量子物理学和哲学:因果性和互补性—玻尔

量子物理学和哲学:因果性和互补性—玻尔
量子物理学和哲学:因果性和互补性—玻尔

量子物理学和哲学:因果性和互补性

玻尔 <<尼耳斯.玻尔哲学文选>>

物理科学对哲学的意义,不但在于稳步地增加我们关于无生命物质的经验,而且首先在于提供一种机会,来检验我们的某些最基本概念的基础和适用范围。尽管实验资料的积累和理论概念的发展带来了术语的改进,但是,物理经验的所有阐述,当然归根结底是以日常语言为基础的;这种语言适用于确定我们的环境并追寻原因和结果之间的关系。事实上,伽利略的纲领,即把物理现象的描述建立在可测定的量的基础上的纲领,曾经给整理越来越大的经验领域提供了坚实的基础。

在牛顿力学中,物质体系的状态决定于各物体的瞬时位置和瞬时速度;在这种力学中已经证明,仅仅依据关于体系在一个已知时刻的状态以及作用于各物体上的力的知识,就能通过了解得很清楚的简单原理,推出体系在任一其他时刻的状态。这样一种描述,显然代表用决定论思想来表示的一种因果关系的理想形式;人们发现,这种描述是有着更宽广的适用范围的。例如,在电磁现象的阐明中,我们必须考虑力以有限速度而传播的过程,但是,决定论的描述仍然可以在这种阐明中保留下来,其方法是:在状态的定义中,不但要包括各带电体的位置和速度,而且要包括电力和磁力在给定时刻在每一空间点上的方向和强度。

相对性思想中包含着一种关于物理现象的描述对观察者所选参照系的依赖程度的认识,这种认识并没有从本质上改变上述这些方面的形势。在这里,我们涉及了一种最有成果的发展,它曾经使我们能够表述一切观察者所公有的物理定律,并将以前显得彼此无关的现象联系起来。虽然在这一表述中用到了四维非欧几里得度规之类的数学抽象,但是,对于每一观察者来说,物理诠释却还是建筑在空间和时间的普通区分上的,并且是保留了描述的决定论品格的。而且,正如爱因斯坦(Albert Einstein)所强调的,不同观察者的时空坐标表示法,永远不会蕴涵着可以称为事件因果顺序的那种序列的反向;因此,相对论不但扩大了决定论描述的范围,而且也加强了它的基础;这种决定论的描述,乃是通常称为经典物理学的那座宏伟大厦的特征。

然而,普朗克(Max Planck)的基本作用量子的发现,却在物理科学中开辟

了一个新纪元;这种发现,揭示了原子过程中所固有的一种远远超过物质有限可分性这一古代见解的整体性特点。事实上,问题变得很清楚:经典物理理论的形象化描述,代表着仅仅对那样一些现象为正确的理想化,在各该现象的分析中,所涉及的一切作用量都足够大,以致可以将作用量子略去不计。尽管这一条件在普通规模的现象中是大大得到满足的,但是,在和原子级粒子有关的实验资料中,我们却遇到一种和决定论的分析不相容的新型规律性。这些量子定律规定着原子体系的奇特稳定性以及各体系之间的反应,因而它们归根结底也应该能够说明我们的观察手段所依据的那些物质属性。

因此,物理学家们当时面临的问题,就是要发展古典物理学的一种合理的推广,这种推广应该可以将作用量子很谐调地包括在内。在用比较原始的方法对实验资料进行了预备性的考察之后,通过引入适当的数学抽象,这一困难任务终于完成了。例如,在量子力学表述形式中,通常用来定义物理体系的状态的那些物理量,被换成了一些符号性的算符,这些算符服从着和普朗克恒量有关的非对易算法。这种程序阻止我们,使我们不能将这些量确定到古典物理学之决定论描述所要求的那种程度,但是,它却允许我们确定出这些量的值谱分布,这也就是和原子过程有关的资料所揭示的那种值谱分布。适应着这种表述形式的非形象化品格,它的物理诠释被表示成了和在给定实验条件下所得观察结果有关的、本质上属于统计类型的一些定律。

尽管量子力学作为整理有关原子现象的大量资料的手段是很有力的,但是,它离开了因果解释的习惯要求,从而也就很自然地引起了一个问题:我们在这儿所涉及的,是不是经验的完备无遗的描述呢?这一问题的解答,显然要求人们比较仔细地检查检查在分析原子现象时无歧义地应用经典物理学概念的条件。决定性的一点在于认识到这一事实:实验装置的描述和观察结果的纪录,必须通过用通常物理术语适当改进过的日常语言来给出。这是一种简单的逻辑要求,因为对于“实验”一词,我们只能理解为这样的程序:关于该程序,我们能够告诉别人我们作了什么和学到了什么。

在实际的实验装置中,这种要求的满足,是通过用一些刚体当作测量仪器来加以保证的;各刚体应该足够重,以致可以对它们的相对位置和相对速度进行完全经典的说明。与此有关,也很重要的是记住下述情况:一切有关原子客体的无

歧义的知识,都是依据遗留在确定着实验条件的那些物体上的永久性记号——例如由电子的撞击而在照相底片上造成的一个斑点——来推得的。纪录原子客体的出现所依据的那些不可逆的放大效应,并不会引起任何特殊的麻烦,它们仅仅提醒我们注意观察概念本身所固有的本质不可逆性而已。在这方面,原子现象的描述具有完全客观的品格,其意义是:这里没有明白地涉及任何个别的观察者,因此,只要适当照顾相对论的要求,就不会在知识的传达中引入任何歧义了。

在所有这些方面,量子物理学中的观察问题,是和经典的物理学处理方式毫无不同的。然而,在量子现象的分析中,本质上新的特色却在于引入了测量仪器和被研究客体之间的根本区别。这是下述必要性的直接后果:在说明测量仪器的功能时,必须应用纯经典的术语,而在原理上排除关于作用量子的任何考虑。在它们那一方面,现象的那些量子特色是由依据观察结果而推得的关于原子客体的知识来显露的。在经典物理学的范围内,客体和仪器之间的相互作用可以略去不计,或者,如果必要的话,可以设法将它补偿掉,但是,在量子物理学中,这种相互作用却形成现象的一个木可分割的部分。因此,在原理上,真正量子现象的无歧义的说明,必须包括对于实验装置之一切有关特色的描述。

重复进行按上述方式定义的同一实验,一般会得出关于客体的不同纪录;这一事实本身就直接暗示着:这一领域中的经验的概括说明,必然是由统计规律表示出来的。几乎用不着强调,我们在这儿所涉及的,并不是统计学的习惯应用的一种类似事例;在习惯应用中,是用统计学来描述一些物理体系,它们的结构过于复杂,以致实际上无法将它们的状态定义得像决定论的说明所要求的那样完备。在量子现象的情况,决定论的说明所蕴涵的各事件的无限可分性,在原理上是被指定实验条件的要求所排除了的。事实上,真正量子现象所特有的整体性特点,是在下述情况中得到逻辑表示的:任何明确规定的再分划的尝试,都会要求对实验装置进行一种和所研究现象的定义不相容的改变。

在经典物理学的范围内,某一给定客体的一切特征属性,在原理上可以用单独一个实验装置来确定,尽管在实际上用不同的装置来研究现象的不同方面往往是方便的。事实上,用这种方法得到的数据仅仅互相补充,并且可能结合成关于所研究客体之性能的首尾一致的图景。然而,在量子物理学中,用不同实验装置得到的关于原子客体的资料,却显示着一种很新颖的互补关系。事实上,必须认

识到,这样的资料就详尽无遗地概括了关于客体的一切可设想的知识,尽管当企图把它们结合成单独一种图景时这些资料显得是相互矛盾的。互补性这一思想绝不会限制我们以实验的形式向大自然提出问题的那些努力,它仅仅在测量仪器和客体之间的相互作用形成现象的一个不可分割的部分时,表征着我们通过这种询问所能接收到的答案而已。

当然,实验装置的经典描述以及关于原子客体的纪录的不可逆性,保证着和因果性的基本要求相容的一种因果顺序,但是,决定论理想的无可挽回的放弃,却在支配着一些基本概念之无歧义应用的互补关系中得到了突出的表示,而经典的物理描述却以这些基本概念的无限制结合为基础。事实上,要确定一个原子级粒子在一个有限时空域中的出现,就要用到这样一种实验装置:它涉及对固定标尺及校准时钟之类物体的动量传递和能量传递,而这种传递是不能包括在各该物体之功能的描述中的,如果这些物体应该起到定义参照系的作用的话。反之,动量守恒定律和能量守恒定律对原子过程的任何严格应用,在原理上就暗示着放弃粒子的详细时空标示(coordination )

这些情况,在海森伯(Werner Heisenberg)的测不准关系式中得到了定量的表示;这种关系式指示着在量子力学中确定一些运动学变量和动力学变量时的反比式的活动范围,而这些变量则是在经典力学中定义体系状态所必须用到的。事实上,在量子力学表述形式中表示着这些变量的那些符号的有限对易性,就对应于无歧义地定义各该变量时所要求的那些实验装置的互斥性。在这方面,我们所涉及的当然不是精确测量方面的限制,而是时空概念和动力学守恒定律的明确应用方面的限制;后一种限制是由测量仪器和原子客体之间的必要区分所带来的。

当处理原子问题时,借助于薛丁愕(Erwin Schrodinger)的态函数来进行具体的计算是最为方便的;由这种态函数,可以通过确定的数学运算推演出支配着在特定条件下所能得到的观测结果的那些统计规律。然而,必须认识到,我们在这里所处理的是一种纯符号性的手续,它的无歧义的物理诠释归根结底要涉及完备的实验装置。忽视这一点有时引起过混乱;特别说来,诸如“观察对现象的扰乱”或“测量对客体物理属性的创造”这一类语句的应用,就几乎是和日常语言及实际定义不相容的。

与此有关,甚至提出了这样的问题:为了更恰当地表示有关的形势,是否必须采用多值逻辑学呢?然而,由以上的论证就可看出,对于日常语言和普通逻辑学的一切违背都可以得到避免,只要将“现象”一词仅仅用来指示可以无歧义地传达的知识就行了,在这种知识的说明中,“测量”一词是在标准化的比较这一简单意义下被应用的。术语选择方面的这种慎重性,在探索新的经验领域时是特别重要的;在那种领域中,知识不能被概括于那种在经典物理学中得到如此不受局限的应用的习见构架之中。

正是在这一背景上,可以看到量子力学在一致性和完备性方面是满足有关合理解释的一切条件的。例如,强调在明确规定的实验条件下得到的永久性纪录乃是量子力学表述形式之合理诠释的基础,这种强调就对应于经典的物理解释中所蕴涵的一个前提:事件之因果顺序的每一步,在原理上都是可以得到验证的。而且,可以将每一种可没想的实验装置全都考虑到,这种可能性就提供着描述上的完备性,和经典物理学中所追求的完备性相仿佛。

这样的论证当然并不意味着,在原子物理学中,我们在实验资料以及便于概括该种资料的数学工具方面就没有更多的东西好学习了。事实上,事情似乎是这样:为了说明在探索很高能量的原子过程时揭露出来的那些新颖特点,人们必须在表述形式中引入更进一步的抽象。然而,决定性的问题在于,在这方面也根本不存在回到那种描述方式的问题,该种描述方式在较高的程度上满足关于因果关系之形象化表示的习见要求。

我们已经看到,量子规律性不能按经典路线来加以分析,这一事实本身就要求,在经验的说明中,在测量仪器和原子客体之间要有一种逻辑的区分,这种区分在原理上就阻碍着概括性的决定论描述。总之,可以强调指出,互补性这一较宽广的构架,绝不会导致任何对于因果性这一理想的随意放弃,它直接表示着我们在说明物质基本属性方面所处的地位,这些属性是经典物理描述的前题,而它们又超出经典物理描述范围之外。

不管适用相对性思想和互补性思想的典型形势是何等地不相同,这两种形势在认识论方面却表现着深远的相似之点。事实上,在两种情况下我们都涉及对于谐调性的寻求,这种谐调性不能概括在说明范围更窄的物理经验领域时所采用的那种形象化概念之中。但是,有决定意义的一点是:不论在哪一种情况下,我们

的观念构架的适当扩展,都并不蕴涵对于观察主体的任何引用,这种引用是会阻止经验的无歧义传达的。在相对论性的论证中,这种客观性是通过适当照顾现象对观察者参照系的依赖性来加以保证的;而在互补描述中,则通过适当注意基本物理概念之明确应用所要求的条件来避免全部的主观性。

从一般性的哲学观点来看,重要的是:在其他知识领域中的分析和综合方面,我们都面临着一些形势,它们是会使我们想起量子物理学中的形势的。例如,生命机体的不可分割性和有意识的个人以及人类文化的特征,都显示出一些整体性特色,这些特色的说明,蕴涵着一种典型的互补描述方式。由于在这些较宽广领域中传达经验时可供应用的丰富辞汇有着很不相同的用法,最重要的是由于在哲学文献中对于因果性概念有着各色各样的诠释,所以上述比较的目的有时是被误解了的。然而,用于描述物理科学中较简单形势的适当术语的逐渐发展却表明,我们所处理的并不是一些或多或少模糊的类比,而是在较宽广领域中的不同方面之间遇到的一些逻辑关系的清楚的实例。

量子力学的概率解释

引言:黑体辐射等实验的研究以及光谱实验的诞生,促使了人们对微观世界的不断认识。经典力学的局限性也日益显著,所面临的一些棘手的问题也越来越多。因此迫使我们不得不抛弃经典力学,而重新建立一个全新的力学体系——量子力学。该力学体系描绘了微观世界中,微观粒子的运动行为及其力学特性。 题目:量子力学的概率解释 内容摘要:在经典力学中,我们知道物体的运动可由牛顿第二定律描述: 22(((),(),()))d r F m r x t y t z t dt ==r u r r ;方程的解即为物体的动力学方程。由此方程的解: ((),(),())r x t y t z t =r ;在给定的初始条件下我们即可以知道任意时刻物体在空间所处的位 置。而在微观领域中,微观粒子的运动并不适用于上述的方程所描述。实验证明他们在某一 时刻出现在空间的哪一点上是不确定的。应该用方程μH E ψ=ψ来描述。比如电子的衍射现象,海森堡的不确定性关系,还有薛定谔为批评哥本哈根学派对量子论的观点而提出的一 个思维实验(薛定谔猫)。本文利用概率与统计的相关概念对量子力学做出一些相关的阐明,并对一些相关的问题(衍射,薛定谔猫等)进行说明。对单电子体系薛定谔方程作出较为详细的讨论,并加以例题进行进一步说明。 关键词:量子力学、概率与统计、电子衍射现象、薛定谔猫、薛定谔方程 概率统计理论的简单介绍: 随机变量X :X 是定义在样本空间Ω上的实值函数;对面门一样本点ω,()X ω是一个实数。X 离散取值时,为离散随机变量。X 连续取值时,为连续型随机变量。本文只介绍连续型随机变量。 概率密度函数:当X 为连续型随机变量时,例如一条直线AB 如图:A 0 1 B 假设现在有一个点落到了AB 上,我们是否能问该点恰好落在0.5x =处的概率是多少?显然这是毫无意义的问题,因为该点恰好落在任意一点上的概率均为零。(基本事件的个数为无穷) 我们只能问该店落在某一区间[,]a b 上的概率是多少?例如[,][0,0.5]a b =;此时概率 10.5/12 p == 。 因此设X 是一随机变量,如果存在非负函数()f x 使得对任意满足a b -∞≤≤+∞的,a b 有 ()()b a p a X b f x dx ≤≤=?;就称()f x 是随机变量X 的概率密度函数。 显然()f x 应该具有如下性质: (1) ()1f x dx +∞ -∞ =? ;(量子力学中波函数的归一化性质) (2)()0.p X a ==于是()()()p a X b p a X b p a X b ≤≤==≤p p p ; (3)对于数集,()()A A p X A f x dx ∈= ?;

原子物理学 原子的量子态:玻尔模型 (2.2.2)--施特恩-盖拉赫实验

第四章习题解答 4-l 一束电子进入1.2 T 的均匀磁场时,试问电子自旋平行于和反平 行于磁场的电子的能量差为多大? 解:已知电子自旋磁矩在磁场方向的投影 (注意做题时,它是磁场方向的投影,不要取真实值) 依磁 矩与磁场的作用能量 B B μμμ±=±=s s z g m B μ3

自旋与磁场平行时 自旋与磁场反平行时 则 θμμcos B B E =?= B B B E B s s μμμ==?= 0cos 1 B B B E B s s μμμ-==?= 180cos 1eV 101.389eV 105788.02.122Δ44B 12--?=???==-=B E E E μ

4-2 试计算原子处于 状态的磁矩及投影的可能值. 解法一:已知:j =3/2, 2s +1=2 s =1/2, l =2 则 依据磁矩计算公式: 依据磁矩投影公式: ∴ 232D μ z μ544156432123=????? ??-+=j g ()B B 15521μμμ-=+-=j j g j j B μμj j z g m -=5 6,52±±=j j g m B B 56,52μμμ±±=z

解法二:因为电子具有自旋,则存在与自旋相联系的磁矩,他在磁场作用下的能量为电子自旋方向与磁场平行和反平行,则有μB U s ?-=μ

(其中,) 所以电子自旋平行于和反平行于磁场的电子的能量为 则电子自旋平行于和反平行于磁场的电子的能量差为B m g B B U B s s sz s μμμ=-=?-=2=s g 21±=s m B U B μ±=eV 104.1T 2.1T eV 10 5788.022Δ414---?=????==B U B μ

量子理论

量子理论 量子理论 量子理论是能够微观世界规律的物理学理论。量子理论是现代物理学的两大基石之一。量子理论提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。 量子理论-简介 量子理论 在经典物理学的理论中能量是连续变化的,可以取任意值。19世纪后期,科学家们发现很多物理现象无法用这一理论解释。1900年12月14日,德国物理学家普朗克(M.Planck,1858-1947)提出:像原子作为一切物质的构成单元一样,“能量子”(量子)是能量的最小单元,原子吸收或发射能量是一份一份地进行的。后来,这一天被认为是量子理论的诞生日。 1905年,德国物理学家爱因斯坦(A.Einstein,1879-1955)把量子概念引进光的传播过程,提出“光量子”(光子)的概念,并提出光同时具有波动和粒子的性质,即光的“波粒二象性”。20世纪20年代,法国物理学家德布罗意(P.L.de Broglie,1892-1987)提出“物质波”概念,即一切物质粒子均具备波粒二象性;德国物理学家海森伯(W.K.Heisenberg,1901-1976)等人建立了量子矩阵力学;奥地利物理学家薛定谔(E.Schr?dinger,1887-1961)建立了量子波动力学。量子理论的发展进入了量子力学阶段。1928年,英国物理学家狄拉克(P. A.M.Dirac,1902-1984)完成了矩阵力学和波动力学之

间的数学转换,对量子力学理论进行了系统的总结,并将两大理论体系——相对论和量子力学成功地结合起来,揭开了量子理论发展的第三阶段——量子场论的序幕。量子理论是现代物理学的两大基石之一,为从微观理解宏观提供了理论基础。 量子理论-发展历程 量子理论 量子理论的初期: 1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量子概念,为量子理论奠下了基石。随后,爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面。 1913年,玻尔在卢瑟福有核模型的基础上运用量子化概念,提出玻尔的原子理论,对氢光谱作出了满意的解释,使量子论取得了初步胜利。随后,玻尔、索末菲和其他物理学家为发展量子理论花了很大力气,却遇到了严重困难。旧量子论陷入困境。 量子理论的建立: 1923年,德布罗意提出了物质波假说,将波粒二象性运用于电子之类的粒子束,把量子论发展到一个新的高度。1925年-1926年薛定谔率先沿着物质波概念成功地确立了电子的波动方程,为量子理论找到了一个基本公式,并由此创建了波动力学。 几乎与薛定谔同时,海森伯写出了以“关于运动学和力学关系的量子论的重新解释”为题的论文,创立了解决量子波动理论的矩阵方法。1925年9月,玻恩与另一位物理学家约丹合作,将海森伯的思想发展成为系统的矩阵力学理论。不久,狄拉克改进了矩阵力学的数学形式,使其成为一个概念完整、逻辑自洽的理论体系。1926年薛定谔发现波动力学和矩阵力学从数学上是完全等价的,由此统称为量子力学,而薛定谔的波动方程由于比海森伯的矩阵更易理解,成为量子力学的基本方程。 1900年,Planck假定能量是由独立的微粒组成的,或者说量子。 1905年,爱因斯坦把能量和辐射用同样的方式进行了系统的量子化工作。 1924年,Louis de Broglie 指出在能量和物质的构成和行为方面没有本质上的差别,在原子或亚原子级别上的行为像微粒或者像波。这里理论被称为波-粒二元性原理。能量和物质的基本微粒的行为,依赖于周围环境,可能像微粒也可能像波。 1927年,Werner Heisenberg 提出精确的、同时测量两个互补的值,像亚原子微粒的位置和能量,是不可能的。与传统物理学原理不同,对他们同时进行测量一定会出错:较精确的值被正确的测量了,易出错的值成了测成了其它值得。这一理论就是著名的不确定性原理,由此也产生了爱因斯坦的著名论断,“上帝不赌博。” 量子理论-力学发展

常州大学量子力学名词解释

1.黑体:一个物体能全部吸收投射在他上面的辐射而无反射,就称为黑体。 2.普朗克假设(黑体辐射提出的假设):黑体以hv为能量单位不连续的发射和吸收频率为v的辐射,而不是像经典理论所要求的那样可以连续地发射和吸收辐射能量。 3.三个实验说明了什么问题:黑体辐射,平衡时辐射能量密度按波长分布的曲线,其形状和能量只与黑体的绝对温度有关,而与空腔的形状与组成的物质无关。光电效应,证明了光的波动性。康普顿效应,证明了光的粒子性。 4.玻尔假设:定态假设,频率假设,量子化条件。 5.态叠加原理:设是体系的可能状态,那么这些态的线性叠加,也是体系的一个可能状态。 6.波函数的三个条件:有限性,连续新,导致可测量的单值性。 7.算符:是指作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 8.对易:有组成完全系的共同本征态。 9.表象:量子力学中态和力学量的具体表示方式。 10.弹性碰撞:一个粒子与另一个粒子碰撞过程中,有动能的交换,粒子内部状态并无改变。非弹性碰撞:碰撞中粒子内部状态有所改变(原子被激发或电离)。 11.泡利不相容原理:全同费米子体系中不可能有两个或两个以上的粒子同时处于完全相同的状态。 12.玻色子:由光子(自旋为1)、处于基态的氦原子(自旋为0)、a 粒子(自旋为0)以及其他自旋为0或为h的整数倍的粒子所组成的全同粒子体系的波函数是对称的,这类粒子服从玻色-爱因斯坦统计,被称为玻色子。费米子:由电子、质子、中子这些自旋为h/2的粒子以及其他自旋为h/2的奇数倍的粒子组成的全同粒子体系的波函数 是反对称的,这类粒子服从费米-狄拉克统计,被称为费米子。 13.塞曼效应:氢原子和类氢原子在外磁场中,其光谱线发生分裂的现象。 14.全同粒子:称质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。全同性原理:全同粒子所组成的体系中,两全同粒子相互代换不引起物质状态的改变。 15.厄米算符的性质:本征值为实数;量子力学中表示力学量的算符都是厄米算符;对于两任意函数和,如果算符满足,则称为厄米算符;如果为厄米算符。 16.薛定谔方程满足的条件:含时;线性的;不含有状态参量。

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

(完整word版)量子力学名词解释全集

1.波粒二象性 : 一切微观粒子均具有波粒二象性(2分),满足νh E =(1分),λh P =(1分),其中E 为能量,ν为 频率,P 为动量,λ为波长(1分)。 2、测不准原理 : 微观粒子的波粒二象性决定了粒子的位置与动量不能同时准确测量(2分),其可表达为:2/P x x η≥??,2 /P y y η≥??,2/P z z η≥??(2分),式中η(或h )是决定何时使用量子力学处理问题的判据(1 分)。 3、定态波函数 : 在量子力学中,一类基本的问题是哈密顿算符不是时间的函数(2分),此时,波函数)t ,r (ρψ可写成r ρ函数和t 函数的乘积,称为定态波函数(3分)。 4、算符 使问题从一种状态变化为另一种状态的手段称为操作符或算符(2分),操作符可为走步、过程、规则、数学算子、运算符号或逻辑符号等(1分),简言之,算符是各种数学运算的集合(2分)。 5、隧道效应 在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒(3分),实际也正是如此(1分),这种现象称为隧道效应(1分)。 6、宇称 宇称是描述粒子在空间反演下变换性质的相乘性量子数,它只有两个值 +1和-1 (1分)。如果描述某一粒子的波函数在空间反演变换(r→-r)下改变符号,该粒子具有奇宇称(P =-1 )(1分),如果波函数在空间反演下保持不变,该粒子具有偶宇称(P =+1) (1分),简言之,波函数的奇偶性即宇称(2分)。 7、Pauli 不相容原理 自旋为半整数的粒子(费米子)所遵从的一条原理,简称泡利原理(1分)。它可表述为全同费米子体系中不可能有两个或两个以上的粒子同时处于相同的单粒子态(1分)。泡利原理又可表述为原子内不可能有两个或两个以上的电子具有完全相同的4个量子数n 、l 、ml 、ms ,该原理指出在原子中不能容纳运动状态完全相同的电子,即一个原子中不可能有电子层、电子亚层、电子云伸展方向和自旋方向完全相同的两个电子(3分)。 8、全同性原理: 全同粒子的不可区分性(1分)使得其组成的体系中,两全同粒子相互代换不引起物理状态的改变(4分)。 9、输运过程: 扩散(1分)、热传导(1分)、导电(1分)、粘滞现象(1分)(系统内有宏观相对运动,动量从高速区域向低速区域的传递过程)统称为输运过程,这是一个不可逆过程(1分) 10、选择定则: 偶极跃迁中角量子数与磁量子数(1分)需满足的选择定则为1±=?l (2分), 1 ,0±=?m (2分) 11、微扰理论 在量子力学中求近似解(1分)的一种方法,核心是先求解薛定谔方程(2分),再引入微小附加项来修正

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

量子力学名词解释

一、名词解释 1.波粒二象性 : 一切微观粒子均具有波粒二象性(2分),满足νh E =(1分),λh P =(1分),其中E 为能量,ν为频率,P 为动量,λ为波长(1分)。 2、测不准原理 : 微观粒子的波粒二象性决定了粒子的位置与动量不能同时准确测量(2分),其可表达为:2/P x x η≥??,2/P y y η≥??,2/P z z η≥??(2分),式中η(或h )是决定何时使用量子力学处理问题的判据(1分)。 3、定态波函数 : 在量子力学中,一类基本的问题是哈密顿算符不是时间的函数(2分),此时,波函数)t ,r (ρψ可写成r ρ 函数和t 函数的乘积,称为定态波函数(3分)。 4、算符 使问题从一种状态变化为另一种状态的手段称为操作符或算符(2分),操作符可为走步、过程、规则、数学算子、运算符号或逻辑符号等(1分),简言之,算符是各种数学运算的集合(2分)。 5、隧道效应 在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒(3分),实际也正是如此(1分),这种现象称为隧道效应(1分)。 6、宇称 宇称是描述粒子在空间反演下变换性质的相乘性量子数,它只有两个值 +1和-1 (1分)。如果描述某一粒子的波函数在空间反演变换(r→-r)下改变符号,该粒子具有奇宇称(P =-1 )(1分),如果波函数在空间反演下保持不变,该粒子具有偶宇称(P =+1) (1分),简言之,波函数的奇偶性即宇称(2分)。 7、Pauli 不相容原理 自旋为半整数的粒子(费米子)所遵从的一条原理,简称泡利原理(1分)。它可表述为全同费米子体系中不可能有两个或两个以上的粒子同时处于相同的单粒子态(1分)。泡利原理又可表述为原子内不可能有两个或两个以上的电子具有完全相同的4个量子数n 、l 、ml 、ms ,该原理指出在原子中不能容纳运动状态完全相同的电子,即一个原子中不可能有电子层、电子亚层、电子云伸展方向和自旋方向完全相同的两个电子(3分)。 8、全同性原理: 全同粒子的不可区分性(1分)使得其组成的体系中,两全同粒子相互代换不引起物理状态的改变(4分)。 9、输运过程: 扩散(1分)、热传导(1分)、导电(1分)、粘滞现象(1分)(系统内有宏观相对运动,动量从高速区域向低速区域的传递过程)统称为输运过程,这是一个不可逆过程(1分) 10、选择定则: 偶极跃迁中角量子数与磁量子数(1分)需满足的选择定则为1±=?l (2分),1 ,0±=?m (2分) 11、微扰理论 在量子力学中求近似解(1分)的一种方法,核心是先求解薛定谔方程(2分),再引入微小附加项来修正(2分)

量子力学诠释问题(一)

量子力学诠释问题(一) 作者:孙昌璞( 中国工程物理研究院研究生院北京北京计算科学研究中心) 1 引言:量子力学的二元结构和其发展的二元状态上世纪二十年代创立的量子力学奠定了 人类认识微观世界的科学基础,成功地解释和预言了各种相关物理效应。然而,关于波函数的意义,自爱因斯坦和玻尔旷世之争以来众说纷纭,并无共识。直到今天,量子力学发展还是处在这样一种二元状态。对此有人以玻尔的“互补性”或严肃或诙谐地调侃之,以“shut up and calculate”的工具主义观点处之以举重若轻。这样一个二元状态主要是由于附加在玻恩几率解释之上的“哥本哈根诠释”之独有的部分:外部经典世界存在是诠释量子力学所必需的,是它产生了不服从薛定谔方程幺正演化的波包塌缩,使得量子力学二元化了。今天,虽然波包塌缩概念广被争议,它导致的后选择“技术”却被广泛地应用于量子信息技术的各个方面,如线性光学量子计算和量子离物传态的某些实验演示。早年,薛定谔曾经写信严厉批评了当时的物理学家们,他在给玻恩的信中写到:“我确实需要给你彻底洗脑……你轻率地常常宣称哥本哈根解释实际上已经被普遍接受,毫无保留地这样宣称,甚至是在一群外行人面前——他们完全在你的掌握之中。这已经是道德底线了……你真的如此确信人类很快就

会屈从于你的愚蠢吗?”1979 年,Weinberg在《爱因斯坦的错误》一文中批评了玻尔对测量过程的不当处理:“量子经典诠释的玻尔版本有很大的瑕疵,其原因并非爱因斯坦所想象的。哥本哈根诠释试图描述观测(量子系统)所发生的状况,却经典地处理观察者与测量的过程。这种处理方法肯定不对:观察者与他们的仪器也得遵守同样的量子力学规则,正如宇宙的每一个量子系统都必须遵守量子力学规则。”“哥本哈根诠释可以解释量子系统的量子行为,但它并没有达成解释的任务,那就是应用波函数演化方程于观察者和他们的仪器。”最近温伯格又进一步强调了他对“标准”量子力学的种种不满。在量子信息领域,不少人不加甄别地使用哥本哈根诠释导致的“后选择”方案,其可靠性令人怀疑!其实,在量子力学幺正演化的框架内,多世界诠释不引入任何附加的假设,成功地描述了测量问题。由于隐变量理论在理论体系上超越了量子力学框架,本质上是比量子力学更基本的理论,所以本文对Bell 不等式不作系统讨论。自上世纪八十年代初,人们先后提出了各种形式迥异的量子力学新诠释,如退相干、自洽历史、粗粒化退相干历史和量子达尔文主义,但实际上都是多世界诠释的拓展和推广。2 哥本哈根诠释及其推论哥本哈根诠释的核心内容是“诠释量子世界,外部的经典世界必不可少”。波函数描述微观系统的状态,遵循态叠加原理,即:如果|?1>

对量子力学互补性诠释的理解(一)

对量子力学互补性诠释的理解(一) 量子力学在本世纪二十年代就形成了其形式系统,然而它的物理意义,亦即对它的解释却一直众说纷纭,时至今日仍是物理学家和哲学家关注的一个中心问题。虽然在其体系形成后不久,玻尔就在玻恩的几率诠释和海森堡的测不准原理基础上,提出了系统一贯的互补性诠释并成为被普遍接受的正统诠释,但互补思想的确切内容却始终没有人能说得清,因为玻尔总是把他深奥的思想,深深藏在晦涩冗长的深思熟虑的句子和事例性的说明之中,而没有任何现成的条条款款,这就使得无论接受它的还是反对它的人都给出了各式各样不同的理解,所以互补含义亟需澄清。关于量子力学诠释研究的主要问题也都与互补性诠释密切相关(如因果性问题、几率性问题、关于测不准关系的理解问题、测量问题、完备性问题等),这些问题的澄清和解决也首先需要正确理解互补性诠释。 1.互补性诠释的逻辑结构 与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量子力学中的某种符号联系起来,然后将这种符号按量子力学演绎的理论结果与观察结果对照来解释量子现象和量子理论。在这些解释中,观察结果不是作为解释的根据,而是作为量子力学演绎的结果。如隐变量理论先假设有因果决定性的亚量子层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量子力学中的可观察量联系起来,量子力学的理论值就代表着隐变量的

统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量子力学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量子力学描述中的波函数ψ的模方就表示客体的这种统计分布,波动方程的解的模方与观察结果的统计分布相一致,表示着客体的统计分布状态。互补性诠释不从一个预先的本体实在模式的假设出发,而是直接对观察结果进行分析和解释,然后从这种对观察结果的分析中推出客体的实在特点和对它进行描述的符号的意义。当然,从一般假设能演绎出一个唯一的结果,而从观察结果只能推出客体实在的某些本质特征,不会得出唯一确定的实在模式和对它描述的符号的完全确定的意义。因为观察结果可以由各种不同的符号系统描述,即使只有一套符号,其数学演算过程也无法与实际的物理过程一一对应,而只能将演算结果与观察结果对应,所以,虽然观察是唯一确定的,但关于它的描述和解释却可以有多种。这说明解释具有一定的灵活性,允许有各种不同的关于实在的假设,但这些假设的实在并不就是真实的实在,而只是在某些方面反映着由观察结果所表征的实在。互补性诠释通过对观察结果的认识特点和描述的语义方面的分析,找到对客体和谐一致的互补描述方式,再从这种描述中找出客体的实在特点,而不是先给出一种实在的模式或图景。 互补性诠释从观察到的原子的稳定性和辐射光谱的不连续性所表征的

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

对量子力学互补性诠释的理解

对量子力学互补性诠释的理解 量子力学在本世纪二十年代就形成了其形式系统,然而它的物理意义,亦即对它的解释却一直众说纷纭,时至今日仍是物理学家和哲学家关注的一个中心问题。虽然在其体系形成后不久,玻尔就在玻恩的几率诠释和海森堡的测不准原理基础上,提出了系统一贯的互补性诠释并成为被普遍接受的正统诠释,但互补思想的确切内容却始终没有人能说得清,因为玻尔总是把他深奥的思想,深深藏在晦涩冗长的深思熟虑的句子和事例性的说明之中,而没有任何现成的条条款款,这就使得无论接受它的还是反对它的人都给出了各式各样不同的理解,所以互补含义亟需澄清。关于量子力学诠释研究的主要问题也都与互补性诠释密切相关(如因果性问题、几率性问题、关于测不准关系的理解问题、测量问题、完备性问题等),这些问题的澄清和解决也首先需要正确理解互补性诠释。 1.互补性诠释的逻辑结构 与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量子力学中的某种符号联系起来,然后将这种符号按量子力学演绎的理论结果与观察结果对照来解释量子现象和量子理论。在这些解释中,观察结果不是作为解释的根据,而是作为量子力学演绎的结果。如隐变量理论先假设有因果决定性的亚量子层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量子力学中的可观察量联系起来,量子力学的理论值就代表着隐变量的统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量子力学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量子力学描述中的波函数ψ的模方就表示客体的这种统计分布,波动方程的解的模方与观察结果的统计分布相一致,表示着客体的统计分布状态。互补性诠释不从一个预先的本体实在模式的假设出发,而是直接对观察结果进行分析和解释,然后从这种对观察结果的分析中推出客体的实在特点和对它进行描述的符号的意义。当然,从一般假设能演绎出一个唯一的结果,而从观察结果只能推出客体实在的某些本质特征,不会得出唯一确定的实在模式和对它描述的符号的完全确定的意义。因为观察结果可以由各种不同的符号系统描述,即使只有一套符号,其数学演算过程也无法与实际的物理过程一一对应,而只能将演算结果与观察结果对应,所以,虽然观察是唯一确定的,但关于它的描述和解释却可以有多种。这说明解释具有一定的灵活性,允许有各种不同的关于实在的假设,但这些假设的实在并不就是真实的实在,而只是在某些方面反映着由观察结果所表征的实在。互补性诠释通过对观察结果的认识特点和描述的语义方面的分析,找到对客体和谐一致的互补描述方式,再从这种描述中找出客体的实在特点,而不是先给出一种实在的模式或图景。 互补性诠释从观察到的原子的稳定性和辐射光谱的不连续性所表征的量子性出发,以量子公设作为其理论的出发点来构建对具有量子性的原子客体的合理描述。量子公设本身意味着过程的非连续性、个体性,也就意味着观察过程中仪器与客体的相互作用过程是不可细分的,观察结果中必然包含了仪器及其对客

戏剧名词解释

名词解释 1三一律——"三一律"是古典主义戏剧的艺术法则,要求戏剧创作在时间、地点和情节三者之间保持一致性,即要求一出戏所叙述的故事发生在一天(一昼夜)之内,地点在一个场景,情节服从于一个主题。莫里哀的喜剧《伪君子》就是按"三一律"写成的,全剧五幕,单线发展,情节发生在一个地点,即奥尔恭的家里;所描写的全部事件都在一昼夜之内发生;主题集中在揭露答尔丢失的伪善面目这一点上。古典主义戏剧艺术的实践表明,"三一律"在政治上符合君主专制政体的要求,在艺术上既体现了时间和空间方面高度简练、紧凑、集中等优点,但又存在人物性格单一化、类型化,戏剧结构上绝对化、程式化等弱点,最终束缚了戏剧艺术的发展,为后人所摒弃。 2 3 4 另有值 最大、 5. ???” 、“危机”, 还是“发现” 6 (1 (2 7 8 变与创造性的变有机结合起来所形成的规范。为所有演员遵循,也为观众所接受、熟悉 9梅兰芳(1894-1961)? 梅兰芳的艺术成就成为了中国戏曲艺术体系的代表和标志。他在唱、念、做、舞、化妆、服饰等方面进行创新,使中国古老戏曲在歌、舞、剧三结合形成了梅派艺术独创风格。把青衣、花旦、闺门旦、贴旦、刀马旦等旦角各行的唱腔和表演艺术全面地,有机地结合起来。创造了花旦这一新的行当,大大丰富了旦角唱腔的优美旋律,形成一个具有独特风采的艺术流派,世称梅派。他与程砚秋、尚小云、荀慧生并称“四大名旦”。 10斯坦尼斯拉夫斯基?? 1898年与聂米罗维奇-丹钦科创立莫斯科艺术剧院,他们联合执导的契诃夫名剧 《海鸥》获得轰动性成功,标志着一个新的现实主义戏剧流派的诞生。1922?~1924?年他写作了自传《我的艺术生活》,首次对自己的戏剧体系作了理论与实践相结合的研讨。1928年10月心脏病

量子力学的隐变量解释

量子力学的隐变量解释1935 年 5 月, 在 Physical Review 上 Einstein 和他的两位同事 B. Podolsky和 N. Rosen 共同发表了一篇名为「Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?」 (量子力学对物理世界的描述是完备的吗?) 三个人异口同声地回答:「不!」.在这篇著名的文章中,作者首先阐述了他们对物理理论的看法:一个严谨的物理理论应该要区别「客观实体」(object reality) 以及这个理论运作的观点.客观实体应独立于理论而存在.在判断一个理论是否成功时,我们会问自己两个问题:(1) 这个理论是否正确? (2) 理论的描述是否完备?只有当这两个问题的答案是肯定时,这样的理论才是令人满意的.理论的正确性当由实验来决定.而关于量子力学的描述是否完备则是这篇文章探讨的主题.在进一步讨论理论的完备性之前,我们必须先定义什么是完备性.作者们提出了一项判别完备性的条件:每一个物理实体的要素必须在理论中有一对应物(every element of the physical reality must have a counterpart in the physical theory)因此我们决定了什么是「物理实体的要素」,那么第二个问题就容易回答了.那么,究竟什么是「物理实体的要素」呢? 作者们以为: 「如果,在不以任何方式干扰系统的情况下,我们能准确地预测(即机率为一)某一物理量的值,那么必定存在一个物理实体的要素与这个物理量对应.」他们认为,只要不把这个准则视为一必要条件,而看成是一充分的条件,那么这个判别准则同样适用于古典物理以及量子力学中对实在的概念.举例来说,在一维系统中,一个以波函数φ(x) = exp(ip0x/2πh) (其中 p0是一常数,i 表纯虚数,h 为Planck常数)描述的粒子.其动量的算符为 h d ,p = ------ ---- ,2(Pi)i dx,因此: pFI(x) = p0FI(x),所以动量有一确定的值 p0. 因此在这种情形下动量是一物理实体.反之,对位 置算符 q 而言,qFI = xFI ≠ aFI ,因此粒子的位置并没有一确定的值.它是不可预测的,仅能以实验测定之.然而任何一实验的测定都将干扰到粒子而改变其状态,被测后的粒子将再也不具动量 p0了.对于此情况,我们说当一粒子的动量确定时,它的位置并非一物理 实体.一般来说在量子力学中,对两个不可对易的可观察量(observable)而言,知道其中一个物理量的准确知识将排除对另外一个的准确知识.任何企图决定后者的实验都将改变系统的状态而破坏了对前者的知识.至此,作者们发现我们面临了如下的两难局面: (1)或者,在量子力学中波函数对物理实在的描述是不完备的. (2)或者,两个对应于不可对易算符的物理量不能同时是实在的(即具有确定的值).因为,若两个不可对易的物理量同时具有确定的值,根据作者们对完备性的条件,在波函数的描述中应包含这些值.但事实上并非如此,

相关文档
最新文档