先用先序输入二叉树

合集下载

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。

{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。

T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。

二叉树先序和中序相同的条件

二叉树先序和中序相同的条件

二叉树先序和中序相同的条件
在计算机科学中,二叉树是一种重要的数据结构,它拥有着很多种有趣的应用,而其中先序和中序的概念也是极其重要的。

先序和中序排列都是用来描述二叉树的排序方式,在其中,有一个非常重要的知识点,就是:当一棵树的先序和中序相同的情况下,有着哪些具体的约束条件呢?
首先,要深刻理解以下概念:先序就是以前序遍历的方式来描述二叉树,中序是以中序遍历的方式来描述二叉树,前序和中序遍历分别以根结点(ROOT)和中间结点(MIDDLE)为分割点,将树分为左右子树,分别进行前序和中序遍历,最终生成前序和中序序列。

其次,当一棵树的先序和中序相同的情况下,这棵树的结构必定具有以下特点:
1.的高度必定是偶数,也就是二叉树的高度必定是2的几次方。

2.于一棵完全二叉树,除了最后一层外,其它所有的层的结点数都必须满足2的n次方-1的条件。

3.于每一个结点来说,若其左儿子结点存在,那么其左儿子结点在先序序列中必定在它前面,在中序序列中也必定在它前面。

4.于每一个结点来说,若其右儿子结点存在,那么其右儿子结点在先序序列中必定在它后面,在中序序列中也必定在它后面。

最后,当一棵树的先序和中序相同的约束条件有了一定的了解之后,就可以更好地运用二叉树这一数据结构。

在实际使用中,以上这些约束条件可以帮助我们更好地利用各种遍历算法,从而更加精确地
解决计算机中出现的一些问题,从而提高计算机解题的效率。

总之,了解和理解当一棵树的先序和中序相同的情况下具有哪些重要的约束条件,是深入学习和使用二叉树的重要前提,也是持续提升计算机解决能力、提高解题效率的关键之一。

数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

数据结构与算法系列研究五——树、⼆叉树、三叉树、平衡排序⼆叉树AVL树、⼆叉树、三叉树、平衡排序⼆叉树AVL⼀、树的定义树是计算机算法最重要的⾮线性结构。

树中每个数据元素⾄多有⼀个直接前驱,但可以有多个直接后继。

树是⼀种以分⽀关系定义的层次结构。

a.树是n(≥0)结点组成的有限集合。

{N.沃恩}(树是n(n≥1)个结点组成的有限集合。

{D.E.Knuth})在任意⼀棵⾮空树中:⑴有且仅有⼀个没有前驱的结点----根(root)。

⑵当n>1时,其余结点有且仅有⼀个直接前驱。

⑶所有结点都可以有0个或多个后继。

b. 树是n(n≥0)个结点组成的有限集合。

在任意⼀棵⾮空树中:⑴有⼀个特定的称为根(root)的结点。

⑵当n>1时,其余结点分为m(m≥0)个互不相交的⼦集T1,T2,…,Tm。

每个集合本⾝⼜是⼀棵树,并且称为根的⼦树(subtree)树的固有特性---递归性。

即⾮空树是由若⼲棵⼦树组成,⽽⼦树⼜可以由若⼲棵更⼩的⼦树组成。

树的基本操作1、InitTree(&T) 初始化2、DestroyTree(&T) 撤消树3、CreatTree(&T,F) 按F的定义⽣成树4、ClearTree(&T) 清除5、TreeEmpty(T) 判树空6、TreeDepth(T) 求树的深度7、Root(T) 返回根结点8、Parent(T,x) 返回结点 x 的双亲9、Child(T,x,i) 返回结点 x 的第i 个孩⼦10、InsertChild(&T,&p,i,x) 把 x 插⼊到 P的第i棵⼦树处11、DeleteChild(&T,&p,i) 删除结点P的第i棵⼦树12、traverse(T) 遍历树的结点:包含⼀个数据元素及若⼲指向⼦树的分⽀。

●结点的度: 结点拥有⼦树的数⽬●叶结点: 度为零的结点●分枝结点: 度⾮零的结点●树的度: 树中各结点度的最⼤值●孩⼦: 树中某个结点的⼦树的根●双亲: 结点的直接前驱●兄弟: 同⼀双亲的孩⼦互称兄弟●祖先: 从根结点到某结点j 路径上的所有结点(不包括指定结点)。

二叉树的建立方法总结

二叉树的建立方法总结

⼆叉树的建⽴⽅法总结之前已经介绍了⼆叉树的四种遍历(如果不熟悉),下⾯介绍⼀些⼆叉树的建⽴⽅式。

⾸先需要明确的是,由于⼆叉树的定义是递归的,所以⽤递归的思想建⽴⼆叉树是很⾃然的想法。

1. 交互式问答⽅式这种⽅式是最直接的⽅式,就是先询问⽤户根节点是谁,然后每次都询问⽤户某个节点的左孩⼦是谁,右孩⼦是谁。

代码如下(其中字符'#'代表空节点):#include <cstdio>#include <cstdlib>using namespace std;typedef struct BTNode *Position;typedef Position BTree;struct BTNode{char data;Position lChild, rChild;};BTree CreateBTree(BTree bt, bool isRoot){char ch;if (isRoot)printf("Root: ");fflush(stdin); /* 清空缓存区 */scanf("%c", &ch);fflush(stdin);if (ch != '#'){isRoot = false;bt = new BTNode;bt->data = ch;bt->lChild = NULL;bt->rChild = NULL;printf("%c's left child is: ", bt->data);bt->lChild = CreateBTree(bt->lChild, isRoot);printf("%c's right child is: ", bt->data);bt->rChild = CreateBTree(bt->rChild, isRoot);}return bt;}int main(){BTree bt;bt = CreateBTree(bt, true);LevelOrderTraversal(bt); /* 层序遍历 */return0;}2. 根据先序序列例如输⼊序列ABDH##I##E##CF#J##G##(#表⽰空),则会建⽴如下图所⽰的⼆叉树思路和第⼀种⽅式很相似,只是代码实现细节有⼀点区别,这⾥给出创建函数BTree CreateBTree(){BTree bt = NULL;char ch;scanf("%c", &ch);if (ch != '#'){bt = new BTNode;bt->data = ch;bt->lChild = CreateBTree();bt->rChild = CreateBTree();}return bt;}3. 根据中序序列和后序序列和⽅式⼆不同的是,这⾥的序列不会给出空节点的表⽰,所以如果只给出先序序列,中序序列,后序序列中的⼀种,不能唯⼀确定⼀棵⼆叉树。

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历1、先序遍历先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果先序遍历结果为:A B D H I E J C F K G2、中序遍历中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数,得出的结果便是中序遍历的结果中遍历结果为:H D I B E J A F K C G3、后序遍历后序遍历就像是剪葡萄,我们要把一串葡萄剪成一颗一颗的。

还记得我上面提到先序遍历绕圈的路线么?(不记得翻上面理解)就是围着树的外围绕一圈,如果发现一剪刀就能剪下的葡萄(必须是一颗葡萄)(也就是葡萄要一个一个掉下来,不能一口气掉超过1个这样),就把它剪下来,组成的就是后序遍历了。

后序遍历中,根节点默认最后面后序遍历结果:H I D J E B K F G C A4、口诀先序遍历:先根再左再右中序遍历:先左再根再右后序遍历:先左再右再根这里的根,指的是每个分叉子树(左右子树的根节点)根节点,并不只是最开始头顶的根节点,需要灵活思考理解5、代码展示#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左子树指针struct Tree *rchild; // 遍历右子树指针}Tree,*BitTree;BitTree CreateLink(){int data;int temp;BitTree T;scanf("%d",&data); // 输入数据temp=getchar(); // 吸收空格if(data == -1){ // 输入-1 代表此节点下子树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输入的数据存入当前节点指针的数据域中printf("请输入%d的左子树: ",data);T->lchild = CreateLink(); // 开始递归创建左子树printf("请输入%d的右子树: ",data);T->rchild = CreateLink(); // 开始到上一级节点的右边递归创建左右子树return T; // 返回根节点}}// 先序遍历void ShowXianXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左子树ShowXianXu(T->rchild); // 递归遍历右子树}// 中序遍历void ShowZhongXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowZhongXu(T->lchild); // 递归遍历左子树printf("%d ",T->data);ShowZhongXu(T->rchild); // 递归遍历右子树}// 后序遍历void ShowHouXu(BitTree T) // 后序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowHouXu(T->lchild); // 递归遍历左子树ShowHouXu(T->rchild); // 递归遍历右子树printf("%d ",T->data);}int main(){BitTree S;printf("请输入第一个节点的数据:\n");S = CreateLink(); // 接受创建二叉树完成的根节点printf("先序遍历结果: \n");ShowXianXu(S); // 先序遍历二叉树printf("\n中序遍历结果: \n");ShowZhongXu(S); // 中序遍历二叉树printf("\n后序遍历结果: \n");ShowHouXu(S); // 后序遍历二叉树return 0;}。

实验六二叉树实验报告

实验六二叉树实验报告

实验四二叉树的操作题目:对于给定的一二叉树,实现各种约定的遍历。

一、实验目的:(1)掌握二叉树的定义和存储表示,学会建立一棵特定二叉树的方法;(2)掌握二叉树的遍历算法(先序、中序、后序遍历算法)的思想,并学会遍历算法的递归实现和非递归实现。

二、实验内容:构造二叉树,再实现二叉树的先序、中序、后序遍历,最后统计二叉树的深度。

三、实验步骤:(一) 需求分析1. 二叉树的建立首先要建立一个二叉链表的结构体,包含根节点和左右子树。

因为树的每一个左右子树又是一颗二叉树,所以用递归的方法来建立其左右子树。

二叉树的遍历是一种把二叉树的每一个节点访问并输出的过程,遍历时根结点与左右孩子的输出顺序构成了不同的遍历方法,这个过程需要按照不同的遍历的方法,先输出根结点还是先输出左右孩子,可以用选择语句来实现。

2.程序的执行命令为:1)构造结点类型,然后创建二叉树。

2)根据提示,从键盘输入各个结点。

3)通过选择一种方式(先序、中序或者后序)遍历。

4)输出结果,结束。

(二)概要设计1.二叉树的二叉链表结点存储类型定义typedef struct Node{DataType data;struct Node *LChild;struct Node *RChild;}BitNode,*BitTree;2.建立如下图所示二叉树:void CreatBiTree(BitTree *bt)用扩展先序遍历序列创建二叉树,如果是当前树根置为空,否则申请一个新节点。

3.本程序包含四个模块1) 主程序模块:2)先序遍历模块3)中序遍历模块4)后序遍历模块4.(三)详细设计1.建立二叉树存储类型//==========构造二叉树=======void CreatBiTree(BitTree *bt)//用扩展先序遍历序列创建二叉树,如果是当前树根置为空,否则申请一个新节点//{char ch;ch=getchar();if(ch=='.')*bt=NULL;else{*bt=(BitTree)malloc(sizeof(BitNode));//申请一段关于该节点类型的存储空间(*bt)->data=ch; //生成根结点CreatBiTree(&((*bt)->LChild)); //构造左子树CreatBiTree(&((*bt)->RChild)); //构造右子树}}2.编程实现以上二叉树的前序、中序和后序遍历操作,输出遍历序列1)先序遍历二叉树的递归算法如下:void PreOrder(BitTree root){if (root!=NULL){Visit(root ->data);PreOrder(root ->LChild); //递归调用核心PreOrder(root ->RChild);}}2)中序遍历二叉树的递归算法如下:void InOrder(BitTree root){if (root!=NULL){InOrder(root ->LChild);Visit(root ->data);InOrder(root ->RChild);}}3)后序遍历二叉树的递归算法如下:void PostOrder(BitTree root){if(root!=NULL){PostOrder(root ->LChild);PostOrder(root ->RChild);Visit(root ->data);}}4)计算二叉树的深度算法如下:int PostTreeDepth(BitTree bt) //求二叉树的深度{int hl,hr,max;if(bt!=NULL){hl=PostTreeDepth(bt->LChild); //求左子树的深度hr=PostTreeDepth(bt->RChild); //求右子树的深度max=hl>hr?hl:hr; //得到左、右子树深度较大者return(max+1); //返回树的深度}else return(0); //如果是空树,则返回0}四、调试分析及测试结果1. 进入演示程序后的显示主界面:请输入二叉树中的元素;先序、中序和后序遍历分别输出结果。

数据结构课程设计二 叉 树 遍 历 及 应 用

数据结构课程设计二 叉 树 遍 历 及 应 用

实验报告课程:数据结构课程设计设计题目:二叉树遍历及应用学号:班级:软件11k1姓名: 南方小羊指导教师:刘军二叉树的遍历1、问题描述利用先序遍历建立一棵二叉树,并分别用前序、中序、后序遍历该二叉树2、节点形式Lchild data Rchild3、说明(1)输入数据:1,2,3,0,0,4,0,0,5,0,0其中“0”表示空子树。

(2)输出数据:先序:1,2,3,4,5中序:3,2,4,1,5后序:3,4,2,5,1二叉树的应用1、问题描述运用二叉树的遍历的算法,编写算法分别实现如下功能。

(1)求出二叉树中的结点的总数。

(2)求出二叉树中的叶子数目。

(3)求出二叉树的深度。

运用上题所建立的二叉树,求出其结点总数、叶子数目、深度,最后释放所有结点。

二叉树结点结构中包数据域(data),指针域(*lchild,*rchild)。

结点结构的代码如下:typedef struct tree{int data;struct tree *lchild,*rchild;}*bitree;本实例使用的是二叉树,首先建立头结点,并且保存数据,然后根据递归方法,分别建立其左右孩子结点,且左右孩子结点的指针域指向空。

先序递归遍历时,输出第一个根结点数据,然后分别遍历左子树再遍历右子树,中序遍历,先访问根结点的左子树输出数据,再输出根结点的数据,再访问右子树,后序遍历先访问根结点的右子树,再访问根结点,再访问左子树输出。

统计二叉树叶子的个数可以看成一个遍历问题,访问一个结点,判断该结点是否为叶子,如果是将叶子树加1,可以采用任何遍历实现,求二叉树的深度是假设根结点为第一层的结点,所有K层结点的左右孩子在K+1层,所以可以通过先序遍历计算二叉树中每个结点的层数,其中最大的就是二叉树的深度。

四、实验心得:树结构是数据结构课程的典型内容,而且综合使用了多种逻辑结构,具有代表性,可以锻炼个人编程能力。

在刚开始选题后,我感觉无从下手,一是因为没有实践经验,二是因为对数据结构课程的内容没有把握到位,然后在参考一些专业书籍并且学习了之前其他人的课程设计,才逐渐可以上手去自己做。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

设计以先序遍历的顺序建立二叉树的二叉链表存储结构的算法

设计以先序遍历的顺序建立二叉树的二叉链表存储结构的算法

设计以先序遍历的顺序建立二叉树的二叉链表存储结构的算法一、算法简介二叉树是一种重要的树形结构,它的建立方式有多种,其中一种是按照先序遍历的顺序建立二叉树。

这种方式需要将先序遍历序列和二叉树的存储结构相结合,采用二叉链表存储结构。

具体流程是按照先序遍历序列的顺序依次创建二叉树的各个节点,同时使用二叉链表结构保存每个节点的数据和指针信息。

二、算法实现算法的实现主要包括初始化二叉树、创建节点、建立二叉树等步骤,下面对这些步骤进行详细描述。

1. 初始化二叉树初始化二叉树需要创建一个根节点,同时将根节点的左右指针指向NULL,表示二叉树为空。

2. 创建节点创建节点需要通过输入元素数据来创建,同时节点的左右指针也需要初始化为NULL。

3. 建立二叉树建立二叉树是按照先序遍历序列来实现的,具体流程如下:(1)读入当前节点的元素数据,创建节点,并将其作为当前节点。

(2)判断当前节点的元素数据是否为结束符号(这里结束符号可以指定),如果是,则返回NULL。

(3)递归创建当前节点的左子树,将左子树的根节点赋值给当前节点的左指针。

(4)递归创建当前节点的右子树,将右子树的根节点赋值给当前节点的右指针。

(5)返回当前节点。

三、算法优化虽然上述算法实现简单明了,但它有一个缺点,即无法处理空节点的情况,如果输入的先序遍历序列中存在空节点,那么该算法就无法建立正确的二叉树了。

因此,可以在输入的先序遍历序列中使用一个特殊的符号(如#)表示空节点,在建立节点时,如果遇到该符号,则将该节点的指针设置为NULL即可。

四、算法总结按照先序遍历的顺序建立二叉树是一种基于二叉链表存储结构的建树方式。

它通过递归的方式构建整个二叉树,同时为了处理空节点的情况,还需要对输入的先序遍历序列进行特殊处理。

该算法的效率较高,适用于对先序遍历序列已知的情况下建立二叉树。

前序序列和后续序列确定二叉树

前序序列和后续序列确定二叉树

前序序列和后续序列确定⼆叉树⼆叉树:已知前序与后序建树那么我们换⼀种思考⽅式,我们先来看看先序与后序序列的排布规律。

以下⾯这棵树来举例:其先序序列为: 1 2 3 4 6 7 5后序序列为:2 6 7 4 5 3 1⾸先我们要知道:先序序列遍历顺序是:根结点-左⼦树-右⼦树后序序列遍历顺序是:左⼦树-右⼦树-根结点很明显,我们可以看出结点在先、后序列中的排布有以下这些特征:【1】、在先序序列中,根结点在⼦树中的结点前⾯,在后序序列中,根结点在⼦树中的结点后⾯。

【2】、以任⼀节点为根结点时,其⼦树在先序后序序列中排布都是先左⼦树后右⼦树,⽽根结点排在最后。

那么,反过来思考,已知这个先序与后序序列所确定的树是唯⼀的吗?进⼀步推⼴:怎么通过先序与后序序列判断是否存在唯⼀的树呢?现在,我们来⼀步步分析已知先序与后序的建树过程:①、根据特征【1】可知:根结点为先序序列第⼀个节点以及后序序列最后⼀个结点,因此根结点为1。

②、先序序列中第⼆个结点为2,其在后序序列中的位置是第⼀个,那么根据特征【2】我们可以知道结点2是没有⼦树的,⽽且结点2要么在根结点的左⼦树,要么在右⼦树。

假设结点2在右⼦树,那么由特征【2】可知根结点1没有左⼦树,⽽且先序序列中结点2后⾯的结点全部为结点2的⼦树上的结点。

再看后序序列,由特征【2】可知,结点2后⾯的结点不可能是其⼦树上的结点。

因此,假设显然与已知⽭盾。

这样,我们⼜知道结点2是结点1的左孩⼦,且结点2没有⼦结点。

③、先序序列第三个位置上的结点为3,该结点在后序序列中排倒数第⼆个。

由②可知,结点3必然是根结点1的右孩⼦。

④、先序序列第四个位置上的结点为4,该结点在后序序列中排第四个。

因为结点4在先序序列中排在结点3后⾯,⼜因为结点3是根结点1的右孩⼦,所以结点4只可能在结点3的⼦树上。

结点3的⼦树可能出现的情况是:只有左⼦树,只有右⼦树,左右⼦树都有。

因为在后序序列中,结点4左边是结点6、7,右边是结点5。

《数据结构》非线性结构实验报告一

《数据结构》非线性结构实验报告一

《数据结构》非线性结构实验报告 一、实验目的:1.树是一种重要的非线性数据结构,要求掌握二叉树的两种基本的存储结构,及各种操作的算法实现(建立、遍历)以及应用。

2.以递归算法的设计方法以及二叉树的应用作为重点。

3.掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS 及BFS 对图的遍历操作。

4.采用邻接矩阵和邻接链表作为图的存储结构,完成有向图和无向图的DFS 和BFS 操作。

二、实验内容:1. 按先序次序输入二叉树中结点的值,建立一棵以二叉链表作存储结构的二叉树(结合“扩展先序遍历序列”创建如下图所示二叉树),然后按先序、中序、后序顺序分别遍历这棵二叉树。

2. 利用二叉树的遍历算法,实现如上图所示二叉树的叶子结点个数和深度。

3. 已知某系统在通信联络中可能出现8种字符,其概率分别为0.05、0.29、0.07、0.08、0.14、0.23、0.03和0.11,试编写程序实现以下要求:(1)构造这8种字符概率的哈夫曼树。

(2)求出这8种字符的哈夫曼编码。

4.已知一个有向图的顶点集V 和边集G 分别为:V={0,1,2,3,4,5,6,7,8};E={<0,2>,<1,3>,<1,4>,<2,4>,<2,5>,<3,6>,<3,7>,<4,7>,<4,8>,<5,7>,<6,7>,<7,8>}(1)编写程序建立该图的邻接矩阵存储。

(2)编写程序建立该图的邻接表存储。

(3)基于上图所建的存储结构,编写实现深度优先搜索算法和广度优先搜索算法。

AB FE C DPreOrder(bt->lchild);visit(bt);PreOrder(bt->rchild);}}void PostOrder(BiTree bt) //后序遍历{if (bt != NULL){PreOrder(bt->lchild);PreOrder(bt->rchild);visit(bt);}}int main(){char str[N];BiTree bt;printf("请输入二叉树(扩展先序遍历序列):");gets(str);bt = CreatBiTree(str);printf("二叉树先序遍历为:\n");PreOrder(bt);printf("\n");printf("二叉树中序遍历为:\n");InOrder(bt);printf("\n");printf("二叉树后序遍历为:\n");PostOrder(bt);return 0;}运行结果:2、源程序:#include<stdio.h>#include<stdlib.h>#define N 100printf("二叉树的叶子节点数为:%d\n", BitreeLeaf(bt));return 0;}运行结果:3、源程序:#define _CRT_SECURE_NO_W ARNINGS#include <stdio.h>#include <stdlib.h>#include <string.h>#define MAXSBIT 10#define MAXV ALUE 1000typedef char** HCode;typedef struct HNode{int weight;int parent, lchild, rchild;}HNode, *HTree;HTree HuffmanTree(int* w, int n){int m, m1, m2, x1, x2, i, j;HTree ht;HNode* p;if (n <= 1) return NULL;m = 2 * n - 1;ht = (HNode*)malloc(m * sizeof(HNode));if (ht == NULL) return ht;for (p = ht, i = 0; i < n; ++i, ++p, ++w){p->weight = *w; p->lchild = -1; p->rchild = -1;p->parent = -1;}for (; i < m; ++i, ++p){p->weight = 0; p->lchild = -1; p->rchild = -1;{int w[8] = { 5,29,7,8,14,23,3,11 };int i;HTree ht;HCode HC;ht = HuffmanTree(w, 8);HC = HuffmanCoding(ht, 8);for (i = 0; i < 8; i++)printf("%s\n", HC[i]);return 0;}运行结果:4、源程序:#include<stdio.h>#include<stdlib.h>#define FALSE 0#define TRUE 1#define MaxVertexNum 20typedef int BOOLE;BOOLE visited[MaxVertexNum];typedef struct{int vexs[MaxVertexNum];int edges[MaxV ertexNum][MaxVertexNum];int n, e;}MGraph;typedef struct node{int adjvex;struct node* next;}EdgeNode;typedef struct vnode{int vertex;DFSTraverseAL(G);printf("该图的广度优先遍历为:\n\n");BFSTraverseAL(G);}int main(){int x;do{printf("*************请选择你想要的存储方式************\n");printf("******************1.邻接矩阵 2.邻接表*********\n");scanf_s("%d", &x);} while (!(x <= 2 && x >= 1));switch (x){case 1: UseMGraph();break;case 2: UseALGraph();break;}return 0;}运行结果:。

数据结构上机实验题

数据结构上机实验题
p=(linklist *)malloc(sizeof(linklist));该语句的功能是申请分配一个类型为linklist的结点的地址空间,并将首地址存入指针变量p中。当结点不需要时可以用标准函数free(p)释放结点存储空间,这时p为空值(NULL)。
思考与提高:
1.如果按由表尾至表头的次序输入数据元素,应如何建立顺序表。
{
Datatypestack[MAXNUM];
int top;
}SqStack;
/*初始化顺序栈函数*/
void InitStack(SqStack *p)
{q=(SqStack*)malloc(sizeof(SqStack) /*申请空间*/}
/*入栈函数*/
void Push(SqStack *p,Datatypex)
实现提示:
1.由于C语言的数组类型也有随机存取的特点,一维数组的机内表示就是顺序结构。因此,可用C语言的一维数组实现线性表的顺序存储。
在此,我们利用C语言的结构体类型定义顺序表:
#define MAXSIZE 1024
typedef int elemtype; /*线性表中存放整型元素*/
typedef struct
实验一线性表
实验目的:
1.熟悉C语言的上机环境,进一步掌握C语言的结构特点。
2.掌握线性表的顺序存储结构的定义及C语言实现。
3.掌握线性表的链式存储结构——单链表的定义及C语言实现。
4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。
5.掌握线性表在链式存储结构——单链表中的各种基本操作。
实验内容:
printf("输入源点v1 : ");
scanf("%d",&v1); /*输入源点V1 */

太原理工数据结构实验答案

太原理工数据结构实验答案

实验一线性表一.目的与要求本次实习的主要目的是为了使学生熟练掌握线性表的基本操作在顺序存储结构和链式存储结构上的实现,提高分析和解决问题的能力。

要求仔细阅读并理解下列例题,上机通过,并观察其结果,然后独立完成后面的实习题。

二.例题问题描述:用链表形式存储一个字符串,插入、删除某个字符,最后按正序、逆序两种方式输出字符串。

输入:初始字符串,插入位置,插入字符,删除字符。

输出:已建立链表(字符串),插入字符后链表,删除字符后链表,逆转后链表。

存储结构:采用链式存储结构算法的基本思想:建立链表当读入字符不是结束符时,给结点分配存储空间,写数据域,将新结点插到表尾;插入字符:根据读入的字符在链表中找插入位置,将新结点插入到该位置之前;删除字符:根据读入的删除字符在链表中找到被删结点后,将其从链表中删除;链表逆转:从链表的第一个结点开始对所有结点处理,将每个结点的前驱变为它的后继;打印链表:从链表的第一个结点开始,依次打印各[运行情况]Input a linktable(a string):abcde↙Build link is :abcdePlease input a char you want to insert after:b↙Please input a char you want to insert:c↙After p insert y,link is:abccdePlease input a char you want to delete:e↙after delete p,link is:abccdOpsite result is :dccba如图显示:实习题:问题描述:设顺序表A中的数据元素递增有序,试写一程序,将x插入到顺序表的适当位置上,使该表仍然有序。

输入:插入前的顺序表,插入的数,插入后的顺序表输出:插入前的顺序表,插入的数,插入后的顺序表存储结构:顺序表存储数据算法基本思想:其实这个题在学C语言时就已经写过了,这里采用顺序表来存储数据。

数据结构实验报告--

数据结构实验报告--

数据结构实验报告--实验一、线性表的实现线性表是常用的数据结构之一,其中最常用的是顺序存储结构。

本实验使用C语言实现了顺序存储结构的线性表。

首先,定义了一个结构体来表示线性表:```#define MAXSIZE 100 //线性表最大长度typedef struct {int data[MAXSIZE]; //存放线性表元素int length; //线性表当前长度} SqList; //线性表类型定义```其中,data数组存放线性表元素,length表示线性表当前长度。

接着,定义了三个基本操作:1. 初始化线性表```void InitList(SqList *L) {L->length = 0;}```2. 插入元素```bool ListInsert(SqList *L, int i, int e) {if (i < 1 || i > L->length + 1) { //插入位置不合法}if (L->length >= MAXSIZE) { //线性表已满return false;}for (int j = L->length; j >= i; j--) { //将第i个位置之后的所有元素后移一位L->data[j] = L->data[j - 1];}L->data[i - 1] = e; //将元素e插入到第i个位置L->length++; //线性表长度加1return true;}```3. 删除元素以上三个操作就是线性表的基本操作,通过这三个操作就能完成线性表的所有操作。

实验二、栈和队列的实现2.1 栈的实现栈是一种后进先出(Last In First Out)的数据结构。

我们可以用线性表来实现栈,只需要对线性表的插入和删除操作进行限制就行了。

具体实现如下:void InitStack(Stack *S) {S->top = -1; //初始化栈顶指针}bool Push(Stack *S, int e) {if (S->top == STACK_SIZE - 1) { //栈已满,无法插入元素}S->top++; //栈顶指针加1S->data[S->top] = e; //插入元素e到栈顶return true;}以上代码实现了栈的初始化、入栈和出栈操作。

二叉树

二叉树

7.1.2
二叉树的五种基本形态
Ф
左子树
(a) (b) (c)
右子树
(d)
左子树
(e)
右子树
7.1.3
两种特殊形态的二叉树
结点拥有的子树数称为该结点的度(degree)。度为零的结点称 为叶子(leaf),其余结点称为分支结点(branch)。树中结点的最大的 度称为树的度。显然,二叉树结点的度可能为0、1或2。 根结点的层次(level)为1,其余结点的层次等于该结点的双亲结 点的层次加1。树中结点的最大层次称为该树的高度或深度。 1.满二叉树 2.完全二叉树
7.6
本章小结
本章讨论了二叉树数据类型的定义以及实现方法。二叉树是 以两个分支关系定义的层次结构,结构中的数据元素之间存在着一 对多的关系,因此它为计算机应用中出现的具有层次关系或分支关 系的数据,提供了一种自然的表示方法。 二叉树是有明确的左子树和右子树的树形结构,因此当用二 叉树来描述层次关系时,其左孩子表示下属关系,而右孩子表示的 是同一层次的关系。 二叉树的遍历算法是实现各种操作的基础。遍历的实质是按 某种规则将二叉树中的数据元素排列成一个线性序列,二叉树的线 索链表便可看成是二叉树的一种线性存储结构,在线索链表上可对 二叉树进行线性化的遍历,即不需要递归,而是从第一个元素起, 逐个访问后继元素直至后继为空止。因此,线索链表是通过遍历生 成的,即在遍历过程中保存结点之间的前驱和后继的关系。
7.1.4
二叉树的几个特性
由二叉树的定义、形态,我们很容易的得出下面二叉树的 一些特性。 性质1 在二叉树的第i 层上至多有 2i-1 个结点(i≥1)。 性质2 深度为k的二叉树中至多含有2k-1 个结点(k≥1)。 性质3 对任何一棵二叉树 T,如果其终端结点数为,度为 2的结点数为,则。 性质4 具有n个结点的完全二叉树的深度为 log2n+1。 性质5 如果对一棵有 n 个结点的完全二叉树(其深度为 log2n+1)的结点按层序(从第1层到第 log2n+1 层,每层从左到 右)从1起开始编号。

二叉树的遍历算法

二叉树的遍历算法

二叉树的前序、后序的递归、非递归遍历算法学生姓名:贺天立指导老师:湛新霞摘要本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。

在课程设计中,系统开发平台为Windows 2000,程序设计设计语言采用Visual C++,程序运行平台为Windows 98/2000/XP。

用除递归算法前序,后续,中序遍历树外还通过非递归的算法遍历树。

程序通过调试运行,初步实现了设计目标,并且经过适当完善后,将可以应用在商业中解决实际问题。

关键词程序设计;C++;树的遍历;非递归遍历1 引言本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。

1.1课程设计的任务构造一棵树并输入数据,编写三个函数,非别是树的前序递归遍历算法、树的后序递归遍历算法、树的非递归中序遍历算法(这里的非递归以中序为例)。

在主程序中调用这三个函数进行树的遍历,观察用不同的遍历方法输出的数据的顺序和验证递归与非递归输出的数据是否一样。

1.2课程设计的性质由要求分析知,本设计主要要求解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。

所以设计一个良好的前序、后序的递归、非递归遍历算法非常重要。

1.3课程设计的目的在程序设计中,可以用两种方法解决问题:一是传统的结构化程序设计方法,二是更先进的面向对象程序设计方法[1]。

利用《数据结构》课程的相关知识完成一个具有一定难度的综合设计题目,利用C语言进行程序设计。

巩固和加深对线性表、栈、队列、字符串、树、图、查找、排序等理论知识的理解;掌握现实复杂问题的分析建模和解决方法(包括问题描述、系统分析、设计建模、代码实现、结果分析等);提高利用计算机分析解决综合性实际问题的基本能力。

树的遍历分为前序、中序和后序,可以用递归算法实现树的三种遍历。

除了递归外还可以构造栈,利用出栈和入栈来实现树的前序遍历、中序遍历和后序遍历。

数据结构课程设计_二叉树操作

数据结构课程设计_二叉树操作

数据结构课程设计_⼆叉树操作数据结构课程设计题⽬:⼆叉树的操作学⽣姓名:学号:系部名称:计算机科学与技术系专业班级:指导教师:课程设计任务书第⼀章程序要求1)完成⼆叉树的基本操作。

2)建⽴以⼆叉链表为存储结构的⼆叉树;3)实现⼆叉树的先序、中序和后序遍历;4)求⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。

第⼆章算法分析建⽴以⼆叉链表为存储结构的⼆叉树,在次⼆叉树上进⾏操作;1先序遍历⼆叉树的操作定义为:若⼆叉树唯恐则为空操作;否则(1)访问根节点;(2)先序遍历做字数和;(3)先序遍历有⼦树;2中序遍历⼆叉树的操作定义为:若⼆叉树为空,则空操作;否则(1)中序遍历做⼦树;(2)访问根节点;(3)中序遍历有⼦树;3后续遍历⼆叉树的操作定义为:若⼆叉树为空则为空操作;否则(1)后序遍历左⼦树;(2)后序遍历右⼦树;(3)访问根节点;⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。

第三章⼆叉树的基本操作和算法实现⼆叉树是⼀种重要的⾮线性数据结构,是另⼀种树形结构,它的特点是每个节点之多有两棵⼦树(即⼆叉树中不存在度⼤于2的结点),并且⼆叉树的结点有左右之分,其次序不能随便颠倒。

1.1⼆叉树创建⼆叉树的很多操作都是基于遍历实现的。

⼆叉树的遍历是采⽤某种策略使得采⽤树形结构组织的若⼲年借点对应于⼀个线性序列。

⼆叉树的遍历策略有四种:先序遍历中续遍历后续遍历和层次遍历。

基本要求1 从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。

2 输出⼆叉树。

3 对⼆叉树进⾏遍历(先序,中序,后序和层次遍历)4 将⼆叉树的遍历打印出来。

⼀.问题描述⼆叉树的很多操作都是基于遍历实现的。

⼆叉树的遍历是采⽤某种策略使得采⽤树型结构组织的若⼲结点对应于⼀个线性序列。

⼆叉树的遍历策略有四种:先序遍历、中序遍历、后序遍历和层次遍历。

⼆.基本要求1.从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。

2.输出⼆叉树。

二叉树的先序,中序,后序遍历代码

二叉树的先序,中序,后序遍历代码

二叉树的先序,中序,后序遍历代码一、二叉树的先序、中序和后序遍历1、先序遍历先序遍历是根节点、左子树、右子树的顺序访问二叉树的一种遍历方法。

在先序遍历中,先访问根节点,然后递归访问左子树,最后递归访问右子树。

具体的代码如下:(1)//先序遍历法PreOrder(Tree T){if(T!=NULL){Visit(T);//访问根节点PreOrder(T->Left);//遍历左子树PreOrder(T->Right);//遍历右子树}}2、中序遍历中序遍历是左子树、根节点、右子树的顺序访问二叉树的一种遍历方法。

在中序遍历中,先递归访问左子树,然后访问根节点,最后递归访问右子树。

具体的代码如下:(2)//中序遍历法InOrder(Tree T){if(T!=NULL){InOrder(T->Left);//遍历左子树Visit(T);//访问根节点InOrder(T->Right);//遍历右子树}}3、后序遍历后序遍历是左子树、右子树、根节点的顺序访问二叉树的一种遍历方法。

在后序遍历中,先递归访问左子树,然后递归访问右子树,最后访问根节点。

具体的代码如下:(3)//后序遍历法PostOrder(Tree T){if(T!=NULL){PostOrder(T->Left);//遍历左子树PostOrder(T->Right);//遍历右子树Visit(T);//访问根节点}}二、先序、中序和后序遍历的应用(1)构造二叉树先序序列和中序序列是完全可以解决构造出一颗二叉树的,必要的条件是中序和先序的元素的个数必须相同。

后序序列无法实现这一点,只能确定根节点的位置。

(2)深度优先搜索深度优先搜索是一种图遍历算法,它使用栈来帮助用户访问一棵树,也就是深度优先算法。

先序遍历是先从根节点访问,中序遍历是在访问左子树后再访问根节点,而后序遍历是在访问右子树后再访问根节点。

(3)计算二叉树深度根据先序遍历和后序遍历可以知道二叉树的深度。

本题要求按照先序遍历的顺序输出给定二叉树的叶结点

本题要求按照先序遍历的顺序输出给定二叉树的叶结点

本题要求按照先序遍历的顺序输出给定二叉树的叶结点.
答:
首先,什么是先序遍历?先序遍历是一种树的遍历方式,它的步骤是:先访问根结点,再从左到右依次访问每个子结点,最后访问根结点的右子结点。

现在来看本题,本题要求按照先序遍历的顺序输出给定二叉树的叶结点。

首先,我们需要确定二叉树的根结点,然后,从根结点开始,按照先序遍历的方式,逐步访问树中的每个结点,如果当前结点有子结点,则继续访问子结点;如果当前结点没有子结点,则说明当前结点就是叶结点,将其输出即可。

那么,如何实现按照先序遍历的方式访问树中的每个结点呢?一种方法是采用递归的方式:首先,先将根结点访问一次,然后,如果根结点有左子结点,则递归地访问左子结点,然后如果根结点有右子结点,则递归地访问右子结点,重复上述步骤即可遍历完整棵树。

另外,也可以采用非递归的方式,即使用栈来实现遍历。

首先,将根结点入栈,然后,不断地出栈,将出栈的结点的子结点入栈,直至栈为空,即可遍历完整棵树。

总而言之,要按照先序遍历的顺序输出给定二叉树的叶结点,可以采用递归或者非递归的方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#define STACKINCREMENT 10
typedefstructBiTNode{ //二叉树的二叉链表存储表示。
char data;
structBiTNode*lchild,*rchild; //左右孩子指针。
}BiTNode,*BiTree;
typedefstruct{ //栈的顺序存储表示。
if(PreOrderTraverse(T->lchild,Visit))
if(PreOrderTraverse(T->rchild,Visit))
return OK;
return ERROR;
}
else
return OK;
}
intInOrderTraverse(BiTreeT,int(*Visit)(char e)) //中序遍历。
{
Pop(s,p);
if(!Visit(p->data))
return ERROR;
Push(s,p->rchild);
}
}
return OK;
}
void main()
{
BiTreeT;
printf("请输入字符:");
CreateBiTree(T);
PreOrderTraverse(T,Visit); //先序遍历。
s.stacksize+=STACKINCREMENT;
}
*s.top++=T;
return OK;
}
intPop(SqStack&s,BiTree&T) //出栈。
{
if(s.top==s.base)
return ERROR;
T=*--s.top;
//printf("出栈的数:");
//printf("%c",T->data);
{
if((s.top-s.base)>=s.stacksize)
{
s.base=(BiTree*)realloc(s.base,(s.stacksize+STACKINCREMENT)*sizeof(BiTree));
if(!s.base) exit(OVERFLOW);
s.top=s.base+s.stacksize;
InOrderTraverse(T,Visit); //中序遍历。
}
s.top=s.base;
s.stacksize=STACK_INIT_SIZE;
return OK;
}
intStackEmpty(SqStacks)
{
if(s.base==s.top)
return TRUE;
else
return FALSE;
}
intPush(SqStack&s,BiTreeT) //入栈。
先用先序输入二叉树,在对二叉树进行先序遍历,进行中序遍历。
#include"stdio.h"
#include"stdlib.h"
#define OVERFLOW -2
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define STACK_INIT_SIZE 100
}
return OK;
}
intVisit(char e) // Visit函数输出。
{
printf("%c",e);
return OK;
}
intPreOrderTraverse(BiTreeT,int(*Visit)(char e)) //先序遍历。
{
if(T)
{
if(Visit(T->data))
BiTree*base; //栈底指针。
BiTree*top; //栈顶指针。
intstacksize;
}SqStack;
intInitStack(SqStack&s){ //初始化。
s.base=(BiTree*)malloc(STACK_INIT_SIZE*sizeof(BiTree));
if(!s.base) exit(OVERFLOW);
{
BiTreep;
SqStacks;
p=(BiTNode*)malloc(sizeof(BiTNode));
InitStack(s);
Push(s,T);
while(!StackEmpty(s))
{
while(GetTop(s,p)&&p)
Push(s,p->lchild);
Pop(s,p);
if(!StackEmpty(s))
return OK;
}
intGetTop(SqStacks,BiTree&T)
{
if(s.top==s.base)
return ERROR;
T=*(s.top-1);
return OK;
}
intCreateBiTree(BiTree&T) //按先序次序输入二叉树中结点的值(一个字符),空字符串表示空树。
{
charch;
scanf("%c",&ch);
if(ch==' ')
T=NULL;
else
{
if(!(T=(BiTNode*)malloc(sizeof(BiTNode))))
exit(OVERFLOW);
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
相关文档
最新文档