线CE 与面PBC 所成角的正弦值解析:我们主要看第二问(1)如下图,取F 为AD 中点。
又E 为PD 中点因此EF//AP又因为AF 平行且相等于BC ,故AFBC 是平行四边形,从而CF//AB综上,面EFC//面PAB因此CE//面PAB(2)不妨设CD=CB=1,则PC=AD=2因为CD AD ⊥,易知BFCD 是边长为1的正方形因为三角形PAD 为等腰直角三角形,且F 为中点,故AD PF ⊥又AD BF ⊥故AD ⊥面PBF故在三角形PBF 中做出BF 边上的高h ,则必有h 垂直BF 且垂直于AD ,故垂直于面ABCD 因此将该高作为z 轴,BF 和FD 分别为x 轴和y 轴,建系如下易求点的坐标如下C (1,1,0)B (1,0,0)D (0,1,0)点P 的坐标E 的坐标不太容易求,而且也找不到合适的直角三角形来帮助求解。
但是我们能够很容易的求出来FP=1,PC=2。
因此可以利用这两个距离,列方程组求出P 的坐标。
而E 是P 和D 的中点,再利用中点公式,那么E 的坐标则可求。
如下因为AD=2,F 为中点,因此FP 为AD 的一半,即FP=1而PC=2为已知条件设P (x,0,z )则由FP=1和PC=2得到()22221114x z x z ⎧+=⎪⎨-++=⎪⎩解得122x z ⎧=-⎪⎪⎨⎪=⎪⎩从而1(2P - 由P 及D 的坐标,以及E是它们的中点,利用中点坐标公式,得到11(,42E -因此51,42CE ⎛=-- ⎝⎭而3,0,22PB ⎛=- ⎝⎭,(0,1,0)BC =,易求得面PBC的法向量(m =而CE与面PBC所成角的正弦值等于CE与m所成角的余弦的绝对值=8。
历年高考真题专题04立体几何
专题04 立体几何【2020年】1.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 51-B. 51-C. 51+D. 51+ 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).2.(2020·新课标Ⅰ)已知A 、B 、C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC , 222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.3.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E。
4.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是()2233【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为2根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.5.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A . 63+ B. 623+C. 123+D. 1223+ 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形, 则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭. 6.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.7.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A. 12π B. 24π C. 36π D. 144π【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.8.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143C. 3D. 6【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 9.(2020·山东卷)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E 3=,111D E B C ⊥, 又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥, 因为球的半径为5,13D E =,所以2211||||||532EP D P D E =-=-=, 所以侧面11B C CB 与球面的交线上的点到E 的距离为2,因为||||2EF EG ==,所以侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2222FG ππ=⨯=. 10.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 11.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【解析】正六棱柱体积为23622=123⨯;圆柱体积为21()222ππ⋅=;所求几何体体积为1232π 12.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.2【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC ,设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()1332222r =⨯++⨯=,解得:22r ,其体积:34233V r ππ==. 【2019年】1.【2019·全国Ⅰ卷】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .2.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .3.【2019·全国Ⅲ卷】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线;B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线;D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .4.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B.5.【2019·浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.6.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.7.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.8.【2019·北京卷】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.9.【2019·天津卷】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 10.【2019·江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【2018年】1.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B2.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33 B .23 C .324D .3【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D -中, 平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理,平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间,且过棱的中点的正六边形,且边长为22,所以其面积为232336424S ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .4.【2018·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 5.【2018·全国Ⅲ卷】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2393ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯⨯=,故选B.6.【2018·全国Ⅱ卷】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5C .5 D .2 【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115cos 2545DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则()()((110,0,0,1,0,0,3,3D A B D ,所以()(111,0,3,3AD DB =-=, 因为1111115cos ,25AD DB AD DB AD DB ⋅===⨯, 所以异面直线1AD 与1DB 所成角的余弦值为55,故选C. 7.【2018·浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.8.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】439.【2018·全国II 卷】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,l 所以22115515,802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos ,42r l ==因此圆锥的侧面积为22ππ402π.2rl l == 【2017年】1.【2017·全国Ⅱ卷】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A 3B 15C 10D 3【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C . 2.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B . 3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .2B .3C .2D .2【解析】几何体是四棱锥P ABCD -,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l =++=,选B . 4.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B. 6.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .7.【2017·浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .8.【2017·全国I 卷】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 154854415V =⨯⨯-=.9.【2017·山东卷】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为.【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆的半径为1,所以2π1π21121242V⨯=⨯⨯+⨯⨯=+.10.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.【解析】设正方体的边长为a,则26183a a=⇒=,其外接球直径为233R a==,故这个球的体积34π3V R==4279ππ382⨯=.11.【2017·江苏卷】如图,在圆柱12O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12O O的体积为1V,球O的体积为2V,则12VV的值是.【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.12.【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,2AB AD ==,当直线AB 与a 成60°角时,60ABD ∠=,故2BD =,又在Rt BDE △中,2,2BE DE =∴=,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知2BF DE ==,ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【2016年】1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+(B )54185+(C )90 (D )81【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π 【解析】由三视图可知,2的半球,体积为31142223V =⨯π⨯=),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C . 7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为232,2,所以,该三棱锥的体积为113322132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,正确的有②③④.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0x <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅,所以30BPD ∠=. 由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△,12sin 302d x =⋅,解得d = 而△BCD的面积111sin )2sin 30(2)222S CD BC BCD x x=⋅∠=⋅=.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积111)332BCD V S d x=⨯=⨯△=.观察上式,易得)2x x x x +≤,当且仅当x x -,即x 时取等号,同时我们可以发现当x x PBCD 的体积最大,为1.211.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 (A)2(B )2(C)3 (D)13【解析】设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.。
2017年高考立体几何大题(文科)
2017年高考立体几何大题(文科)1、(2017新课标I文数)(12分)如图,在四棱锥P-ABC[中,AB//CD,且.BAP = . CDP = 90:(1)证明:平面PABL平面PAD8(2)若PA=PD=AB=DC . APD =90,且四棱锥P-ABCD勺体积为-,求该四棱锥的侧面3积•2、( 2017新课标n文)(12分)如图,四棱锥P - ABCD中,侧面PAD为等边三角形且垂直于底面ABCD , 1AB 二BC AD,. BAD = . ABC 二90 .2(1)证明:直线BC//平面PAD ;(2)若厶PCD的面积为2.1,求四棱锥P - ABCD的体积.(2)已知△ ACD是直角三角形,AB=BD若E为棱BD上与D不重合的点, 求四面体ABCBf四面体ACDE勺体积比. AEL EC,(1)证明:ACL BD如图,在三棱锥PiABC中,PA I AB PAI BC ABL BC PA=AB=BC=2, D为线段AC的中(H)求证:平面BDE L平面PAC(川)当PA//平面BD E时,求三棱锥E-3CD勺体积.由四棱柱ABCDA i BQD截去三棱锥C-BQD后得到的几何体如图所示,四边形ABC[为正方形,O为AC与BD的交点,E为AD的中点,A i E_平面ABCD(I)证明:AO //平面BCD;(H)设如图,在三棱锥A-BCD中,ABL AD BCL BD平面ABDL平面BCD点E F(E与A, D不重合)分别在棱AD BD上,且EF L AD求证:(1) EF//平面ABC(2) AD L AC7、(2017浙江)(本题满分15分)如图,已知四棱锥P T ABCD A PAD是以AD为斜边的等腰直角三角形,BC//AD , CDLAD PC=AD=2DC=2CB E为PD的中点.A B P C~ D(第19题图)(i)证明:CE //平面PAB(n)求直线CE与平面PBC所成角的正弦值.8、( 2017天津文)(本小题满分13分)如图,在四棱锥P -ABCD 中,AD _ 平面PDC , AD //BC , PD _ PB, AD =1 , BC =3, CD =4, PD =2.(I )求异面直线AP与BC所成角的余弦值;(II )求证:PD —平面PBC ;。
高中数学《立体几何》专题复习 (1)
高中数学《立体几何》专题复习一1.(2018·安徽东至二中段测)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥答案 D解析把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.2.以下关于几何体的三视图的论述中,正确的是()A.正方体的三视图是三个全等的正方形B.球的三视图是三个全等的圆C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆答案 B解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.3.如图所示,几何体的正视图与侧视图都正确的是()答案 B解析侧视时,看到一个矩形且不能有实对角线,故A,D排除.而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应为B中所示,故选B.4.一个几何体的三视图如图,则组成该几何体的简单几何体为()A.圆柱和圆锥B.正方体和圆锥C.四棱柱和圆锥D.正方体和球答案 C5.(2018·沧州七校联考)三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB 的长为()A.16 3 B.38C.4 2 D.211答案 C解析由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形.在△ABC中,AC=4,AC边上的高为23,所以BC=4.在Rt△SBC中,由SC=4,可得SB=4 2. 6.(2017·衡水中学调研卷)已知一个四棱锥的高为3,其底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()A.2 2 B.6 2C.1 D. 2答案 A解析因为底面用斜二侧画法所画的水平放置的直观图是一个边长为1的正方形,所以在直角坐标系中,底面是边长为1和3的平行四边形,且平行四边形的一条对角线垂直于平行四边形的短边,此对角线的长为22,所以该四棱锥的体积为V=13×22×1×3=2 2.7.(2018·四川泸州模拟)一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为()A. 2B. 3C.2 D.4答案 A解析由题意知,正视图是底边长为2,腰长为3的等腰三角形,其面积为12×2×(3)2-1= 2.8.(2018·湖南郴州模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.③④C.①③D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.9.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案 D解析依题意,此几何体为组合体,若上、下两个几何体均为圆柱,则俯视图为A;若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若上边的几何体为底面为等腰直角三角形的直三棱柱,下边的几何体为正四棱柱时,俯视图为C;若俯视图为D,则正视图中还有一条虚线,故该几何体的俯视图不可能是D,故选D.10.(2018·江西上馓质检)点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过平面AMN和平面DNC1的两个截面截去正方体的两个角后得到的几何体如图,则该几何体的正(主)视图,侧(左)视图、俯视图依次为()A.①②③B.②③④C.①③④D.②④③答案 B解析由直视图可知,该几何体的正(主)视图、侧(左)视图、俯视图依次为②③④,故选B. 11.(2018·四川宜宾期中)某几何体的三视图如图所示,则该几何体最长棱的长度为()A.4 B.3 2C.2 2 D.2 3答案 D解析由三视图可知,该几何体为如图所示的四棱锥P-ABCD,由图可知其中最长棱为PC,因为PB2=PA2+AB2=22+22=8,所以PC2=PB2+BC2=8+22=12,则PC=23,故选D.12.(2018·北京东城区期末)在空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz平面为投影面,则得到的正视图可以为()答案 A解析设S(2,2,2),A(2,2,0),B(0,2,0),C(0,0,2),则此四面体S-ABC如图①所示,在xOz平面的投影如图②所示.其中S′是S在xOz平面的投影,A′是A在xOz平面的投影,O是B在xOz平面的投影,SB 在xOz平面的投影是S′O,并且是实线,CA在xOz平面的投影是CA′,且是虚线,如图③. 13.(2018·江西宜春模拟)某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大为()A.2 2 B.4C.2 3 D.2 6答案 C解析由三视图知该几何体为棱锥S-ABD,其中SC⊥平面ABCD,将其放在正方体中,如图所示.四面体S-ABD的四个面中△SBD的面积最大,三角形SBD是边长为22的等边三角形,所以此四面体的四个面中面积最大为34×8=2 3.故选C.14.(2018·江苏张家港一模)若将一个圆锥侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的高为________cm.答案 3解析设圆锥的底面圆半径为r cm,则2πr=2π,解得r=1 cm,∴h=22-1= 3 cm. 15.(2018·成都二诊)已知正四面体的俯视图如图所示,其中四边形ABCD是边长为2的正方形,则这个四面体的正视图的面积为________.答案2 2解析由俯视图可得,原正四面体AMNC可视作是如图所示的正方体的一内接几何体,则该正方体的棱长为2,正四面体的正视图为三角形,其面积为12×2×22=2 2.16.(2018·上海长宁区、嘉定区质检)如图,已知正三棱柱的底面边长为2,高为5,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为________.答案13解析将正三棱柱ABC-A1B1C1沿侧棱AA1展开,再拼接一次,如图所示,在展开图中,最短距离是六个矩形形成的大矩形对角线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理得d=122+52=13.17.某几何体的正(主)视图和侧(左)视图如图1,它的俯视图的直观图是矩形O1A1B1C1如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为________.答案96解析由俯视图的直观图可得y轴与C1B1交于D1点,O1D1=22,故OD=42,俯视图是边长为6的菱形,则该几何体是直四棱柱,侧棱长为4,则侧面积为6×4×4=96. 1.(课本习题改编)如图为一个几何体的三视图,则该几何体是()A.四棱柱B.三棱柱C.长方体D.三棱锥答案 B解析由几何体的三视图可知,该几何体的直观图如图所示,即为一个平放的三棱柱.2.(2018·山东泰安模拟)某三棱锥的三视图如图所示,其侧视图为直角三角形,则该三棱锥最长的棱长等于()A.4 2 B.34C.41 D.5 2答案 C解析根据几何体的三视图,得该几何体是底面为直角三角形,有两个侧面垂直于底面,高为5的三棱锥,最长的棱长等于25+16=41,故选C.3.(2018·安徽毛坦厂中学月考)已知一个几何体的三视图如图所示,则这个几何体的直观图是()答案 C解析A项中的几何体,正视图不符,侧视图也不符,俯视图中没有虚线;B项中的几何体,俯视图中不出现虚线;C项中的几何体符合三个视图;D项中的几何体,正视图不符.故选C.4.(2017·山东德州质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案 C解析此几何体的侧视图是从左边往右边看,故其侧视图应选C.5.(2017·广东汕头中学摸底)如图是一正方体被过棱的中点M,N,顶点A及过N,顶点D,C1的两个截面截去两角后所得的几何体,该几何体的正视图是()答案 B6.(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③,故选B.7.(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案 B解析由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.8.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()答案 B解析D项为主视图或者侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.9.底面水平放置的正三棱柱的所有棱长均为2,当其正(主)视图有最大面积时,其侧(左)视图的面积为()A.2 3 B.3C. 3 D.4答案 A解析当正视图面积最大时,侧视图是一个矩形,一个边长为2,另一边长是三棱柱底面三角形的高为3,故侧视图面积为2 3.10.(2015·北京,文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2C. 3 D.2答案 C解析将三视图还原成几何体的直观图,如图,由三视图可知,底面ABCD是边长为1的正方形,SB⊥底面ABCD,SB=AB=1,由勾股定理可得SA=SC=2,SD=SB2+DB2=1+2=3,故四棱锥中最长棱的棱长为 3.故选C. 11.(2017·南昌模拟)若一几何体的正视图与侧视图均为边长为1的正方形,则下列图形一定不是该几何体的俯视图的是()答案 D解析 若该几何体的俯视图为选项D ,则其正视图为长方形,不符合题意,故选D. 12.某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图可以是( )答案 D解析 通过分析正视图和侧视图,结合该几何体的体积为13,可知该几何体的底面积应为1,因为符合底面积为1的选项仅有D 选项,故该几何体为一个四棱锥,其俯视图为D. 13.(2018·兰州诊断考试)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中x 的值是( )A .2 B.92 C.32 D .3答案 D解析 由三视图知,该几何体是四棱锥,底面是一个直角梯形,底面积S =12×(1+2)×2=3,高h =x ,所以其体积V =13Sh =13×3x =3,解得x =3,故选D.14.某几何体的三视图如图所示,则该几何体中,最大侧面的面积为( )A.12B.22C.52D.62答案 C解析 由三视图知,该几何体的直观图如图所示.平面AED ⊥平面BCDE ,四棱锥A -BCDE 的高为1.四边形BCDE 是边长为1的正方形,则S △AED =12×1×1=12,S △ABC =S △ABE =12×1×2=22,S △ACD =12×1×5=52,故选C.15.(2017·山东师大附中月考)如图是各棱长均为2的正三棱柱ABC -A 1B 1C 1的直观图,则此三棱柱侧视图的面积为________. 答案 2 3解析 依题意,得此三棱柱的侧视图是边长分别为2,3的矩形BB 1D 1D ,故其面积是2 3.16.(2017·北京西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________. 答案 2 3解析 由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.17.用小立方块搭一个几何体,使它的正视图和俯视图如图所示,则它最多需要______个小立方块.答案14解析本题考查了三视图的有关知识.需要小立方块最多则:第一层最多6个,第二层最多5个,第三层最多3个,故最多用14个.18.(2017·湖南株洲质检)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()答案 C解析通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求.。
高考数学二轮复习 第一部分 专题篇 专题四 立体几何 第二讲 空间点、线、面位置关系的判断课时作业
2017届高考数学二轮复习第一部分专题篇专题四立体几何第二讲空间点、线、面位置关系的判断课时作业理1.(2016·正定摸底)已知直线a与平面α,β,α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:设直线a和点B所确定的平面为γ,则α∩γ=a,记β∩γ=b,∵α∥β,∴a ∥b,故存在唯一一条直线b与a平行.答案:D2.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是( )A.1 B.2C.3 D.4解析:易知①正确;②错误,l与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例证明,故选B.答案:B3.如图所示,O为正方体ABCDA1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1D.A1C1解析:由题意知,A1C1⊥平面DD1B1B,又OB1⊂面DD1B1B,所以A1C1⊥OB1,故选D.答案:D4.(2016·某某模拟)设m、n为两条不同的直线,α、β为两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n.上述命题中,所有真命题的序号是( )A.①④B.②③C.①③D.②④解析:由线面垂直的性质定理知①④正确;平行于同一条直线的两个平面可能相交,也可能平行,故②错;平行于同一平面的两条直线可能平行,也可能相交或异面,故③错.选A. 答案:A5.如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是( ) A.垂直B.相交不垂直C .平行D .重合 解析:如图,分别取另三条棱的中点A ,B ,C 将平面LMN 延展为平面正六边形AMBNCL ,因为PQ ∥AL ,PR ∥AM ,且PQ 与PR 相交,AL与AM 相交,所以平面PQR ∥平面AMBNCL ,即平面LMN ∥平面PQR .答案:C7.一个面截空间四边形的四边得到四个交点,如果该空间四边形的两条对角线与这个截面平行,那么此四个交点围成的四边形是________.解析:如图,由题意得AC ∥平面EFGH ,BD ∥平面EFGH .∵AC ⊂平面ABC ,平面ABC ∩平面EFGH =EF ,∴AC ∥EF ,同理AC ∥GH ,所以EF ∥GH .同理,EH ∥FG ,所以四边形EFGH 为平行四边形.答案:平行四边形8.(2016·某某模拟)如图,在正方体ABCD A 1B 1C 1D 1中,P 为棱DC 的中点,则D 1P 与BC 1所在直线所成角的余弦值等于________.解析:连接AD 1,AP (图略),则∠AD 1P 就是所求角,设AB =2,则AP =D 1P =5,AD 1=22,∴cos ∠AD 1P =12AD 1D 1P =105. 答案:1059.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值X 围是________.解析:取B 1C 1中点M ,则A 1M ∥AE ;取BB 1中点N ,则MN ∥EF (图略),∴平面A 1MN ∥平面AEF .若A 1P ∥平面AEF ,只需P ∈MN ,则P 位于MN 中点时,A 1P 最短;当P 位于M 或N 时,A 1P 最长.不难求得A 1P 的取值X 围为⎣⎢⎡⎦⎥⎤324,52. 答案:⎣⎢⎡⎦⎥⎤324,52 10.(2016·某某模拟)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,∠BAD =90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证:CD ∥平面MNQ ;(2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以MQ ∥CD ,又CD ⊄平面MNQ ,MQ ⊂平面MNQ ,故CD ∥平面MNQ .(2)因为M ,N 分别为棱AD ,BD 的中点,所以MN ∥AB ,又∠BAD =90°,故MN ⊥AD .因为平面BAD ⊥平面CAD ,平面BAD ∩平面CAD =AD ,且MN ⊂平面ABD ,所以MN ⊥平面CAD ,又MN ⊂平面MNQ ,所以平面MNQ ⊥平面CAD .11.(2016·某某五校联考)如图,四棱锥P ABCD 中,底面ABCD 是菱形,PA =PD ,∠BAD =60°,E 是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证:PA ∥平面BDQ ;(3)若V P BCDE =2V Q ABCD ,试求CP CQ的值.解析:(1)证明:由E 是AD 的中点,PA =PD 可得AD ⊥PE .又底面ABCD 是菱形,∠BAD =60°,所以AB =BD ,又因为E 是AD 的中点,所以AD ⊥BE ,又PE ∩BE =E ,所以AD ⊥平面PBE .(2)证明:连接AC (图略),交BD 于点O ,连接OQ .因为O 是AC 的中点, Q 是PC 的中点,所以OQ ∥PA ,又PA ⊄平面BDQ ,OQ ⊂平面BDQ ,(3)设四棱锥P BCDE ,Q ABCD 的高分别为h 1,h 2.所以V P BCDE =13S 四边形BCDE h 1, V Q ABCD =13S 四边形ABCD h 2.又因为V P BCDE =2V Q ABCD ,且S 四边形BCDE =34S 四边形ABCD ,所以CP CQ =h 1h 2=83. 12.(2016·某某模拟)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN ∥平面BDH ;(3)过点M ,N ,H 的平面将正方体分割为两部分,求这两部分的体积比.解析:(1)点F ,G ,H 的位置如图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH ,AC ,BH ,MN .∵M ,N 分别是BC ,GH 的中点,∴OM ∥CD ,且OM =12CD ,NH ∥CD ,且NH =12CD , ∴OM ∥NH ,OM =NH ,则四边形MNHO 是平行四边形,∴MN ∥OH ,又∵MN ⊄平面BDH ,OH ⊂平面BDH ,(3)由(2)知,OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是GH,底面分别是四边形BMGF和三角形MGC,体积比等于底面积之比,即3∶1.。
专题15 立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编
十年(2014-2023)年高考真题分项汇编立体几何填空、多选目录题型一:立体几何结构特征 (1)题型二:立体几何三视图 (2)题型三:立体几何的表面积与体积 (3)题型四:立体几何中的球的问题 (9)题型五:立体几何线面位置关系 (9)题型六:立体几何中的角度与距离 (10)题型一:立体几何结构特征1.(2023年全国甲卷理科·第15题)在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有____________个公共点.2.(2020年高考课标Ⅲ卷理科·第15题)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.3.(2019·全国Ⅱ·理·第16长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(本题第一空2分,第二空3分).4.(2017年高考数学上海(文理科)·第11题)如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为________.5.(2015高考数学江苏文理·第9题)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_______.二、多选题1.(2023年新课标全国Ⅰ卷·第12题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体2.(2021年新高考Ⅰ卷·第12题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 题型二:立体几何三视图1.(2021年高考全国乙卷理科·第16题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).2.(2019·北京·理·第11题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.3.(2017年高考数学上海(文理科)·第8题)已知球的体积为36π,则该球主视图的面积等于________.4.(2017年高考数学山东理科·第13题)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为__________.则该棱台的体积为________.2.(2023年新课标全国Ⅱ卷·第14题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.3.(2020年新高考全国Ⅰ卷(山东)·第15题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.4.(2020年新高考全国卷Ⅱ数学(海南)·第13题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________5.(2020天津高考·第15题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅ 的最小值为_________.6.(2020江苏高考·第9题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5cm,则此六角螺帽毛坯的体积是____cm.7.(2019·天津·理·第11题)个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.8.(2019·全国Ⅲ·理·第16题)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .9.(2019·江苏·第9题)如图,长方体1111ABCD A B C D -的体积是120,E 是1CC 的中点,则三棱椎-E BCD 的体积是______.10.(2018年高考数学江苏卷·第10题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(2018年高考数学天津(理)·第11题)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.12.(2018年高考数学课标Ⅱ卷(理)·第16题)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.13.如图,在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为.1A 1B 1C AB C14.(2014高考数学天津理科·第10题)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m.15.(2014高考数学山东理科·第13题)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =.16.(2014高考数学江苏·第8题)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12V V 的值是.17.(2015高考数学天津理科·第10题)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m.18.(2015高考数学上海理科·第4题)若正三棱柱的所有棱长均为a ,且其体积为,则a =.19.(2017年高考数学江苏文理科·第6题)如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_______.20.(2016高考数学浙江理科·第14题)如图,在ABC ∆中,2,120AB BC ABC ==∠= .若平面ABC 外的点P 和线段AC 上的点D ,满足,PD DA PB BA ==,则四面体PBCD 的体积的最大值是.21.(2016高考数学浙江理科·第11题)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是2cm ,体积是3cm .OO 1O 2(第6题)⋅⋅⋅22.(2016高考数学天津理科·第11题)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_____________3m .23.(2016高考数学四川理科·第13题)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则三棱锥的体积为_______.二、多选题1.(2022新高考全国II 卷·第11题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =题型四:立体几何中的球的问题1.(2020年新高考全国Ⅰ卷(山东)·第16题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.2.(2017年高考数学天津理科·第10题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝2.(2019·北京·理·第12题)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l m ⊥;②m ∥α;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【3.(2016高考数学课标Ⅱ卷理科·第14题),αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果m n ⊥,m α⊥,//n β,那么αβ⊥.(2)如果m α⊥,//n α,那么m n ⊥.(3)如果//αβ,m α⊂,那么//m β.(4)如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)二、多选题1.(2021年新高考全国Ⅱ卷·第10题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A .B .C .D ._____________.(结果用反三角函数值表示)2.(2015高考数学浙江理科·第13题)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.3.(2015高考数学四川理科·第14题)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面相互垂直,动点M 在线段PQ 上,,E F 分别为AB ,BC 中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________4.(2015高考数学上海理科·第6题)若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为.5.(2017年高考数学课标Ⅲ卷理科·第16题),a b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角;②当直线AB 与a 成60︒角时,AB 与b 成60︒角;③直线AB 与a 所成角的最小值为45︒;④直线AB 与a 所成角的最大值为60︒.其中正确的是.(填写所有正确结论的编号)6.(2016高考数学上海理科·第6题)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.二、多选题1.(2023年新课标全国Ⅱ卷·第9题)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC △2.(2022新高考全国I 卷·第9题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒。
高考复习 立体几何大题第一问精练(文科)
高考复习 立体几何大题第一问精练题型1 线线平行、垂直1.(2016新课标Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD , 折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.2.(2015新课标Ⅱ卷)如图,长方体ABCD-A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面 与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由).解 (1)交线围成的正方形EHGF 如图:题型2 线面平行3.(2017新课标Ⅱ卷)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=21AD ,∠BAD=∠ABC=90°.(1)证明:直线BC ∥平面PAD.4.(2016新课标Ⅲ卷)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB.解析 (Ⅰ)由已知得AM=32AD=2.取BP 的中点T ,连结AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=21BC=2.(3分) 又AD ∥BC ,故TN ∥AM ,故四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB.(6分)5.(2016四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =21AD.(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD.(1)解 取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM.所以四边形AMCB 是平行四边形,所以CM ∥AB. 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB.(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)6.(2014新课标Ⅱ卷)如图,四棱锥PABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB∥平面AEC.(1)证明设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.题型3 线面垂直7.(2017新课标Ⅲ卷)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD.[解析] (1)证明:取AC中点O,连OD,OB,∵AD=CD,O为AC中点,∴AC⊥OD,又∵△ABC是等边三角形,∴AC⊥OB,又∵OB∩OD=O,∴AC⊥平面OBD,BD 平面OBD,∴AC⊥BD;8.(2018新课标Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC.(1)证明:∵AB=BC=22,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;9.(2015广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD .解 (1)因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA.(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD.10.(2016北京卷)如图,在四棱锥PABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC.(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC.又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC ,∴CD ⊥平面PAC.(2)证明 ∵AB ∥CD ,CD ⊥平面PAC ,∴AB ⊥平面PAC ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAC.11.(2014山东卷)如图,四棱锥PABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =21AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面PAC.证明 (1)设AC ∩BE =O ,连接OF ,EC.由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC , 所以AE ∥BC ,AE =AB =BC ,所以四边形ABCE 为菱形,所以O 为AC 的中点.又F为PC的中点,所以在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,所以BE∥CD.又AP⊥平面PCD,所以AP⊥CD,所以AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP、AC⊂平面PAC,所以BE⊥平面PAC.12.(2016新课标Ⅰ卷)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点.解:(Ⅰ)证明:∵P−ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;题型4 面面垂直13.(2018新课标Ⅲ卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC.解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧所在平面垂直,∴AD⊥平面BCM,则AD⊥MC,∵AD∩DM=D,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.14.(2018新课标Ⅰ卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC.解:(1)证明:∵在平行四边形ABCM 中,∠ACM=90°,∴AB ⊥AC ,又AB ⊥DA .且AD ∩AB=A ,∴AB ⊥面ADC ,∴AB ⊂面ABC ,∴平面ACD ⊥平面ABC ;15.(2017新课标Ⅰ卷)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD .(1)证明:∵90BAP CDP ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD16.(2015新课标Ⅰ卷)如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC ⊥平面BED.解 (1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.所以AC ⊥平面BED ,又AC ⊂平面AEC ,所以平面AEC ⊥平面BED.17.(2015湖南卷)如图,直三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1.(1)证明∵△ABC为正三角形,E为BC中点,∴AE⊥BC,∴又B1B⊥平面ABC,AE⊂平面ABC,∴B1B⊥AE,∴由B1B∩BC=B知,AE⊥平面B1BCC1,又由AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.。
二面角的求法--以2017全国卷1理科立体几何题为例
-
12
-
2 2
+
2 4
ö ÷ ø
.
过C
作CN
^
PB
于
N
,
设
PN
=
μ PB
,
PN
=
æ ç
è
2 2
μμ -
2 2
μ
ö ÷ ø
,
CN
=
CP
+
2 2
μ -1 + μ
2 2
-
2 2
μ ö÷ ø
由
CN × PB = 2μ - 1 = 0
得
μ
=
1 2
,
所
以
| | | NC
cos
=
æ ç
-
è
2 2
以三个不共线向量作为一组基底,求出
两知个, <半解A平法B面:A的以D法>A向=B量9A0D°., <APAB为 ,
基AP底
. 由(1) >= 90° ,
| | | | < ADAP >= 45° . 设 AB = AP = 1 , 则
| | AD = 2 . 设 n = x1AB + y1AD + z1AP 是 平
M D
C
1 建系可
Aæç è
2 2
0 0
ö ÷ ø
,
得F
A x
N
y
图3 B
P æç 0 0 è
2 2
ö ÷
,
ø
Bæç è
2 2
1 0
ö ÷ ø
,
C æç è
2 2
1 0
立体几何(解析版)
2017年高考真题分类汇编(理数):专题6 立体几何(解析版)一、单选题(共7题;共14分)1、(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A、+1B、+3C、+1D、+32、(2017•浙江)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,= =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A、γ<α<βB、α<γ<βC、α<β<γD、β<γ<α3、(2017•北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A、3B、2C、2D、24、(2017•新课标Ⅰ卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A、10B、12C、14D、165、(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A、B、C、D、6、(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A、90πB、63πC、42πD、36π7、(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A、πB、C、D、二、填空题(共5题;共5分)8、(2017•山东)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为________.9、(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.10、(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是________.11、(2017•新课标Ⅰ卷)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________.12、(2017•新课标Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是________(填写所有正确结论的编号)三、解答题(共9题;共60分)13、(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(12分)(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.14、(2017·天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.15、(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD ⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.16、(2017•北京卷)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17、(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.18、(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(Ⅰ)EF∥平面ABC;(Ⅱ)AD⊥AC.19、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20、(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.21、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.答案解析部分一、单选题1、【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为× ×π×12×3+ × × × ×3= +1,故选:A【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.2、【答案】B【考点】用空间向量求平面间的夹角,二面角的平面角及求法【解析】【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,= ,=(0,3,6 ),=(,5,0),= ,= .设平面PDR的法向量为=(x,y,z),则,可得,可得= ,取平面ABC的法向量=(0,0,1).则cos = = ,取α=arccos .同理可得:β=arccos .γ=arccos .∵>>.∴α<γ<β.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.则cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.∴cosα>cosγ>cosβ,α,β,γ为锐角.∴α<γ<β.故选:B.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.可得cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.即可得出.3、【答案】B【考点】由三视图求面积、体积,由三视图还原实物图【解析】【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA= ==2 ,故选:B.【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.4、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图【解析】【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形= ×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可5、【答案】C【考点】余弦定理的应用,异面直线及其所成的角【解析】【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN= AB1= ,NP= BC1= ;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ= AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC= ,∴MQ= ;在△MQP中,MP= = ;在△PMN中,由余弦定理得cos∠MNP= = =﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【分析】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.6、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.7、【答案】B【考点】棱柱、棱锥、棱台的体积【解析】【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r= = ,∴该圆柱的体积:V=Sh= = .故选:B.【分析】推导出该圆柱底面圆周半径r= = ,由此能求出该圆柱的体积.二、填空题8、【答案】2+【考点】由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2= ×π×12×1= ,则该几何体的体积V=V1+2V1=2+ ,故答案为:2+ .【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.9、【答案】【考点】球的体积和表面积【解析】【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a= ,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R= ,则球的体积V= π•()3= ;故答案为:.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.10、【答案】【考点】旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则= = .故答案为:.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.11、【答案】4 cm3【考点】棱锥的结构特征,棱柱、棱锥、棱台的体积【解析】【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h= = = ,=3 ,则V= = = ,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤ =4 cm3,∴体积最大值为4 cm3.故答案为:4 cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h= ,求出S△ABC=3 ,V= = ,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.12、【答案】②③【考点】异面直线及其所成的角,用空间向量求直线间的夹角、距离【解析】【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),| |=1,直线b的方向单位向量=(1,0,0),| |=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,=(﹣cosθ,﹣sinθ,1),| |= ,设与所成夹角为α∈[0,],则cosα= = |sinθ|∈[0,],∴α∈[ ,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ= = = |cosθ|,当与夹角为60°时,即α= ,|sinθ|= = = ,∵cos2θ+sin2θ=1,∴cosβ= |cosθ|= ,∵β∈[0,],∴β= ,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C 坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.三、解答题13、【答案】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BEGH为菱形,∴AE=GE=AC=GC= .取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM= .在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>= .∴二面角E﹣AG﹣C的大小为60°.【考点】旋转体(圆柱、圆锥、圆台),直线与平面垂直的判定,直线与平面垂直的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C 的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG ﹣C的大小.14、【答案】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>= .∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=| |=| |= .解得:t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4.【考点】异面直线及其所成的角,平面与平面平行的判定,平面与平面平行的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE所成角的余弦值为列式求得线段AH的长.15、【答案】证明:(Ⅰ)∵四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,设PC=AD=2DC=2CB=2,则C(0,1,0),D(0,0,0),P(1,0,1),E(),A(2,0,0),B(1,1,0),=(),=(1,0,﹣1),=(0,1,﹣1),设平面PAB的法向量=(x,y,z),则,取z=1,得=(1,1,1),∵= =0,CE⊄平面PAB,∴CE∥平面PAB.解:(Ⅱ)=(﹣1,1,﹣1),设平面PBC的法向量=(a,b,c),则,取b=1,得=(0,1,1),设直线CE与平面PBC所成角为θ,则sinθ=|cos<>|= = = .∴直线CE与平面PBC所成角的正弦值为.【考点】直线与平面平行的判定,直线与平面所成的角,向量方法证明线、面的位置关系定理,用空间向量求直线与平面的夹角【解析】【分析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,利用向量法能证明CE∥平面PAB.(Ⅱ)求出平面PBC的法向量和,利用向量法能求出直线CE与平面PBC所成角的正弦值.16、【答案】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD= ,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z= ,得.取平面PAD的一个法向量为.∴cos<>= = .∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=| |=| |= .【考点】直线与平面平行的性质,平面与平面垂直的性质,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1.)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2.)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3.)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP 所成角的正弦值.17、【答案】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1= ,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(Ⅰ)∵cos<>= = .∴异面直线A1B与AC1所成角的余弦值为;(Ⅱ)设平面BA1D的一个法向量为,由,得,取x= ,得;取平面A1AD的一个法向量为.∴cos<>= = .∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【考点】异面直线及其所成的角,直线与平面垂直的性质,用空间向量求直线间的夹角、距离,二面角的平面角及求法【解析】【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A 为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(Ⅰ)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(Ⅱ)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A 的余弦值,进一步得到正弦值.18、【答案】证明:(Ⅰ)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(Ⅱ)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定【解析】【分析】(Ⅰ)利用AB∥EF及线面平行判定定理可得结论;(Ⅱ)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.19、【答案】(Ⅰ)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2,BN= ,MN= ,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ== ,二面角M﹣AB﹣D的余弦值为:= .【考点】直线与平面平行的判定,二面角的平面角及求法【解析】【分析】(Ⅰ)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.(Ⅱ)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.20、【答案】(Ⅰ)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B到平面ACE的距离分别为h D,h E.则= .∵平面AEC把四面体ABCD分成体积相等的两部分,∴= = =1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C的余弦值为.【考点】平面与平面垂直的判定,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)如图所示,取AC的中点O,连接BO,OD.△ABC是等边三角形,可得OB⊥AC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,∠ADC=90°.可得DO= AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明.(Ⅱ)设点D,B到平面ACE的距离分别为h D,h E.则= .根据平面AEC把四面体ABCD分成体积相等的两部分,可得= = =1,即点E是BD的中点.建立如图所示的空间直角坐标系.设AB=2.利用法向量的夹角公式即可得出.21、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【考点】平面与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD= .取AD 中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.。
立体几何高考专题--外接球的几种常见求法
高三微专题:外接球一、由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.简单多面体外接球问题是立体几何中的重点,难点,此类问题实质是①确定球心的位置 ②在Rt △用勾股定理求解外接球半径(其中底面外接圆半径r 可根据正弦定理求得).二、球体公式1.球表面积S=4π2R 2.球体积公式V=334Rπ三、球体几个结论:(1)长方体,正方体外接球直径=体对角线长 (2)侧棱相等,顶点在底面投影为底面外接圆圆心 (3)直径所对的球周角为90°(大圆的圆周角) (4)正三棱锥对棱互相垂直四、外接球几个常见模型 1.长方体(正方体)模型O例1(2017年新课标Ⅱ)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为()答案:14练习1(2016新课标Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) 答案:12π2.正棱锥(圆锥)模型(侧棱相等,底面为正多边形)球心位置:位于顶点与底面外心连线线段(或延长线)上半径公式:222)(r R h R +-=(R 为外接球半径,r 为底面外接圆半径,h 为棱锥的高,r 可根据正弦定理r Aa2sin = (一边一对角)例2.已知各顶点都在同一个球面上的正四棱锥高为,体积为,则这个球的表面积是____. 【解析】正四棱锥的高为,体积为,易知底面面积为,底面边长为.正四棱锥的外接球的球心在它的高上,记为,,,,在中,,由勾股定理得.所以,球的表面积.练习2.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .解析:ABC ∆外接圆的半径为 ,三棱锥ABC S -的直径为3460sin 22==R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V 3. 侧棱与底面垂直锥体(直棱柱,圆柱)(1) 侧棱与底面垂直:球心位置:底面外心正上方,侧棱中垂面交汇处(高的一半处)半径公式:222)2(h r R +=,(R 为外接球半径,r 为底面外接圆半径,h 为棱锥的高,r 可根据正弦定理r Aa2sin = (一边一对角)(2) 直棱柱(圆柱)球心位置:上下底面外心连线中点处公式公式:222)2(h r R +=,(R 为外接球半径,r 为底面外接圆半径,h 为棱锥的高,r 可根据正弦定理r Aa2sin = (一边一对角)例3.在四面体中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D 解析:在ABC ∆中,7120cos 2222=⋅⋅-+=BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r , ∴310,)2(2222=+=R SA r R ,340π=S ,选D 练习3(1)直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 。
浙江高考数学近五年立体几何真题含答案
2016•浙江14.(4分)(2016•浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.14.(4分)【考点】棱柱、棱锥、棱台的体积.【分析】由题意,△ABD≌△PBD,可以理解为△PBD是由△ABD绕着BD旋转得到的,对于每段固定的AD,底面积BCD为定值,要使得体积最大,△PBD必定垂直于平面ABC,此时高最大,体积也最大.【解答】解:如图,M是AC的中点.①当AD=t<AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=﹣t,由△ADE∽△BDM,可得,∴h=,V==,t∈(0,)②当AD=t>AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述,V=,t∈(0,2)=.令m=∈[1,2),则V=,∴m=1时,Vmax故答案为:.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:EF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD.(II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值.【解答】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,∴AC⊥平面BCK,∴BF⊥AC.又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,∴BF⊥平面ACFD.(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.在Rt△ACK中,AC=3,CK=2,可得FQ=.在Rt△BQF中,BF=,FQ=.可得:cos∠BQF=.∴二面角B﹣AD﹣F的平面角的余弦值为.方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz.可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),,.=(0,3,0),=,(2,3,0).设平面ACK 的法向量为=(x 1,y 1,z 1),平面ABK 的法向量为=(x 2,y 2,z 2),由,可得,取=.由,可得,取=.∴==.∴二面角B﹣AD﹣F 的余弦值为.【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.2017年浙江(2017年浙江)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC∥AD,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(第19题图)(1)证明:CE∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.19.解:(1)如图,设PA 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,PA 中点,所以EF∥AD 且EF=12AD,又因为BC∥AD,BC=12AD,所以EF∥BC 且EF=BC,即四边形BCEF 为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC,AD 的中点为M,N,连接PN 交EF 于点Q,连接MQ.PABCDE因为E,F,N 分别是PD,PA,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ∥CE.由△PAD 为等腰直角三角形得PN⊥AD.由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,PD=2得CE =2,在△PBN 中,由PN =BN =1,PB =3得QH =14,在Rt△MQH 中,QH=14,MQ =2,所以sin∠QMH =28,所以直线CE 与平面PBC 所成角的正弦值是28.2018年浙江19.(15分)如图,已知多面体ABCA 1B 1C 1,A 1A,B 1B,C 1C 均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(I)利用勾股定理的逆定理证明AB 1⊥A 1B 1,AB 1⊥B 1C 1,从而可得AB 1⊥平面A 1B 1C 1;(II)以AC 的中点为坐标原点建立空间坐标系,求出平面ABB 1的法向量,计算与的夹角即可得出线面角的大小.【解答】(I)证明:∵A 1A⊥平面ABC,B 1B⊥平面ABC,∴AA 1∥BB 1,∵AA 1=4,BB 1=2,AB=2,∴A 1B 1==2,又AB 1==2,∴AA 12=AB 12+A 1B 12,∴AB 1⊥A 1B 1,同理可得:AB 1⊥B 1C 1,又A 1B 1∩B 1C 1=B 1,∴AB 1⊥平面A 1B 1C 1.(II)解:取AC 中点O,过O 作平面ABC 的垂线OD,交A 1C 1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O 为原点,以OB,OC,OD 所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B 1(1,0,2),C 1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB 1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC 1与平面ABB 1所成的角为θ,则sinθ=|cos<>|=.∴直线AC 1与平面ABB 1所成的角的正弦值为.【点评】本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.2019年14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段A C 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.【答案】(1).1225(2).7210【解析】【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入CD x =,在BDC ∆、ABD ∆中应用正弦定理,建立方程,进而得解..【详解】在ABD ∆中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,22AC AB BC 5=+=,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =.72cos cos()coscos sin sin 4410ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=19.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF与平面1A BC 所成角的余弦值.【答案】(1)证明见解析;(2)35.【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值.【详解】(1)如图所示,连结11,A E B E ,等边1AA C △中,AE EC =,则3sin 0sin 2B A ,≠∴=,平面ABC ⊥平面11A A C C ,且平面ABC ∩平面11A ACC AC =,由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A = ,由线面垂直的判定定理可得:BC ⊥平面11A B E ,结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则AE EC ==,11AA CA ==,3BC AB ==,据此可得:()()()1330,,,,0,0,0,3,22A B A C ⎛⎫⎪ ⎪⎝⎭,由11AB A B = 可得点1B的坐标为132B ⎛⎫⎪⎝⎭,利用中点坐标公式可得:34F ⎛⎫⎪⎝⎭,由于()0,0,0E ,故直线EF的方向向量为:34EF ⎛⎫= ⎪⎝⎭ 设平面1A BC 的法向量为(),,m x y z =,则:()()13333,,,33022223333,,,02222m A B x y z x z m BC x y z x ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩,据此可得平面1A BC的一个法向量为()m =,34EF ⎛⎫= ⎪⎝⎭此时4cos ,5EF m EF m EF m⋅===⨯,设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ=== .【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.2020年19.如图,三棱台DEF ﹣ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求DF 与面DBC所成角的正弦值.【分析】(Ⅰ)题根据已知条件,作DH ⊥AC ,根据面面垂直,可得DH ⊥BC ,进一步根据直角三角形的知识可判断出△BHC 是直角三角形,且∠HBC =90°,则HB ⊥BC ,从而可证出BC ⊥面DHB ,最后根据棱台的定义有EF ∥BC ,根据平行线的性质可得EF ⊥DB ;(Ⅱ)题先可设BC =1,根据解直角三角形可得BH =1,HC =,DH =,DC =2,DB=,然后找到CH与面DBC的夹角即为∠HCG,根据棱台的特点可知DF与面DBC 所成角与CH与面DBC的夹角相等,通过计算∠HCG的正弦值,即可得到DF与面DBC 所成角的正弦值.解:(Ⅰ)证明:作DH⊥AC,且交AC于点H,∵面ADFC⊥面ABC,DH⊂面ADFC,∴DH⊥BC,∴在Rt△DHC中,CH=CD•cos45°=CD,∵DC=2BC,∴CH=CD=•2BC=•BC,∴=,即△BHC是直角三角形,且∠HBC=90°,∴HB⊥BC,∴BC⊥面DHB,∵BD⊂面DHB,∴BC⊥BD,∵在三棱台DEF﹣ABC中,EF∥BC,∴EF⊥DB.(Ⅱ)设BC=1,则BH=1,HC=,在Rt△DHC中,DH=,DC=2,在Rt△DHB中,DB===,作HG⊥BD于G,∵BC⊥HG,∴HG⊥面BCD,∵GC⊂面BCD,∴HG⊥GC,∴△HGC是直角三角形,且∠HGC=90°,设DF与面DBC所成角为θ,则θ即为CH与面DBC的夹角,且sinθ=sin∠HCG==,∵在Rt△DHB中,DH•HB=BD•HG,∴HG===,∴sinθ===..2016•浙江14.(4分)(2016•浙江)如图,在△ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是.(2016•浙江)如图,在三棱台ABC ﹣DEF 中,已知平面BCFE ⊥平面ABC ,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:EF ⊥平面ACFD ;(Ⅱ)求二面角B ﹣AD ﹣F的余弦值.2017年浙江如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(第19题图)(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.PABCD E(2018年浙江)19.(15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.2019年浙江14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段A C 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.19.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是11,AC A B 的中点.;(1)证明:EF BC(2)求直线EF与平面1A BC所成角的余弦值.2020年浙江19.如图,三棱台DEF﹣ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.。
2017年高考真题——数学(浙江卷)解析
绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学【试卷点评】 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.椭圆22194x y +=的离心率是A 13B 5C .23D .59【答案】B 【解析】 试题分析:945e -B . 【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是(第3题图)A .12π+ B .32π+ C .312π+ D .332π+ 【答案】A【考点】 三视图【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D 【解析】试题分析:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【考点】 简单线性规划【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】试题分析:由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是(第7题图)【答案】D【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f'x 的正负,得出原函数()f x 的单调区间.8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2. 若0<p 1<p 2<12,则 A .1()E ξ<2()E ξ,1()D ξ<2()D ξ B .1()E ξ<2()E ξ,1()D ξ>2()D ξ C .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ【答案】A 【解析】试题分析:∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A .【考点】 两点分布【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量iξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则(第9题图)A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【考点】 空间角(二面角)【名师点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解.10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB =,2·I OB OC =,3·I OC OD =,则(第10题图)A .123I I I <<B .132I I I <<C .312I I I <<D .213I I I <<【答案】C【考点】 平面向量的数量积运算【名师点睛】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.本题通过所给条件结合数量积运算,易得90AOB COD ∠=∠>,由AB =BC =AD =2,CD =3,可求得OA OC <,OB OD <,进而得到312I I I <<. 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
2017年浙江省高考数学试卷(含解析版)
2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(4分)椭圆A.+=1的离心率是()B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+34.(4分)若x、y满足约束条件A.[0,6]B.[0,4],则z=x+2y的取值范围是()C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关C.与a无关,且与b无关B.与a有关,但与b无关D.与a无关,但与b有关6.(4分)已知等差数列{a}的公差为d,前n项和为S,则“d>0”是“S+Sn n4>2S”的()56A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)1的图象可能是()A.B.C.D.8.(4分)已知随机变量ξ满足P(ξ=1)=p,P(ξ=0)=1﹣p,i=1,2.若i i i i i0<p<p<,则()12A.E(ξ)<E(ξ),D(ξ)<D(ξ)B.E(ξ)<E(ξ),D(ξ)1212121>D(ξ)2C.E(ξ)>E(ξ),D(ξ)<D(ξ)D.E(ξ)>E(ξ),D(ξ)1212121>D(ξ)29.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I=•,I=•,I=•,则()1232( 3 2A .I <I <I 123B .I <I <I 1 32C .I <I <I 3 12D .I <I <I 2 13二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分11.(4 分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率 π,理论上能把 π 的值计算到任意精度,祖冲之继承并发展了“割圆术”,将 π 的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积 S ,S =.6612.(6 分)已知 a 、b∈R ,(a+bi )2=3+4i (i 是虚数单位),则 a 2+b 2=,ab=.13. 6 分)已知多项式(x+1)(x+2) =x 5+a x 4+a x 3+a x 2+a x+a ,则 a = ,12 3 4 5 4a =.514.(6 分)已知△ABC,AB=AC=4,BC=2,点 D 为 AB 延长线上一点,BD=2,连结△C D ,则 BDC 的面积是 ,cos∠BDC= .15 .( 6 分)已知向量、 满足 | |=1 , | |=2 ,则 | + |+| ﹣ | 的最小值是,最大值是.16.(4 分)从 6 男 2 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2人组成 4 人服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)17.(4 分)已知 a∈R,函数 f (x )=|x+ ﹣a|+a 在区间[1,4]上的最大值是 5,则 a 的取值范围是.三、解答题(共 5 小题,满分 74 分)18.(14 分)已知函数 f (x )=sin 2x ﹣cos 2x ﹣2(Ⅰ)求 f ()的值.(Ⅱ)求 f (x )的最小正周期及单调递增区间.sinx cosx (x∈R ).319.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.421.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA||PQ|的最大值.22.(15分)已知数列{x}满足:x=1,x=x+ln(1+x)(n∈N*),证明:当nn1n n+1n+1∈N*时,(Ⅰ)0<x<x;n+1n(Ⅱ)2x﹣x≤n+1n (Ⅲ)≤x≤n;.52017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆A.+=1的离心率是()B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.63.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,××3=+1,故该几何体的体积为××π×12×3+××故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.74.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关C.与a无关,且与b无关B.与a有关,但与b无关D.与a无关,但与b有关8【考点】3V:二次函数的性质与图象.【专题】32:分类讨论;4C:分类法;51:函数的性质及应用.【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b 的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{a}的公差为d,前n项和为S,则“d>0”是“S+S6n n4>2S”的()59A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;35:转化思想;4R:转化法;54:等差数列与等比数列;5L:简易逻辑.【分析】根据等差数列的求和公式和S+S>2S,可以得到d>0,根据充分必要465条件的定义即可判断.【解答】解:∵S+S>2S,465∴4a+6d+6a+15d>2(5a+10d),111∴21d>20d,∴d>0,故“d>0”是“S+S>2S”充分必要条件,465故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.10E【考点】3A :函数的图象与图象的变换.【专题】31:数形结合;44:数形结合法;52:导数的概念及应用.【分析】根据导数与函数单调性的关系,当 f′(x )<0 时,函数 f (x )单调递减,当 f′(x )>0 时,函数 f (x )单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数 y=f (x )的图象可能【解答】解:由当 f′(x )<0 时,函数 f (x )单调递减,当 f′(x )>0 时,函数 f (x )单调递增,则由导函数 y=f′(x )的图象可知:f (x )先单调递减,再单调递增,然后单调递减,最后单调递增,排除 A ,C ,且第二个拐点(即函数的极大值点)在 x 轴上的右侧,排除 B ,故选:D .【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4 分)已知随机变量 ξ 满足 P (ξ =1)=p ,P (ξ =0)=1﹣p ,i=1,2.若iiiii0<p <p < ,则()12A .E (ξ )<E (ξ ),D (ξ )<D (ξ )B .E (ξ )<E (ξ ),D (ξ )1212121>D (ξ )2C .E (ξ )>E (ξ ),D (ξ )<D (ξ ) D .E (ξ )>E (ξ ),D (ξ )12 1 2 1 2 1>D (ξ )2【考点】CH :离散型随机变量的期望与方差.【专题】11:计算题;34:方程思想;49:综合法;5I :概率与统计.【分析】由已知得 0<p <p < , <1﹣p <1﹣p <1,求出 E (ξ )=p ,(ξ )1221112=p ,从而求出 D (ξ ),D (ξ ),由此能求出结果.21 2【解答】解:∵随机变量 ξ 满足 P (ξ =1)=p ,P (ξ =0)=1﹣p ,i=1,2,…,iiiii0<p <p < ,1211∴<1﹣p<1﹣p<1,21E(ξ)=1×p+0×(1﹣p)=p,1111E(ξ)=1×p+0×(1﹣p)=p,2222D(ξ)=(1﹣p)2p+(0﹣p)2(1﹣p)= 11111D(ξ)=(1﹣p)2p+(0﹣p)2(1﹣p)= 22222,,D(ξ)﹣D(ξ)=p﹣p2﹣(1211)=(p﹣p)(p+p﹣1)<0,2112∴E(ξ)<E(ξ),D(ξ)<D(ξ).1212故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【考点】MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,12OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3 ==,﹣3,0).Q,=(0,3,6.,R),=(,,6,0),=,设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.13【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD 交于点O,记I=•,I=•,I=•,则()123A.I<I<I123B.I<I<I132C.I<I<I312D.I<I<I213【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;48:分析法;5A:平面向量及应用.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,14∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I<I<I,312故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S,S=.66【考点】CE:模拟方法估计概率.【专题】31:数形结合;4O:定义法;5B:直线与圆.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S=6××1×1×sin60°=.6故答案为:.15【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab= 2.【考点】A5:复数的运算.【专题】34:方程思想;35:转化思想;5N:数系的扩充和复数.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a x4+a x3+a x2+a x+a,则a=16,123454 a=4.5【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;5P:二项式定理.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x 16与常数乘积之和,a就是常数的乘积.5【解答】解:多项式(x+1)3(x+2)2=x5+a x4+a x3+a x2+a x+a,12345(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a=3×4+1×4=16;4a=1×4=4.5故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结△C D,则BDC的面积是,cos∠BDC=.【考点】HT:三角形中的几何计算.【专题】11:计算题;35:转化思想;44:数形结合法;58:解三角形.【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出△SABC,再根据△SBDC =△SABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴△SABC=BC AE=×2×=,∵BD=2,∴△SBDC =△SABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC 在△R t ABE中,∵cos∠ABE==,17( |∴cos∠ABE=2cos 2∠BDC﹣1= ,∴cos∠BDC=故答案为:,,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15. 6 分)已知向量 、 满足| |=1,|=2,则| + |+| ﹣ |的最小值是 4 ,最大值是.【考点】3H :函数的最值及其几何意义;91:向量的概念与向量的模.【专题】11:计算题;31:数形结合;44:数形结合法;51:函数的性质及应用.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知| + |=| ﹣ |=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则 0≤α≤π,如图,由余弦定理可得:、| + |=| ﹣ |=令 x=,,,y= ,则 x 2+y 2=10(x 、y≥1),其图象为一段圆弧 MN ,如图,令 z=x+y ,则 y=﹣x+z ,则直线 y=﹣x+z 过 M 、N 时 z 最小为 z =1+3=3+1=4,min18当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z即为原点到切线的距离的倍,max倍,也就是圆弧MN所在圆的半径的所以z=×=.max.综上所述,|+|+|﹣|的最小值是4,最大值是故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;32:分类讨论;4O:定义法;5O:排列组合.【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C3C1=40种,这4人选2人作为队长和6219副队有A2=12种,故有40×12=480种,4第二类,先选2女2男,有C2C2=15种,这4人选2人作为队长和副队有A2=12624种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,].【考点】3H:函数的最值及其几何意义.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).20f f(Ⅰ)求 f ()的值.(Ⅱ)求 f (x )的最小正周期及单调递增区间.【考点】3G :复合函数的单调性;GF :三角函数的恒等变换及化简求值;H1:三角函数的周期性;H5:正弦函数的单调性.【专题】35:转化思想;4R :转化法;57:三角函数的图像与性质.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f ()的值.(Ⅱ)根据正弦型函数的图象和性质,可得 f (x )的最小正周期及单调递增区间【解答】解:∵函数 (x )=sin 2x ﹣cos 2x ﹣2 sinx cosx=﹣ sin2x ﹣cos2x=2sin(2x+(Ⅰ)f ())=2sin (2× + )=2sin =2,(Ⅱ)∵ω=2,故 T=π,即 f (x )的最小正周期为 π,由 2x+x∈[﹣∈[﹣ +2kπ, +2kπ],k∈Z 得:+kπ,﹣ +kπ],k∈Z,故 (x )的单调递增区间为[﹣ +kπ,﹣ +kπ]或写成[kπ+ ,kπ+ ],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15 分)如图,已知四棱锥 P ﹣ABCD ,△PAD 是以 AD 为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB ,E 为 PD 的中点.(Ⅰ)证明:CE∥平面 PAB ;(Ⅱ)求直线 CE 与平面 PBC 所成角的正弦值.21【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】14:证明题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,22∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,,在由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】35:转化思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),23即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.24【考点】KI:圆锥曲线的综合;KN:直线与抛物线的综合.【专题】11:计算题;33:函数思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA||PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k==x﹣∈(﹣1,1),AP故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则k==x﹣,即x=k+,则AP:y=kx+k+,BQ:y=﹣x+联立直线AP、BQ方程可知Q(+,,),25•=故=( ,),又因为=(﹣1﹣k ,﹣k 2﹣k ),故﹣|PA|• |PQ|=+ =(1+k )3(k ﹣1),所以|PA|• |PQ|=(1+k )3(1﹣k ),令 f (x )=(1+x )3(1﹣x ),﹣1<x <1,则 f′(x )=(1+x )2(2﹣4x )=﹣2(1+x )2(2x ﹣1),由于当﹣1<x < 时 f′(x )>0,当 <x <1 时 f′(x )<0,故 f (x ) =f ( )=,即|PA|• |PQ|的最大值为 .max【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15 分)已知数列{x }满足:x =1,x =x +ln (1+x )(n∈N *),证明:当 nn1 n n+1 n+1∈N *时,(Ⅰ)0<x <x ;n+1n(Ⅱ)2x ﹣x ≤n+1n;(Ⅲ) ≤x ≤n.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】15:综合题;33:函数思想;35:转化思想;49:综合法;4M :构造法;53:导数的综合应用; 54:等差数列与等比数列; 55:点列、递归数列与数学归纳法;5T :不等式.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由 ≥2x ﹣x 得﹣ ≥2( ﹣ )>0,继续放缩即可证明n+1n26【解答】解:(Ⅰ)用数学归纳法证明:x>0,n当n=1时,x=1>0,成立,1假设当n=k时成立,则x>0,k那么n=k+1时,若x<0,则0<x=x+ln(1+x)<0,矛盾,k+1k k+1k+1故x>0,n+1因此x>0,(n∈N*)n∴x=x+ln(1+x)>x,n n+1n+1n+1因此0<x<x(n∈N*),n+1n(Ⅱ)由x=x+ln(1+x)得x x﹣4x+2x=xn n+1n+1n n+1n+1n n+12﹣2x+(x+2)ln(1+x),n+1n+1n+1记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此xn+12﹣2x+(x+2)ln(1+x)≥0,n+1n+1n+1故2x﹣x≤;n+1n(Ⅲ)∵x=x+ln(1+x)≤x+x=2x,n n+1n+1n+1n+1n+1∴x≥n 由,≥2x﹣x得n+1n﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x≤n,综上所述≤x≤.n【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题27。
2017年高考全国卷I卷(理数)试题及答案详细解析
2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为( ) A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为( ) A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入( ) A .A >1 000和n =n +1 B .A >1 000和n =n +2 C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1011.设x ,y ,z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。
高考专题突破四 高考中的立体几何问题
高考专题突破四 高考中的立体几何问题【考点自测】1.在正三棱柱ABC -A 1B 1C 1中,D 为BC 的中点,E 为A 1C 1的中点,则DE 与平面A 1B 1BA 的位置关系为________. 答案 平行解析 如图取B 1C 1的中点为F ,连结EF ,DF ,则EF ∥A 1B 1,DF ∥B 1B , 且EF ∩DF =F ,A 1B 1∩B 1B =B 1, ∴平面EFD ∥平面A 1B 1BA , ∴DE ∥平面A 1B 1BA .2.设x ,y ,z 是空间中不同的直线或平面,对下列四种情形:①x ,y ,z 均为直线;②x ,y 是直线,z 是平面;③z 是直线,x ,y 是平面;④x ,y ,z 均为平面.其中使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题的是________.(填序号) 答案 ②③解析 由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题. 3.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 12解析 设六棱锥的高为h ,则V =13Sh ,所以13×34×4×6h =23,解得h =1.设六棱锥的斜高为h ′,则h 2+(3)2=h ′2,故h ′=2. 所以该六棱锥的侧面积为12×2×2×6=12.4.设α,β,γ是三个平面,a ,b 是两条不同的直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________.(把所有正确的序号填上)答案①或③解析由线面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是________.(填序号)答案①②③解析由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.题型一求空间几何体的表面积与体积例1 如图,在三棱柱ABC—A1B1C1中,AA1⊥平面ABC,AC⊥BC,AC=BC=CC1=2,点D为AB 的中点.(1)证明:AC1∥平面B1CD;(2)求三棱锥A1—CDB1的体积.(1)证明连结BC1交B1C于点O,连结OD.在三棱柱ABC —A 1B 1C 1中,四边形BCC 1B 1是平行四边形, ∴点O 是BC 1的中点.∵点D 为AB 的中点,∴OD ∥AC 1. 又OD ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(2)解 ∵AC =BC ,AD =BD ,∴CD ⊥AB . 在三棱柱ABC —A 1B 1C 1中,由AA 1⊥平面ABC ,得平面ABB 1A 1⊥平面ABC . 又平面ABB 1A 1∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面ABB 1A 1, ∵AC ⊥BC ,AC =BC =2, ∴AB =A 1B 1=22,CD =2,1111——A CDB C A DB V V =三棱锥三棱锥=13×12×2×22×2=43. 思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.跟踪训练1 如图,在三棱柱ABC -A 1B 1C 1中,底面是边长为a 的正三角形,AA 1与AC ,AB 所成的角均为60°,且A 1A =AB ,求该三棱柱的侧面积和体积.解 作A 1O ⊥底面ABC 于点O ,∵AA 1与AC ,AB 所成的角均为60°, 且A 1A =AB ,∴O 是△ABC 的中心, ∴AO =23×32a =33a .又A 1O =A 1A 2-AO 2=63a , S △ABC =34a 2,A 1O ⊥AD , ∴V =Sh =34a 2×63a =24a 3. 又O 是△ABC 的中心,∴AO ⊥BC ,A 1O ⊥BC , 从而BC ⊥平面A 1AO .∵A 1A ⊂平面A 1AO ,∴BC ⊥A 1A , 又A 1A ∥B 1B ,故BC ⊥B 1B , ∴侧面BCC 1B 1是矩形.11112222sin 60A ABB BCC B S S S a a ∴⨯⨯︒=+=+侧=(1+3)a 2.题型二 空间点、线、面的位置关系例2 (2017·江苏)如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.思维升华 (1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.跟踪训练2 (2013·江苏)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明(1)由AS=AB,AF⊥SB知F为SB的中点,则EF∥AB,FG∥BC,又EF∩FG=F,AB∩BC=B,因此平面EFG∥平面ABC.(2)由平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,则AF⊥BC.又BC⊥AB,AF∩AB=A,AF,AB⊂平面SAB,则BC⊥平面SAB,又SA⊂平面SAB,因此BC⊥SA.题型三平面图形的翻折问题例3 五边形ANB1C1C是由一个梯形ANB1B与一个矩形BB1C1C组成的,如图甲所示,B为AC的中点,AC=CC1=2AN=8.沿虚线BB1将五边形ANB1C1C折成直二面角A—BB1—C,如图乙所示.(1)求证:平面BNC⊥平面C1B1N;(2)求图乙中的多面体的体积.(1)证明四边形BB1C1C为矩形,故B1C1⊥BB1,又由于二面角A—BB1—C为直二面角,故B1C1⊥平面BB1A,又BN⊂平面BB1A,故B1C1⊥BN,由线段AC=CC1=2AN=8知,BB21=NB21+BN2,即BN⊥NB1,又B1C1∩NB1=B1,B1C1,NB1⊂平面NB1C1,所以BN⊥平面C1B1N,因为BN⊂平面BNC,所以平面BNC⊥平面C1B1N.(2)解连结CN,过N作NM⊥BB1,垂足为M,V 三棱锥C —ABN =13×BC ·S △ABN=13×4×12×4×4=323, 又B 1C 1⊥平面ABB 1N , 所以平面CBB 1C 1⊥平面ABB 1N , 且平面CBB 1C 1∩ABB 1N =BB 1,NM ⊥BB 1,NM ⊂平面ABB 1N ,所以NM ⊥平面B 1C 1CB ,1111—1·3B C CB N B C CB V NM S =⨯矩形四棱锥=13×4×4×8=1283, 则此几何体的体积11——N B C CB C ABN V V V 四棱=+锥三棱锥=323+1283=1603.思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练3 为了迎接某节日,商场进行促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片ABCD 剪去四个全等的等腰三角形△SEE ′,△SFF ′,△SGG ′,△SHH ′,再将剩下的阴影部分折成一个四棱锥形状的包装盒S —EFGH ,其中A ,B ,C ,D 重合于点O ,E 与E ′重合,F 与F ′重合,G 与G ′重合,H 与H ′重合(如图所示).(1)求证:平面SEG ⊥平面SFH ;(2)已知AE =52,过O 作OM ⊥SH 交SH 于点M ,求cos ∠EMO 的值.(1)证明 ∵折后A ,B ,C ,D 重合于一点O ,∴拼接成底面EFGH 的四个直角三角形必为全等的等腰直角三角形, ∴底面EFGH 是正方形,故EG ⊥FH . 连结SO .∵在原平面图形中,△SEE ′≌△SGG ′, ∴SE =SG ,∴EG ⊥SO ,∵EG ⊥FH ,EG ⊥SO ,FH ∩SO =O ,FH ,SO ⊂平面SFH ,∴EG ⊥平面SFH , 又∵EG ⊂平面SEG , ∴平面SEG ⊥平面SFH .(2)解 由题意,当AE =52时,OE =52,Rt △SHO 中,SO =5,SH =552,∴OM =SO ·OHSH= 5. 由(1)知,EO ⊥平面SHF , 又∵OM ⊂平面SHF ,∴EO ⊥OM . 在Rt △EMO 中,EM =EO 2+OM 2=352,∴cos ∠EMO =OM EM =23.题型四 立体几何中的存在性问题例4 如图,在四棱锥P —ABCD 中,△PAD 为正三角形,平面PAD ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,CD =2AB =2AD =4.(1)求证:平面PCD ⊥平面PAD ; (2)求三棱锥P —ABC 的体积;(3)在棱PC 上是否存在点E ,使得BE ∥平面PAD ?若存在,请确定点E 的位置并证明;若不存在,请说明理由.(1)证明 因为AB ∥CD ,AB ⊥AD ,所以CD ⊥AD . 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊂平面ABCD , 所以CD ⊥平面PAD . 因为CD ⊂平面PCD , 所以平面PCD ⊥平面PAD . (2)解 取AD 的中点O ,连结PO . 因为△PAD 为正三角形,所以PO ⊥AD .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD , 所以PO 为三棱锥P —ABC 的高.因为△PAD 为正三角形,CD =2AB =2AD =4, 所以PO = 3.所以V 三棱锥P —ABC =13S △ABC ·PO=13×12×2×2×3=233. (3)解 在棱PC 上存在点E ,当E 为PC 的中点时,BE ∥平面PAD . 分别取CP ,CD 的中点E ,F ,连结BE ,BF ,EF , 所以EF ∥PD .因为AB ∥CD ,CD =2AB , 所以AB ∥FD ,AB =FD ,所以四边形ABFD 为平行四边形, 所以BF ∥AD .因为BF ∩EF =F ,AD ∩PD =D , 所以平面BEF ∥平面PAD . 因为BE ⊂平面BEF , 所以BE ∥平面PAD .思维升华 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.跟踪训练4 (2017·江苏无锡天一中学模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论. (1)证明 如图,因为ABCD -A 1B 1C 1D 1为正方体, 所以B 1C 1⊥平面ABB 1A 1.因为A 1B ⊂平面ABB 1A 1,所以B 1C 1⊥A 1B .又因为A 1B ⊥AB 1,B 1C 1∩AB 1=B 1,AB 1,B 1C 1⊂平面ADC 1B 1,所以A 1B ⊥平面ADC 1B 1. 因为A 1B ⊂平面A 1BE , 所以平面ADC 1B 1⊥平面A 1BE .(2)解 当点F 为C 1D 1的中点时,可使B 1F ∥平面A 1BE .证明如下: 设A 1B ∩AB 1=O , 连结EO ,EF ,B 1F .易知EF ∥C 1D ,且EF =12C 1D ,B 1O ∥C 1D 且B 1O =12C 1D ,所以EF ∥B 1O 且EF =B 1O ,所以四边形B 1OEF 为平行四边形. 所以B 1F ∥OE .又因为B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE . 所以B 1F ∥平面A 1BE .1.(2017·江苏新海中学期中)将斜边长为4的等腰直角三角形绕其斜边所在直线旋转一周,则所形成的几何体的体积是________. 答案16π3解析 等腰直角三角形的斜边长为4,斜边的高为2. ∴旋转后的几何体为两个大小相等的圆锥的组合体. 圆锥的底面半径为2,高为2.∴几何体的体积V =2×13×π×4×2=16π3.2.若α,β,γ是三个不同的平面,m ,n 是两条不同的直线,且α∩γ=m ,β∩γ=n .命题甲:m ∥n ;命题乙:α∥β.则甲是乙成立的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 答案 必要不充分解析 若α与β平行,则必有m ∥n ,反之,当m ∥n 时,α与β可能相交,如三棱柱中侧棱平行,侧面不平行.3.如图所示,已知平面α∩平面β=l ,α⊥β.A ,B 是直线l 上的两点,C ,D 是平面β内的两点,且AD ⊥l ,CB ⊥l ,DA =4,AB =6,CB =8.P 是平面α上的一动点,且有∠APD =∠BPC ,则四棱锥P -ABCD 体积的最大值是________.答案 48解析 由题意知,△PAD ,△PBC 是直角三角形, 又∠APD =∠BPC ,所以△PAD ∽△PBC . 因为DA =4,CB =8,所以PB =2PA . 作PM ⊥AB 于点M ,由题意知,PM ⊥平面β.令BM =t ,则AM =|6-t |,PA 2-(6-t )2=4PA 2-t 2,所以PA 2=4t -12.所以PM =-t 2+16t -48,即为四棱锥P -ABCD 的高, 又底面ABCD 为直角梯形,S =12×(4+8)×6=36,所以V =13×36×-t 2+16t -48=12-(t -8)2+16≤12×4=48.4.如图梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD ∶BC ∶AB =2∶3∶4,E ,F 分别是AB ,CD 的中点,将四边形ADFE 沿直线EF 进行翻折,给出四个结论:①DF ⊥BC ; ②BD ⊥FC ;③平面DBF ⊥平面BFC ; ④平面DCF ⊥平面BFC .在翻折过程中,可能成立的结论是________.(填写结论序号) 答案 ②③解析 因为BC ∥AD ,AD 与DF 相交不垂直,所以BC 与DF 不垂直,则①错误;设点D 在平面BCF 上的射影为点P ,当BP ⊥CF 时就有BD ⊥FC ,而AD ∶BC ∶AB =2∶3∶4,可使条件满足,所以②正确;当点P 落在BF 上时,DP ⊂平面BDF ,从而平面BDF ⊥平面BCF ,所以③正确;因为点D 的投影不可能在FC 上,所以平面DCF ⊥平面BFC 不成立,即④错误. 5.下列三个命题都缺少一个条件P ,补上这个条件使其构成真命题(其中l ,m 为直线,α,β为平面),则条件P 为________.①⎭⎪⎬⎪⎫m ⊂α,l ∥m ,P ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m ,m ∥α,P⇒l ∥α;③⎭⎪⎬⎪⎫l ⊥β,α⊥β,P⇒l ∥α. 答案 l ⊄α解析 根据直线与平面平行的判定定理可得①所缺条件为l ⊄α,可推②③同样可补此条件. 6.如图,在三棱锥S —ABC 中,SA =SB ,AC =BC ,O 为AB 的中点,SO ⊥平面ABC ,AB =4,OC =2,N 是SA 的中点,CN 与SO 所成的角为α,且tan α=2.(1)证明:OC ⊥ON ; (2)求三棱锥S —ABC 的体积.(1)证明 ∵AC =BC ,O 为AB 的中点, ∴OC ⊥AB ,又SO ⊥平面ABC ,OC ⊂平面ABC , ∴OC ⊥SO ,又AB ∩SO =O ,AB ,SO ⊂平面SAB , ∴OC ⊥平面SAB ,又∵ON ⊂平面SAB , ∴OC ⊥ON .(2)解 设OA 的中点为M ,连结MN ,MC ,则MN ∥SO ,故∠CNM 即为CN 与SO 所成的角α, 又MC ⊥MN 且tan α=2, ∴MC =2MN =SO , 又MC =OC 2+OM 2=22+12=5, 即SO =5,∴三棱锥S —ABC 的体积V =13Sh =13·12·2·4·5=453. 7.如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AM AB的值;若不存在,请说明理由. (1)证明 连结BE ,∵ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE , 又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE , ∴BE ⊥平面D 1AE .(2)解 AM =14AB ,取D 1E 的中点L ,连结AL ,FL ,∵FL ∥EC ,EC ∥AB ,∴FL ∥AB 且FL =14AB ,∴M ,F ,L ,A 四点共面, 若MF ∥平面AD 1E ,则MF ∥AL .∴AMFL 为平行四边形,∴AM =FL =14AB .故线段AB 上存在满足题意的点M ,且AM AB =14.8.如图,在四棱锥P —ABCD 中,ABCD 是正方形,PD ⊥平面ABCD .PD =AB =2,E ,F ,G 分别是PC ,PD ,BC 的中点.(1)求证:平面PAB ∥平面EFG ;(2)在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明. (1)证明 ∵在△PCD 中,E ,F 分别是PC ,PD 的中点, ∴EF ∥CD ,又∵四边形ABCD 为正方形, ∴AB ∥CD ,∴EF ∥AB ,∵EF ⊄平面PAB ,AB ⊂平面PAB , ∴EF ∥平面PAB .同理EG ∥平面PAB , ∵EF ,EG 是平面EFG 内两条相交直线, ∴平面PAB ∥平面EFG .(2)解 当Q 为线段PB 的中点时,PC ⊥平面ADQ .取PB 的中点Q ,连结DE ,EQ ,AQ ,DQ , ∵EQ ∥BC ∥AD ,且AD ≠QE ,∴四边形ADEQ为梯形,由PD⊥平面ABCD,AD⊂平面ABCD,得AD⊥PD,∵AD⊥CD,PD∩CD=D,PD,CD⊂平面PCD,∴AD⊥平面PDC,又PC⊂平面PDC,∴AD⊥PC.∵△PDC为等腰直角三角形,E为斜边中点,∴DE⊥PC,∵AD,DE是平面ADQ内的两条相交直线,∴PC⊥平面ADQ.9.(2018届镇江中学检测)如图,正三棱柱A1B1C1-ABC中,点D,E分别是A1C,AB的中点.(1)求证:ED∥平面BB1C1C;(2)若AB=2BB1,求证:A1B⊥平面B1CE.证明(1)连结AC1,BC1,因为四边形AA1C1C是矩形,D是A1C的中点,所以D是AC1的中点.在△ABC1中,因为D,E分别是AC1,AB的中点,所以DE∥BC1,因为DE⊄平面BB1C1C,BC1⊂平面BB1C1C,所以ED∥平面BB1C1C.(2)因为△ABC是正三角形,E是AB的中点,所以CE⊥AB.又因为在正三棱柱A1B1C1-ABC中,平面ABC⊥平面ABB1A1,交线为AB,CE⊂平面ABC,所以CE⊥平面ABB1A1,又A1B⊂平面ABB1A1,从而CE⊥A1B.因为A 1B 1B 1B =AB B 1B =2,B 1B BE =B 1B12AB=2, 所以A 1B 1B 1B =B 1B BE, 又∠A 1B 1B =∠B 1BE =90°, 所以Rt △A 1B 1B ∽Rt △B 1BE , 所以∠A 1BB 1=∠BEB 1, 又∠BEB 1+∠BB 1E =90°, 所以∠A 1BB 1+∠BB 1E =90°, 所以A 1B ⊥B 1E ,又因为CE ,B 1E ⊂平面B 1CE ,CE ∩B 1E =E , 所以A 1B ⊥平面B 1CE .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分)
如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为
83
,求该四棱锥的侧面积.
如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2
AB BC AD BAD ABC ==∠=∠=︒ (1)证明:直线BC ∥平面PAD ;
(2)若△PCD 的面积为P ABCD -的体积.
如图,四面体ABCD中,△ABC是正三角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)求证:平面BDE⊥平面PAC;
(Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.
由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.
A O∥平面B1CD1;
(Ⅰ)证明:
1
(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.
如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
7、(2017浙江)(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的
等腰直角三角形,,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.
(第19题图)
(Ⅰ)证明:平面PAB ;
(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.
//BC AD //CE
8、(2017天津文)(本小题满分13分)
如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.
(I )求异面直线AP 与BC 所成角的余弦值;
(II )求证:PD ⊥平面PBC ;
(II )求直线AB 与平面PBC 所成角的正弦值.。