重点高中数学立体几何建系设点专题

合集下载

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。

本文将介绍高中立体几何的主要知识点和经典题型。

知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。

2. 参数方程和一般式方程:用参数或方程表示几何体的方法。

3. 立体图形的投影:点、直线、平面在投影中的表现形式。

4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。

5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。

6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。

7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。

8. 空间立体角:球、球台、球扇等形体的角度关系。

9. 空间的切线:曲线在空间中的切线方程及其性质。

10. 空间的幂:圆、球及其他形体的幂的概念和性质。

经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。

2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。

3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。

4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。

5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。

以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。

希望本文对高中立体几何知识点和题型的介绍能够帮助到你。

祝你在学习立体几何时取得好成绩!。

高考数学专题 立体几何中的建系设点问题

高考数学专题 立体几何中的建系设点问题

Oyxz FEGH IJ O yx z A'C'B B'C D'A 第63炼 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。

一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。

但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。

新高考 核心考点与题型 立体几何 第5讲 立体几何中的建系设点速算技巧 - 解析

新高考 核心考点与题型 立体几何 第5讲  立体几何中的建系设点速算技巧 - 解析

第1讲 立体几何中的建系设点速算技巧考情分析纵观高考的立体几何解答题,一般两问,第一问多证明平行或垂直,第二问多计算二面角,或求证存在性问题;如果通过传统的逻辑推理证明,第一问一般可以解决,但是第二问容易算错,或找点困难,而且很耗时间。

从解题难度与效率看推荐使用向量法来做立体几何。

向量法解决立体几何问题,化空间位置关系为向量坐标运算关系,可有效降低问题的难度。

向量的坐标运算,本质上说点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标及法向量?这是本节要介绍的内容,虽内容简单,务必精熟。

基础知识(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。

但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥解题时都是给出几何体(柱体、椎体居多,长方体太简单很少),相当于给出了线面(线线)垂直、平行的关系;情况复杂一点的是给斜棱柱、斜棱锥或者组合体,关键就是确定顶点到底面的投影及高度,或底面相互垂直的线段及长度,再通过平移,即可建系。

高中数学立体几何建系设点专题

高中数学立体几何建系设点专题

2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。

一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系. 例1(卷理科第18题)已知两个正四棱锥P -ABCD 与 Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离. 简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,.所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==n n.途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱111ABC A B C -中,AB =BC ,D 、E 分别为11BB AC ,的中点.(1)证明:ED 为异面直线1BB 与1AC 的公垂线;(2)设12AA AC AB ==,求二面角11A AD C --的大小. 解:(1)如图2,建立直角坐标系O xyz -,其中原点O 为AC 的中点,设(00)A a ,,则,1(00)(02)B b B b c ,,,,,, 则11(00)(002)0ED b BB c ED BB ===,,,,,,,即1ED BB ⊥.xyz同理1ED AC⊥.因此ED为异面直线1BB与1AC的公垂线.(2)不妨令1a b c===,则1(110)(110)(002)BC AB AA=--=-=,,,,,,,,,100BC AB BC AA==,.即BC⊥AB,BC⊥1AA,又∵1AB AA A=,∴BC⊥面1A AD.又(101)(101)(010)0EC AE ED EC AE=--=-==,,,,,,,,,,0EC ED=,即EC⊥AE,EC⊥ED,又∵AE∩ED=E,∴EC ⊥面1C AD .∴1cos2EC BCEC BCEC BC<>==,,即得EC和BC的夹角为60.所以,二面角11A AD C--为60.练2:如图,平面PAC⊥平面ABC,ABC∆是以AC为斜边的等腰直角三角形,,,E F O分别为PA,PB,AC的中点,16AC=,10PA PC==.(I)设G是OC的中点,证明://FG平面BOE;(II)证明:在ABO∆存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥O ABCD-中,底面ABCD四边长为1的菱形,4ABCπ∠=,OA ABCD⊥底面,2OA=,M为OA的中点。

(完整版)立体几何解答题的建系设点问题

(完整版)立体几何解答题的建系设点问题

立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面z z 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即xOy 为轴与底面的交点z 2、轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:,x y (1)尽可能的让底面上更多的点位于轴上,x y (2)找角:轴要相互垂直,所以要利用好底面中的垂直条件,x y (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),+这个过程不能省略。

3、与垂直相关的定理与结论:(1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④ 直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一)③ 菱形的对角线相互垂直④ 勾股定理逆定理:若,则222AB AC BC +=AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出(),,0x y 0z =坐标,强烈建议在旁边作出底面的平面图进行参考2、空间中在底面投影为特殊位置的点:如果在底面的投影为,那么(即点与投影点的横纵坐标相同)()'11,,A x y z ()22,,0A x y 1212,x x y y == 由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。

高中立体几何基础知识点全集精选全文完整版

高中立体几何基础知识点全集精选全文完整版

可编辑修改精选全文完整版立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:mlα1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

高考数学在空间建系时,求点的坐标的另一种方法(利用距离公式和中点公式)

高考数学在空间建系时,求点的坐标的另一种方法(利用距离公式和中点公式)

在立体几何空间建系时,求点的坐标,我们运用的往往是构造直角三角形等常见的方法。

但是在有些题目里面,这样子做并不容易。

这个时候可以灵活运用已知的距离和中点,利用空间中两点之间的距离公式以及中点公式,来达到迅速求未知点的坐标的目的。

希望这种方法,不要被忽略了。

下面以一道题为例,进行说明。

例1 (浙江2017,19题)如图,已知四棱锥P-ABCD ,三角形PAD 是以AD 为斜边的等腰直角三角形,且//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点(1)证明:CE//面PAB(2)求直线CE 与面PBC 所成角的正弦值解析:我们主要看第二问(1)如下图,取F 为AD 中点。

又E 为PD 中点因此EF//AP又因为AF 平行且相等于BC ,故AFBC 是平行四边形,从而CF//AB综上,面EFC//面PAB因此CE//面PAB(2)不妨设CD=CB=1,则PC=AD=2因为CD AD ⊥,易知BFCD 是边长为1的正方形因为三角形PAD 为等腰直角三角形,且F 为中点,故AD PF ⊥又AD BF ⊥故AD ⊥面PBF故在三角形PBF 中做出BF 边上的高h ,则必有h 垂直BF 且垂直于AD ,故垂直于面ABCD 因此将该高作为z 轴,BF 和FD 分别为x 轴和y 轴,建系如下易求点的坐标如下C (1,1,0)B (1,0,0)D (0,1,0)点P 的坐标E 的坐标不太容易求,而且也找不到合适的直角三角形来帮助求解。

但是我们能够很容易的求出来FP=1,PC=2。

因此可以利用这两个距离,列方程组求出P 的坐标。

而E 是P 和D 的中点,再利用中点公式,那么E 的坐标则可求。

如下因为AD=2,F 为中点,因此FP 为AD 的一半,即FP=1而PC=2为已知条件设P (x,0,z )则由FP=1和PC=2得到()22221114x z x z ⎧+=⎪⎨-++=⎪⎩解得122x z ⎧=-⎪⎪⎨⎪=⎪⎩从而1(2P - 由P 及D 的坐标,以及E是它们的中点,利用中点坐标公式,得到11(,42E -因此51,42CE ⎛=-- ⎝⎭而3,0,22PB ⎛=- ⎝⎭,(0,1,0)BC =,易求得面PBC的法向量(m =而CE与面PBC所成角的正弦值等于CE与m所成角的余弦的绝对值=8。

讲透重点难点高中数学立体几何

讲透重点难点高中数学立体几何

讲透重点难点高中数学立体几何全文共四篇示例,供读者参考第一篇示例:高中数学立体几何是数学中的一个重要分支,涉及内容广泛,包括空间几何体的基本性质、体积表面积的计算、空间几何体之间的关系等等。

在学习立体几何的过程中,往往会遇到一些重点和难点问题,下面就让我们来一一讲解。

一、常见的难点问题1. 空间几何体的基本概念和性质:在学习立体几何时,首先要掌握各种空间几何体的基本概念和性质,如平行六面体、正方体、棱台、棱锥等。

这些几何体的性质涉及到各种角、棱、面的关系,需要认真学习和掌握。

2. 体积和表面积的计算:计算空间几何体的体积和表面积是立体几何中的重要内容。

对于不规则的几何体,如圆柱、圆锥等,更需要动脑筋来计算其体积和表面积。

这就需要学生掌握各种计算公式和方法,如用积分法计算体积、表面积公式的推导等。

3. 空间几何体之间的关系:在解决实际问题时,需要对不同空间几何体之间的关系有深入的了解。

比如正方体、球体、圆柱体等之间的关系,学生需要灵活运用几何知识,才能解决这些问题。

二、针对难点问题的解决方法1. 多做题:在解决立体几何的问题时,多做练习题是非常重要的。

通过大量的练习,可以加深对立体几何问题的理解,掌握解题的方法和技巧。

2. 学会应用数学工具:在解决立体几何问题时,学会应用数学工具是至关重要的。

比如学会运用向量、坐标系等数学工具来解决几何问题。

3. 多请教老师:如果遇到难以理解的问题,不妨多请教老师。

老师会给予指导和帮助,帮助学生解决疑惑。

三、总结高中数学立体几何是一个需要细心、灵活和耐心的学科,在学习过程中往往会遇到一些难点和重点问题。

通过多做题、学会应用数学工具、多请教老师等方法,可以帮助学生更好地掌握立体几何知识,提高解题的能力和水平。

希望同学们在学习立体几何的过程中能够克服困难,取得更好的成绩。

【文章2000字】以上所述,就是关于讲透重点难点高中数学立体几何的文章,希望对同学们有所帮助。

如果有不足之处,还望谅解。

(完整版)立体几何解答题的建系设点问题

(完整版)立体几何解答题的建系设点问题

立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。

3、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥ (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考 2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。

高中数学讲义微专题63 立体几何中的建系设点问题

高中数学讲义微专题63  立体几何中的建系设点问题

微专题63 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。

一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。

但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。

高中数学立体几何建系设点专题

高中数学立体几何建系设点专题

2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。

一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角;(3)求点P 到平面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线为x ,y ,z 轴建立空间直角坐标系(如图1),易得CA DB QP 、、,.所求异面直线(02)(02)AQ PB =--=-u u u r u u u r 1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r 、所成的角是.1arccos3(3)由(2)知,点.(00)(0)(004)D AD PQ -=--=-u u u r u u u r设n =(x ,y ,z )是平面QAD 的一个法向量,则得取x =1,得00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u rg 、、nn 00z x y +=+=⎪⎩、、.点P 到平面QAD 的距离(11--、、n =PQ d ==u u u r g nn途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱中,AB =BC ,D 、E 分别为111ABC A B C -的中点.11BB AC 、(1)证明:ED 为异面直线与的公垂线;1BB 1AC (2)设,求二面角的大小.1AA AC ==11A AD C --解:(1)如图2,建立直角坐标系,其中原点O 为O xyz -AC 的中点,设则,,(00)A a 、、1(00)(02)B b B b c 、、、、、则,即.11(00)(002)0ED b BB c ED BB ===u u u r u u u r u u u r u u u r g 、、、、、、1ED BB ⊥同理. 因此ED 为异面直线与的公垂线.1ED AC ⊥1BB 1AC (2)不妨令,则,1a b c ===1(110)(110)(002)BC AB AA =--=-=u u u r u u u r u u u r 、、、、、、、、.即BC ⊥AB ,BC ⊥,又∵,∴BC ⊥面100BC AB BC AA ==u u u r u u u r u u u r u u u rg g 、1AA 1AB AA A =I .1A AD 又,,(101)(101)(010)0EC AE ED EC AE =--=-==u u u r u u u r u u u r u u u r u u u rg 、、、、、、、、、0EC ED =u u u r u u u r g 即EC ⊥AE ,EC ⊥ED ,又∵AE ∩ED =E ,∴EC ⊥面.∴1C AD ,即得和的夹角为.所以,二面角1cos 2EC BC EC BC EC BC <>==u u u r u u u ru u u r u u u r g u u u r u u u r 、EC u u u r BC u u u r 60o 为.11A AD C --60o 练2:如图,平面PAC ⊥平面ABC ,ABC∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥中,底面四边长为1的菱形,,O ABCD -ABCD 4ABC π∠=, ,为的中点。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

立体几何中的建系设点讲解学习

立体几何中的建系设点讲解学习
小炼:(1)底面是菱形时要注意对角线相互垂直的性质
(2)对于一条线段上的某点分线段成比例,可以利用向量关系将该点坐标计算出来
由这条规律出发,在写空间中的点时,可看下在底面的投影ቤተ መጻሕፍቲ ባይዱ,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的 点,其投影为 ,而 所以 ,而其到底面的距离为 ,故坐标为
以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法:
3、需要计算的点
(3)找对称关系:寻找底面上的点能否存在轴对称特点
3、常用的空间直角坐标系满足 轴成右手系,所以在标 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。
二、典型例题:
例1:在三棱锥 中, 平面 , , 分别是棱 的中点, ,试建立适当的空间直角坐标系并确定各点坐标
例2:在长方体 中, 分别是棱 上的点, , ,建立适当的直角坐标系并写出点的坐标。
例3:如图,在等腰梯形 中, , , 平面 ,且 ,建立适当的直角坐标系并确定各点坐标。
小炼:建立坐标系的最重要的条件就是线面垂直(即 轴),对于 轴的选取,如果没有已知线段,可以以垂足所在的某一条直线为坐标轴,然后作这条轴的垂线来确定另一条轴。
例4:已知四边形 满足 , 是 中点,将 翻折成 ,使得平面 平面 , 为 中点
思路:在处理翻折问题时,首先要确定在翻折的过程中哪些量与位置关系不变,这些都是作为已知条件使用的。
例5:如图,已知四棱锥 的底面是菱形,对角线 交于点 ,且 平面 ,点 为 的三等分点(靠近 ),建立适当的直角坐标系并求各点坐标

高中数学立体几何知识要点

高中数学立体几何知识要点

高中数学立体几何知识要点一、立体几何中的基本概念11 空间几何体棱柱棱锥棱台圆柱圆锥圆台球12 空间几何体的三视图正视图侧视图俯视图13 空间几何体的直观图斜二测画法二、表面积与体积21 棱柱、棱锥、棱台的表面积与体积棱柱的表面积与体积公式棱锥的表面积与体积公式棱台的表面积与体积公式22 圆柱、圆锥、圆台的表面积与体积圆柱的表面积与体积公式圆锥的表面积与体积公式圆台的表面积与体积公式23 球的表面积与体积球的表面积公式球的体积公式三、点、直线、平面之间的位置关系31 平面的基本性质公理 1公理 2公理 332 空间中直线与直线的位置关系平行直线相交直线异面直线33 空间中直线与平面的位置关系直线在平面内直线与平面平行直线与平面相交34 空间中平面与平面的位置关系平行平面相交平面四、直线与平面平行的判定与性质41 直线与平面平行的判定定理42 直线与平面平行的性质定理五、平面与平面平行的判定与性质51 平面与平面平行的判定定理52 平面与平面平行的性质定理六、直线与平面垂直的判定与性质61 直线与平面垂直的定义62 直线与平面垂直的判定定理63 直线与平面垂直的性质定理七、平面与平面垂直的判定与性质71 平面与平面垂直的定义72 平面与平面垂直的判定定理73 平面与平面垂直的性质定理八、空间向量在立体几何中的应用81 空间向量的概念82 空间向量的运算83 空间向量的坐标表示84 空间向量在证明线线、线面、面面平行与垂直中的应用85 空间向量在求空间角(异面直线所成角、线面角、二面角)中的应用86 空间向量在求空间距离(点到直线的距离、点到平面的距离、异面直线的距离)中的应用九、常见立体几何问题的解题策略91 证明空间几何体中的线线、线面、面面平行与垂直的问题综合法向量法92 求空间几何体的表面积与体积的问题直接利用公式求解割补法求解93 求空间角与空间距离的问题定义法向量法在学习高中数学立体几何知识时,需要熟练掌握以上要点,并通过大量的练习来加深对知识的理解和运用,从而提高解题能力。

高中数学讲义立体几何中的建系设点问题

高中数学讲义立体几何中的建系设点问题

OyxzF E GHIJ O yxzA'C'BB'C D'A微专题63 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。

一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。

但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论:(1)线面垂直:①如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直②两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):①正方形,矩形,直角梯形②等腰三角形底边上的中线与底边垂直(三线合一)③菱形的对角线相互垂直④勾股定理逆定理:若222ABACBC ,则ABAC(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1)坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:,0,0x y 轴:0,,0y z 轴:0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为(2)底面上的点:坐标均为,,0x y ,即竖坐标0z ,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I2、空间中在底面投影为特殊位置的点:如果'11,,A x y z 在底面的投影为22,,0A x y ,那么1212,x x y y (即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点高中数学立体几何建系设点专题————————————————————————————————作者:————————————————————————————————日期:2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。

一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系. 例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与 Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离. 简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-u u u r u u u r ,,,,,,1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u ru u u r u u u r g u u u r u u u r ,.所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-u u u r u u u r,,,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u rg ,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==u u u r g nn. 途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱111ABC A B C -中,AB =BC ,D 、E 分别为11BB AC ,的中点.(1)证明:ED 为异面直线1BB 与1AC 的公垂线;(2)设12AA AC AB ==,求二面角11A AD C --的大小. 解:(1)如图2,建立直角坐标系O xyz -,其中原点O 为AC 的中点,设(00)A a ,,则,1(00)(02)B b B b c ,,,,,,QM ABDCOPxyzM ABD CO Pxyz则11(00)(002)0ED b BB c ED BB ===u u u r u u u r u u u r u u u r g ,,,,,,,即1ED BB ⊥.同理1ED AC ⊥. 因此ED 为异面直线1BB 与1AC 的公垂线.(2)不妨令1a b c ===,则1(110)(110)(002)BC AB AA =--=-=u u u r u u u r u u u r ,,,,,,,,,100BC AB BC AA ==u u u r u u u r u u u r u u u rg g ,.即BC ⊥AB ,BC ⊥1AA ,又∵1AB AA A =I ,∴BC ⊥面1A AD . 又(101)(101)(010)0EC AE ED EC AE =--=-==u u u r u u u r u u u r u u u r u u u rg ,,,,,,,,,,0EC ED =u u u r u u u r g , 即EC ⊥AE ,EC ⊥ED ,又∵AE ∩ED =E ,∴EC ⊥面1C AD .∴1cos 2EC BC EC BC EC BC <>==u u u r u u u ru u u r u u u r g u u u r u u u r ,,即得EC uuu r 和BC uuu r 的夹角为60o.所以,二面角11A AD C --为60o.练2:如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。

方法1:作AP CD ⊥于点P ,如图,分别以AB ,AP ,AO 所在直线为,,x y z 轴建立坐标系.方法2:(利用菱形对角线互相垂直)连结BD ,设交AC 于E ,取OC 中点为F ,以E 为原点,EB 、EC 、EF 所在直线为x, y, z 轴建立空间直角坐标系. 练3:在三棱柱ABC —A 1B 1C 1中,底面是边长为32的正三角形, 点A 1在底面ABC 上的射影O 恰是BC 的中点. (Ⅰ)求证:A 1A ⊥BC ;(Ⅱ)当侧棱AA 1和底面成45°角时, 求二面角A 1—AC —B 的大小余弦值;二、求点的坐标的两条途径途径一、作该点在xOy 面上的投影,转化成求该投影的横、纵坐标和该点到它投影的距离(即竖坐标)。

途径二、过该点和z 轴作xOy 面的垂面,把空间的距离问题转化平面的距离问题。

例4. 如图,正三棱柱ABC-A 1B 1C 1的底边长为a,侧棱长为2a建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角分析:(1)所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算;(2)首先要找出所求的角,或找出平面的法向量与直线所成的角,然后再求之解:(1)建系如图,则A (0,0,0) B (0,a,0)A 1(0,0,2a),C 1(-23a,a 2,2a)(2)解法一:在所建的坐标系中,取A 1B 1的中点M ,于是M (0,a 2,2a),连结AM ,MC 1则有13(,0,0)2MC a =-u u u u r (0,,0)AB a =u u u r ,1(0,02)AA a =u u u r , ∴10MC AB ⋅=u u u u r u u u r ,110MC AA ⋅=u u u u r u u u r ,所以,MC 1⊥平面ABB 1A 1因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角Θ 13(,,2)22aAC a a =-u u u u r ,(0,,2)2aAM a =u u u u r ,∴2194a AC AM ⋅=u u u u r u u u u r ,而|13||3,||2AC a AM a ==u u u u r u u u u r由cos<1,AC AM u u u u r u u u u r >=1132||||AC AMAC AM ⋅=u u u u r u u u u ru u u ur u u u u r ,∴ <1,AC AM u u u u r u u u u r >=30° ABO C D A1 B 1C 1A B O C D A 1 B 1C 1 xzy A BCA 1B 1C 1MzyxA BCA 1B 1C 1Mzyx解法二:Θ 13(,,2)22aAC a a =-u u u u r , 平面ABB 1A 1的一个法向量(1,0,0)n =-r∴AC 1与侧面ABB 1A 1所成的角θ的正弦为:1sin cos ,AC n θ=<>u u u u r r =1112||||AC n AC n ⋅=u u u u r ru u u ur r ∴AC 1与侧面ABB 1A 1所成的角为30°练4:请在下列图形中建立适当的坐标系,并标明图中所有点的坐标。

(1)如图,在四棱锥P ABCD -中,PA ⊥底面,,,60,ABCD AB AD AC CD ABC ⊥⊥∠=︒,PA AB BC ==E 是PC 的中点. (2)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.A PEBCDABC D1A1C1B2009-2010学年高三立几建系设点专向练习1. 在正方体A —C 1中,E 、F 分别为D 1C 1与AB 的中点,则A 1B 1与截面A 1ECF 所成的角的正弦值为( )A .sin36 B .sin 33C .sin 26D .都不对解:(向量法)建立以D 为原点,DA,DC,DD 1分别为x,y,z 轴的坐标系,设棱长为1设平面A 1FCE 的法向量n r =(x ,y ,z ), 则n r ·FC uuu r =0,n r ·CE u u ur =0 ∵FC uuu r =(-1,21,0), CE u u u r =(0,-21,1)∴1102211022x y x y y z z y ⎧⎧-+==⎪⎪⎪⎪∴⎨⎨⎪⎪-+==⎪⎪⎩⎩,令y=2 , ∴n r =(1,2,1)又∵11A B u u u u r =(0,1,0) ∴cos<n r ,11A B u u u u r >=222226121=++ ∴A 1B 1与平面A 1FCE 成的角的正弦为sin 36答案:A2. 如图,正三棱柱ABC —A 1B 1C 1中,AB=AA 1,则AC 1与平面BB 1C 1C 所成的角的正弦值为( )A .22B .515 C .46 D .36 C 方法:建立如图2所示的空间直角坐标系,设AB=2,则()()113,1,0,(3,1,2)C AC =-u u u u v、A 0,0,2,平面BB 1C 1C 的一个法向量为(1,0,0)n =v,所以AC 1与平面BB 1C 1C 所成的角的正弦值为113648AC n AC n⋅==u u u u v v u u u u v v 。

相关文档
最新文档