成都市2014年中考数学试卷 有答案
成都市2007-2014年中考数学试题及答案
成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷第Ⅰ卷(选择题)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃ D.16-℃ 2.下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( ) A.2x -≥且0x ≠B.2x ≤且0x ≠A .B .C .D .C.0x ≠D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A.40° B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( ) A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B .35cm C .8cmD .53cm第Ⅱ卷(非选择题)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上.11.已知22(5)0a b -++=,那么a b +的值为 .DO AFCE12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G . 已知58EFG ∠=°,那么BEG ∠= °.14.如图,已知AB 是O 的直径,弦CD AB ⊥,AC =1BC =,那么sin ABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 . 三、16.解答下列各题: (11223sin 30--°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+. 四、17.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的ABECDFGC 'D 'AB仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)18.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由. 20.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;O yx B A(2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.B 卷一、填空题: 将答案直接写在该题目中的横线上.21.如图,如果要使ABCD 成为一个菱形, 需要添加一个条件,那么你添加的条件是.22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿CB 向右平移,使点B ' 刚好落在斜边AB 上,那么此三角板向右平移的 距离是cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 二、D AE FCHGBD C B A '()C C '26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线; (3)若FG BF =,且O的半径长为求BD 和FG 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.C成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷 第Ⅰ卷一、选择题 1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.B ;9.C ;10.B .A 卷 第Ⅱ卷二、填空题:11.3-; 12.216;13.64;14.3; 15.1-三、16.(1)解:原式112322=+-⨯13222=+= (2)解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,. (3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解. ∴原方程的解是5x =-. 四、17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°903= (米). 903CD BE ==∴(米)。
2024年四川省成都市中考数学试题+答案详解
2024年四川省成都市中考数学试题+答案详解(试题部分)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5B. ﹣5C. 15−D.152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+D. ()()2224x x x +−=−4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−−B. ()1,4−C. ()1,4D. ()1,4−5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______. 10. 分式方程132x x=−的解是____. 11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l上一动点,连接PO,PA,则PO PA+的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242 +︒−−+.(2)解不等式组:2311123xx x+≥−⎧⎪⎨−−<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0ky k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______. 21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg . (1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26. 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BDCE的值. 【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学试题+答案详解(答案详解)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5 B. ﹣5C. 15−D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案. 【详解】解:|﹣5|=5. 故选A .2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可. 【详解】解:该几何体的主视图为,故选:A .3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+ D. ()()2224x x x +−=−【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意; D .()()2224x x x +−=−,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−− B. ()1,4−C. ()1,4D. ()1,4−【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P −关于原点对称的点的坐标为()1,4−; 故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53 B. 55C. 58D. 64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可. 【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55, 把这6个数从小到大排序:50,51,55,55,61,64, ∴这组数据的中位数是:5555552+=, 故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠, ∴选项A 中AB AD =不一定正确,故不符合题意; 选项B 中AC BD ⊥不一定正确,故不符合题意; 选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意, 故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可. 【详解】解:设人数为x ,琎价为y , 根据每人出12钱,会多出4钱可得出1y x 42=−, 每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定. 【详解】解:由作图可知,BF 为ABC ∠的角平分, ∴ABE CBE ∠=∠,故A 正确; ∵四边形ABCD 为平行四边形, ∴,,AD BC AB CD AD BC ==, ∵AD BC ∥ ∴AEB CBE ∠=∠, ∴AEB ABE ∠=∠, ∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△, ∴BE AB AE EF DF ED==, ∴332BE EF DF ==, ∴32BE EF =,2DF =,故D 错误; ∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n −=,解得4m =−,5n =,∴()()22451m n +=−+=,故答案为:1.10. 分式方程132x x=−的解是____. 【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得AB 的长为π120π64π180180n r ⨯==, 故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______. 【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可. 【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38, ∴38x x y =+,则35x y =, 故答案为:35. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒−−+.(2)解不等式组:2311123x x x +≥−⎧⎪⎨−−<⎪⎩①②【答案】(1)5;(2)29x −≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可; (2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒−−−42122=+⨯−+−5=+5=;(2)解不等式①,得2x ≥−,解不等式②,得9x <,∴该不等式组的解集为29x −≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人), 选择“世界公园打卡线”的人数为9016040360⨯=(人), 故答案为:160,40;【小问2详解】 解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒; 【小问3详解】解:选择“园艺小清新线”的人数为16044404828−−−=(人), ∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人). 16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺. ∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈, ∵26.6ADB ∠=︒, ∴tan AB ADB BD∠=,即8160.50BD ≈=, ∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈. 答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C ∴∠=︒=∠又CEB FDB ∠∠=EBC DBF ∴∽ EC CB DF FB ∴= BC DF BF CE ⋅=⋅∴【小问2详解】由(1)可知,EBC DBF ∽EBC DBF ∴∠=∠EBC FBE DBF FBE ∴∠−∠=∠−∠CBF EBA ∴∠=∠A CBF ∠=∠A EBA ∴∠=∠AE BE ∴=A CBF ∠=∠9090A CBF ∴︒−∠=︒−∠ABC CFB ∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB AC CF BC∴==不妨设CF x =,那么CB = 4AF ==x ∴=CF ∴=5CB ==不妨设EF y =,那么AE AF EF y BE =−==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y =222(5)y y ∴++=−y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB ∠∠=tan tan CEB FDB ∴∠=∠CB BF CE DF∴=DF =DF ∴=BD ∴===∴O 的直径是故答案为:CF =O 直径是 【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键. 18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4−或()4,4−,16k =−(3)1−【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x −,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =−,则()2,0D −,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +−=,根据题意,方程220x x k +−=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =−+中,得42m =−+,则6m =,∴6y x =−+,将(),0B b 代入6y x =−+中,得06b =−+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =−⎧⎨=⎩, ∴()4,4C −,则4416k =−⨯=−;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=−⎩, ∴()4,4C −,则4416k =−⨯=−;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4−或()4,4−,16k =−;【小问3详解】解:如图,设点(),0D x ,则(),0E x −,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅, ∴()()()()22264066x x −+−=+−,即24x =,解得2x =±,∵0x <,∴2x =−,则()2,0D −,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨−+=⎩,解得12p q =⎧⎨=⎩, ∴直线AC 的表达式为2y x =+, 联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +−=, ∵有且只有一点C ,∴方程220x x k +−=有且只有一个实数根,∴2402k +==∆,解得1k =−;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1−.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒−∠−∠=︒−︒−︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n −+=,5b m n a+=−=,从而得到252n n =−,再将原式利用完全平方公式展开,利用252n n =−替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x −+=的两个实数根,∴2520n n −+=,5b m n a+=−=, 则252n n =−∴()22m n +− 244m n n =+−+5244m n n =+−−+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9 ②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==; 故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==; 依次类推,当n 为偶数时,()()2135314n k n n =−+−++++=, 故当24n =时,2242321195311444k =++++++==, 故答案为:9,144. 22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】 【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =, ∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠, ∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽, ∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠, ∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==−=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽, ∴AC BC BF EF= ∴221m x x m +=+,则()()2212m x x =++, ∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①. > ②. 112m −<< 【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =−+−=−−+得抛物线的对称轴为直线2x =,开口向下, ∵101x <<,24x >,∴1222x x −<−,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近, ∴132222x x x −>−>−,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>, 解得112m −<<, 故答案为:>;112m −<<. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可. (2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩, 解得:1000500x y =⎧⎨=⎩, ∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a −≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠= (3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a −−=,整理得2230x x −−=,即可知()()1,0,3,0,A B −则有4AB =;(2)由题意得抛物线L :()222314y x x x =−−=−−,则()1,4,C −设()2,23,D n n n −−()03n <<,可求得2246ABD S n n =−++△,结合题意可得直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,即可求得21ACD S n =−,进一步解得点720,39D ⎛⎫− ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH ∠=; (3)设()2,23,D n an an a −−可求得直线AD 解析式为()()31y a n x =−+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=−++,结合题意得1,EM n =+()2,23,A n an an a −++'()24,23,B n an an a '+−++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+−−++,根据()22232463ax ax a ax an a x an a −−=+−−++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点, ∴2230ax ax a −−=,整理得2230x x −−=,解得121,3,x x =−=∴()()1,0,3,0,A B −则()314AB =−−=;【小问2详解】当1a =时,抛物线L :()222314y x x x =−−=−−, 则()1,4,C −设()2,23,D n n n −−()03n <<,则()221142324622ABD D S AB y n n n n =⋅=−⨯⨯−−=−++, 设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n −−=+,解得3k n =−, 则直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,。
历年四川省成都市中考数学试卷(A卷)(含答案)
2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。
2014年四川省成都市中考数学试卷(附答案与解析)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前四川省成都市2014年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在2-,1-,0,2这四个数中,最大的数是 ( ) A .2- B .1- C .0 D .22.下列几何体的主视图是三角形的是 ( )ABCD3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为 ( )A .829010⨯元B .929010⨯元C .102.9010⨯元D .112.9010⨯元 4.下列计算正确的是( )A .23x x x +=B .235x x x +=C .235()x x =D .632x x x ÷= 5.下列图形中,不是轴对称图形的是( )ABC D6.函数5y x =-中,自变量x 的取值范围是( )A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤7.如图,把三角板的直角顶点放在直尺的一边上,若130∠=,则2∠的度数为 ( )A .60B .50C .40D .308.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分) 60 70 80 90 100 人 数4 812 115则该班学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C .90分,80分D .80分,90分 9.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为 ( )A .2(1)4y x =++B .2(1)2y x =++C .2(1)4y x =-+D .2(1)2y x =-+ 10.在圆心角为120的扇形AOB 中,半径6cm OA =,则扇形AOB 的面积是 ( )A .26π cmB .28πcmC .212πcmD .224πcm第Ⅱ卷(非选择题 共70分)二.填空题(本大题共4小题,每小题4分,共16分,请把答案填在题中的横线上)11.计算:|2|=- .12.如图,为估计池塘岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得32m MN =,则A ,B 两点间的距离是 m .13.在平面直角坐标系中,已知一次函数21y x =+的图象经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y (填“>”“<”或“=”). 14.如图,AB 是O 的直径,点C 在AB 的延长线上,CD 切O 于点D ,连接AD .若25A ∠=,则C ∠= 度.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共28页)三、解答题(本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:0294sin30(2014π)2-+--.(2)解不等式组:315,2(2)7xx x-⎧⎨++⎩>①<②.16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37,20mBC=,求树的高度AB.(参考数据:sin370.60≈,cos370.80≈,tan370.75≈)17.(本小题满分8分)先化简,再求值:22(1)b ba b a b-÷--,其中31a=+,31b=-.18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5y kx=+(k为常数,且0k≠)的图像与反比例函数8yx=-的图象交于(2,)A b-,B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移(0)m m>个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.20.(本小题满分10分)如图,矩形ABCD中,2AD AB=,E是AD边上一点,1DE ADn=(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB a=(a为常数),3n=时,求FG的长;(3)记四边形BFEG的面积为1S,矩形ABCD的面积为2S,当121730SS=时,求n的值(直接写出结果,不必写出解答过程).B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)21.在开展“国学诵读”活动中,某校为了解全校1 300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1 300名学生一周的课外阅读时间不少于7小时的人数是.22.已知关于x的分式方程111x k kx x+-=+-的解为负数,则k的取值范围是.23.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如,图中的三角形ABC是格点三角形,其中2S=,0N=,6L=;图中格点多边形DEFGHI所对应的S,N,L分别是.经探究发现,任意格点多边形的面积S可表示为S aN bL c=++,其中,,a b c为常数,则当5N=,14L=时,S=(用数值作答).数学试卷第3页(共28页)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)24.如图,在边长为2的菱形ABCD 中,=60A ∠,M 是AD 边的中点,N 是AB 边上一动点,将AMN △沿MN 所在的直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是 .25.如图,在平面直角坐标系xOy 中,直线32y x =与双曲线6y x=相交于A ,B 两点, C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若PBC △的面积是20,则点C 的坐标为 .二、解答题(本大题共3小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设m AB x =.(1)若花园的面积为2192m ,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.27.(本小题满分10分)如图,在O 的内接ABC △中,90ACB ∠=,2AC BC =,过C 作AB 的垂线l 交O于另一点D ,垂足为E .设P 是AB 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:PAC PDF △∽△; (2)若5AB =,AP BP =,求PD 的长;(3)在点P 运动过程中,设AGx BG=,tan AFD y ∠=,求y 与x 之间的函数关系式(不要求写出x 的取值范围).28.(本小题满分12分)如图,已知抛物线(2)(4)8ky x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B的直线y x b =+与抛物线的另一交点为D . (1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC △相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF .一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页)数学试卷 第8页(共28页)四川省成都市2014年高中阶段教育学校统一招生考试数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】D【解析】将各数在数轴上表示,通过数轴比较大小,其中最大的是2,故选D . 【考点】有理数的大小比较 2.【答案】B【解析】观察四种几何体,可以判断主视图为三角形的为圆锥,故选B . 【考点】简单几何体的三视图. 3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a <<,n 为整数,a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,为负整数,n 的绝对值等于原数左起第一个非零数字前零的个数(含整数位上的零).1029029 000 000 000 2.910==⨯亿,故选C .【考点】科学记数法 4.【答案】B【解析】A ,B 为整式的加减运算,整式加减运算的实质为合并同类项,A 中两项不是同类项,不能合并,A 错误,B 正确;C 为幂的乘方,底数不变,指数应相乘,C 错误;D 为同底数幂的除法,同底数幂相除,底数不变,指数相减,D 错误,故选B . 【考点】整式的计算 5.【答案】A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,B ,C ,D 选项中的图形沿竖直的直线折叠直线两旁的部分都能重合,A 中的图形不能重合,故选A . 【考点】轴对称图形 6.【答案】C第Ⅱ卷5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)tan BC C . 2037BC m C ==,∠20tan3720AB ∴=≈答:树高AB 约为15m. 【考点】三角函数 17.【答案】23【解析】解:=原式(2)用列表法表示如下:或画树状图如下:)点7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)平移后的直线与反比例函数的图像有且只有一个公共点FC GBO ∠BOG ∴△BG EF ∴=∴四边形BFEG 又FG BE ⊥平行四边形2)当AB Rt ABE △2+BE AB =A EOF =∠∠9 / 1456=483aOE AB a a AE a =【考点】四边形的综合应用B 卷22数学试卷 第19页(共28页)数学试卷 第20页(共28页)00000166166(33)2(33)2022x x x x x ++-+++-=,得ACB =∠是O 的直径 APB ∴∠ CPB PBA +∠l AB ⊥于点FAE +=∠PB ∴=∠∠ABP AFE ACP ==∠∠PAC =又∠(2)在Rt ABC △由勾股定理,得1122ABC S AB CE AC BC ==△,2CE ∴=,可得4AE =.当AP BP =时,有PA PB =,则OABP 为等腰直角三角形25222PAB AP AB ∴===∠,EF AB ⊥由垂径定理,得由(1)知故5622DF PA PD AC ⨯==)方法一:过点G 作,ACH ∠,,l AB AC AD ⊥∴=∠tan GHPH ∴=AP AD AG DB BG=12BD AG BC x AD BG AC == 1tan 2AP AFD ABP x PB ==∠=之间的的函数关系式为12y x = 【考点】圆,相似三角形,勾股定理,三角函数直线点22144144(6)81616k k -++26=2216k -=,即 又0,2k k >∴=A P AB227272(6)44k k -++2166=45k -=,即,0,k k >∴4255或 作DG y ⊥轴于点G ,过点A 作43)3。
成都2014中考数学试题及答案
地区中考试题中考答案成都语文数学英语化学物理历史政治语文数学英语化学物理历史政治我相信每位在拼搏的考生都会有一个好的开始,2014年成都中考数学考试结束后,中考频道将第一时间为你提供2014年成都中考数学真题及答案解析,还有更多2014年中考真题及答案最新发布资讯尽在中考真题栏目及中考答案栏目,期待您的关注。
2014年成都中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。
审题是正确答题的前导。
从一个角度看,审题甚至比做题更重要。
题目审清了,解题就成功了一半。
认真审准题,才能正确定向,一举突破。
每次考试,总有一些考生因为审题失误而丢分。
尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。
我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。
横批:掉以轻心。
越是简单、熟悉的试题,越要倍加慎重。
很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。
考试应努力做到简单题不因审题而丢分。
“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。
基础题和中等难度题的分值应占到80%。
考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。
只要听到铃声一响就可开始答题了。
解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。
同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。
”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。
2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。
2024年四川省成都市中考数学试题(含答案)
2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣5的绝对值是()A.5 B.﹣5C.15-D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A.()2233x x = B.336x y xy +=C.()222x y x y +=+ D.()()2224x x x +-=-【答案】D 【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A.()1,4-- B.()1,4- C.()1,4 D.()1,4-【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB AD= B.AC BD ⊥ C.AC BD = D.ACB ACD∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A.142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B.142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C.142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A.ABE CBE ∠=∠B.5BC =C.DE DF= D.53BE EF =【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC ∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m +=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10.分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14.(1)计算:()02sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π+︒--+42122=+⨯-+-5=+5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即82.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan ABADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan 5BFC ∠=,45AF =CF 的长和O 的直径.【答案】(1)见详解;(2536.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠= EBC DBF∴ ∽EC CBDF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CBACCF BC ∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=,5CB ==不妨设EF y =,那么AE AF EF y BE=-==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y=222(5)y y ∴++=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴==CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF ∴=DF=DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是.【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BDBE AB =,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x k y x=+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5b m n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5b m n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】①.9②.144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【答案】12+【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BC BF EF =∴221m x x m +=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得1712x +=(负值已舍去),故答案为:1712+.【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】①.>②.112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线的对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a --=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,∴222461n n n -++=-,解得1271,3n n =-=,∴点720,39D ⎛⎫- ⎪⎝⎭,过点D 作DH AB ⊥于点H ,则72203,339BH DH =-==,则10tan 3DH ABD BH ∠==;【小问3详解】设()2,23,D n an an a --直线AD 解析式为()11y k x =+,则()21231an an a k n --=+,解得13k an a =-,那么直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,如图,则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an aB n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a =+--++∵()22232463ax ax a ax an a x an a --=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.【答案】(1)BD CE 的值为35;(2)7039CF =;(3)直角三角形CDE 的面积分别为4,16,12,4813【解析】【分析】(1)根据3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.证明ADE ABC ≌,5AC AE ===,继而得到DAE BAC ∠=∠,DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,再证明CAE BAD ∽,得到35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,得到ABD ACE ∠=∠,根据中线BM 得到1522BM AM CM AC ====,继而得到MBC MCB ∠=∠,结合90ABD MBC ∠+∠=︒,得到90ACE MCB ∠+∠=︒即90BCE ∠=︒,得到AB CQ ,再证明ABM CQM ≌,得证矩形ABCQ ,再利用勾股定理,三角形相似的判定和性质计算即可.(3)运用分类思想解答即可.【详解】(1)∵3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.∴()SAS ADE ABC ≌,∴5AC AE ==,DAE BAC ∠=∠,∴DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,∵1AB AC AD AE==∴CAE BAD ∽,∴35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,∴ABD ACE ∠=∠,∵BM 是中线∴1522BM AM CM AC ====,∴MBC MCB ∠=∠,∵90ABD MBC ∠+∠=︒,∴90ACE MCB ∠+∠=︒即90BCE ∠=︒,∴AB CQ ,∴,BAM QCM ABM CQM ∠=∠∠=∠,∵BAM QCMABM CQM AM CM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS BAM QCM ≌,∴BM QM =,∴四边形ABCQ 是平行四边形,∵90ABC ∠=︒∴四边形ABCQ 矩形,∴3,4,90AB CQ BC AQ AQC ====∠=︒,∴,3PQ CN EQ == ,∴313EP EQPN QC ===,∴12PQ CN =,设,2PQ x CN x ==,则4AP x =-,∵903EPQ APDEQP ADP EQ AD ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴()AAS EQP ADP ≌,∴4AP EP x ==-,∵222EP PQ EQ =+,∴()22243x x -=+,解得78x =;∴2548AP x =-=,724CN x ==,∵,5PQ CN AC = ,∴APF CNF ∽,∴AP AFCN CF =,∴AP CN AFCFCN CF ++=,∴25758474CF +=,解得7039CF =.(3)如图,当AD 与AC 重合时,此时DE AC ⊥,此时CDE 是直角三角形,故()111·244222CDE S CD DE AC AD DE ==⨯-⨯=⨯⨯=;如图,当AD 在CA 的延长线上时,此时DE AC ⊥,此时CDE 是直角三角形,故()111·8416222CDE S CD DE AC AD DE ==⨯+⨯=⨯⨯= ;如图,当DE EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,∵5AE AC ==,∴12EQ QC EC ==,∵AQ EC ⊥,DE EC ⊥,DE AD ⊥,∴四边形ADEQ 是矩形,∴132AD EQ QC EC ====,∴6EC =,故11641222CDE S EC DE ==⨯⨯= ;如图,当DC EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,交DE 于点N ,∴12EQ QC EC x ===,NQ CD ∥,∴1EN EQDN QC ==,∴122DN EN DE ===,12QN DC =,∵,90AND ENQ ADN EQN ∠=∠∠=∠=︒,∴DAN QEN ∠=∠,∴tan tan DAN QEN ∠=∠,∴23QN DN EQ AD ==,∴23QN x =,∴4,23DC x CE x ==,∵222ED DC EC =+,∴()2224423x x ⎛⎫=+ ⎪⎝⎭,∴23613x =,解得13x =;故21144436482223331313CDE S EC DC x x x ==⨯⨯==⨯= .【点睛】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。
2014年成都市中考数学试题
沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
望长城内外,惟余莽莽;大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,欲与天公试比高。
沁园春·雪 <毛泽东> 北国风光,千里冰封,万里雪飘。
望长城内外,惟余莽莽;大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,欲与天公试比高。
须晴日,看红装素裹,分外妖娆。
江山如此多娇,引无数英雄竞折腰。
惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,只识弯弓射大雕。
俱往矣,数风流人物,还看今朝。
须晴日,看红装素裹,分外妖娆。
江山如此多娇,引无数英雄竞折腰。
惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,只识弯弓射大雕。
俱往矣,数风流人物,还看今朝。
成都市二O一四年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学注意事项:1. 全套试卷分为A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在-2,-1、0、2这四个数中,最大的数是()(A)-2 (B)-1 (C)0 (D)22.下列几何体的主视图是三角形的是()(A) (B) (C)(D)3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达290亿元,用科学计数法表示290亿元应为( )(A )290×810 (B )290×910(C )2.90×1010 (D )2.90×11104.下列计算正确的是( )(A )32x x x =+ (B )x x x 532=+(C )532)(x x = (D )236x x x =÷5.下列图形中,不是..轴对称图形的是( )(A) (B) (C)(D)6.函数5-=x y 中自变量x 的取值范围是( )(A )5-≥x (B )5-≤x (C )5≥x (D )5≤x7.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )(A )60°(B )50°(C )40°(D )30°8.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60 70 80 90 100 人数4 8 12 11 5则该办学生成绩的众数和中位数分别是( )(A )70分,80分 (B )80分,80分(C )90分,80分 (D )80分,90分9.将二次函数322+-=x x y 化为k h x y +-=2)(的形式,结果为( )(A )4)1(2++=x y (B )2)1(2++=x y(C )4)1(2+-=x y (D )2)1(2+-=x y10.在圆心角为120°的扇形AOB 中,半径OA =6cm ,则扇形AOB 的面积是( )(A )π62cm (B )π82cm (C )π122cm (D )π242cm第Ⅱ卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:=-2_______________.12.如图,为估计池塘两岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别去OA 、OB 的中点M ,N ,测的MN=32 m ,则A ,B 两点间的距离是_____________m.13.在平面直角坐标系中,已知一次函数12+=x y 的图像经过),(11y x P x ,),(222y x P 两点,若21x x <,则1y ________2y .(填”>”,”<”或”=”)14.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,连接AD ,若∠A =25°,则∠C=__________度.三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算202)2014(30sin 49--+-π .(2)解不等式组⎩⎨⎧+<+>-②① . , 7)2(2513x x x16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A 的仰角为37°,BC =20m ,求树的高度AB .(参考数据:60.037sin ≈ ,80.037cos ≈ ,75.037tan ≈ )17.(本小题满分8分) 先化简,再求值:221ba b b a a -÷⎪⎭⎫⎝⎛--,其中13+=a ,13-=b .18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5+=kx y (k 为常数,且0≠k )的图像与反比例函数x y 8-=的图像交于()b A ,2-,B 两点. (1)求一次函数的表达式; (2)若将直线AB 向下平移)0(>m m 个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.20.(本小题满分10分)如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1= (n为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG .(1)试判断四边形BFEG 的形状,并说明理由;(2)当a AB =(a 为常数),3=n 时,求FG 的长;(3)记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S , 当301721=S S 时,求n 的值.(直接写出结果,不必写出解答过程)CDB 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据。
成都市中考数学试题(含答案)
成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。
3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。
考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。
4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。
5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。
A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。
1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。
据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。
【精选试卷】成都市第七中学中考数学解答题专项练习经典练习题(含答案)
一、解答题1.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++2.材料:解形如(x+a )4+(x+b )4=c 的一元四次方程时,可以先求常数a 和b 的均值a+b 2,然后设y =x+a+b 2.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法. 例:解方程:(x ﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为−52,所以,设y =x ﹣52,原方程可化为(y+12)4+(y ﹣12)4=1,去括号,得:(y 2+y+14)2+(y 2﹣y+14)2=1y 4+y 2+116+2y 3+12y 2+12y+y 4+y 2+116﹣2y 3+12y 2﹣12y =1整理,得:2y 4+3y 2﹣78=0(成功地消去了未知数的奇次项) 解得:y 2=14或y 2=−74(舍去)所以y =±12,即x ﹣52=±12.所以x =3或x =2.(1)用阅读材料中这种方法解关于x 的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y =x+____.原方程转化为:(y ﹣_____)4+(y+_____)4=1130. (2)用这种方法解方程(x+1)4+(x+3)4=706 3.解方程:3x x +﹣1x=1. 4.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.5.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 6.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F≌;(2)连结CF,判断四边形AECF是什么特殊四边形?证明你的结论.7.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?8.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?9.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC 于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.10.将A B C D,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A在甲组的概率是多少?(2)A B,都在甲组的概率是多少?11.问题:探究函数y=x+2x的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:____;(2)如表是y与x的几组对应值,请将表格补充完整:x…﹣3﹣2﹣32﹣1−121213223…y…﹣323﹣3−256﹣3﹣412412256323…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可). 12.如图,在四边形ABCD 中,ABDC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.13.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?14.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.15.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.16.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为83,求AC的长.17.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.6~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲班224511乙班11a b20在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.18.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.19.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.20.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?21.如图,AB 是⊙O 的直径,点C 是AB 的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且OE EB=23,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).23.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.24.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?25.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?26.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,27.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.28.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)29.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地i=B到C坡面的坡角到B地的路程.已知:从A到C坡面的坡度3∠=︒,42CBA45BC=.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈,3 1.732≈) 30.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题 1.3.4.5.6.7.8.9.10.11.12.13.14.15.无16.17.18.19.20.21.22.23.24.25.26.27.28.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题1.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.(1)4,4,1,1;(2)x=2或x=﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.3.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键. 4.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可.试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.5.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-; (2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键. 6.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.7.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.8.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图9.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,3223+33()=6,∵sin∠DBF=31 =62,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=33 DFDO DO==3则3故图中阴影部分的面积为:26013236022ππ⨯-=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键. 10.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1611.(1)x ≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.12.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出222=-=.根据直角三角形斜边的中OA AB OB线等于斜边的一半即可求解.详解:(1)证明:∵AB∥CD,∠=∠∴CAB ACD∠∵AC平分BAD∠=∠,∴CAB CAD∠=∠∴CAD ACD=∴AD CD又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA =.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.13.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;(3)当1≤x <50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x <90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y 1=kx+b ,将(1,41),(50,90)代入,得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x+40,当50≤x<90时,y 1=90,故y 1与x 的函数解析式为y 1=x 40(1x 50),90(50x 90);+≤<⎧⎨≤<⎩设y 2与x 的函数解析式为y 2=mx+n(1≤x<90), 将(50,100),(90,20)代入, 得50m n 100,90m n 20,+=⎧⎨+=⎩解得:m 2,n 200,=-⎧⎨=⎩故y 2与x 的函数关系式为y 2=-2x+200(1≤x<90). (2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x 2+180x+2000; 当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050, ∴当x=45时,W 取得最大值,最大值为6050元; 当50≤x<90时,W=-120x+12000, ∵-120<0,W 随x 的增大而减小,∴当x=50时,W 取得最大值,最大值为6000元; 综上,当x=45时,W 取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.14.(1)DE=3;(2)ADB S 15∆=. 【解析】 【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可; (2)利用勾股定理求出AB 的长,然后计算△ADB 的面积. 【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°, ∴CD=DE , ∵CD=3, ∴DE=3;(2)在Rt △ABC中,由勾股定理得:AB 10===, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 15.16.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.17.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×1015=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.18.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.20.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x×1.5=45005x,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.21.(1)证明见解析;(2)BH=125.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB 是⊙O 的直径,点C 是AB 的中点, ∴∠AOC =90°, ∵OA =OB ,CD =AC , ∴OC 是△ABD 是中位线, ∴OC ∥BD ,∴∠ABD =∠AOC =90°, ∴AB ⊥BD , ∵点B 在⊙O 上, ∴BD 是⊙O 的切线; (2)由(1)知,OC ∥BD , ∴△OCE ∽△BFE , ∴OC BF=OE EB,∵OB =2,∴OC =OB =2,AB =4,OE EB=23,∴2BF=23,∴BF =3,在Rt △ABF 中,∠ABF =90°,根据勾股定理得,AF =5, ∵S △ABF =12AB•BF =12AF•BH ,∴AB•BF =AF•BH , ∴4×3=5BH , ∴BH =125.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.22.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论. 【详解】解:证明:(1)连接OD , ∵AD 平分BAC ∠, ∴CAD BAD ∠=∠, ∵OA OD =, ∴BAD ADO =∠∠, ∴CAD ADO ∠=∠, ∴AC OD ∥, ∵CD AC ⊥, ∴CD OD ⊥,∴直线CD 是⊙O 的切线; (2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径, ∴90ABE BDE ︒∠=∠=, ∵CD AC ⊥, ∴90C BDE ︒∠=∠=, ∵CAD BAE DBE ∠=∠=∠, ∴ACD BDE ∆∆∽,∴CD ADDE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.24.(1)y=26(2040)24(40)x xx x⎧⎨>⎩;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.25.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】【分析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排(10m)-台,根据每小时加工零件的总量8A=⨯型机器的数量6B+⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:8060x2x=+,解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.。
方程与不等式专题测试试卷(有答案)
2014年中考数学总复习专题测试试卷(方程与不等式)一、选择题1.点(412)A m m --,在第三象限,那么m 值是( )。
A.12m > B.4m < C.142m << D.4m >2.不等式组⎩⎨⎧>>ax x 3的解集是x>a ,则a 的取值范围是( )。
A.a ≥3 B.a =3 C.a >3 D.a <33.方程2x x 2-4 -1=1x +2的解是( )。
A.-1 B .2或-1 C.-2或3 D.34.方程2-x 3 - x-14= 5的解是( )。
A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( )。
A .x 1=1,x 2=-3B .x 1=1,x 2=3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3 6.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。
A.1-B.1m - C.0 D.1 7. 若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。
A.-2 B .0 C.2 D.48.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。
A .x 2+130x-1400=0B .x 2+65x-350=0C .x 2-130x-1400=0D .x 2-65x-350=09.若解分式方程2x x -1 -m +1x 2+x =x +1x 产生增根,则m 的值是( )。
A.-1或-2 B .-1或2 C.1或2 D.1或-2二、填空题10.不等式(m-2)x>2-m 的解集为x<-1,则m 的取值范围是__________________。
[vip专享]2014年成都市中考数学试题(WORD版含答案) 2
3 2 “”1 …… ………………17
B A 3 2“” 1 “”
C
BP17-23 1 A 3 D C“” B A2P16“8”---“-” 2 1 10
“” C
P17-3D C B A3P682 1 2 1
“” 3 21“”“”
“” 21P961P9610 3 2 1 4 3 2 271 1
地,总投资达 290 亿元,用科学计数法表示 290 亿元应为( )
成都市二 O 一四年高中阶段教育学校统一招生考试
(含成都市初三毕业会考)
数学
A 卷(共 100 分)
第 I 卷(选择题,共 30 分)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,每小题均有四个选项, 其中只有一项符合题目要求,答案涂在答题卡上)
1.在-2,-1、0、2 这四个数中,最大的数是( )
(B) y (x 1)2 2
(C) y (x 1)2 4
(D) y (x 1)2 2
10.在圆心角为 120°的扇形 AOB 中,半径 OA=Байду номын сангаасcm,则扇形 AOB 的面积是( )
23WOR1DWO---RDWwOorRdDw1ordword
21
3 2 1 “” 23WOR1D
1 320082 1 3
3 “” 2 413“” 2 1 5
“”
(A)290×108
(B)290×109
(C)2.90× 1010 4.下列计算正确的是( )
(D)2.90× 1011
(A) x x 2 x3
(B) 2x 3x 5x
(C) (x 2 )3 x5
(D) x6 x3 x 2
5.下列图形中,不是轴对称图形的是( )
2014年四川省成都市中考数学试卷-答案
四川省成都市2014年高中阶段教育学校统一招生考试数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】D【解析】将各数在数轴上表示,通过数轴比较大小,其中最大的是2,故选D . 【考点】有理数的大小比较 2.【答案】B【解析】观察四种几何体,可以判断主视图为三角形的为圆锥,故选B . 【考点】简单几何体的三视图. 3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a <<,n 为整数,a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,为负整数,n 的绝对值等于原数左起第一个非零数字前零的个数(含整数位上的零).1029029 000 000 000 2.910==⨯亿,故选C .【考点】科学记数法 4.【答案】B【解析】A ,B 为整式的加减运算,整式加减运算的实质为合并同类项,A 中两项不是同类项,不能合并,A 错误,B 正确;C 为幂的乘方,底数不变,指数应相乘,C 错误;D 为同底数幂的除法,同底数幂相除,底数不变,指数相减,D 错误,故选B . 【考点】整式的计算 5.【答案】A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,B ,C ,D 选项中的图形沿竖直的直线折叠直线两旁的部分都能重合,A 中的图形不能重合,故选A . 【考点】轴对称图形 6.【答案】C第Ⅱ卷tanBC C.==,∠BC m C2037∴=≈AB20tan3720答:树高AB约为15m. 【考点】三角函数(2)用列表法表示如下:或画树状图如下:)点平移后的直线与反比例函数的图像有且只有一个公共点FC∠GBO∴△BOG∴=BG EF⊥又FG BE平行四边形2)当AB∠∠A EOF=56=483aOE AB a a AE a = B 卷2200000166166(33)2(33)2022x x x x x ++-+++-=,得ACB =∠是O 的直径 APB ∴∠ CPB PBA +∠l AB ⊥于点FAE +=∠PB ∴=∠ABP =∠PAC =又∠2)在Rt ABC △由勾股定理,得12ABC S AB CE AC BC ==△,2CE ∴=,可得4AE =.EF AB ⊥由垂径定理,得15622PAAC⨯=)方法一:过点G 作,l AB ⊥∴tan GH PH ∴=AP AD AGDB BG=12BD AG BC x AD BG AC == 1tan 2AP AFD ABP x PB ==∠=直线点22144144(6)81616k k -++26=2216k -=,即 又0,k k >∴A P AB11 / 11227272(6)44k k -++2166=45k -=,即,0,k k >∴。
成都初中中考数学试卷试题解析版本.doc
2014 成都中考数学试题( 解析版)四川省成都市2014 年中考数学试卷一、选择题(本大题共 10 个小题,每小题 3 分,共30 分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3 分)( 2014?成都)在﹣ 2,﹣ 1,0,2 这四个数中,最大的数是()A .﹣2B.﹣1 C.0 D.2考有理数大小比较.点:分根据正数大于 0,0 大于负数,可得答案.析:解解:﹣ 2<﹣ 1<0<2,答:故选: D.点本题考查了有理数比较大小,正数大于 0,评: 0 大于负数是解题关键.2.(3 分)(2014?成都)下列几何体的主视图是三角形的是(A .B.)C.D.考简单几何体的三视图.点:分主视图是从物体正面看,所得到的图形.析:解解: A、圆柱的主视图是矩形,故此选项错答:误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选: B.点本题考查了几何体的三种视图,掌握定义是评:关键.注意所有的看到的棱都应表现在三视图中.3.(3 分)(2014?成都)正在建设的成都第二绕城高速全长超过 220 公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到 290 亿元.用科学记数法表示 290 亿元应为()A .290×1 B.290×1 C.2.90×10D.2.90×1008元09元10 元11 元考科学记数法—表示较大的数.点:分科学记数法的表示形式为 a×10n的形式,其析:中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解解: 290 亿=290 0000 0000=2.90×1010,答:故选: C.点此题考查科学记数法的表示方法.科学记数评:法的表示形式为 a×10n的形式,其中 1≤ |a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3 分)(2014?成都)下列计算正确的是()A .x+x2=x3B.2x+3x=5x C.(x2) D.x6÷x3=x23=x5考同底数幂的除法;合并同类项;幂的乘方与点:积的乘方分根据同底数幂的乘法,可判断 A,根据合并析:同类项,可判断 B,根据幂的乘方,可判断C,根据同底数幂的洗护发,可判断D.解解:A、不是同底数幂的乘法,指数不能相答:加,故 A 错误;B、系数相加字母部分不变,故 B 正确;C、底数不变指数相乘,故 C 错误;D、底数不变指数相减,故 D 错误;故选: B.点本题考查了幂的运算,根据法则计算是解题评:关键.5.(3 分)(2014?成都)下列图形中,不是轴对称图形的是()A .B.C.D.考轴对称图形.点:分根据轴对称图形的概念求解.如果一个图形析:沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解解: A、不是轴对称图形,因为找不到任何答:这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选: A .点此题主要考查了轴对称图形的定义,轴对称评:图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(3 分)(2014?成都)函数 y= x 的取值范围是()A .x≥﹣ 5 B.x≤﹣ 5 C.x≥5 中,自变量D.x≤5考函数自变量的取值范围.点:分根据被开方数大于等于 0 列式计算即可得析:解.解解:由题意得, x﹣5≥0,答:解得 x≥5.故选 C.点本题考查了函数自变量的范围,一般从三个评:方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;(3)当函数表达式是二次根式时,被开方数非负.7.(3 分)(2014?成都)如图,把三角板的直角顶点放在直尺的一边上,若∠ 1=30°,则∠ 2 的度数为()A .60°B.50°C.40°D.30°考平行线的性质;余角和补角点:分根据平角等于 180°求出∠ 3,再根据两直析:线平行,同位角相等可得∠2=∠3.解解:∵∠ 1=30°,答:∴∠ 3=180°﹣ 90°﹣ 30°=60°,∵直尺两边互相平行,∴∠ 2=∠3=60°.故选 A.点本题考查了平行线的性质,平角的定义,熟评:记性质并准确识图是解题的关键.8.(3 分)(2014?成都)近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩60 70 80 90 100(分)人数 4 8 12 11 5则该班学生成绩的众数和中位数分别是()A .70 分, B.80 分, C.90 分, D.80 分,80 分80 分80 分90 分考众数;中位数.点:分先求出总人数,然后根据众数和中位数的概析:念求解.解解:总人数为: 4+8+12+11+5=40(人),答:∵成绩为 80 分的人数为 12 人,最多,∴众数为 80,中位数为第 20 和 21 人的成绩的平均值,则中位数为: 80.故选 B.点本题考查了众数和中位数,一组数据中出现评:次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3 分)(2014?成都)将二次函数y=x2﹣2x+3 化为 y=(x﹣h)2+k 的形式,结果为()A .y=B.y=C.y=(x﹣D.y=(x﹣(x+1)(x+1)1)2+41)2+22+42+2考二次函数的三种形式.点:分根据配方法进行整理即可得解.析:解解: y=x2﹣2x+3,答: =(x2﹣2x+1)+2,=(x﹣1)2+2.故选 D.点本题考查了二次函数的三种形式的转化,熟评:记配方法的操作是解题的关键.10.(3 分)(2014?成都)在圆心角为 120°的扇形AOB 中,半径 OA=6cm ,则扇形 OAB 的面积是()A .6πcm2 B.8πcm2 C.12πcm2D.24πcm2考扇形面积的计算.点:分直接利用扇形面积公式代入求出面积即可.析:解解:∵在圆心角为 120°的扇形 AOB 中,答:半径 OA=6cm ,∴扇形 OAB 的面积是:=12π(cm2),故选: C.点此题主要考查了扇形面积的计算,正确掌握评:扇形面积公式是解题关键.二、填空题(本大题共 4 个小题,每小题共 16 分,答案卸载答题卡上)11.(4 分)(2014?成都)计算: |﹣|= 4 分,.考实数的性质点:分根据一个负实数的绝对值等于它的相反数析:求解即可.解解: |﹣|=.答:故答案为:.点本题考查了实数绝对值的定义:一个正实数评:的绝对值是它本身,一个负实数的绝对值是它的相反数, 0 的绝对值是 0.12.(4 分)(2014?成都)如图,为估计池塘岸边A,B 两点间的距离,在池塘的一侧选取点O,分别取 OA,OB 的中点 M,N,测得 MN=32m ,则 A ,B 两点间的距离是64 m.考三角形中位线定理.点:专应用题.题:分根据 M 、N 是 OA 、OB 的中点,即 MN 是析:△OAB 的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.解解:∵ M 、N 是 OA 、OB 的中点,即 MN 答:是△ OAB 的中位线,∴MN= AB ,∴A B=2CD=2 ×32=64(m).故答案是: 64.点本题考查了三角形的中位线定理应用,正确评:理解定理是解题的关键.13.(4 分)(2014?成都)在平面直角坐标系中,已知一次函数y=2x+1 的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“ =”)考一次函数图象上点的坐标特征点:分根据一次函数的性质,当 k>0 时, y 随 x 析:的增大而增大.解解:∵一次函数 y=2x+1 中 k=2> 0,答:∴y 随 x 的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.点此题主要考查了一次函数的性质,关键是掌评:握一次函数 y=kx+b ,当 k> 0 时,y 随 x 的增大而增大,当 k<0 时, y 随 x 的增大而减小.14.(4 分)(2014?成都)如图, AB 是⊙ O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D,连接 AD .若∠ A=25 °,则∠ C= 40 度.考切线的性质;圆周角定理.点:专计算题.题:分连接 OD,由 CD 为圆 O 的切线,利用切线析:的性质得到 OD 垂直于 CD,根据 OA=OD ,利用等边对等角得到∠ A= ∠ODA ,求出∠ODA 的度数,再由∠COD 为△AOD 外角,求出∠COD 度数,即可确定出∠C 的度数.解解:连接 OD,答:∵CD 与圆 O 相切,∴OD⊥DC ,∵OA=OD ,∴∠ A= ∠ODA=25 °,∵∠ COD 为△ AOD 的外角,∴∠ COD=50 °,∴∠ C=40°.故答案为: 40点此题考查了切线的性质,等腰三角形的性评:质,以及外角性质,熟练掌握切线的性质是解本题的关键.三、解答题(本大题共 6 个小题,共 54 分,解答过程写在答题卡上)15.(12 分)(2014?成都)(1)计算:﹣4sin30°+ (2014﹣π)0﹣22.(2)解不等式组:.考实数的运算;零指数幂;解一元一次不等式点:组;特殊角的三角函数值专计算题.题:分(1)原式第一项利用平方差公式化简,第析:二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解解:(1)原 3﹣4× +1﹣4=3﹣2+1﹣4=﹣2;答:(2)由①得: x>2;由②得: x< 3,则不等式的解集为2<x<3.点此题考查了实数的运算,熟练掌握运算法则评:是解本题的关键.16.(6 分)(2014?成都)如图,在一次数学课外实践活动,小文在点 C 处测得树的顶端 A 的仰角为 37°, BC=20m ,求树的高度 AB .(参考数据: sin37°≈ 0.60,cos37°≈0.80, tan37°≈ 0.75)考解直角三角形的应用 -仰角俯角问题点:分通过解直角△ ABC 可以求得 AB 的长度.析:解解:如图,在直角△ ABC 中,∠ B=90°,答:∠C=37°, BC=20m ,∴t anC= ,则AB=BC ?tanC=20 ×tan37°≈ 20×0.75=15 (m).答:树的高度 AB 为 15m.点本题考查了解直角三角形的应用﹣仰角俯评:角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.17.(8 分)( 2014?成都)先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.考分式的化简求值点:专计算题.题:分原式括号中两项通分并利用同分母分式的析:减法法则计算,同时利用除法法则变形,约分得到最简结果,将 a 与 b 的值代入计算即可求出值.解解:原式答:=?= ?=a+b,当a= +1,b= ﹣1 时,原式 = +1+ ﹣1=2.点此题考查了分式的化简求值,熟练掌握运算评:法则是解本题的关键.18.(8 分)(2014?成都)第十五届中国“西博会”将于 2014 年 10 月底在成都召开,现有 20名志愿者准备参加某分会场的工作,其中男生 8 人,女生 12 人.(1)若从这 20 人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为 2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取 2 张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.考游戏公平性;概率公式;列表法与树状图法.点:分(1)直接利用概率公式求出即可;析:(2)利用树状图表示出所有可能进而利用概率公式求出即可.解解:(1)∵现有 20 名志愿者准备参加某分答:会场的工作,其中男生 8 人,女生 12 人,∴从这 20 人中随机选取一人作为联络员,选到女生的概率为: = ;(2)如图所示:牌面数字之和为: 5,6,7,5,7,8,6,7,9,7,9,8,∴偶数为: 4 个,得到偶数的概率为:= ,∴得到奇数的概率为:,∴甲参加的概率<乙参加的概率,∴这个游戏不公平.点此题主要考查了游戏公平性以及概率公式评:应用,正确画出树状图是解题关键.19.(10 分)(2014?成都)如图,一次函数y=kx+5 (k 为常数,且k≠0)的图象与反比例函数 y= ﹣的函数交于 A(﹣ 2,b),B 两点.(1)求一次函数的表达式;(2)若将直线 AB 向下平移 m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求 m 的值.考反比例函数与一次函数的交点问题;一次函点:数图象与几何变换专计算题.题:分(1)先利用反比例函数解析式 y=﹣求出析:b=4,得到 A 点坐标为(﹣ 2,4),然后把 A 点坐标代入 y=kx+5 中求出 k,从而得到一次函数解析式为 y= x+5;(2)由于将直线 AB 向下平移 m(m>0)个单位长度得直线解析式为 y= x+5﹣m,则直线y= x+5﹣m 与反比例函数有且只有一个公共点,即方程组只有一组解,然后消去 y 得到关于 x 的一元二次函数,再根据判别式的意义得到关于 m 的方程,最后解方程求出 m 的值.解解:(1)把 A (﹣ 2,b)代入 y=﹣得 b= 答:﹣ =4,所以 A 点坐标为(﹣ 2,4),把A(﹣ 2,4)代入 y=kx+5 得﹣ 2k+5=4,解得 k= ,所以一次函数解析式为 y= x+5;(2)将直线 AB 向下平移 m(m>0)个单位长度得直线解析式为 y= x+5﹣m,根据题意方程组只有一组解,消去 y 得﹣ = x+5﹣m,整理得 x2﹣( m﹣5)x+8=0,△=(m﹣5)2﹣4× ×8=0,解得 m=9 或m=1,即m 的值为 1 或 9.点本题考查了反比例函数与一次函数的交点评:问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了一次函数与几何变换.20.(10 分)(2014?成都)如图,矩形 ABCD 中, AD=2AB ,E 是 AD 边上一点, DE= AD (n 为大于 2 的整数),连接 BE,作 BE 的垂直平分线分别交 AD ,BC 于点 F,G,FG 与 BE 的交点为O,连接 BF 和 EG.(1)试判断四边形 BFEG 的形状,并说明理由;(2)当 AB=a (a 为常数), n=3 时,求 FG的长;(3)记四边形 BFEG 的面积为 S1,矩形 ABCD的面积为 S2,当= 时,求 n 的值.(直接写出结果,不必写出解答过程)考四边形综合题点:分(1)先求证△ EFO ≌△ CBO ,可得析: EF=BG ,再根据△ BOF ≌△ EOF ,可得EF=BF ;即可证明四边形 BFEG 为菱形;(2)根据菱形面积不同的计算公式(底乘高和对角线乘积的一半两种计算方式)可计算 FG 的长度;(3)根据菱形面积底乘高的计算方式可以求出 BG 长度,根据勾股定理可求出AF 的长度,即可求出 ED 的长度,即可计算 n 的值.解解:(1)∵ AD ∥BC ,∴∠ EFO= ∠BGO ,答:∵FG 为 BE 的垂直平分线,∴ BO=OE ;∵在△ EFO 和△ CBO 中,,∴△ EFO ≌△ CBO ,∴ EF=BG ,∵AD ∥BC,∴四边形 BGEF 为平行四边形;∵在△ BOF 和△ EOF 中,,∴△ BOF ≌△ EOF ,∴ EF=BF ,邻边相等的平行四边形为菱形,故四边形BGEF 为菱形.(2)当 AB=a ,n=3 时, AD=2a ,AE= ,根据勾股定理可以计算 BE= ,∵A F=AE ﹣EF=AE ﹣BF,在 Rt △ABF 中AB 2+AF 2=BF 2,计算可得 AF= ,EF= ,∵菱形 BGEF 面积 = BE?FG=EF ?AB,计算可得FG= .(3)设 AB=x ,则 DE= ,当=时,=,可得BG=,在Rt △ABF 中 AB 2+AF 2=BF 2,计算可得AF=,∴AE=AF+FE=AF+BG=,DE=AD﹣AE=,∴n=6.点牢记菱形的底乘高和对角线求面积的计算评:公式,熟练运用勾股定理才能解本题.一、填空题(本大题共 5 分,每小题 4 分,共20分,答案写在答题卡上)21.(4 分)(2014?成都)在开展“国学诵读”活动中,某校为了解全校 1300 名学生课外阅读的情况,随机调查了 50 名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校 1300 名学生一周的课外阅读时间不少于 7 小时的人数是 520 .考用样本估计总体;条形统计图点:分用所有学生数乘以课外阅读时间不少于 7析:小时的所占的百分比即可.解解:该校 1300 名学生一周的课外阅读时间答:不少于 7 小时的人数是1300×=520 人,故答案为: 520.点本题考查了用样本估计总体的知识,解题的评:关键是求得样本中不少于7 小时的所占的百分比.22.(4 分)(2014?成都)已知关于 x 的分式方程﹣ =1 的解为负数,则 k 的取值范围是 k >且k≠ 1 .考分式方程的解.点:专计算题.题:分分式方程去分母转化为整式方程,求出整式析:方程的解得到 x 的值,根据解为负数确定出k的范围即可.解解:去分母得:(x+k )(x﹣1)﹣ k(x+1)答: =x2﹣1,去括号得: x2﹣x+kx ﹣k﹣kx ﹣k=x 2﹣1,移项合并得: x=1﹣2k ,根据题意得: 1﹣2k< 0,且 1﹣2k≠± 1解得: k>且 k≠1故答案为: k>且 k≠1.点此题考查了分式方程的解,本题需注意在任评:何时候都要考虑分母不为 0.23.(4 分)(2014?成都)在边长为1 的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为 N,边界上的格点数记为L ,例如,图中三角形 ABC 是格点三角形,其中 S=2,N=0,L=6;图中格点多边形 DEFGHI 所对应的 S,N, L 分别是7,3,10 .经探究发现,任意格点多边形的面积 S 可表示为 S=aN+bL+c,其中 a,b, c 为常数,则当 N=5,L=14 时, S=11 .(用数值作答)考规律型:图形的变化类;三元一次方程组的点:应用.分(1)观察图形,即可求得第一个结论;析:(2)根据格点多边形的面积S=aN+bL+c ,结合图中的格点三角形 ABC 及多边形 DEFGHI中的 S,N,L 数值,代入建立方程组,求出a,b,c 即可求得 S.解解:(1)观察图形,可得 S=7,N=3,L=10 ;答:(2)不妨设某个格点四边形由四个小正方形组成,此时, S=4,N=1,L=8 ,∵格点多边形的面积 S=aN+bL+c ,∴结合图中的格点三角形ABC 及格点四边形DEFG 可得,解得,∴S=N+ L ﹣1,将N=5,L=14 代入可得 S=5+14× ﹣1=11.故答案为:(Ⅰ) 7,3,10;(Ⅱ) 11.点此题考查格点图形的面积变化与多边形内评:部格点数和边界格点数的关系,从简单情况分析,找出规律解决问题.24.(4 分)(2014?成都)如图,在边长为 2 的菱形 ABCD 中,∠A=60 °,M 是 AD 边的中点,N 是 AB 边上的一动点,将△ AMN 沿 MN 所在直线翻折得到△ A′MN ,连接 A ′C,则 A ′C长度的最小值是﹣1.考菱形的性质;翻折变换(折叠问题)点:分根据题意得出 A ′的位置,进而利用锐角三析:角函数关系求出 A′C 的长即可.解解:如图所示:∵MN,MA ′是定值,A ′C 答:长度的最小值时,即 A′在 MC 上时,过点 M 作 M ⊥DC 于点 F,∵在边长为 2 的菱形 ABCD 中,∠A=60°,∴C D=2 ,∠ ADCB=120 °,∴∠ FDM=60 °,∠ FMD=30 °,∴F D= MD= ,∴FM=DM ×cos30°=,∴MC==,∴A′C=MC ﹣MA ′=﹣1.故答案为:﹣1.点此题主要考查了菱形的性质以及锐角三角评:函数关系等知识,得出 A′点位置是解题关键.25.(4 分)(2014?成都)如图,在平面直角坐标系 xOy 中,直线 y= x 与双曲线 y= 相交于 A,B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交 y 轴于点 P,连接 BP,BC.若△ PBC 的面积是 20,则点 C 的坐标为(,).考反比例函数与一次函数的交点问题点:专计算题.题:分BC 交 y 轴于 D,设 C 点坐标为( a,),析:根据反比例函数与一次函数的交点问题解方程组可得到 A 点坐标为( 2,3),B点坐标为(﹣ 2,﹣ 3),再利用待定系数法确定直线 BC 的解析式为 y= x+ ﹣3,直线AC 的解析式为 y=﹣ x+ +3,于是利用 y 轴上点的坐标特征得到 D 点坐标为( 0,﹣3),P 点坐标为( 0, +3),然后利用S△PBC=S△PBD +S△CPD得到关于 a 的方程,求出a 的值即可得到 C 点坐标.解解:BC 交 y 轴于 D,如图,设 C 点坐标为答:(a,)解方程组得或,∴A 点坐标为( 2,3),B 点坐标为(﹣ 2,﹣3),设直线 BC 的解析式为 y=kx+b ,把 B(﹣ 2,﹣3)、C(a,)代入得,解得,∴直线 BC 的解析式为 y= x+ ﹣3,当x=0 时, y= x+ ﹣3= ﹣3,∴D 点坐标为( 0,﹣3)设直线 AC 的解析式为 y=mx+n ,把 A(2, 3)、C(a,)代入得,解得,∴直线 AC 的解析式为 y=﹣ x+ +3,当x=0 时, y= x+ +3= +3,∴P 点坐标为( 0, +3)∵S△PBC =S△PBD+S△CPD,∴ ×2×6+ ×a×6=20,解得 a=,∴C 点坐标为(,).故答案为(,).点本题考查了反比例函数与一次函数的交点评:问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交.也考查了待定系数法求一次函数的解析式.二、解答题(本大题共 3 个小题,共 30 分,解答过程写在答题卡上)26.(8 分)(2014?成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用 28m 长的篱笆围成一个矩形花园ABCD (篱笆只围 AB,BC 两边),设 AB=xm .(1)若花园的面积为 192m2,求 x 的值;(2)若在 P 处有一棵树与墙 CD,AD 的距离分别是 15m 和 6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积 S 的最大值.考二次函数的应用;一元二次方程的应用.点:专几何图形问题.题:分(1)根据题意得出长×宽 =192,进而得出析:答案;(2)由题意可得出:S=x(28﹣x)=﹣x2 +28x=﹣(x﹣14)2+196,再利用二次函数增减性得出答案.解解:(1)∵ AB=xm ,则 BC= (28﹣x)m,答:∴x(28﹣x)=192,解得: x1=12,x2 =16,答: x 的值为 12m 或 16m;(2)由题意可得出:S=x(28﹣x)=﹣x2 +28x=﹣( x﹣14)2+196,∵在 P 处有一棵树与墙 CD ,AD 的距离分别是 15m 和 6m,∴x=15 时, S 取到最大值为: S=﹣( 15﹣14)2+196=195,答:花园面积 S 的最大值为 195 平方米.点此题主要考查了二次函数的应用以及二次评:函数最值求法,得出 S 与 x 的函数关系式是解题关键.27.(10 分)(2014?成都)如图,在⊙ O 的内接△ABC 中,∠ ACB=90 °, AC=2BC ,过 C 作AB 的垂线 l 交⊙ O 于另一点 D,垂足为 E.设 P 是上异于 A ,C 的一个动点,射线 AP 交 l 于点F,连接 PC 与 PD,PD 交 AB 于点 G.(1)求证:△ PAC∽△ PDF;(2)若 AB=5 , = ,求 PD 的长;(3)在点 P 运动过程中,设 =x,tan ∠AFD=y ,求y 与 x 之间的函数关系式.(不要求写出 x 的取值范围)考圆的综合题点:分(1)证明相似,思路很常规,就是两个角析:相等或边长成比例.因为题中因圆周角易知一对相等的角,那么另一对角相等就是我们需要努力的方向,因为涉及圆,倾向于找接近圆的角∠ DPF,利用补角在圆内作等量代换,等弧对等角等知识易得∠DPF= ∠APC ,则结论易证.(2)求PD 的长,且此线段在上问已证相似的△PDF 中,很明显用相似得成比例,再将其他边代入是应有的思路.利用已知条件易得其他边长,则PD 可求.(3)因为题目涉及∠ AFD 与也在第一问所得相似的△ PDF 中,进而考虑转化,∠A FD= ∠PCA ,连接 PB 得∠A FD= ∠PCA= ∠PBG,过 G 点作 AB 的垂线,若此线过 PB 与 AC 的交点那么结论易求,因为根据三角函数或三角形与三角形ABC 相似可用 AG 表示∠ PBG 所对的这条高线.但是“此线是否过 PB 与 AC 的交点”?此时首先需要做的是多画几个动点P,观察我们的猜想.验证得我们的猜想应是正确的,可是证明不能靠画图,如何求证此线过 PB 与 AC 的交点是我们解题的关键.常规作法不易得此结论,我们可以换另外的辅助线作法,先做垂线,得交点 H,然后连接交点与 B,再证明∠HBG= ∠PCA= ∠AFD .因为 C、D 关于AB 对称,可以延长CG 考虑P 点的对称点.根据等弧对等角,可得∠HBG= ∠PCA ,进而得解题思路.解(1)证明:∵,答:∴∠ DPF=180°﹣∠ APD=180 °﹣所对的圆周角 =180°﹣所对的圆周角 = 所对的圆周角 =∠APC .在△ PAC 和△ PDF 中,,∴△ PAC∽△ PDF.(2)解:如图 1,连接 PO,则由,有PO⊥AB,且∠ PAB=45°,△ APO、△AEF 都为等腰直角三角形.在Rt △ABC 中,∵AC=2BC ,∴AB 2=BC 2+AC 2=5BC 2,∵A B=5 ,∴BC= ,∴A C=2 ,∴CE=AC ?sin∠BAC=AC ? =2? =2,AE=AC ?cos∠BAC=AC ? =2 ? =4,∵△ AEF 为等腰直角三角形,∴E F=AE=4 ,∴F D=FC+CD= (EF﹣CE )+2CE=EF+CE=4+2=6 .∵△ APO 为等腰直角三角形,AO= ?AB= ,∴A P= .∵△ PDF∽△ PAC,∴,∴,∴PD=.(3)解:如图 2,过点 G 作 GH ⊥AB ,交AC 于H,连接HB,以HB 为直径作圆,连接 CG 并延长交⊙ O 于 Q,∵HC ⊥CB ,GH ⊥GB,∴C、G 都在以 HB 为直径的圆上,∴∠ HBG= ∠ACQ ,∵C、D 关于 AB 对称, G 在 AB 上,∴Q、P 关于 AB 对称,∴,∴∠ PCA= ∠ACQ ,∴∠ HBG= ∠PCA .∵△ PAC∽△ PDF,∴∠ PCA= ∠PFD= ∠AFD ,∴y=tan ∠AFD=tan ∠PCA=tan ∠HBG=.∵H G=tan ∠HAG ?AG=tan ∠BAC ?AG==,∴y= = x.点本题考查了圆周角、相似三角形、三角函数评:等性质,前两问思路还算简单,但最后一问需要熟练的解题技巧需要长久的磨练总结.总体来讲本题偏难,学生练习时加强理解,重点理解分析过程,自己如何找到思路.28.(12 分)(2014?成都)如图,已知抛物线y= (x+2)(x﹣4)(k 为常数,且 k>0)与 x 轴从左至右依次交于 A ,B 两点,与 x 轴交于点 C,经过点 B 的直线 y=﹣ x+b 与抛物线的另一交点为D.(1)若点 D 的横坐标为﹣ 5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点 P,使得以A,B,P 为顶点的三角形与△ ABC 相似,求k的值;(3)在(1)的条件下,设 F 为线段 BD 上一点(不含端点),连接 AF,一动点 M 从点 A 出发,沿线段 AF 以每秒 1 个单位的速度运动到 F,再沿线段FD 以每秒 2 个单位的速度运动到 D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?考二次函数综合题.点:分(1)首先求出点 A、B 坐标,然后求出直析:线 BD 的解析式,求得点 D 坐标,代入抛物线解析式,求得k 的值;(2)因为点 P 在第一象限内的抛物线上,所以∠ ABP 为钝角.因此若两个三角形相似,只可能是△ ABC ∽△ APB 或△ABC ∽△ ABP.如答图 2,按照以上两种情况进行分类讨论,分别计算;(3)由题意,动点 M 运动的路径为折线AF+DF ,运动时间: t=AF+ DF.如答图 3,作辅助线,将 AF+ DF 转化为 AF+FG ;再由垂线段最短,得到垂线段 AH 与直线 BD 的交点,即为所求的 F 点.解解:(1)抛物线 y= (x+2)(x﹣4),答:令 y=0,解得 x=﹣2 或 x=4,∴A(﹣ 2,0),B(4,0).∵直线 y=﹣ x+b 经过点 B(4,0),∴﹣×4+b=0,解得 b= ,∴直线 BD解析式为: y=﹣ x+ .当x=﹣5 时, y=3 ,∴ D(﹣ 5,3 ).∵点D(﹣ 5,3 )在抛物线 y= (x+2)(x﹣4)上,∴(﹣ 5+2)(﹣ 5﹣4) =3,∴k=.(2)由抛物线解析式,令 x=0,得 y=k,∴C (0,﹣ k ),OC=k .因为点 P 在第一象限内的抛物线上,所以∠ABP 为钝角.因此若两个三角形相似,只可能是△ABC ∽△ APB 或△ ABC ∽△ ABP .①若△ ABC ∽△ APB ,则有∠B AC= ∠PAB,如答图 2﹣1 所示.设 P(x,y),过点 P 作 PN⊥x 轴于点 N,则ON=x ,PN=y.tan ∠BAC=tan ∠PAB,即:,∴ y= x+k.∴D(x, x+k ),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)= x+k ,整理得: x2﹣6x﹣16=0,解得: x=8 或 x=2(与点 A 重合,舍去),∴P(8, 5k).∵△ ABC ∽△ APB ,∴,即,解得: k=.②若△ ABC ∽△ ABP ,则有∠A BC= ∠PAB,如答图 2﹣2 所示.与①同理,可求得: k=.综上所述, k=或k=.(3)由( 1)知: D(﹣ 5,3),如答图 2﹣2,过点 D 作 DN⊥x 轴于点 N,则DN=3 ,ON=5,BN=4+5=9 ,∴tan ∠DBA= = =,∴∠ DBA=30°.过点 D 作 DK ∥x 轴,则∠K DF= ∠DBA=30 °.过点 F 作 FG ⊥DK 于点 G,则 FG= DF.由题意,动点 M 运动的路径为折线AF+DF ,运动时间: t=AF+ DF,∴t=AF+FG ,即运动时间等于折线 AF+FG的长度.由垂线段最短可知,折线 AF+FG 的长度的最小值为 DK 与 x 轴之间的垂线段.过点 A 作 AH ⊥DK 于点 H,则 t 最小 =AH ,AH 与直线BD 的交点,即为所求之 F 点.∵A 点横坐标为﹣2,直线BD 解析式为:y=﹣x+,∴y=﹣×(﹣ 2)+ =2 ,∴F(﹣ 2,2 ).综上所述,当点 F 坐标为(﹣ 2,2 )时,点M 在整个运动过程中用时最少.点本题是二次函数压轴题,难度很大.第( 2)评:问中需要分类讨论,避免漏解;在计算过程中,解析式中含有未知数k,增加了计算的难度,注意解题过程中的技巧;第( 3)问中,运用了转化思想使得试题难度大大降低,需要认真体会.。
成都市2014年中考数学试题(版,含答案)
参考答案A卷一、选择题1、D2、B3、C4、B5、A6、C7、A8、B9、D 10、C二、填空题1112、64 13、< 14、40三、解答题15、(1)原式=3-2+1-4=-2(2)由①得x >2,由②x <3所以,原不等式的解集为2<x <316、解:tan37°=AB BC,所以,AB =0.75×20=15(m ) 17、解:原式=()()b a b a b a b a b b +-⨯=+-, 当13+=a ,13-=b 时,原式=18、解:(1)选到女生的概率为:P =123205= (2)任取2张,所有可能为:23,24,25,34,35,45,共6种, 其中和为偶数的,有:24,35,故甲参加的概率为:2163=,而乙参加的概率为:23, 所以,游戏不公平。
19、解:(1)2582b k b =-+⎧⎪⎨=-⎪⎩-,解得:b =4,k =12, 所以,一次函数为:y =12x +5 (2)向下平移m 个单位长度后,直线为:152y x m =+-, 8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩,化为:21(5)802x m x +-+=, Δ=(5-m )2-16=0,解得:m =1或920、(1)菱形因为FG 为BE 的垂直平分线,所以,FE =FB ,GB =GE ,∠FEB =∠FBO ,又FE ∥BG ,所以,∠FEB =∠GBO ,所以,∠FBO =∠GBO ,BO =BO ,∠BOF =∠BOG , 所以,ΔBOF ≌ΔBOG ,所以,BF =BG ,所以,BG =GE =EF =FB ,BFEG 为菱形。
(2)AB =a ,AD =2a ,DE =23a ,AE =43a ,BE 53a =,OE =56a , 设菱形BFEG 的边长为x ,因为AB 2+AF 2=BF 2,所以,2224()3a a x x +-=,解得:x =2524a ,所以,OF 155248a a ==, 所以,FG =54a (3)n =6B 卷一、填空题21、52022、K >12且K ≠1 23、7、3、10 112425、149(,)37二、解答题26、(1)12m 或16m ;(2)19527、(1)由APCB 内接于圆O ,得∠FPC =∠B , 又∠B =∠ACE =90°-∠BCE ,∠ACE =∠APD ,所以,∠APD =∠FPC ,∠APD +∠DPC =∠FPC +∠DPC ,即 ∠APC =∠FPD ,又∠PAC =∠PDC ,所以,△PAC ∽△PDF(2)2(3)x =2y28(1)k=9(2)或5(3)F(。
2024年四川省成都市中考真题数学试卷含答案解析
2024年四川省成都市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A .B .C .D .【答案】A【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A .()2233x x =B .336x y xy+=C .()222x y x y +=+D .()()2224x x x +-=-【答案】D【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A .()1,4--B .()1,4-C .()1,4D .()1,4-【答案】B【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A .53B .55C .58D .646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A .AB AD =B .AC BD ⊥C .AC BD =D .ACB ACD∠=∠【答案】C【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A .142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B .142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C .142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A .ABE CBE ∠=∠B .5BC =C .DE DF =D .53BE EF =【答案】D【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .二、填空题9.若m ,n 为实数,且()240m +=,则()2m n +的值为.10.分式方程2x x=-的解是.【答案】x=3【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为.12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为.【答案】5【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,三、解答题14.(1)计算:()0162sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【详解】(1)解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;(2)解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s+=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;(3)解:如图,设点(),0D x ,则(),0E x -,0x <,四、填空题19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为.【答案】100︒/100度【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.21.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.【答案】9144【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =.∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =∴112CF DF CD ===,EAC ∠23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是.五、解答题24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【详解】(1)解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克(2)设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.∴(12ACD D S CE x x =⋅- ∵ACD 的面积与ABD △∴222461n n n -++=-720⎛⎫则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an aB n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a=+--++∵()22232463ax ax a ax an a x an a--=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.(2)连接CE,延长BM交∠=∠,∴ABD ACE∵中线BM(3)如图,当AD与故1·2CDES CD DE==如图,当AD 在CA 的延长线上时,此时故(11·22CDE S CD DE ==⨯ 如图,当DE EC ⊥时,此时过点A 作AQ EC ⊥于点Q ∵5AE AC ==,1EQ QC EC ==,如图,当DC EC ⊥时,此时过点A 作AQ EC ⊥于点∴12EQ QC EC x ===,1EN EQ ==【点睛】本题考查了旋转的性质,用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。
(历年中考)四川省成都市中考数学试题 含答案
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
【解答】解:∵∠OCA=50°,OA=OC,
∴∠A=50°,
∴∠BOC=100°,
∵AB=4,
∴BO=2,
∴ 的长为: = π.
故选:B.
二、填空题:本大题共4个小题,每小题4分,共16分
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【解答】解:从上面看易得横着的“ ”字,
故选C.
3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为( )
【解答】解:181万=181 0000=1.81×106,
故选:B.
4.计算(﹣x3y)2的结果是( )
A.﹣x5yB.x6yC.﹣x3y2D.x6y2
【考点】幂的乘方与积的乘方.
【分析】首先利用积的乘方运算法则化简求出答案.
【解答】解:(﹣x3y)2=x6y2.
故选:D.
5.如图,l1∥l2,∠1=56°,则∠2的度数为( )
A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)
【考点】关于x轴、y轴对称的点的坐标.
【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.
2024年四川省成都市中考数学试卷正式版含答案解析
绝密★启用前2024年四川省成都市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
1.−5的绝对值是( )A. 5B. −5C. 15D. −152.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B.C. D.3.下列计算正确的是( )A. (3x)2=3x2B. 3x+3y=6xyC. (x+y)2=x2+y2D. (x+2)(x−2)=x2−44.在平面直角坐标系xOy中,点P(1,−4)关于原点对称的点的坐标是( )A. (−1,−4)B. (−1,4)C. (1,4)D. (1,−4)5.为深人贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61, 55,则这组数据的中位数是( ) A. 53B. 55C. 58D. 646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB =ADB. AC ⊥BDC. AC =BDD. ∠ACB =∠ACD7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买进,人出半,盈四;人出少半,不足三.问人数,班价各几何?其大意是:今有人合伙买班石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,班价各是多少?设人数为x ,班价为y ,则可列方程组为( ) A. {y =12x +4,y =13x +3B. {y =12x −4,y =13x +3C. {y =12x −4,y =13x −3D. {y =12x +4,y =13x −38.如图,在▱ABCD 中,按以下步骤作图: ①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N; ②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠ABC 内交于点O; ③作射线BO ,交AD 于点E ,交CD 延长线于点F.若CD =3, DE =2,下列结论错误的是( )A. ∠ABE =∠CBEB. BC =5C. DE =DFD. BEEF =539.若m ,n 为实数,且(m +4)2+√ n −5=0,则(m +n)2的值为 .10.分式方程1x−2=3x 的解是 .11.如图,在扇形AOB 中,OA =6,∠AOB =120∘,则AB⏜的长为 .12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为 .13.如图,在平面直角坐标系xOy 中,已知A(3,0),B(0,2),过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO +PA 的最小值为 .14.(1)计算:√ 16+2sin60∘−(π−2024)0+|√ 3−2|. (2)解不等式组:{2x +3⩾−1,①x−12−1<x3.②15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有 人,表中x 的值为 ; (2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB垂直于地面,AB长8尺.在夏至时,杆子AB在太阳光线AC照射下产生的日影为BC;在冬至时,杆子AB在太阳光线AD照射下产生的日影为BD.已知∠ACB=73.4∘,∠ADB=26.6∘,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.6∘≈0.45,cos26.6∘≈0.89,tan26.6∘≈0.50,sin73.4∘≈0.96,cos73.4∘≈0.29,tan73.4∘≈3.35).17.如图,在Rt△ABC中,∠C=90∘,D为斜边AB上一点,以BD为直径作⊙O,交AC于E,F两点,连接BE,BF,DF.(1)求证:BC⋅DF=BF⋅CE;(2)若∠A=∠CBF,tan∠BFC=√ 5,AF=4√ 5,求CF的长和⊙O的直径.18.如图,在平面直角坐标系xOy中,直线y=−x+m与直线y=2x相交于点A(2,a),与x轴交于点B(b,0),(k<0)图象上.点C在反比例函数y=kx(1)求a,b,m的值;(2)若O,A,B,C为顶点的四边形为平行四边形,求点C的坐标和k的值;(3)过A,C两点的直线与x轴负半轴交于点D,点E与点D关于y轴对称.若有且只有一点C,使得△ABD与△ABE 相似,求k的值.19.如图,△ABC≌△CDE,若∠D=35∘,∠ACB=45∘,则∠DCE的度数为.20.若m,n是一元二次方程x2−5x+2=0的两个实数根,则m+(n−2)2的值为.21.在综合实践活动中,数学兴趣小组对1∽n这n个自然数中,任取两数之和大于n的取法种数k进行了探究.发现:当n=2时,只有{1,2}一种取法,即k=1;当n=3时,有{1,3}和{2,3}两种取法,即k=2;当n=4时,可得k=4;⋯⋯若n=6,则k的为;若n=24,则k的值为.22.如图,在Rt△ABC中,∠C=90∘,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.23.在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C(x3,y3)是二次函数y=−x2+4x−1图象上三点.若0< x1<1,x2>4,则y1y2(填“>”或“<”);若对于m<x1<m+1,m+1<x2<m+2,m+2< x3<m+3,存在y1<y3<y2,则m的取值范围是.24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共1500kg进行销售,其中A种水果收购单价10元/kg,B种水果收购单价15元/kg.(1)求A,B两种水果各购进多少千克;(2)已知A种水果运输和仓储过程中质量损失4%,若合作社计划A种水果至少要获得20%的利润,不计其他费用,求A种水果的最低销售单价.25.如图,在平面直角坐标系xOy中,抛物线L:y=ax2−2ax−3a(a>0)与x轴交于A,B两点(点A在点B的左侧),其顶点为C,D是抛物线第四象限上一点.(1)求线段AB的长;(2)当a=1时,若△ACD的面积与△ABD的面积相等,求tan∠ABD的值;(3)延长CD交x轴于点E,当AD=DE时,将△ADB沿DE方向平移得到△A′EB′.将抛物线L平移得到抛物线L′,使得点A′,B′都落在抛物线L′上.试判断抛物线L′与L是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC和ADE中,AB=AD=3,BC=DE=4,∠ABC=∠ADE=90∘.【初步感知】的值.(1)如图1,连接BD,CE,在纸片ADE绕点A旋转过程中,试探究BDCE【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在△ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.答案和解析1.【答案】A【解析】【分析】本题考查了绝对值.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【解答】解:−5<0,所以它的绝对值是它的相反数,即−5的绝对值是5.故选A.2.【答案】A【解析】【分析】本题考查了几何体的三视图.根据主视图是从正面看到的图形判定则可.【解答】解:从正面看,底层是三个小正方形,上层的左边是一个小正方形.故选:A.3.【答案】D【解析】【分析】本题考查了乘法公式,积的乘方,合并同类项等知识.【解答】解:A选项,(3x)2=9x²≠3x2;故A错误;B选项,3x和3y不是同类项,不能合并;故B错误;C选项,(x+y)2=x2+2xy+y2≠x2+y2;故C错误;D选项,(x+2)(x−2)=x2−4;故D正确.故选D.4.【答案】B【解析】【分析】本题主要考查了关于原点对称的点的坐标.平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),记忆方法是结合平面直角坐标系的图形记忆. 【解答】解:点(1,−4)关于原点对称的点的坐标是(−1,4), 故选:B .5.【答案】B【解析】【分析】本题考查中位数,解答本题的关键是明确中位数的定义,找出这组数据的中位数. 【解答】解:先对这组数据进行从小到大进行排序:50,51,55,55,61,64 所以中位数是:(55+55)÷2=55, 故选B .6.【答案】C【解析】【分析】 本题考查了矩形的性质.结合矩形的性质,对选项对比分析即可. 【解答】解:因为四边形ABCD 是矩形,所以对边平行且相等,AB =CD ,AD =BC ,AD//BC ,AB//CD 对角线相等,AC =BD .矩形的邻边不一定相等,故选项A 错误,矩形的对角线互相平分且相等,但不一定垂直,故B 错,C 正确; 矩形的对角线不一定平分每组对角,故选项D 错误. 故选C .7.【答案】B【解析】【分析】本题考查了二元一次方程组的应用,找准等量关系,列出方程是解题的关键. 设出未知数,根据每人出12钱,会多出4钱;每人出13钱,又差了3钱列出方程组. 【解答】解:根据题意有:{y =12x −4,y =13x +3故选B .8.【答案】D【解析】【分析】本题考查了平行四边形的性质以及等腰三角形的判定和性质,解题的关键是根据作图过程判断角平分线进而判定等腰三角形. 【解答】解:由作图过程可知∠CBE =∠ABE ,故选项A 正确; ∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,AD//BC ,AB//CD ∴∠CBE =∠AEB ,∠ABE =∠F ∴∠ABE =∠AEB ,∠CBE =∠F ∴AB =AE ,AE =CD =3,BC =CF∴BC =AD =AE +DE =3+2=5,CF =BC =5, ∴DF =CF −CD =2 ∴DE =DF故选项B ,C 均正确; 又∵AB//CD ∴△ABE ∽△DFE∴BEEF =ABDF =32,故选项D 错误; 故选D .9.【答案】1【解析】【分析】 本题考查了非负数的性质.利用非负数的性质列出方程组,求出方程组的解得到m 与n 的值,代入原式计算即可求出值. 【解答】解:∵m ,n 为实数,(m +4)2+√ n −5=0, ∴{m +4=0n −5=0,解得:{m =−4n =5(m +n)2=(−4+5)2=1故答案为1.10.【答案】x =3【解析】【分析】本题考查了分式方程的解法,属于基础题,熟记分式方程的解法是解题的关键.方程两边都乘以x(x −2),化成整式方程,然后再代入检验即可求解.【解答】解:方程两边都乘以x(x −2)得:x =3(x −2),解得:x =3,检验:∵当x =3时,x(x −2)≠0,∴x =3是原方程的解,故答案为:x =3.11.【答案】4π【解析】【分析】本题考查了弧长公式.将半径OA =6和圆心角∠AOB =120∘,代入弧长公式l =nπr 180求解即可.【解答】解:∵OA =6,∠AOB =120∘,∴AB ⏜=120×π×6180=4π 故答案为4π.12.【答案】35【解析】【分析】本题考查概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种可能,那么事件A 的概率P(A)=m n .根据盒中有x 枚黑棋和y 枚白棋,得出袋中共有(x +y)个棋,再根据概率公式列出关系式即可.【解答】解:∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是38,∴x x+y =38,解得xy =35故答案为35.13.【答案】5【解析】【分析】本题考查轴对称一最短问题以及勾股定理和轴对称图形的性质.先取点A关于直线l的对称点A′,连A′O交直线l于点C,连AC,得到AC=A′C,A′A⊥l,再由轴对称图形的性质和两点之间线段最短,得到当O,P,A′三点共线时,PO+PA的最小值为A′O,再利用勾股定理求A′O即可.【解答】解:取点A关于直线l的对称点A′,连A′O交直线l于点C,连AC,则可知AC=A′C,A′A⊥l,∴PO+PA=PO+PA′≥A′O,即当O,P,A′三点共线时,PO+PA的最小值为A′O,∵直线l垂直于y轴,∴A′A⊥x轴,∵A(3,0),B(0,2),∴AO=3,AA′=4,∴在Rt △A′AO 中,A′O =√ OA 2+AA ′2=√ 32+42=5,故答案为:514.【答案】(1)√ 16+2sin60∘−(π−2024)0+|√ 3−2|=4+2×√ 32−1+2−√ 3=4+√ 3−1+2−√ 3=5(2)由不等式①得,x ⩾−2,由不等式②得,x <9所以不等式组的解集为−2⩽x <9.【解析】本题考查了实数的运算及解不等式组.(1)根据算术平方根,特殊角三角函数值,零次幂,绝对值进行化简即可;(2)根据解不等式的步骤,分别解出各个不等式,再求出不等式组的解集即可.15.【答案】解:(1)调查总人数为48÷30%=160(人),选择“世界公园打卡线”的人数为160×90360=40(人);(2)“国风古韵观赏线”对应的圆心角度数为360∘×44160=99∘;(3)选择“园艺小清新线”的人数为160−44−40−48=28(人),∴该单位选择“园艺小清新线”的员工人数为2200×28160=385(人).【解析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90∘可求解x 值;(2)由360∘乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可. 16.【答案】解:∵∠ACB =73.4∘,杆子AB 垂直于地面,AB 长8尺.∴tan∠ACB =AB BC ,即BC ≈83.35=2.39,∵∠ADB =26.6∘,∴tan∠ADB =AB BD ,即BD ≈80.50=16,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39+162≈9.2答:春分和秋分时日影长度9.2尺.【解析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC和BD,结合题意利用平均数即可求得春分和秋分时日影长度.17.【答案】(1)∵BD是⊙O的直径∴∠BFD=90∘=∠C又∵∠CEB=∠FDB∴△EBC∽△DBF∴ECDF=CBFB∴BC⋅DF=BF⋅CE(2)由(1)可知,△EBC∽△DBF ∴∠EBC=∠DBF∴∠EBC−∠FBE=∠DBF−∠FBE ∴∠CBF=∠EBA∵∠A=∠CBF∴∠A=∠EBA∴AE=BE∵∠A=∠CBF∴90∘−∠A=90∘−∠CBF∴∠ABC=∠CFB∵tan∠BFC=√ 5∴tan∠BFC=tan∠ABC=√ 5∴CBCF=ACBC=√ 5不妨设CF=x,那么CB=√ 5x ∵AF=4√ 5∴√ 5√ 5x=√ 5∴x=√ 5∴CF=√ 5,CB=√ 5x=√ 5×√ 5=5不妨设EF=y,那么AE=AF−EF=4√ 5−y=BE在Rt△CEB中,CE=EF+CF=y+√ 5,CB=5,BE=4√ 5−y ∴(y+√ 5)2+52=(4√ 5−y)2∴y=√ 5∴EF=√ 5在Rt△CFB中,CF=√ 5,BC=5∴BF=√ CF2+BC2=√ (√ 5)2+52=√ 30∵∠CEB=∠FDB∴tan∠CEB=tan∠FDB∴CBCE=BFDF∴√ 5+√ 5=√ 30DF∴DF=2√ 6∴BD=√ DF2+BF2=√ (2√ 6)2+(√ 30)2=3√ 6∴CF=√ 5,⊙O的直径是3√ 6【解析】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.(1)先证明△EBC∽△DBF,然后利用对应边成比例,即可证明;(2)利用△EBC∽△DBF,知道∠EBC=∠DBF,从而推出∠CBF=∠EBA,结合∠A=∠CBF,知道∠A=∠EBA,推出AE=BE,接下来证明∠BFC=∠ABC,那么有tam∠BFC=tan∠ABC=√ 5,即CBCF =ACBC=√ 5,不妨设CF=x,代入求得CF的长度,不妨设EF=y,在Rt△CEB和Rt△CFB中利用勾股定理求得EF和BF的长度,最后利用tan∠CEB=tan∠FDB,求得DF的长度,然后在利用勾股定理求得BD的长度.18.【答案】解:(1)由题意,将A(2,a)代入y=2x中,得a=2×2=4,则A(2,4),将A(2,4)代入y=−x+m中,得4=−2+m,则m=6,∴y=−x+6,将B(b,0)代入y=−x+6中,得0=−b +6,则b =6;(2)设C(t,s),由(1)知A(2,4),B(6,0),若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则{0+2=t +60+4=0+s ,解得{t =−4s =4, ∴C(−4,4),则k =−4×4=−16;当OB 为对角线时,则{0+6=2+t 0+0=4+s 解得{t =4s =−4, ∴C(4,−4),则k =−4×4=−16;当OC 为对角线时,则{t +0=2+6s +0=4+0解得{t =8s =4, ∴C(8,4),则k =32不符合题意故这种情况不存在,综上所述,满足条件的点C 的坐标为(−4,4)或(4,−4),k =−16;(3)如图,设点D(x,0),则E(−x,0),x <0,若△ABD ∽△EBA ,则AB BE =BD AB ,即AB 2=BE ⋅BD , ∴(2−6)2+(4−0)2=(6+x)(6−x),即x 2=4,解得x =±2,∵x <0,∴x =−2,则D(−2,0),设直线AC 的表达式为y =px +q ,则{2p +q =4−2p +q =0,解得{p =1q =2, ∴直线AC 的表达式为y =x +2,联立方程组{y =x +2y =k x,得x 2+2x −k =0, ∵有且只有一点C ,∴方程x2+2x−k=0有且只有一个实数根,∴Δ=22+4k=0,解得k=−1;若△ABD∽△ABE,ABAB =BDBE=ADAE.则DE重合,不符合题意.故满足条件的k值为−1.【解析】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.(1)利用待定系数法求解即可;(2)设C(t,s),根据平行四边形的性质,分当OA为对角线时,当OB为对角线时,当OC为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点D(x,0),则E(−x,0),x<0,利用相似三角形的性质得AB2=BE⋅BD,进而解方程得x=−2,则D(−2,0),利用待定系数法求得直线AC的表达式为y=x+2,联立方程组得x2+2x−k=0,根据题意,方程x2+2x−k=0有且只有一个实数根,利用根的判别式求解即可.19.【答案】100∘【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质.先利用全等三角形的性质,求出∠CED=∠ACB=45∘,再利用三角形内角和求出∠DCE的度数即可.【解答】解:由△ABC≌△CDE,∠D=35∘,∴∠CED=∠ACB=45∘,∵∠D=35∘,∴∠DCE=180∘−∠D−∠CED=180∘−35∘−45∘=100∘,故答案为100∘.20.【答案】7【解析】【分析】本题考查一元二次方程根与系数的关系,一元二次方程的解,正确对所求代数式进行变形是解题的关键.根据根与系数的关系以及一元二次方程的解得到m+n=5,mn=2,n²−5n+2=0,然后将所求代数式变形为n²−5n+2+n+m+2,最后将已知条件整体代入计算即可.【解答】解:根据题意得:m +n =5,mn =2,n²−5n +2=0,所以m +(n −2)2=m +n²−4n +4=n²−5n +2+n +m +2=0+5+2=7故答案为:7.21.【答案】9144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【解答】解:当n =2时,只有{1,2}一种取法,则k =1;当n =3时,有{1,3}和{2,3}两种取法,则k =2;当n =4时,有{1,4},{2,4},{3,4},{2,3}四种取法,则k =3+1=4=424; 故当n =5时,有{1,5},{2,5},3,5},4,5,{2,4},{3,4}六种取法,则k =4+2=6;当n =6时,有{1,6},{2,6},{3,6},4,6},{5,6},{2,5},{3,5},{4,5},{3,4}九种取法,则k =5+3+1=9=624; 依次类推,当n 为偶数时,k =(n −1)+(n −3)+⋯+5+3+1=n 24,故当n =24时,k =23+21+19+⋯+5+3+1=2424=144,故答案为:9,144. 22.【答案】√ 17+12【解析】【分析】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,熟练掌握三角形相关知识是解答的关键.连接CE,过E作EF⊥CD于F,设BD=x,EF=m,根据直角三角形斜边上的中线性质和等腰三角形的性质证得CF=DF=12CD=1,∠EAC=∠ECA,∠ECD=∠EDC=∠BEC,进而利用三角形的外角性质和三角形的中位线性质得到∠CED=2∠CAE,AC=2EF=2m,证明△CBE∽△CED,利用相似三角形的性质和勾股定理得到m2=3+2x;根据角平分线的定义和相似三角形的判定与性质证明△CAB∽△FBE得到2m2=(x+1)(x+2),进而得到关于x的一元二次方程,进而求解即可.【解答】解:连接CE,过E作EF⊥CD于F,设BD=x,EF=m,∵∠ACB=90∘,E为AD中点,∴CE=AE=DE,又CD=2,∴CF=DF=12CD=1,∠EAC=∠ECA,∠ECD=∠EDC,∴∠CED=2∠CAE,AC=2EF=2m,∵BE=BC,∴∠BEC=∠ECB,则∠BEC=∠EDC,又∠BCE=∠ECD,∴△CBE∽△CED,∴CE CD =CBCE,∠CBE=∠CED=2∠CAE,∴CE2=CD⋅CB=2(2+x)=4+2x,则m2=EF2=CE2−CF2=3+2x ∵AD是△ABC的一条角平分线,∴∠CAB=2∠CAE=∠CBE,又∠ACB=∠BFE=90∘,∴△CAB∽△FBE,∴ACBF=BCEF∴2m x+1=x+2m ,则2m 2=(x +1)(x +2),∴2(3+2x)=(x +1)(x +2),即x 2−x −4=0,解得x =√ 17+12(负值已舍去),故答案为:√ 17+12. 23.【答案】>−12<m <1【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键. 先求得二次函数的对称轴,再根据二次函数的性质求解即可.【解答】解:由y =−x 2+4x −1=−(x −2)2+3得抛物线的对称轴为直线x =2,开口向下,∵0<x 1<1,x 2>4,∴|x 1−2|<|x 2−2|,∴y 1>y 2;∵m <m +1<m +2,m <x 1<m +1,m +1<x 2<m +2,m +2<x 3<m +3,∴x 1<x 2<x 3,∵存在y 1<y 3<y 2,∴x 1<2,x 3>2,且A(x 1,y 1)离对称轴最远,B(x 2,y 2)离对称轴最近,∴2−x 1>x 3−2>|x 2−2|,即x 1+x 3<4,且x 2+x 3>4,∵2m +2<x 1+x 3<2m +4,2m +3<x 2+x 3<2m +5,∴2m +2<4且2m +5>4,解得:−12<m <1,故答案为:>;−12<m <1. 24.【答案】解:(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:{x +y =150010x +15y =17500,解得:{x =1000y =500, ∴A 种水果购进1000千克,B 种水果购进500千克(2)设A 种水果的销售单价为a 元/kg ,根据题意有:1000(1−4%)a ≥(1+20%)×1000×10,解得a ≥12.5,故A 种水果的最低销售单价为12.5元/kg .【解析】本题主要考查一元二次方程的应用和一元一次不等式的应用.(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.25.【答案】解:(1)∵抛物线L:y =ax 2−2ax −3a(a >0)与x 轴交于A ,B 两点,∴ax 2−2ax −3a =0,整理得x 2−2x −3=0,解得x 1=−1,x 2=3,∴A(−1,0),B(3,0),则AB =3−(−1)=4;(2)当a =1时,抛物线L:y =x 2−2x −3=(x −1)2−4,则C(1,−4),设D(n,n 2−2n −3)(0<n <3),则S △ABD =12AB ⋅|y D |=−12×4×(n 2−2n −3)=−2n 2+4n +6,设直线AD 解析式为y =kx +q将A(−1,0)代入,k =q故AD 解析式可记为:y =k(x +1),∵点D 在直线AD 上,∴n 2−2n −3=k(n +1),解得k =n −3,则直线AD 解析式为y =(n −3)(x +1),设直线AD 与抛物线对称轴交于点E ,则E(1,2n −6),∴S △ACD =12CE ⋅(x D −x A )=12×[2n −6−(−4)]×(n +1)=n 2−1,∵△ACD 的面积与△ABD 的面积相等,∴−2n 2+4n +6=n 2−1,解得n 1=−1,n 2=73, ∴点D(73,−209), 过点D 作DH ⊥AB 于点H ,则BH =3−73=23,DH =209, 则tan∠ABD =DH BH =103; (3)设D(n,an 2−2an −3a),直线AD 解析式为y =k 1(x +1),则an 2−2an −3a =k 1(n +1),解得k 1=an −3a ,那么直线AD 解析式为y =a(n −3)(x +1),过点D 作DM ⊥AB ,如图,则AM =n +1,DM =−an 2+2an +3a ,∵AD =DE ,∴EM =n +1,∵将△ADB 沿DE 方向平移得到△A′EB′,A(−1,0),B(3,0),∴A′(n,−an 2+2an +3a),B′(n +4,−an 2+2an +3a),由题意知抛物线L 平移得到抛物线L′,设抛物线L′解析式为y =ax 2+bx +c(a >0),∵点A′,B′都落在抛物线L′上∴{−an 2+2an +3a =an 2+bn +c−an 2+2an +3a =a(n +4)2+b(n +4)+c解得{b =−2an −4a c =6an +3a, 则抛物线L′解析式为y =ax 2+(−2an −4a)x +6an +3a∵ax 2−2ax −3a =ax 2+(−2an −4a)x +6an +3a整理得(n +1)x =3n +3,解得x =3,∴抛物线L′与L 交于定点(3,0).【解析】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.(1)根据题意可得ax2−2ax−3a=0,整理得x2−2x−3=0,即可知A(−1,0),B(3,0),则有AB=4;(2)由题意得抛物线L:y=x2−2x−3=(x−1)2−4,则C(1,−4),设D(n,n2−2n−3),(0<n<3),可求得S△ABD=−2n2+4n+6,结合题意可得直线AD解析式为y=(n−3)(x+1),设直线AD与抛物线对称轴交于点E,则E(1,2n−6),即可求得S△ACD=n2−1,进一步解得点D(73,−209),过D作DH⊥AB于点H,则BH=23,DH=209,即可求得tan∠ABD=DHBH;(3)设D(n,an2−2an−3a),可求得直线AD解析式为y=a(n−3)(x+1),过点D作DM⊥AB,可得AM= n+1,DM=−an2+2an+3a,结合题意得EM=n+1,A′(n,−an2+2an+3a),B′(n+4,−an2+2an+ 3a),设抛物线L′解析式为y=ax2+bx+c(a>0),由于过点A′,B′可求得抛物线L′解析式为y=ax2+ (−2am−4a)x+6an+3a,根据ax2−2ax−3a=ax2+(−2an−4a)x+6an+3a解得x=3,即可判断抛物线L′与L交于定点(3,0).26.【答案】解:(1)∵AB=AD=3,BC=DE=4,∠ABC=∠ADE=90∘.∴△ADE≌△ABC(SAS),∴AC=AE=√ AB2+BC2=√ AD2+DE2=5,∠DAE=∠BAC,∴∠DAE−∠DAC=∠BAC−∠DAC即∠CAE=∠BAD,∵ABAD=ACAE=1∴△CAE∽△BAD,∴BDCE =ABAC=35.(2)连接CE,延长BM交CE于点Q,根据(1)得△CAE∽△BAD,∴∠ABD=∠ACE,∵BM是中线∴BM=AM=CM=12AC=52,∴∠MBC=∠MCB,∵∠ABD+∠MBC=90∘,∴∠ACE+∠MCB=90∘即∠BCE=90∘,∴AB//CQ,∴∠BAM=∠QCM,∠ABM=∠CQM,∵{∠BAM=∠QCM ∠ABM=∠CQM, AM=CM∴△BAM≌△QCM(AAS),∴BM=QM,∴四边形ABCQ是平行四边形,∵∠ABC=90∘∴四边形ABCQ为矩形,∴AB=CQ=3,BC=AQ=4,∠AQC=90∘,∴PQ//CN,EQ=√ AE2−AQ2=3,∴EP PN =EQQC=33=1,∴PQ=12CN,设PQ=x,CN=2x,则AP=4−x,∵{∠EPQ=∠APD∠EQP=∠ADP=90∘EQ=AD=3∴△EQP≌△ADP(AAS),∴AP=EP=4−x,∵EP2=PQ2+EQ2,∴(4−x)2=x2+32,解得x=78;∴AP=4−x=258,CN=2x=74,∵PQ//CN,AC=5,∴△APF∽△CNF,∴AP CN =AFCF,∴AP+CNCN =AF+CFCF,∴258+7474=5CF,解得CF=7039.(3)如图,当AD与AC重合时,此时DE⊥AC,此时△CDE是直角三角形,故S△CDE=12CD⋅DE=12×(AC−AD)×DE=12×2×4=4;如图,当AD在CA的延长线上时,此时DE⊥AC,此时△CDE是直角三角形,故S△CDE=12CD⋅DE=12×(AC+AD)×DE=12×8×4=16;如图,当DE⊥EC时,此时△CDE是直角三角形,过点A作AQ⊥EC于点Q,∵AE=AC=5,∴EQ=QC=12EC,∵AQ⊥EC,DE⊥EC,DE⊥AD,∴四边形ADEQ是矩形,∴AD=EQ=QC=12EC=3,∴EC=6,故S△CDE=12EC⋅DE=12×6×4=12;如图,当DC⊥EC时,此时△CDE是直角三角形,过点A作AQ⊥EC于点Q,交DE于点N,∴EQ=QC=12EC=x,NQ//CD,∴EN DN =EQQC=1,∴DN=EN=12DE=2,QN=12DC,∵∠AND=∠ENQ,∠ADN=∠EQN=90∘,∴∠DAN=∠QEN,∴tan∠DAN=tan∠QEN,∴QNEQ =DNAD=23,∴QN =23x ,∴DC =43x ,CE =2x ,∵ED 2=DC 2+EC 2,∴42=(2x)2+(4x 3)2,∴x 2=3613,解得x =6√ 1313; 故S △CDE =12EC ⋅DC =12×2x ×43x =43x 2=43×3613=4813. 【解析】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.(1)根据AB =AD =3,BC =DE =4,∠ABC =∠ADE =90∘.证明△ADE ≌△ABC ,AC =AE =√ AB 2+BC 2=√ AD 2+DE 2=5,继而得到∠DAE =∠BAC ,∠DAE −∠DAC =∠BAC −∠DAC 即∠CAE =∠BAD ,再证明△CAE ∽△BAD ,得到BD CE =AB AC =35. (2)连接CE ,延长BM 交CE 于点Q ,根据(1)得△CAEC ∽△BAD ,得到∠ABD =∠ACE ,根据中线BM 得到BM =AM =CM =12AC =52,继而得到∠MBC =∠MCB ,结合∠ABD +∠MBC =90∘,得到∠ACE +∠MCB =90∘即∠BCE =90∘,得到AB//CQ ,再证明△ABM ≌△CQM ,得证矩形ABCQ ,再利用勾股定理,三角形相似的判定和性质计算即可.(3)运用分类思想解答即可.。
四川省成都市中考数学试题及答案
精品基础教育教学资料,仅供参考,需要可下载使用!成都市高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( ) (A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) 18.1×105 (B) 1.81×106 (C) 1.81×107 (D) 181×104 4. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( ) (A) 34° (B) 56°(C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2)7. 分式方程213xx =-的解为( ) (A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下 (B) 抛物线经过点(2,3) (C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A) 103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=___°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2 <0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分)(1)计算:()()302162sin302016π-+-+-(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。
2024年四川省成都市中考数学试卷(附答案)
2024年四川省成都市中考数学试卷(附答案)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(3x)2=3x2B.3x+3y=6xyC.(x+y)2=x2+y2D.(x+2)(x﹣2)=x2﹣44.(4分)在平面直角坐标系xOy中,点P(1,﹣4)关于原点对称的点的坐标是()A.(﹣1,﹣4)B.(﹣1,4)C.(1,4)D.(1,﹣4)5.(4分)为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.646.(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠ACB=∠ACD7.(4分)中国古代数学著作《九章算术》中记载了这样一个题目:今有共买进,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买进石,每人出钱,会多出4钱;每人出钱,又差了3钱.问人数,琎价各是多少?设人数为x,琎价为y,则可列方程组为()A.B.C.D.8.(4分)在▱ABCD中,按以下步骤作图:①以点B为圆心,以适当长为半径作弧,分别交BA,BC于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠ABC内交于点O;③作射线BO,交AD于点E,交CD延长线于点F.若CD=3,DE=2,下列结论错误的是()A.∠ABE=∠CBE B.BC=5C.DE=DF D.=二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)若m,n为实数,且(m+4)2+=0,则(m+n)2的值为.10.(4分)分式方程的解是.11.(4分)如图,在扇形AOB中,OA=6,∠AOB=120°,则的长为.12.(4分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则的值为.13.(4分)如图,在平面直角坐标系xOy中,已知A(3,0),B(0,2),过点B作y轴的垂线l,P为直线l上一动点,连接PO,PA,则PO+PA的最小值为.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin60°﹣(π﹣2024)0+|﹣2|;(2)解不等式组:.15.(8分)2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有人,表中x的值为;(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16.(8分)中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB垂直于地面,AB长8尺.在夏至时,杆子AB在太阳光线AC照射下产生的日影为BC;在冬至时,杆子AB在太阳光线AD照射下产生的日影为BD.已知∠ACB=73.4°,∠ADB=26.6°,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin73.4°≈0.96,cos73.4°≈0.29,tan73.4°≈3.35)17.(10分)如图,在Rt△ABC中,∠C=90°,D为斜边AB上一点,以BD为直径作⊙O,交AC于E,F两点,连接BE,BF,DF.(1)求证:BC•DF=BF•CE;(2)若∠A=∠CBF,tan∠BFC=,AF=4,求CF的长和⊙O的直径.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+m与直线y=2x相交于点A(2,a),与x轴交于点B(b,0),点C在反比例函数y=(k<0)图象上.(1)求a,b,m的值;(2)若O,A,B,C为顶点的四边形为平行四边形,求点C的坐标和k的值;(3)过A,C两点的直线与x轴负半轴交于点D,点E与点D关于y轴对称.若有且只有一点C,使得△ABD与△ABE相似,求k的值.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,△ABC≌△CDE,若∠D=35°,∠ACB=45°,则∠DCE的度数为.20.(4分)若m,n是一元二次方程x2﹣5x+2=0的两个实数根,则m+(n﹣2)2的值为.21.(4分)在综合实践活动中,数学兴趣小组对1~n这n个自然数中,任取两数之和大于n的取法种数k进行了探究.发现:当n=2时,只有{1,2}一种取法,即k=1;当n=3时,有{1,3}和{2,3}两种取法,即k=2;当n=4时,可得k=4;…….若n=6,则k的值为;若n=24,则k的值为.22.(4分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.23.(4分)在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C(x3,y3)是二次函数y=﹣x2+4x﹣1图象上三点.若0<x1<1,x2>4,则y1y2(填“>”或“<”);若对于m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,存在y1<y3<y2,则m的取值范围是.二、解答题(本大题共3个小题,共30分)24.(8分)推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共1500kg进行销售,其中A种水果收购单价10元/kg,B种水果收购单价15元/kg.(1)求A,B两种水果各购进多少千克;(2)已知A种水果运输和仓储过程中质量损失4%,若合作社计划A种水果至少要获得20%的利润,不计其他费用,求A种水果的最低销售单价.25.(10分)如图,在平面直角坐标系xOy中,抛物线L:y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左侧),其顶点为C,D是抛物线第四象限上一点.(1)求线段AB的长;(2)当a=1时,若△ACD的面积与△ABD的面积相等,求tan∠ABD的值;(3)延长CD交x轴于点E,当AD=DE时,将△ADB沿DE方向平移得到△A′EB′.将抛物线L 平移得到抛物线L′,使得点A′,B′都落在抛物线L′上.试判断抛物线L′与L是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.(12分)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC和ADE中,AB=AD=3,BC =DE=4,∠ABC=∠ADE=90°.【初步感知】(1)如图1,连接BD,CE,在纸片ADE绕点A旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在△ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.A.2.A.3.D.4.B.5.B.6.C.7.B.8.D.二、填空题(本大题共5个小题,每小题4分,共20分)9.【解答】解:∵m,n为实数,且(m+4)2+=0,∴m+4=0,n﹣5=0,解得m=﹣4,n=5,∴(m+n)2=(﹣4+5)2=12=1.故答案为:1.10.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.11.【解答】解:的长为=4π.故答案为:4π.12.【解答】解:∵盒中有x枚黑棋和y枚白棋,共有(x+y)个棋,∵从盒中随机取出一枚棋子,如果它是黑棋的概率是,∴可得关系式=,∴8x=3x+3y,即5x=3y,∴=.故答案为:.13.【解答】解:取点O'(0,4),连接O'P,O'A,如图,∵B(0,2),过点B作y轴的垂线l,∴点O'(0,4)与点O(0,0)关于直线l对称,∴PO'=PO,∴PO+PA=PO'+PA≥O'A,即PO+PA的最小值为O'A的长,在Rt△O'AO中,∵OA=3,OO'=4,∴由勾股定理,得O'A===5,∴PO+PA的最小值为5.故答案为:5.三、解答题(本大题共5个小题,共48分)14.【解答】解:(1)原式=4+2×﹣1+2﹣=4+﹣1+2﹣=5;(2)解不等式①,得x≥﹣2,解不等式②,得x<9,所以不等式组的解集是﹣2≤x<9.15.【解答】解:(1)本次调查的员工共有48÷30%=160(人),表中x的值为160×=40;故答案为:160,40;(2)360°×=99°,答:在扇形统计图中,“国风古韵观赏线”对应的圆心角度数为99°;(3)2200×=385(人),答:估计选择“园艺小清新线”的员工人数为385人.16.【解答】解:在Rt△ABC中,AB=8尺,∠ACB=73.4°,∴tan73.4°=,∵tan73.4°≈3.35,∴BC≈≈2.4(尺);在Rt△ABD中,AB=8尺,∠ADB=26.6°,∴tan26.6°=,∵tan26.6°≈0.50,∴BD≈16.0(尺);∴CD=BD﹣BC=16.0﹣2.4=13.6(尺),观察可知,春分和秋分时日影顶端为CD的中点,∵2.4+=9.2(尺),∴春分和秋分时日影长度为9.2尺.17.【解答】(1)证明:∵BD是⊙O的直径,∴∠BFD=90°,∵∠C=90°,∴∠BFD=∠C,∵=,∴∠BEC=∠BDF,∴△BCE∽△BDF,∴=,∴BC•DF=BF•CE;(2)解:连接DE,过E作EH⊥BD于H,如图:∵∠C=90°,tan∠BFC=,∴=,∴BC=CF,∵∠A=∠CBF,∴90°﹣∠A=90°﹣∠CBF,即∠ABC=∠BFC,∴tan∠ABC=tan∠BFC=,∴=,∴AC=BC=×(CF)=5CF,∵AC﹣CF=AF=4,∴5CF﹣CF=4,∴CF=,∴BC=CF=5,AC=5CF=5,∴AB===5,由(1)知△BCE∽△BDF,∴∠CBE=∠DBF,∴∠CBE﹣∠FBE=∠DBF﹣∠FBE,即∠CBF=∠EBA,∵∠A=∠CBF,∴∠A=∠EBA,∴AE=BE,∴BH=AH=AB=,∵∠BEH=90°﹣∠EBA=90°﹣∠CBF=∠BFC,∴tan∠BEH=tan∠BFC=,∴=,即=,∴EH=,∵BD是⊙O的直径,∴∠BED=90°,∴∠EDH=90°﹣∠DEH=∠BEH,∴tan∠EDH=tan∠BEH=,∴=,即=,∴DH=,∴BD=DH+BH=+=3,∴⊙O的直径为3.答:CF的长为,⊙O的直径为3.18.【解答】解:(1)把A(2,a)代入y=2x得:a=2×2=4,∴A(2,4),把A(2,4)代入y=﹣x+m得:4=﹣2+m,∴m=6;∴直线y=﹣x+m为y=﹣x+6,把B(b,0)代入y=﹣x+6得:0=﹣b+6,∴b=6,∴a的值为4,m的值为6,b的值为6;(2)设C(t,),由(1)知A(2,4),B(6,0),而O(0,0),①当AC,BO为对角线时,AC,BO的中点重合,∴,解得,经检验,t=4,k=﹣16符合题意,此时点C的坐标为(4,﹣4);②当CB,AO为对角线时,CB,AO的中点重合,∴,解得,经检验,t=﹣4,k=﹣16符合题意,此时点C的坐标为(﹣4,4);③当CO,AB为对角线时,CO,AB的中点重合,∴,解得,∵k=32>0,∴这种情况不符合题意;综上所述,C的坐标为(4,﹣4)或(﹣4,4),k的值为﹣16;(3)如图:设直线AC解析式为y=px+q,把A(2,4)代入得:4=2p+q,∴q=4﹣2p,∴直线AC解析式为y=px+4﹣2p,在y=px+4﹣2p中,令y=0得x=,∴D(,0),∵E与点D关于y轴对称,∴E(,0),∵B(6,0),∴BE=6﹣=,BD=6﹣=,∵△ABD与△ABE相似,∴E只能在B左侧,∴∠ABE=∠DBA,故△ABD与△ABE相似,只需=即可,即BE•BD=AB2,∵A(2,4),B(6,0),∴AB2=32,∴×=32,解得p=1,经检验,p=1满足题意,∴直线AC的解析式为y=x+2,∵有且只有一点C,使得△ABD与△ABE相似,∴直线AC与反比例函数y=(k<0)图象只有一个交点,∴x+2=只有一个解,即x2+2x﹣k=0有两个相等实数根,∴Δ=0,即22+4k=0,解得k=﹣1,∴k的值为﹣1.一、填空题(本大题共5个小题,每小题4分,共20分)19.【解答】解:∵△ABC≌△CDE,∴∠ACB=∠CED=45°,∵∠D=35°,∴∠DCE=180°﹣∠CED﹣∠D=180°﹣45°﹣35°=100°,故答案为:100°.20.【解答】解:∵m,n是一元二次方程x2﹣5x+2=0的两个实数根,∴m2﹣5m+2=0,m+n=5,∴m2﹣5m=﹣2,n=5﹣m∴m+(n﹣2)2=m+(3﹣m)2=m2﹣5m+9=﹣2+9=7.故答案为:7.21.【解答】解:当n=6时,从1,2,3,4,5,6中,取两个数的和大于6,这两个数分别是{6,1},{6,2},{6,3},{6,4},{6,5},{5,2},{5,3},{5,4},{4,3},∴k=5+3+1=9;当n=24时,从1,2,3......22,23,24中,取两个数的和大于24,这两个数分别是:{24,1},{24,2}......{24,23},{23,2}{23,3}......{23,22},{22,3},{22,4}......{22,21},......{14,11},{14,12},{14,13},{13,12},∴k=23+21+19+......+3+1=144;故答案为:9,144.22.【解答】解:连接CE,过E作EF⊥BC于F,如图:设BD=x,则BC=BD+CD=x+2,∵∠ACB=90°,E为AD中点,∴CE=AE=DE=AD,∴∠CAE=∠ACE,∠ECD=∠EDC,∴∠CED=2∠CAD,∵BE=BC,∴∠ECD=∠BEC,∴∠BEC=∠EDC,∵∠ECD=∠BCE,∴△ECD∽△BCE,∴=,∠CED=∠CBE,∴CE2=CD•BC=2(x+2)=2x+4,∵AD平分∠CAB,∴∠CAB=2∠CAD,∴∠CAB=∠CED,∴∠CAB=∠CBE,∵∠ACB=90°=∠BFE,∴△ABC∽△BEF,∴=,∵CE=DE,EF⊥BC,∴CF=DF=CD=1,∵E为AD中点,∴AC=2EF,∴=,∴2EF2=(x+1)(x+2),∵EF2=CE2﹣CF2,∴=(2x+4)﹣12,解得x=或x=(小于0,舍去),∴BD=.故答案为:.23.【解答】解:∵y=﹣x2+4x﹣1=﹣(x﹣2)2+3,∴二次函数y=﹣x2+4x﹣1图象的对称轴为直线x=2,开口向下,∵0<x1<1,x2>4,∴2﹣x1<x2﹣2,即(x1,y1)比(x2,y2)离对称轴直线的水平距离近,∴y1>y2;∵m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,∴x1<x2<x3,∵对于m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,存在y1<y3<y2,∴x1<2,x3>2,且A(x1,y1)离对称轴最远,B(x2,y2)离对称轴最近,∴2﹣x1>x3﹣2>|x2﹣2|,∴x1+x3<4,且x2+x3>4,∵2m+2<x1+x3<2m+4,2m+3<x2+x3<2m+5,∴2m+2<4,且2m+5>4,解得﹣<m<1,故答案为:>,﹣<m<1.二、解答题(本大题共3个小题,共30分)24.【解答】解:(1)设A种水果购进x千克,B种水果购进y千克,根据题意得:,解得:.答:A种水果购进1000千克,B种水果购进500千克;(2)设A种水果的销售单价为m元/千克,根据题意得:1000×(1﹣4%)m﹣10×1000≥10×1000×20%,解得:m≥12.5,∴m的最小值为12.5.答:A种水果的最低销售单价为12.5元/千克.25.【解答】解:(1)在y=ax2﹣2ax﹣3a中,令y=0得0=ax2﹣2ax﹣3a,∴a(x﹣3)(x+1)=0,∵a>0,∴x=3或x=﹣1,∴A(﹣1,0),B(3,0),∴AB=4;(2)当a=1时,过D作DM∥y轴交x轴于M,DN∥x轴交AC于N,如图:∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴C(1,﹣4),由A(﹣1,0),C(1,﹣4)得直线AC解析式为y=﹣2x﹣2,设D(n,n2﹣2n﹣3),(0<n<3),在y=﹣2x﹣2中,令y=n2﹣2n﹣3得x=,∴N(,n2﹣2n﹣3),∴DN=n﹣=,=DN•|y A﹣y C|=××4=n2﹣1;∴S△ACD∵△ACD的面积与△ABD的面积相等,=AB•|y D|=×4×(﹣n2+2n+3)=﹣2n2+4n+6,而S△ABD∴n2﹣1=﹣2n2+4n+6,解得n=﹣1(舍去)或n=,∴D(,﹣),∴BM=3﹣=,DM=,∴tan∠ABD===;∴tan∠ABD的值为;(3)抛物线L′与L交于定点,理由如下:过D作DM⊥x轴于M,如图:设D(m,am2﹣2am﹣3a),则AM=m+1,DM=﹣am2+2am+3a,∵AD=DE,∴EM=AM=m+1,将△ADB沿DE方向平移得到△A'EB',相当于将△ADB向右平移(m+1)个单位,再向上平移|am2﹣2am ﹣3a|个单位,又A(﹣1,0),B(3,0),∴A'(m,﹣am2+2am+3a),B'(m+4,﹣am2+2am+3a),设抛物线L'解析式为y=ax2+bx+c(a>0),∵点A′,B'都落在抛物线L′上,∴解得:,∴抛物线L'解析式为y=ax2+(﹣2am﹣4a)x+6am+3a,由ax2﹣2ax﹣3a=ax2+(﹣2am﹣4a)x+6am+3a得:(m+1)x=3m+3,解得:x=3,∴抛物线L′与L交于定点(3,0).26.【解答】解:(1)∵AB=AD=3,BC=DE=4,∠ABC=∠ADE=90°,∴△ADE≌△ABC(SAS),AC=AE==5,∴∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC即∠CAE=∠BAD,∵==1,∴△ADB∽△AEC,∴=,∵AB=3,AC=5,∴=;(2)连接CE,延长BM交CE于点Q,连接AQ交EF于P,延长EF交BC于N,如图:同(1)得△ADB∽△AEC,∴∠ABD=∠ACE,∵BM是中线,∴BM=AM=CM=AC=,∴∠MBC=∠MCB,∵∠ABD+∠MBC=90°,∴∠ACE+∠MCB=90°,即∠BCE=90°,∴AB∥CE,∴∠BAM=∠QCM,∠ABM=∠CQM,又AM=CM,∴△BAM≌△QCM(AAS),∴BM=QM,∴四边形ABCQ是平行四边形,∵∠ABC=90°∴四边形ABCQ矩形,∴AB=CQ=3,BC=AQ=4,∠AQC=90°,PQ∥CN,∴EQ===3,∴EQ=CQ,∴PQ是△CEN的中位线,∴PQ=CN,设PQ=x,则CN=2x,AP=4﹣x,∵∠EPQ=∠APD,∠EQP=90°=∠ADP,EQ=AD=3,∴△EQP≌△ADP(AAS),∴EP=AP=4﹣x,∵EP2=PQ2+EQ2,∴(4﹣x)2=x2+32,解得:x=,∴AP=4﹣x=,CN=2x=,∵PQ∥CN,∴△APF∽△CNF,∴=,∴==,∵AC=5,∴=,∴CF=;方法2:∵BM是Rt△ABC斜边AC上的中线,∴AM=BM=CM=AC=,∴∠ABM=∠BAM,∵AB=AD,∴∠ABM=∠ADB,∴∠BAM=∠ADB,∵∠ABM=∠DBA,∴△ABM∽△DBA,∴=,即=,∴BD=,∴DM=BD﹣BM=﹣=,∵∠EAD=∠CAB=∠ABD=∠ADB,∴DM∥AE,∴△FDM∽△FEA,∴=,即=,解得FM=,∴CF=CM﹣FM=﹣=;(3)C,D,E三点能构成直角三角形,理由如下:①当AD在AC上时,DE⊥AC,此时△CDE是直角三角形,如图,=CD•DE=×(5﹣3)×4=4;∴S△CDE②当AD在CA的延长线上时,DE⊥AC,此时△CDE是直角三角形,如图,=CD•DE=×(5+3)×4=16;∴S△CDE③当DE⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,如图,∵AQ⊥EC,DE⊥EC,DE⊥AD,∴四边形ADEQ是矩形,∴AD=EQ=3,AQ=DE=4,∵AE=AC=5,∴EQ=CQ=CE,∴CE=3,∴CE=6,=AQ•CE=×4×6=12;∴S△CDE④当DC⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,交DE于点N,如图,∵DC⊥EC,AQ⊥EC,∴AQ∥DC,∵AC=AE,AQ⊥EC,∴EQ=CQ,∴NQ是△CDE的中位线,∴ND=NE=DE=2,CD=2NQ,∵∠AND=∠ENQ,∠ADN=∠EQN=90°,∴∠DAN=∠QEN,∴tan∠DAN=tan∠QEN,∴=,∴=,∴NQ=EQ,∵NQ2+EQ2=NE2,∴(EQ)2+EQ2=22,解得EQ=,∴CE=2EQ=,NQ=EQ=,∴CD=2NQ=,=CD•CE=××=.∴S△CDE综上所述,直角三角形CDE的面积为4或16或12或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市2014年中考
数学试卷
一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
B
3.(3分)(2014•成都)正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为
B
6.(3分)(2014•成都)函数y=中,自变量x的取值范围是()
7.(3分)(2014•成都)如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()
8.(3分)(2014•成都)近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,
22
10.(3分)(2014•成都)在圆心角为120°的扇形AOB中,半径OA=6cm,则扇形OAB的
=12
二、填空题(本大题共4个小题,每小题4分,共16分,答案卸载答题卡上)
11.(4分)(2014•成都)计算:|﹣|=.
|=
故答案为:
12.(4分)(2014•成都)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是64m.
AB
13.(4分)(2014•成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)
14.(4分)(2014•成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40度.
三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)
15.(12分)(2014•成都)(1)计算:﹣4sin30°+(2014﹣π)0﹣22.
(2)解不等式组:.
×
16.(6分)(2014•成都)如图,在一次数学课外实践活动,小文在点C处测得树的顶端A 的仰角为37°,BC=20m,求树的高度AB.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
,
17.(8分)(2014•成都)先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.
•==a+b
+1﹣=﹣1=2
18.(8分)(2014•成都)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.
(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;
(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
=;
个,得到偶数的概率为:,
,
19.(10分)(2014•成都)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.
(1)求一次函数的表达式;
(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.
﹣
y=
y=
y=即方程组
﹣
k=
y=
y=x+5
=
x
××
20.(10分)(2014•成都)如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=AD
(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.
(1)试判断四边形BFEG的形状,并说明理由;
(2)当AB=a(a为常数),n=3时,求FG的长;
(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当=时,求n的值.(直接写出结果,不必写出解答过程)
中,
中,
BE=
EF=
FG=
DE=
=时,=,
,
,
一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)
21.(4分)(2014•成都)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是520.
×=520
22.(4分)(2014•成都)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1.
>
且
23.(4分)(2014•成都)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是7,3,10.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S=11.(用数值作答)
,
×﹣
24.(4分)(2014•成都)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长
度的最小值是﹣1.
MD=,
=,
=
故答案为:
25.(4分)(2014•成都)如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为(,).
)
y=x+﹣x+
,,
)
解方程组或
)代入得,解得
y=x+﹣
x+﹣﹣
﹣
,)代入得,解得
x++3
x++3=+3
,
∴×,
点坐标为()
故答案为(,)
二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)
26.(8分)(2014•成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
27.(10分)(2014•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB 的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l
于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,=,求PD的长;
(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
)证明:∵
所对的圆周角﹣
,则由
,
•=2
=2•
AO= AP=
∴
∴
PD=
∴
HBG=.
=
x
28.(12分)(2014•成都)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与x轴交于点C,经过点B的直线y=﹣x+b与抛物
线的另一交点为D.
(1)若点D的横坐标为﹣5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
t=AF+DF
DF
y=
x+
y=3
3y=
∴
,即:x+k
x+k y=
(=
∴,即
k=
k=
)
DN=3 DBA===
t=AF+DF
﹣
×,
2。