人教版初二数学竞赛试题及答案
八年级(上)数学竞赛试题及答案(新人教版)
八年级(上)数学竞赛试卷考试时间:100分钟 总分:100分一、精心填一填(本题共10题,每题3分,共30分)1.函数a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 .6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有y x y x y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图 5图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-416.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。
人教版数学八年级上册竞赛训练试卷八附参考答案
八年级数学比赛试卷(8)1.已知x 13 ,那么多项式 x 3 x 2 7x 5 的值是()xA.11 B.9 C. 7 D.52.设 P 是质数,如有整数对( a,b)知足a b (a)2P,则这样的整数对b,()(a b)共有A.3 对B.4 对C.5 对D.6 对3.骰子相对两面上的数字和为 7,现同时掷出7 颗骰子后,向上7 个面上数字的≠10)的概率相等,那么 a 等于和是 10 的概率与向下 7 个面的数的和是 a(a()A.7B.9C.19D.394.如图在四边形ABCD中,∠ DAB=∠BCD=90°,AB=AD,若这个四边形的面积是 10,则 BC+CD等于A.4 5B.2 10CD()C.4 6 D.8 2A B1 5.线段y a (≤ x ≤,),当a的值由- 1增添到2时,该线段运动所经2 x1 3过的平面地区的面积为()A.6 B.8 C.9 D.106.5 个足球队进行循环赛,规定胜一场得 3 分,输一场得 0 分,平手各得 1 分.比赛结果, 4 个球队分别获取 1 分、 4 分、 7 分、 8 分,那么第 5 个球队起码获取分.7.如图△ ABC中,∠A=96°,延伸BC到 D,∠ ABC的均分线与∠ACD的均分线交于点 A1,∠ 1 的均分线与∠ 1 的均分线交于点2,以此类推,∠ 4 的A BC A CD A A BC均分线与∠A4 的均分线交于点5,则∠ 5 的大小是.CD A A8.如图,一个正三角形被切割成9 个小正三角形,把91 到 99 这九个数分别填入此中,并使与原三角形每边相邻的 5 个小三角形内的数之和均相等,这个和的最大值是.C B1A AA2 E B C D D AF 第 7 题第 8 题第 9 题9.如图,正方形ABCD的边长为 a, E 是 AB 的中点, CF均分∠DCE,交 AD 于 F,则 AF的长为.10.某种运动鞋进价是不超出200 元的整元数,按150%订价,节日优惠销售打9折,交易金额满 1000 元返还 60 元.那么,每笔交易起码双,店家每双能赢利45 元.11.一只猴子在一架共有n 级的梯子爬上爬下,每次或许上涨 18 级,或许降落 10 级.假如它能从地面爬到最上边的一级,而后再回到地面. n 的最小值是多少?12.如图,△ABC中,AB=AC,∠ABC=36°,边的地点,作∠ACE=12°,交 BD 于点 E,连接请说明原因.B AC 绕点 A 逆时针旋转 60°,至 AD AE.试判断△ AEC是什么三角形?DAEC13.如图 1,在一个 7×7的正方形 ABCD网格中,实线将它切割成 5 块,再把这 5 块拼成如图 2,中间会出现一个小孔,假如正方形 ABCD的边长为 a,试计算图2 中小孔的面积.A DB C图1图214.某市对电话费作了调整,原市话费为每3 分钟0.2 元(不足3 分钟按3 分钟计算).调整后,前 3 分钟为 0.2 元,此后每分钟加收 0.1 元(不足 1 分钟按 1 分钟计算).设通话时间 x 分钟时,调整前的话费为 y1元,调整后的话费为 y2元.(1)当 x=4,4.3,5.8 时,计算对应的话费值y1、 y2各为多少,并指出x 在什么范围取值时, y1≤ y2;(2)当 x=m( m>5,m 为常数)时,设计一种通话方案,使所需话费最小.八年级数学比赛试卷(8)答案一.选择题(每题 6 分,共 30 分)1. C 2. D 3. D 4.B 5. A二.填空题(每题 6 分,共 30 分)6.5 7.3 度8.478 9.35 a 10.8三.解答题(每題15 分,共 60 分)211.解: n=26 6 分猴子每次爬行后所处的地点(在梯子中的第几级)18,8,26,16,6,24,14,4,22,12,2,20,10,0 15 分12.△ AEC 是等腰三角形1 分连 CD , ∵ AC 绕点 A 逆时针旋转 60°至 AD 的地点,∴ AD=AC ,∠ CAD=60°则△ ACD 是等边三角形, 5 分 ∴∠ ECD=72°, 7 分∵ AB=AC ,∠ BAC=36°,∴∠ BAC=108°, 9 分∴∠ DAB=168°,∴∠ ABD=∠ADB=6° 11 分∴∠ EDC=54°而∠ CED=180°-∠ EDC-∠ DCE=54° 13 分 ∴ CE=CD=AC 15 分即△ AEC 是等腰三角形13.解:1 a2 1 分49如图,连接 AE ,则S AEF1 2a 4a2 7 7S AED S ADF S AEF ∴GE=6a49∴EM=GM-GE=36a49∴小孔面积S=a(27 a491a 24a 2493a 2498 分36 a) a 2 15 分4914.解:( 1)当 x=4 时, y 1=0.4, y 2=0.31 分 当 x=4.3 时, y 1=0.4, y 2=0.42 分 当 x=5.8 时, y 1=0.4, y 2=0.53 分 当 0< x ≤3 或 x >4 时, y 1≤ y 26 分( 2)参照方案:设 n ≥ 2 且 n 是正整数,通话 m 分钟所需话费为 y 元,①当 3n-1 < m ≤ 3n 时,使所需话费最小的通话方案是:分 n 次拨打,此中( n-1 )次每次通话 3 分钟,一次通话( m-3n+3)分钟, 9 分最小话费是 y=0.2n②当 3n < m ≤ 3n+1 时,使所需话费最小的通话方案是:分 n 次拨打,此中( n-1 )次每次通话 3 分钟,一次通话( m-3n+3)分钟, 12 分最小话费是 y=0.2(n-1)+0.3=0.2n+0.1 ③当 3n+1< m ≤ 3n+2 时,使所需话费最小的通话方案是:分 n 次拨打,此中( n-2 )次每次通话 3 分钟,一次通话 4 分钟,一次通话( m-3n+2)分钟,15 分最小话费是y=0.2(n-2)+0.6=0.2n+0.2 (注:其余切合要求的方案相应给分)。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (8)doc初中数学 (1)
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (8)doc 初中数学 (1)第2试一、选择题〔每题6分,共30分〕1.如图,三个图形的周长相等,那么〔 〕〔A 〕b a c 〔B 〕c b a 〔C 〕b c a 〔D 〕a b c2a2aaabbbc cccc c cc2.b a ,那么)()(3b x a x ++--的值等于〔 〕 〔A 〕))(()(b x a x a x +++- 〔B 〕))(()(b x a x a x +++〔C 〕)()()(b x a x a x ++-+- 〔D 〕))(()(b x a x a x ++-+ 3.假设关于x 的方程ax =--12有三个整数解,那么a 的值是〔 〕〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 4.AD 与BE 是ABC ∆的角平分线,E D ,分不在AC BC ,上,假设BC BE AB AD ==,,那么=∠C 〔 〕(A ) 690〔B 〕0)9623( 〔C 〕0)13900( 〔D 〕不能确定5.正数b a ,满足87222233-=+-+ab ab b a ab b a ,=-22b a 〔 〕〔A 〕1 〔B 〕3 〔C 〕5 〔D 〕不能确定二、填空题〔每题6分,共30分〕6.如图,三角形数表第82行的第3个数是______________________.ABCDE……12345678910111213141516(第6题)953351016第7题7.如图,16×9的矩形分成四块后可拼成一个正方形,该正方形的周长为_________. 8.n a a a ,,,21 是正整数,且n a a a 21,,1021=+++n a a a,2422221=+++n a a a 那么=),,,(21n a a a ______________________________.9.今天是星期日,假设改日是第一天,那么第333333122000200120022003+-+-+- 天是星期__________________.10.在2×2的正方形表中填入4个不同的非零平方数,使每一行、每一列的和差不多上平方数。
数学初二竞赛试题及答案
数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
人教版初二数学竞赛试卷
一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. -2.5B. 3/4C. √16D. √22. 下列各式中,正确的是()A. a + b = b + aB. a - b = b - aC. a × b = b × aD. a ÷ b = b ÷ a3. 若x² - 3x + 2 = 0,则x的值为()A. 1B. 2C. 1或2D. 1和34. 已知等腰三角形底边长为6,腰长为8,则该三角形的面积为()A. 24B. 32C. 36D. 405. 若a、b、c、d为等差数列,且a + b + c + d = 24,则d的值为()A. 6C. 8D. 9二、填空题(每题5分,共25分)6. 已知一元二次方程x² - 5x + 6 = 0,则其因式分解为______。
7. 若等边三角形的一边长为a,则其面积为______。
8. 若x + 1/x = 5,则x² + 1的值为______。
9. 若等差数列的第一项为a₁,公差为d,则第n项为______。
10. 若a、b、c、d为等比数列,且a + b + c + d = 16,则d的值为______。
三、解答题(每题15分,共45分)11. (10分)已知一元二次方程x² - 4x + 3 = 0,求:(1)方程的解;(2)方程的判别式。
12. (15分)已知等腰三角形底边长为8,腰长为10,求:(1)该三角形的周长;(2)该三角形的面积。
13. (15分)已知等差数列的第一项为3,公差为2,求:(1)该数列的前10项和;(2)该数列的第n项。
答案:一、选择题1. D2. A4. B5. D二、填空题6. (x - 3)(x - 1)7. (√3/4)a²8. 269. a₁ + (n - 1)d10. 2三、解答题11. (1)x₁ = 1,x₂ = 3;(2)判别式为Δ = 16 - 4×3×1 = 4。
初二数学竞赛试题及答案
初二数学竞赛试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333…D. 3答案:B2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的面积是多少?A. 12B. 15C. 18D. 20答案:B3. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D4. 一个两位数,十位上的数字比个位上的数字大3,这个两位数可能是:A. 23B. 47C. 52D. 69答案:B5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 一个数的相反数是-5,那么这个数是:A. 5C. 0D. 10答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 以上都是答案:D9. 一个等差数列的前三项分别是2,5,8,那么这个数列的第五项是多少?A. 11B. 12C. 13答案:A10. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C二、填空题(每题4分,共20分)11. 一个等腰直角三角形的斜边长为10厘米,那么这个三角形的面积是______平方厘米。
答案:2512. 如果一个数的立方等于8,那么这个数是______。
答案:213. 一个数的平方根是3,那么这个数是______。
答案:914. 一个数的倒数是1/4,那么这个数是______。
答案:415. 一个圆的周长是31.4厘米,那么这个圆的半径是______厘米。
答案:5三、解答题(每题10分,共40分)16. 已知一个等腰三角形的底边长为8,腰长为10,求这个三角形的高。
解:根据勾股定理,设高为h,则有:h^2 + (8/2)^2 = 10^2h^2 + 16 = 100h^2 = 84h = √84 = 2√21答:这个三角形的高是2√21。
八年级(上)数学竞赛试题及答案(新人教版)
一、精心填一填(本题共 10题,每题3分,共30分) 1. 函数y= JT 万中,字母a 的取值范围是 ______________ 2. 如图1, 3. 计算:4、写出一个图象经过点(-1,-1),且不经过第一象限的函数表达式5. 已知点P 1 (a-1 , 5)和P 2 (2, b-1 )关于x 轴对称,则(a+b ) 2005的值为6. 如图2,A ABC 中边AB 的垂直平分线分别交 BC AB 于点D 、E , AE=3cm △ ADC?勺周长为9cm 则厶ABC 的周长是 ________________7. 如图 3, AE = AF , AB = AC, / A = 60°,/ B = 24°,则/ BOC= ___________ . 8.如图4,在厶ABC 中,AB=AC / A=36°, BD CE 分别为/ ABC 与/ ACB 的角平分线,且相交于点 F ,贝U 图中的等腰三角形有 个。
9 •如果用四则运算的加、减、除法定义一种新的运算,对于任意实数11 12 19*31 =10•如图5所示,圆的周长为 4个单位长度,在圆的4等分点处标上0, 1, 2, 应的数与数轴上的数一1所对应的点重合, 将与圆周上的数字 __________ 重合./戴尊7 *J)八年级(上)数学竞赛试卷考试时间:100分钟总分:100分/仁/ 2,由AAS 判定△ ABD^A ACD 则需添加的条件 20072-2006 X 2008=3 •先让圆周上数字0所对 那么数轴上的数一2007 再让数轴按逆时针方向绕在该圆上, 、相信你一定能选对! 下列各式成立的是( a-b+c=a- a-b-c=a- 已知一次函数 (A ) x > 0 11.A C 12. (b+c ) (b+c ) (本题共 ) B 6题,每题 图 53分,共18分).a+b-c=a- (b-c ) .a-b+c-d= (a+c ) - (b-d ) y=kx+b 的图象(如图6),当y v 0时,x 的取值范围是()(B ) x v 0(C ) x v 1( D ) x > 1图3图6图713.在厶ABC 中,/ B =Z 。
人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)
人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10×3=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. (−2)m +2⋅(−2)m−1的值是( )A 、0B 、-2C 、2D 、(−2)m+1 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 4. 若二次三项式26x ax +-可分解成(x −2)(x +b),则a ,b 的值分别为( ) A . 1,3 B . 1-,3 C . 1,3- D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。
8.如图,等边三角形△ABC 的边长是6,面积是9√3,AD 是BC 边上的高, 点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、3√3D 、6√39. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5×3=15分)11. a 4b −6a 3b +9a 2b 分解因式得正确结果为 . 12. 满足(n −1)n+2=1的整数n 的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。
人教八年级数学竞赛试题
人教八年级数学竞赛试题一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...(无限循环)D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形3. 已知一个数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
这个数列的第10项是多少?A. 144B. 145C. 146D. 1474. 一个圆的半径为r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 4πr^25. 一个长方体的长、宽、高分别为a、b、c,它的体积是多少?A. abcB. a + b + cC. 2(ab + bc + ac)D. 3(a + b + c)6. 一个函数f(x) = 3x^2 - 2x + 1,当x = 2时,f(x)的值是多少?A. 7B. 8C. 9D. 107. 一个正整数n,如果它能够被2整除,但不能被3整除,那么n的最小值是多少?A. 2B. 4C. 6D. 88. 一个数的平方根是它本身,这个数是什么?A. 0B. 1C. -1D. 2二、填空题(每题5分,共30分)9. 如果一个数的立方根等于它本身,那么这个数可以是_________。
10. 一个数的绝对值是它本身,这个数可以是正数或_________。
11. 如果一个分数的分子和分母都乘以同一个数,那么这个分数的值_________。
12. 已知一个数列的前三项为2, 3, 5,从第四项开始,每一项都是前两项的平均值。
这个数列的第5项是_________。
13. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是_________。
14. 如果一个数的相反数是-5,那么这个数是_________。
三、解答题(每题15分,共30分)15. 已知一个二次方程x^2 - 5x + 6 = 0,求它的根。
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (6)doc初中数学 (1)
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (6)doc 初中数学 (1)一、选择题〔每题5分,共30分〕:1、实数a 、b 满足:1=ab 且b a M +++=1111,bba a N +++=11,那么M 、N 的关系为〔 〕〔A 〕N M > 〔B 〕N M < 〔C 〕N M = 〔D 〕M 、N 的大小不能确定 2、关于x 的不等式023)2(>---b a x b a 的解集是34<x ,那么不等式0>+b ax 的解集为〔 〕〔A 〕101<x 〔B 〕101>x 〔C 〕101-<x 〔D 〕101->x 3、方程04122=-+-x x 的实根个数是〔 〕〔A 〕1个 〔B 〕2个 〔C 〕3个 〔D 〕4个 4、如图,啤酒瓶高为h ,瓶内酒面高为a ,假设将瓶盖好 后倒置,酒面高为a '〔h b a =+'〕,那么酒瓶的容积与瓶 内酒的体积之比为〔 〕〔A 〕a b '+1 〔B 〕b a '+1 〔C 〕a b +1 〔D 〕ba +1 5、矩形ABCD 中,AB =3,BC =4,将矩形折叠,使点C 与点A 重合,那么折痕EF 的长为〔 〕〔A 〕512 〔B 〕524 〔C 〕320 〔D 〕415 6、正三角形ABC 所在平面内有一点P ,使得⊿PAB 、⊿PBC 、⊿PCA 差不多上等腰三角形,那么如此的P 点有〔 〕〔A 〕1个 〔B 〕4个 〔C 〕7个 〔D 〕10个 二、填空题〔每题5分,共30分〕:7、方程5665-=+x x 的解是 ;8、如图,把⊿ABC 绕点C 顺时针旋转o25,得到⊿C B A '',B A ''交AC 于D ,∠DC A '=o 90,那么∠A 的度数是 ;9、012=-+x x ,那么2004223++x x = ;B'A'ABC学校 姓名 序号10、直角梯形ABCD 中,AD ∥BC ,AB =BC ,∠A =o 90,∠D =o45,CD 的垂直平分线交CD 于E ,交BA 于的延长线于F ,假设AD =9cm ,那么BF = cm ;11、比4)35( 大的最小整数是 ;12、四边形的四个顶点为A 〔8,8〕,B 〔-4,3〕,C 〔-2,-5〕,D 〔10,-2〕,那么四边形在第一象限内的部分的面积是 。
初二数学竞赛试题及参考答案
初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。
7. 一个数的绝对值是它本身,这个数可以是______。
8. 一个数的相反数是它本身,这个数是______。
9. 一个数的倒数是它本身,这个数是______。
10. 如果一个数的平方是16,那么这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。
12. 解释什么是有理数和无理数,并给出一个例子。
13. 解释什么是因式分解,并给出一个例子。
14. 解释什么是二次方程,并给出一个例子。
四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。
16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。
17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。
五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
人教版八年级数学上学期竞赛试卷及答案
人教版八年级数学上学期竞赛试卷及答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. △ABC 中,AC =5,中线AD =7,则AB 边的取值范围是( ) A.1<AB <29 B.4<AB <24 C.5<AB <19 D.9<AB <19 2. 如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于A 的任意一点,设PB =m ,PC =n ,AB =c ,AC =b ,则(m +n)与(b +c)的大小关系是( ) A.m +n >b +c B.m +n <b +c C.m +n =b +c D.无法确定 3. 一个等腰三角形的两边长分别为1,√5,则这个三角形的周长为( ) A.2+√5 B.2√5+1 C.2+√5或2√5+1 D.以上都不对 4. 如图,已知正方形ABCD 边长为1,∠EAF =45∘,AE =AF ,则有下列结论:①∠1=∠2=22.5∘;②点C 到EF 的距离是√2−1;③△ECF 的周长为2;④BE +DF >EF ,其中正确的结论有( ) A.4个 B.3个 C.2个 D.1个 5. 若a ,b ,c 是△ABC 的三条边,则化简√(a +b )2−√(a −b −c )2的结果是( ) A.c B.2b +c C.2a −c D.c −2a 6. 如果一个三角形的三边长分别为12、k 、72,则化简√k 2−12k +36−|2k −5|的结果是( ) A.11−3k B.k +1 C.3k −11 D.−k −1 7. 如图,已知△ABC 中,AB =AC ,∠BAC =90∘,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下四个结论:①△PFA ≅△PEB ,②EF =AP ,③△PEF 是等腰直角三角形,④S 四边形AEPF =12S △ABC ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确有( )学校: 班级: 姓名: 准考证号:A.4个B.3个C.2个D.1个8. 若2n+2n+2n+2n=2,则n=()A.1B.0C.−1D.−149. 若(x+2)(2x−b)=2x2+5x+2,则b的值为( )A.−1B.1C.−2D.210. 如图,在△ABC中,AB=AC,AQ=PQ,P为BC边上的中点,PR⊥AB于点R,PS⊥AC于点S,则三个结论:①AS=AR;②QP//AR;③△BPR≅△QPS中( )A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确二、填空题(本题共计5 小题,每题2 分,共计10分,)11. 化简计算b2−27a3÷2b9a⋅3abb4是________.12. 一只小船顺水行驶9千米,再逆水行驶6千米,共用了3小时,又知小船顺水行驶12千米比逆水行驶12千米少用1小时,设小船在静水中的速度为x千米/时,水流的速度为y千米/时,可列方程组________.13. 若关于x的分式方程xx−3+3a3−x=2a无解,则a的值为________.14. 如图,△ABC中,∠ABC,∠EAC的角平分线BP,AP交于点P,延长BA,BC,四个结论:①CP平分∠ACF;②∠ABC+2∠APC=180∘;③∠ACB=2∠APB;④若PM⊥BE,PN⊥BC,则AM+CN=AC.正确的是________.15. 已知(x+m)(x+n)=x2+ax+6,且m,n,a都是整数,则a的值是________.三、解答题(本题共计8 小题,共计80分,)16.(10分) 解方程:x x−3−2x=13(x−1)(x+2)=xx−1−117.(10分)先化简,再求值:a2+2a+1a+2÷(a−2+3a+2),其中a满足a2−4=0.18.(10分) 先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2−6n+9=0,求m和n的值.解:∵m2+2mn+2n2−6n+9=0,∴m2+2mn+n2+n2−6n+9=0,∴(m+n)2+(n−3)2=0,∴m+n=0,n−3=0,∴m=−3,n=3.(1)若x2+2y2−2xy+4y+4=0,求x−y的值.(2)若三角形三边a,b,c都是正整数,且满足a2+b2−6a−6b+18+|3−c|=0,试判断三角形的形状.19.(1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=9,AC=5,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD到Q,使得DQ=AD;②再连接BQ,把AB,AC,2AD集中在△ABQ中;③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是________.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)请你写出图1中AC与BQ的位置关系并证明.(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90∘.试探究线段AD与EF的数量和位置关系并加以证明.20.(10分) 配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.我们定义:一个整数能表示成a2+b2(a,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为5=22+12,所以5是“完美数”.解决问题:(1)已知29是“完美数”,请将它写成a2+b2(a,b是整数)的形式________.(2)若x2−4x+5可配方成(x−m)2+n(m,n为常数),则mn的值是________.探究问题:(3)已知x2+y2−2x+4y+5=0,则x+y的值是________.(4)已知S=x2+4y2+4x−12y+k(x,y是整数,是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由.拓展结论:已知实数x,y满足−x2+3x+y−5=0,求x+y的最小值.21.(10分) 把几个图形拼成一个图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.(1)如图1所示,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m> n,观察图形,利用面积的不同表示方法,可以发现一个代数恒等式________.(2)将图2中边长为a和b的正方形拼在一起,B,C,G三点在同一条线上,连接BD和BF,若这两个正方形的边长满足a+b=8,ab=12,请求出阴影部分的面积.22.(10分) 探究规律:分式方程1x+1=2x+1−1的解为________;分式方程2x+1=4x+1−1的解为________;分式方程3x+1=6x+1−1的解为________;分式方程4x+1=8x+1−1的解为________;(1)请完成上面的填空;(2)根据你所发现的规律,请直接写出第5个分式方程以及它的解;(3)请你用一个含正整数n的式子表示上述的规律,并指出它的解.23.(10分) 如图,在△ABC中,AB=AC=10cm,BC=6cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C 向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B出发都逆时针沿△ABC三边运动,直接写出经过多少秒后,点P与点Q第一次在△ABC的哪一条边上相遇.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解析】延长AD至E,使DE=AD,连接CE,使得△ABD≅△ECD,则将AB和已知线段转化到一个三角形中,进而利用三角形的三边关系确定AB的范围即可.【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,BD=CD,∠ADB=∠EDC,AD=ED,∴△ABD≅△ECD(SAS).∴AB=CE.在△ACE中,根据三角形的三边关系,得AE−AC<CE<AE+AC,即9<CE<19.则9<AB<19.故选D.2.【答案】A【解析】在BA的延长线上取点E,使AE=AC,连接EP,证明△ACP和△AEP全等,推出PE=PC,根据三角形任意两边之和大于第三边即可得到m+n>b+c.【解答】解:在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,{AE=AC∠CAD=∠EADAP=AP,∴△ACP≅△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故选A.3.【答案】B【解析】题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当三边是1,1,√5时,1+1<√5,不符合三角形的三边关系,应舍去;②当三边是√5,√5,1时,符合三角形的三边关系,此时周长是2√5+1,所以这个三角形的周长是2√5+1.故选B.4.【答案】B【解析】先证明Rt△ABE≅Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5∘,于是可对①进行判断;连接EF、AC,它们相交于点H,如图,利用Rt△ABE≅Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1−x,利用等腰直角三角形的性质得到2x=√2(1−x),解方程,则可对②进行判断.【解答】∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠D=90∘,在Rt△ABE和Rt△ADF中,{AE=AFAB=AD,∴Rt△ABE≅Rt△ADF(HL),∴∠1=∠2,∵∠EAF=45∘,∴∠1=∠2=∠22.5∘,所以①正确;连接EF 、AC ,它们相交于点H ,如图,∵ Rt △ABE ≅Rt △ADF ,∴ BE =DF ,而BC =DC ,∴ CE =CF ,∵ AE =AF ,∴ AC 垂直平分EF ,AH 平分∠EAF ,∴ EB =EH ,FD =FH ,∴ BE +DF =EH +HF =EF ,所以④错误;∴ △ECF 的周长=CE +CF +EF =CE +BE +CF +DF =CB +CD =1+1=2,所以③正确;设BE =x ,则EF =2x ,CE =1−x ,∵ △CEF 为等腰直角三角形,∴ EF =√2CE ,即2x =√2(1−x),解得x =√2−1,∴ BE =√2−1,Rt △ECF 中,EH =FH ,∴ CH =12EF =EH =BE =√2−1, ∵ CH ⊥EF ,∴ 点C 到EF 的距离是√2−1,所以②正确;本题正确的有:①②③;5.【答案】C【解析】此题暂无解析【解答】解:由题意知a +b >0,a −b −c <0,故原式可化为a +b −(b +c −a)=2a −c .故选C .6.【答案】A【解析】求出k 的范围,化简二次根式得出|k −6|−|2k −5|,根据绝对值性质得出6−k −(2k −5),求出即可.【解答】解:∵ 一个三角形的三边长分别为12、k 、72,∴72−12<k<12+72,∴3<k<4,√k2−12k+36−|2k−5|,=√(k−6)2−|2k−5|,=6−k−(2k−5),=−3k+11,=11−3k.故选A.7.【答案】B【解析】根据图形旋转的性质,等腰直角三角形的性质及全等三角形的判定定理,得出△APF≅△BPE,再结合全等三角形的性质对题中的结论逐一判断.【解答】解:∵AB=AC,∠BAC=90∘,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=12BC=PB,∠B=∠CAP=45∘.∵∠APE+∠BPE=90∘,∠APF+∠APE=90∘,∴∠BPE=∠APF.在△BPE和△APF中,{∠B=∠CAP,BP=AP,∠BPE=∠APF,∴△PEB≅△PFA(ASA),即结论①正确;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=12BC.又∵EF不一定是△ABC的中位线,∴EF不一定等于AP,故结论②错误;∵△PFA≅△PEB,∴PE=PF.又∵∠EPF=90∘,∴△PEF是等腰直角三角形,故结论③正确;∵△PFA≅△PEB,∴S△PFA=S△PEB,∴S四边形AEPF=S△APE+S△APF=S△APE+S△BPE=S△APB=12S△ABC,故结论④正确;综上,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),始终正确的有3个结论.故选B.8.【答案】C【解析】由题意得到4×2n=2,即2n+2=2,即可得到n值.【解答】解:由2n+2n+2n+2n=2,可得4×2n=2,即22×2n=2,∴2n+2=2,∴n+2=1,解得:n=−1.故选C.9.【答案】A【解析】根据多项式与多项式相乘的法则把等式的左边展开,根据题意列出算式,求出b的值即可.【解答】解:(x+2)(2x−b)=2x2+5x+2,2x2+(4−b)x−2b=2x2+5x+2,则4−b=5,解得b=−1.故选A.10.【答案】B【解析】解题的关键是正确寻找全等三角形解决问题,【解答】解:∵AB=AC,P为BC边上的中点,∴AP为∠BAC的角平分线,∴PR=PS.∵PR⊥AB,PS⊥AC,∴∠ARP=∠ASP=90∘.在Rt△APR和Rt△APS中,{PS=PR,AP=AP,∴Rt△APR≅Rt△APS(HL),∴AR=AS,故①正确;∵AP为∠BAC的角平分线,∴∠BAP=∠CAP,又AQ=PQ,∴∠PAQ=∠APQ,∴∠BAP=∠APQ,∴QP//AR,故②正确;在△BRP和△QSP中,只能得到PR=PS,∠PSQ=∠PRB,不能判断两三角形全等,故③错误.综上所述,只有①②正确.故选B.二、填空题(本题共计5 小题,每题 2 分,共计10分)11.【答案】−12ab2【解析】此题暂无解析【解答】解:原式=b 2−27a3⋅9a2b⋅3abb4=27a2b3−54a3b5=−12ab2.故答案为:−12ab2.12.【答案】{9x+y +6x−y=3,12 x−y −12x+y=1.【解析】先根据小船在静水中的速度为x千米/时,水流的速度为y千米/时,求出顺水速度为x+y,逆水速度为x−y,再根据题意列方程组即可.【解答】解:设小船在静水中的速度为x千米/时,水流的速度为y千米/时,则顺水速度(x+y)千米/时,逆水速度(x−y)千米/时,可得:{9x+y +6x−y=3,12 x−y −12x+y=1.故答案为: {9x+y +6x−y=3,12 x−y −12x+y=1.13.【答案】1或12【解析】此题主要考查了分式方程的解.【解答】解:去分母得:x−3a=2a(x−3),整理得:(1−2a)x=−3a,当1−2a=0时,方程无解,故a=12;当1−2a≠0时,x=−3a1−2a=3时,分式方程无解,则a=1,故关于x的分式方程xx−3+3a3−x=2a无解,则a的值为:1或12.故答案为:1或12.14.【答案】①②③④【解析】①作PD⊥AC于D,由角平分线的性质得到PM=PN=PD,即可得到①正确;②首先证明∠ABC+∠MPN=180∘,证明Rt△PAM≅Rt△PAD(HL),得出∠APM=∠APD,同理:Rt△PCD≅Rt△PCN,得出∠CPD=∠CPN,即可得出②正确;③由角平分线和三角形外角的性质得出∠CAE=∠ABC+∠ACB,∠PAM=12∠ABC+∠APB,得出∠ACB=2∠APB,即可得出③正确;④由全等三角形的性质得出AD=AM,CD=CN,即可得出④正确.【解答】解:作PD⊥AC于点D,①∵PB平分∠ABC,PA平分∠EAC,PM⊥BE,PN⊥BF,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上,即CP平分∠ACF,故①正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90∘+∠MPN+90∘=360∘,∴∠ABC+∠MPN=180∘.在Rt△PAM和Rt△PAD中,{PA=PA,PM=PD,∴Rt△PAM≅Rt△PAD(HL),∴∠APM=∠APD.同理可得,Rt△PCD≅Rt△PCN(HL),∴∠CPD=∠CPN,∴∠MPN=2∠APC,∴∠ABC+2∠APC=180∘,故②正确;③∵PA平分∠CAE,BP平分∠ABC,∴∠PAM=12∠ABC+∠APB,即∠CAE=∠ABC+2∠APB.∵∠CAE=∠ABC+∠ACB,∴∠ACB=2∠APB,故③正确;④∵Rt△PAM≅Rt△PAD,∴AD=AM.∵Rt△PCD≅Rt△PCN,∴CD=CN,∴AM+CN=AD+CD=AC,故④正确.故答案为:①②③④.15.【答案】±5或±7【解析】根据已知条件可得mn=6,然后根据m,n都是整数确定m,n的值,最后根据a=m+n 即可解答.【解答】解:∵(x+m)(x+n)=x2+(m+n)x+mn =x2+ax+6,∴a=m+n,mn=6.∵m,n都是整数,∴当m=1时,n=6,m=−1时,n=−6;当m=6时,n=1,m=−6时,n=−1;当m=2时,n=3,m=−2时,n=−3;当m=3时,n=2,m=−3时,n=−2.∴a=m+n=±5或±7.故答案为:±5或±7.三、解答题(本题共计8 小题,共计80分)16.【答案】解:(1)方程两边同时乘x(x−3),得x2−2x+6=x2−3x,解得:x=−6.检验:把x=−6代入x(x−3)≠0.所以x=−6是原分式方程的解.(2)方程两边同时乘以(x−1)(x+2),得3=x(x+2)−(x−1)(x+2),即3=x2+2x−x2−x+2,解得:x=1.检验:把x=1代入(x−1)(x+2)=0,所以x=1不是原分式方程的根,原分式方程无解.【解析】无无【解答】解:(1)方程两边同时乘x(x−3),得x2−2x+6=x2−3x,解得:x=−6.检验:把x=−6代入x(x−3)≠0.所以x=−6是原分式方程的解.(2)方程两边同时乘以(x−1)(x+2),得3=x(x+2)−(x−1)(x+2),即3=x2+2x−x2−x+2,解得:x=1.检验:把x=1代入(x−1)(x+2)=0,所以x=1不是原分式方程的根,原分式方程无解.17.【答案】解:a 2+2a+1a+2÷(a−2+3a+2)=(a+1)2a+2÷[(a+2)(a−2)a+2+3a+2]=(a+1)2a+2÷a2−4+3a+2=(a+1)2a+2÷a2−1a+2=(a+1)2a+2÷(a+1)(a−1)a+2=(a+1)2a+2×a+2(a+1)(a−1)=a+1a−1.∵a2−4=0,即a2=4,∴a1=2,a2=−2. 又∵a+2≠0,∴a≠−2,∴a=2.将a=2代入,得a+1a−1=31=3.【解析】无【解答】解:a 2+2a+1a+2÷(a−2+3a+2)=(a+1)2a+2÷[(a+2)(a−2)a+2+3a+2]=(a+1)2a+2÷a2−4+3a+2=(a+1)2a+2÷a2−1a+2=(a +1)2a +2÷(a +1)(a −1)a +2=(a +1)2a +2×a +2(a +1)(a −1) =a+1a−1.∵ a 2−4=0,即a 2=4,∴ a 1=2,a 2=−2.又∵ a +2≠0,∴a ≠−2,∴ a =2.将a =2代入,得a+1a−1=31=3. 18.【答案】解:(1)∵ x 2+2y 2−2xy +4y +4=0, ∴ x 2−2xy +y 2+y 2+4y +4=0, ∴ (x −y)2+(y +2)2=0,∴ x −y =0 , y +2=0,∴ x =y =−2,∴ x −y =(−2)−2=1(−2)2=14.(2)∵ a 2+b 2−6a −6b +18+|3−c|=0, ∴ (a 2−6a +9)+(b 2−6b +9)+|3−c|=0, ∴ (a −3)2+(b −3)2+|3−c|=0,∴ {a −3=0,b −3=0,3−c =0,∴ a =b =c =3,∴ △ABC 为等边三角形.【解析】【解答】解:(1)∵ x 2+2y 2−2xy +4y +4=0, ∴ x 2−2xy +y 2+y 2+4y +4=0, ∴ (x −y)2+(y +2)2=0,∴ x −y =0 , y +2=0,∴ x =y =−2,∴ x −y =(−2)−2=1(−2)2=14. (2)∵ a 2+b 2−6a −6b +18+|3−c|=0, ∴ (a 2−6a +9)+(b 2−6b +9)+|3−c|=0, ∴ (a −3)2+(b −3)2+|3−c|=0,∴ {a −3=0,b −3=0,3−c =0,∴ a =b =c =3,∴ △ABC 为等边三角形.19.【答案】2<AD <7(2)AC//BQ ,理由:由(1)知, △QDB ≅△ADC ,∴ ∠BQD =∠CAD ,∴ AC//BQ .(3)EF =2AD ,AD ⊥EF ,理由:如图,延长AD 到Q 使得DQ =AD ,连接BQ ,由(1)知,△BDQ ≅△CDA (SAS ),∴ ∠DBQ =∠ACD ,BQ =AC .∵ AC =AF ,∴ BQ =AF .在△ABC 中,∠BAC +∠ABC +∠ACB =180∘, ∴ ∠BAC +∠ABC +∠DBQ =180∘,∴ ∠BAC +∠ABQ =180∘.∵ ∠BAE =∠FAC =90∘,∴ ∠BAC +∠EAF =180∘,∴ ∠ABQ =∠EAF ,在△ABQ 和△EAF 中,{AB =EA,∠ABQ =∠EAF,BQ =AF,∴ △ABQ ≅△EAF(SAS),∴ AQ =EF ,∠BAQ =∠AEF ,延长DA 交EF 于P ,∵ ∠BAE =90∘,∴ ∠BAQ +∠EAP =90∘,∴ ∠AEF +∠EAP =90∘,∴ ∠APE =90∘,∴ AD ⊥EF ,∵ AD =DQ ,∴ AQ =2AD ,∵ AQ =EF ,∴ EF =2AD ,即:EF =2AD ,AD ⊥EF .【解析】无无无【解答】解:(1)延长AD 到Q 使得DQ =AD ,连接BQ , ∵ AD 是△ABC 的中线,∴ BD =CD .在△QDB 和△ADC 中,{BD =CD,∠BDQ =∠CDA,DQ =DA,∴ △QDB ≅△ADC (SAS ),∴ BQ =AC =5.在△ABQ 中,AB −BQ <AQ <AB +BQ , ∴ 4<AQ <14,∴ 2<AD <7.故答案为:2<AD <7.(2)AC//BQ ,理由:由(1)知, △QDB ≅△ADC ,∴ ∠BQD =∠CAD ,∴ AC//BQ .(3)EF=2AD,AD⊥EF,理由:如图,延长AD到Q使得DQ=AD,连接BQ,由(1)知,△BDQ≅△CDA(SAS),∴∠DBQ=∠ACD,BQ=AC.∵AC=AF,∴BQ=AF.在△ABC中,∠BAC+∠ABC+∠ACB=180∘,∴∠BAC+∠ABC+∠DBQ=180∘,∴∠BAC+∠ABQ=180∘.∵∠BAE=∠FAC=90∘,∴∠BAC+∠EAF=180∘,∴∠ABQ=∠EAF,在△ABQ和△EAF中,{AB=EA,∠ABQ=∠EAF, BQ=AF,∴△ABQ≅△EAF(SAS),∴AQ=EF,∠BAQ=∠AEF,延长DA交EF于P,∵∠BAE=90∘,∴∠BAQ+∠EAP=90∘,∴∠AEF+∠EAP=90∘,∴∠APE=90∘,∴AD⊥EF,∵AD=DQ,∴AQ=2AD,∵AQ=EF,∴EF=2AD,即:EF=2AD,AD⊥EF.20.【答案】29=52+222−1(4)S=x2+4y2+4x−12y+k=x2+4x+4+4y2−12y+9−13+k=(x+2)2+(2y−3)2+k−13S若为完美数,k−13=0,k=13.拓展结论:−x2+3x+y−5=0,x+y=x2−2x+5,x+y=(x−1)2+4,当x=1时,x+y取最小值为4.【解析】答案未提供解析。
(竞赛)人教版八年级数学上册期末试卷及答案
WORD完整版----可编辑----教育资料分享校名:班级:姓名:座号:2012-2013学年度第一学期八年级数学竞赛试卷一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
1.在实数-3,0.21,π2,18,0.001,0.20202中,无理数的个数为()A、1B、2C、3D、42.Rt90ABC C BAC∠∠在△中,=,的角平分线AD交BC于点D,2CD=,则点D到AB的距离是()A.1 B.2 C.3 D.43.下列函数中,自变量x的取值范围是x≥2的是()4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.一次函数21y x=-的图象大致是()6.如图,已知ABC△中,45ABC∠=,4AC=,H是高AD和BE的交点,则线段BH的长度为()A B.4 C.D.5二、填空题(每小题3分,共27分)7.一次函数y=3x+b的图象过坐标原点,则b的值为___________.8.如图,数轴上A B,两点表示的数分别是1A关于点B的对称点是点C,则点C所表示的数是.9.随着海拔高度的升高,空气中的含氧量3(g/m)y与大气压强成正比例函数关系.当1 2DCBAEH36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式.10.从汽车的后视镜中看见某车车牌的后五位号码是,则该车的后五位号码是.11.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是.第11题图 第12题图12. 如图,把一个含30°角的直角三角形纸板ABC 沿着较短边的垂直平分线翻折,B 与C 重合,则∠BOC 的度数13.等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2两部分,则此三角形的底边长为___________________。
最新人教版八年级竞赛数学试卷(含答案)
最新2020年宣城市八年级数学竞赛试题姓名考号一.选择题(共8小题,每题5分,共40分)1.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°(1题)(6题)(7题)2.某机械厂制造某种产品,原来每件产品的成本是100元,由于进行了技术改造,所以连续两次降低成本,两次降低后的成本是81元。
则平均每次降低成本的百分率是()A.8.5% B. 9% C. 9.5% D. 10%3 在2019,2020,2021,2022这四个数中,不能表示为两个整数平方差的数是( )A.2022B.2021C.2020D.20194.已知m、n是方程x2+2x+1=0的两根,则代数式的值为()A.9 B.±3 C. 3 D.55.已知y-2与x成正比例,且x=2时,y=4,若点(m,2m+7 ),在这个函数的图象上,则m的值是()A.-2B.-5C.2D.56. 如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于 E,PF⊥AC 于 F,M 为E F 中点,则A M 的最小值为()A.1 B.1.3 C.1.2 D.1.57. 如图,正方形A BCD 的四个顶点分别在四条平行线l1、l2、l3、l4 上,这四条直线中相邻两条之间的距离依次为h1、h2、h3 .若h1=2,h2=1,则正方形A BCD的面积为()A.9 B.10 C.13 D.258.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是() A.7 B.9 C.10 D.11(8题)(12题)二.填空题(共9小题,每题5分,共45分)9. 分解因式:a3﹣4a2+4a=x10.方程x+=0的解是.11.已知 m和 n 都为质数,且5m+3n= 91. 则m+ n=12.如右上图,在直角坐标系中,矩形OABC的顶点B的坐标为(12,8),直线恰好将矩形OABC分成面积相等的两部分,那么=_ _______13.已知菱形A BCD 的周长为52 cm,对角线A C =10 cm ,则B D= cm.14 .如图,把矩形ABCD 沿 EF 折叠,使点 C 落在点 A 处,点 D 落在点G 处,若 CD=2,AD=3,则线段E D 的长为.15.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是_____ __.16.如下图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形的边长为.(14题)(16题)17.已知点A(1,3)、B(5,-2),在x轴上找一点P,使当|AP-BP|最大,直接写出点P的坐标三.解答题(第18题15分,其余每题10分,共65分)18.(本小题满分15分=7+8分)(1)先化简,后计算:(÷)•,其中a=﹣3.(2)宣城六中复学后某班举行了一次八年级摸底测试试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分。
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (7)doc初中数学 (1)
初二 数学竞赛试卷机答案 (人教新课标初二下)(12套)初二 数学竞赛 (7)doc 初中数学 (1)一、选择题〔每题3分,共24分〕:1、在⊿ABC 中,BC =4cm ,∠BAC =o45,那么⊿ABC 的最大面积是〔 C 〕A 、82cm B 、162cm C 、)21(4+2cm D 、)21(8+2cm2、⊿ABC 中,AB =AC ,CE 是边AB 上的中线,延长AB 到D ,使BD =AB ,设CE =x ,CD =y ,那么有〔 B 〕A 、x y 2>B 、x y 2=C 、x y 2<D 、以上三种情形均有可能 3、一次函数2+=ax y 和b x y -=3的图象关于直线x y =对称,那么〔 B 〕A 、31=a ,6-=b B 、31=a ,6=bC 、3=a ,6=bD 、3=a ,6-=b 4、如图,长方形ADFM 四周共有10个点,相邻两点间的距离都等于1cm ,以这些点为顶点构成的三角形中,面 积等于32cm 的三角形共有〔 C 〕A 、4个B 、8个C 、10个D 、12个5、假如a 、b 、c 、d 是四个互不相等的负数,其中a 最小,d 最大,且dcb a =,那么d a + 与c b +的大小关系是〔 A 〕A 、c b d a +<+B 、c b d a +=+C 、c b d a +>+D 、d a +与c b +的大小关系不确定6、实数a 、b 、c 满足0=++c b a ,0>abc ,cc b b a a x ++=, )11()11()11(ba c a cbc b a y +++++=,那么xy y x 32++的值等于〔 C 〕A 、0B 、1C 、2D 、不确定7、当-1≤x ≤2时,函数6+=ax y 满足10<y ,那么常数a 的取值范畴是〔 D 〕A 、04<<-aB 、20<<aC 、24<<-a 且0≠aD 、24<<-aA D FMB CEGH N8、关于任何实数a ,关于x 方程0222=+--b a ax x 都有实数根,那么实数b 的取值范畴是〔 D 〕A 、b ≤0B 、b ≤21-C 、b ≤-1D 、b ≤81-二、填空题〔每题4分,共24分〕:9、实数x 、y 满足09644222=+-+-x y xy x ,那么x y 18= ;10、如图,长方体三条棱的长分不为4cm ,3cm ,2cm ,蚂蚁从1A 动身,沿长方体的表面爬到C 点,那么最短路线长是 cm ;11、在正方形ABCD 中,E 是AB 上一点,BE =2,AE =23BE ,P 是AC 上一动点, 那么PB +PE 的最小值是 ;12、关于x 的不等式0)5()2(>--+-b a x b a 的解集为37<x ,那么关于x 的不等式 b a x a b +<-17)53(的解集为 ;13、在浓度为x %的盐水中加入一定重量的水,那么变为浓度为10%的新溶液,在此新溶液中再加入与前次所加入的水重量相等的盐,溶液浓度为30%,那么原先溶液的浓度 为 ;14、如图,正方形内接于⊿ABC ,⊿AFG 的面积为1,⊿BDG 的面积为3,⊿CEF 的面积为1,那么正方形DEFG 的边长为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八 年 级 数 学 竞 赛 试 题
一、精心选一选,相信你选得准!(每小题5分,共30分)
1.三角形的三边长分别为6,1-3a ,10,则a 的取值范围是( )
A .-6<a <-3
B .5<a <1
C .-5<a <-1
D .a >-1或a <-5
2.使分式x
x y z x 5201020092010201020092008--+有意义的x 的取值范围是( )
A .x ≠0
B .x ≠0且x ≠±402
C .x ≠0且x ≠402
D .x ≠0且x ≠-402 3.如图,将纸片△ABC 沿着D
E 折叠压平,且∠1+∠2=72°,则∠A =( )
A .72°
B .24°
C .36°
D .18° 4.已知一个梯形的四条边长分别为2、3、4、5,则此梯形的面积为( )
A .5
B .8
C .
3
3
10 D .
3
5
14 5.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连CE 、AF ,设CE 、AF
相交于G ,则S BEGF 四边形∶S ABCD 四边形等于( )
A .41
B .92
C .6
1 D .103
6.已知x 为实数,且13-x +14-x +15-x +…+1
17-x 的值是一个确定的常数,则这个常数是( ) A .5 B .10 C .15 D .75
二、细心填一填,相信你填得对!(每小题5分,共30分)
7.已知实数x 、y 满足x 2
—3x +4y =7,则3x +4y 的最大值为__________. 8.如果a 、b 是整数,且x 2+x —1是a x 3+b x +1的因式,则b 的值为__________. 9.如图,E 、F 分别是矩形ABCD 的BC 边和CD 边上的点,且S △ABE =3,S △ECF =8,
S △ADF =5,则矩形ABCD 的面积为__________. 10.如图△ABC 中,AD 平分∠BAC ,且AB +BD =AC ,若
∠B =62°,则∠C =__________. 11.已知k =
a
c
b a b
c b a c c b a ++-=
+-=-+,且n 2+16+ B
D
E
C
A 1
2
(第3
题图) C
(第9题图) (第10题图)
A
B
C
D
C F
B
(第5题图)
6 m =8n ,则关于x 的一次函数y =-kx +n -m 的图象一定经过第
__________象限.
12.若a +x 2=2008,b +x 2=2009,c +x 2=2010,且abc =24,则
bc a +ac b +ab
c -a
1-b
1-c
1的值为__________.
三、用心做一做,试试你能行!(共40分) 13.(8分)蕲春红人电器行“家电下乡”指定型号的冰箱彩电的进价和售价如右表所示: ⑴按国家政策,农民购买“家电下乡”产品
可享受售价13%的政府补贴;农民蕲大伯到
该电器行购买了冰箱一台,彩电两台,可以享受多少元的政府补贴?(2分)
⑵为满足农民需求,红人电器行决定用不超过85000元采购冰箱和彩电共40
台,且冰箱的数量不少于彩电数量的6
5.
①请你帮助该电器行设计相应的进货方案;(3分)
②哪种进货方案电器行获得的利润最大?(利润=售价-进价)最大利润是多少?(3分)
14.(8分)如图,已知 :正△OAB 的面积为34,双曲线y =x
k
经过点B ,点
P (m ,n )(m >0)在双曲线y =x
k 上,PC ⊥x 轴于点C ,PD ⊥y 轴于点D ,设矩形OCPD 与正△OAB 不重叠部分的面积为S . ⑴求点B 的坐标及k 的值; ⑵求m =1和m =3时,S 的值.
15.(8分)已知a 、b 、c 均为正数,且满足如下两个条件:
⎪⎩⎪
⎨⎧=-++-++-+=++4132
ab c b a ac b a c bc
a c
b
c b a
证明:以a 、b 、c 为三边长可构成一个直角三角形.
16.(加油啊!加油!加油!!)(8分)2010年4月14日青海省玉树发生了7.1级大
地震,驻军某部(位于距玉树县城结古镇91公里处的上拉秀镇)接到上级命令,须火速前往结古镇救援.已知该部有120名官兵,且步行的速度为每小时10公里,现仅有一辆时速为80公里的卡车,可乘坐40人,请你设计一个乘车兼步行方案,使该部120人能在最短时间内赶往重灾区结古镇救
x
援.其中中途换车(上、下车)的时间均忽略不计,最快多少时间可以赶到?(可用分数表示)
17.(6分)计算:2sin 45°+sin 2α+cos 2α+3
30cos 23
60tan ︒
-︒
18.(8分)如图,△ABC 的边AB =3,AC =2,Ⅰ、Ⅱ、Ⅲ 分别表示以AB 、AC 、
BC 为边的正方形,求图中三个阴影部分的面积之和的最大值是多少?
H
(第18题图)。