2008年广州市中考数学
2008年广东省广州市数学中考真题(word版含答案)
如图10,射线AM交一圆于点BLeabharlann C,射线AN交该圆于点D、E,且 .
(1)求证:AC=AE;
(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.
24.(本小题满分14分)
如图11,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是 上异于A、B的动点.过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE.
13.函数 中自变量x的取值范围是*.
14.将线段AB平移1cm,得到线段 ,则对应点A与 的距离为*cm.
15.命题“圆的直径所对的圆周角是直角”是*命题(填“真”或“假”).
16.已知平面内的凸四边形ABCD,现从一下四个关系式①AB=CD、②AD=BC、③AB∥CD、④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率为*.
19.(本小题满分10分)
实数a、b在数轴上的位置如图7所示.
化简 .
20.(本小题满分10分)
如图8,在菱形 中, °,过点 作 且与 的延长线交于点 .
求证:四边形 是等腰梯形.
21.(本小题满分12分)
如图9,一次函数 的图象与反比例函数 的图象相交于A、B两点.
(1)根据图象,分别写出点A、B的坐标;
秘密★启用前
2008年广州市初中毕业生学业考试
数学
本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.
2008年广东各地区中考数学试题分类汇编——统计
2008年广东各地区中考数学试题分类汇编——统计1、(佛山)5. 下列说法中,不正确...的是( ). A .为了解一种灯泡的使用寿命,宜采用普查的方法 B .众数在一组数据中若存在,可以不唯一C .方差反映了一组数据与其平均数的偏离程度D .对于简单随机样本,可以用样本的方差去估计总体的方差2、(肇庆)2.数据1,1,2,2,3,3,3的极差是( )A .1B .2C .3D .6 3、(湛江)9. 数据2,7,3,7,5,3,7的众数是( )A.2 B.3 C.5 D.7 4、(东莞)5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温A .28B .28.5C .29D .29.55、(茂名)8.一组数据3、4、5、a 、7的平均数是5,则它的方差是( ) A.10 B.6 C.5 D.26则该班学生年龄的中位数为______;从该班随机地抽取一人,抽到学生的年龄恰好是15岁的概率等于____.7、(佛山)19.某地为了解当地推进“阳光体育”运动情况,就“中小学生每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见下表):请根据上述信息解答下列问题: (1) B 组的人数是 人;(2) 本次调查数据(指体育活动时间)的中位数落在组内;组别 范围(小时) A 5.0<tB 15.0<≤tC 5.11<≤tD 5.1≥t人数A B CD 组别第19题图(3) 若某地约有64000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有多少?8、(肇庆)23.(本小题满分8分)在2008北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下(单位:环):甲 10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2 乙 9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7 (1) 两名运动员射击成绩的平均数分别是多少? (2) 哪位运动员的发挥比较稳定?(参考数据: 0.2222222226.03.06.014.02.03.0+++++++=2.14 ,22222222221.04.05.02.02.09.01.02.03.01.0+++++++++=1.46)9、(梅州)15.本题满分7分.右图是我国运动员在1996年、2000年、2004年三届奥运会上获得奖牌数的统计图.请你根据统计图提供的信息,回答下列问题:(1) 在1996年、2000年、2004年这三届奥运会上,我国运动员获得奖牌总数最多的一届奥运会是________年. (2) 在1996年、2000年、2004年这三届奥运会上,我国运动员共获奖牌___________枚.(3)根据以上统计,预测我国运动员在2008年奥运会上能获得的奖牌总数大约为_________枚.10、(茂名)20.(本题满分8分)某文具店王经理统计了2008年1月至5月A 、B 、C 这三种型号的钢笔平均每月的销售量,并绘制图1(不完整),销售这三种型号钢笔平均每月获得的总利润为600元,每种型号钢笔获得的利润分布情况如图2.已知A 、B 、C 这三种型号钢笔每支的利润分别是0.5元、0.6元、1.2元,请你结合图中的信息,解答下列问题: (1)求出C 种型号钢笔平均每月的销售量,并将图1补充完整;(4分)(2)王经理计划6月份购进A 、B 、C 这三种型号钢笔共900支,请你结合1月至5月平均每月的销售情况(不考虑其它因素),设计一个方案,使获得的利润最大,并说明理由.(4分)解:11、(湛江)24. 为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人(图1) (图(第20题获得奖励.6图8。
2008年广东省初中毕业生学业考试
6. − 2 的相反数是__________;
7.经过点 A(1,2)的反比例函数解析式是_____
_____;
8.已知等边三角形 ABC 的边长为 3 + 3 ,则ΔABC 的周长是____________;
9.如图 1,在ΔABC 中,M、N 分别是 AB、AC 的中点,且∠A +∠B=120°,
D. a2 + 2a +1
5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是
城市 北京 上海 杭州 苏州 武汉 重庆 广州 汕头 珠海 深圳
最高温度
(℃)
26 25 29 29 31 32 28 27 28 29
A.28
B.28.5
C.29
D.29.5
二、填空题(本大题 5 小题,每小题 4 分,共 20 分)请将下列各题的正确答案填写在答题卡相应的位置上.
∴ △AEF∽△ABD ,
E
F
D
∴ SAEF = ( AE )2 .……………………………………4 分 SABD AB
又∵ AE = 1 AB , 2
SAEF = SABD − S四边形BDFE = SABD − 6 ,………………5 分
∴ SABD − 6 = (1)2 ,………………………………………6 分
图4
四、解答题(二)(本大题 4 小题,每小题 7 分,共 28 分) 16.(本题满分 7 分)在 2008 年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局
组织电工进行抢修.供电局距离抢修工地 15 千米.抢修车装载着所需材料先从供电局出发,15 分钟后, 电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的 1.5 倍, 求这两种车的速度。
2008年广东省广州市中考数学试题难度结构分析
(3)根据图象回答:当 x 为何值时,
一次函数的函数值大于反比例函数的函数值 4
图8 22、中 0.53(2008 广州)(12 分)2008 年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到 30 千米远的郊区进行抢修。维修工骑摩托车先走,15 分钟后,抢修车装载所需材料出发,结果两车同时 到达抢修点。已知抢修车的速度是摩托车速度的 1.5 倍,求两种车的速度。
抓过关。
4、 明确第 23 题及以前的中档题一般均是问题指向明确,解决问题
的办法也是常规解法的问题。建议①分“数与代数”、“空间与图
形”、“统计与代数”三类,收集近三年广州中考难度在 0.6 以上
的中考题,中下生抓紧这一块过关,后进生要抓难度系数是 0.73
以上的题过关,中等生尤其要抓难度系数是 0.6 以上的题过关;
图6 20、中 0.69(2008 广州)(10 分)如图 7,在菱形 ABCD 中,∠DAB=60°,过点 C 作 CE⊥AC 且与 AB 的延长线交于点 E,求证:四边形 AECD 是等腰梯形
图7
21、中 0.67(2008 广州)(12 分)如图 8,一次函数 y kx b 的图象与反比例函数 y m 的图象相交于 x
5
图 11 目标:灵活运用 9、中 0.58(2008 广州)如图 2,每个小正方形的边长为 1,把阴影部分剪下来,用剪下来的阴影部分拼成 一个正方形,那么新正方形的边长是( )
A 3 B2 C 5 D 6
图2
难题(难度系数<0.5)
目标灵活运用 16、难 0.37(2008 广州)对于平面内任意一个凸四边形 ABCD,现从以下四个关系式①AB=CD; ②AD=BC;③AB∥CD;④∠A=∠C 中任取两个作为条件,能够得出这个四边形 ABCD 是平行四边形的 概率是
2008年广东省中考数学试卷及答案(word版)
2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++-.12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2005年—2008年广州市中考数学试题按考点
一、 数与式2005 1.下列四个数中,在一2和1之间的数是(*).(A )-3 (B )0 (C )2 (D )32005 5.已知,12+=a 121-=b ,则,a 与b 的关系是( )(A )a =b (B )ab =1 (C )a =-b (D )ab =一12005 7.用计算器计算,12122--,13132--,14142--,15152--…,根据你发现的规律, 判断,112--=n n P 与,1)1(1)1(2-+-+=n n Q (n 为大于1的整数)的值的大小关系为(*). (A) P <Q (B )P =Q (C )P >Q (D)与n 的取值有关2005 12.若0122=+-a a ,则a a 422-=__________.2005 17.(本小题满分9分) 计算:222ba ab a -+ 2006 1.某市某日的气温是-2℃~6℃,则该日的温差是( ).(A)8℃ (B)6℃ (C)4℃ (D)-2℃2006 11.计算:5a ÷3a = . 2006 12.计算:21x x x -=- . 2007 1、下列各数中,最小..的数是( )A .-2B .-1C .0D .2007 3、下列计算中,正确的是( )A .33x x x =B .3x x x -=C .32x x x ÷=D .336x x x += 2007 11、化简2-= .2007 17、(9分)请以下列三个代数式中任选两个构造一个分式,并化简该分式。
21a - ab b - b ab +2008 1、计算3(2)-所得结果是( )A 6-B 6C 8-D 82008 4、若实数a 、b 互为相反数,则下列等式中恒成立的是( )A 0a b -=B 0a b +=C 1ab =D 1ab =-2008 11的倒数是2008 17、(9分)分解因式32a ab -2008 19、(10分)如图6,实数a 、b 在数轴上的位置,化简二、 方程与不等式2005 4.不等式组⎩⎨⎧>-≥+0101x x 的解集是(*).(A)1-≥x (B)1->x (C)1≥x (D) 1>x 2005 15.方程2122=+x x 的解是_________· 2005 19.(本小题满分10分) 解方程组:⎩⎨⎧-==+103xy y x 2005 21.(本小题满分12分) 某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?2006 5.一元二次方程2230x x --=的两个根分别为( ).(A)X l =1, x 2=3 (B)X l =1, x 2=-3 (C)X 1=-1,X 2=3 (D)X I =-1, X 2=-32006 14.已知A=12n -, B=2-(n 为正整数).当n ≤5时,有A<B ; 请用计算器计算当n ≥6时,A 、B 的若干个值,并由此归纳出当以n ≥6时,A 、B 问的大小关系为 ·2006 17.(本小题满分9分) 解不等式组 30210x x +>⎧⎨-<⎩2006 21.(本小题满分12分)目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).(1)求目前广州市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?2007 5、以11x y =⎧⎨=-⎩为解的二元一次方程组是( ) A .01x y x y +=⎧⎨-=⎩ B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩ 2007 9、关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <02007 12、方程511x =+的解是 . 2007 23、(12分)某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠。
2008年广东省中考数学试卷及答案
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根一、选择题(本大题5小题,每小题3分,共15分)1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40820米,用科学计数法表示火炬传递路程是A .2102.408⨯米B .31082.40⨯米C .410082.4⨯米D .5104082.0⨯米3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是__________;8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.A M NBC OB DC A 图2三、解答题(一)(本大题5小题,每小题6分,共30分)11.(本题满分6分)计算 :01)2008(260cos π-++- .12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2008年广东省各地区中考数学试题汇编 圆
图5圆1、(肇庆)6.如图1,AB 是⊙O 的直径,∠ABC =30°,则∠BAC =( )A .90°B .60°C .45°D .30°2、(梅州)4.如图2所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB ( )A . 是正方形B . 是长方形C . 是菱形D .以上答案都不对3、(梅州)9. 如图5,AB 是⊙O 的直径,∠COB =70°,则∠A =_____度.4、(东莞)10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.5、(湛江)4. ⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定 6、(肇庆)13.圆的半径为3cm ,它的内接正三角形的边长为 .7、(茂名)13.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°, 则∠OAC 的度数是 . 8、(湛江)15. 圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是 . 9、(肇庆)24.(本小题满分10分)如图6,在Rt △ABC 中,∠ABC =90°,D 是AC 的中点,⊙O 经过A 、B 、D 三点,CB 的延长线交⊙O 于点E .(1) 求证AE =CE ;(2) EF 与⊙O 相切于点E ,交AC 的延长线于点F ,若CD =CF =2cm ,求⊙O 的直径; (3) (3)若n CDCF = (n >0),求sin ∠CAB .·OBDCA图2 图210、(茂名) 22.(本题满分10分)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ;(3分)(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由.(3分) (3)当AB =5,BC =6时,求⊙O 的半径.(4分)11、(湛江)25. 如图9所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC .(1)求证:∠ACO =∠BCD .(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.12、(佛山)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形)..........................例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1) 如图1,在圆O 所在平面上,放置一条..直线m (m 和圆O 分别交于点A 、B ),根据EC A(第22题图)这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2) 如图2,在圆O 所在平面上,请你放置与圆O 都相交且不同时经过圆心.......的两条..直线m 和n (m 与圆O 分别交于点A 、B ,n 与圆O 分别交于点C 、D ). 请你根据所构造的图形提出一个结论,并证明之. (3) 如图3,其中AB 是圆O 的直径,AC 是弦,D 是的中点,弦DE ⊥AB 于点F .请找出点C 和点E 重合的条件,并说明理由.ABC第25题图1第25题图2AB第25题图3。
2008年广州市中考数学试卷
2008年广州市中考数学试卷一、选择题(共10小题;共50分)1. 计算所得结果是B. D.2. 将图按顺时针方向旋转后得到的是A. B.C. D.3. 下列四个图形中,是三棱柱的平面展开图的是A. B.C. D.4. 若与互为相反数,则下列式子成立的是A. B. C. D.5. 方程的根是A. B. C. , D. ,6. 一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间降雨B. “抛一枚硬币正面朝上的概率是”表示每抛硬币次就有次出现正面朝上C. “彩票中奖的概率是”表示买张彩票一定会中奖D. “抛一枚正方体骰子朝上面的数为奇数的概率是“表示如果这个骰子抛很多很多次,那么平均每次就有次出现朝上面的数为奇数8. 把下列每个字母都看成一个图形,那么中心对称图形有O L Y M P I CA. 个B. 个C. 个D. 个9. 如图,每个小正方形的边长为,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是A. B. C. D.10. 四个小朋友玩跷跷板,他们的体重分别为,,,,如图所示,则他们的体重大小关系是A. B. C. D.二、填空题(共6小题;共30分)11. 的倒数是.12. 如图,,若,则度.13. 函数中的自变量的取值范围是.14. 将线段平移,得到线段,则点到点的距离是.15. 命题“圆的直径所对的圆周角是直角”是命题.(填“真”或“假”)16. 对于平面内任意一个凸四边形,现从以下四个关系式①;②;③;④中任取两个作为条件,能够得出这个四边形是平行四边形的概率是.三、解答题(共9小题;共117分)17. 分解因式:18. 小青在九年级上学期的数学成绩如下表所示:(1)计算该学期平时的平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.19. 实数,在数轴上的位置如图所示,化简:.20. 如图,在菱形中,,过点作且与的延长线交于点.求证:四边形是等腰梯形.21. 如图,一次函数的图象与反比例函数的图象相交于,两点.(1)根据图象,分别写出,的坐标;(2)求出两函数的解析式;(3)根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.22. 年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到千米远的郊区进行抢修.维修工骑摩托车先走,分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的倍,求两种车的速度.23. 如图,射线交一圆于点,,射线交该圆于点,,且.(1)求证:;(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.24. 如图,扇形的半径,圆心角,点是上异于,的动点,过点作于点,作于点,连接,点,在线段上,且.(1)求证:四边形是平行四边形;(2)当点在上运动时,在,,中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:是定值.25. 如图,在梯形中,,,,在等腰中,,底边,点,,,在同一直线上,且,两点重合,如果等腰以秒的速度沿直线箭头所示方向匀速运动,秒时梯形与等腰重合部分的面积记为平方厘米.(1)当时,求的值;(2)当,求与的函数关系式,并求出的最大值.答案第一部分1. C2. A3. B4. C5. C6. B 【解析】一次函数的图象是由正比例函数向下平移得到,所以经过第一、三、四象限.7. D8. B9. C10. D第二部分11.12.13.14.15. 真【解析】共有种等可能结果:①②,①③,①④,②③,②④,③④;其中①②,①③,③④能够证明四边形是平行四边形,其概率为第三部分17. 原式18. (1);(2).19. , ..20. 四边形是菱形,,,不平行于,四边形是梯形,四边形是菱形,,,又,,梯形是等腰梯形.21. (1)由图象得,.(2)一次函数的解析式为,();把,点的坐标代入得解得一次函数的解析式为,反比例函数的解析式为,把点坐标代入得,解得,反比例函数的解析式为.(3)当或时,一次函数的值大于反比例函数的值.22. 设摩托车的速度为千米/时,则抢修车的速度为千米 /时.根据题意得:即即经检验,是原分式方程的根且符合题意..答:摩托车的速度为千米/时,抢修车的速度为千米/ 时.23. (1)作于点,于点,连接,,,易得,,,,,,在和中,,.在和中,,.,.(2),..由于是的垂直平分线,..因此平分.24. (1)连接交于.因为,,,所以四边形为矩形,所以,.因为,所以,所以,所以四边形是平行四边形.(2)不变.在矩形中,因为,所以.(3)设,则.过作于.由得,所以.所以.所以.所以.25. (1)当时,,过点作于点,过点作于点,如图,所以,因为,,,所以,所以,在和中,所以,所以,因为,,所以,所以点与点重合,所以;(2)当时,在线段上,作于点,过点作于点,如图,因为,,所以,所以,所以,因为,,所以,所以,所以,所以同理:,所以因为,开口向下,所以有最大值,当时,最大值为;当时,在线段的延长线上,如图,因为,,所以,所以,,所以,,所以当,所以时,最大值为;综上,时,最大值为.。
2008年广东省各地区中考数学试题汇编 概率
2008年广东各地区中考数学试题分类汇编——概率1、(佛山)6. “明天下雨的概率为80%”这句话指的是( ).A. 明天一定下雨B. 明天80%的地区下雨,20%的地区不下雨C. 明天下雨的可能性是80%D. 明天80%的时间下雨,20%的时间不下雨2、(佛山)8. 在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .13B .23C .16D .343、(肇庆)10.从n 张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为51,则n=( )A .54B .52C .10D .5 4、(梅州)3.下列事件中,必然事件是( )A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学 5、(湛江)7. 从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( )A . 6B . 3C . 2D . 16、(佛山)14.在研究抛掷分别标有1、2、3、4、5、6的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大?假设下表是几位同学抛掷骰子的实验数据: 同学编号抛掷情况1 2 3 4 5 6 7 8 抛掷次数 100 150 200 250 300 350 400 450 正面朝上的点数是 三个连续整数的次数1012202225333641请你根据这些数据估计上面问题的答案大约是 .7、(湛江)17. 图4所示的扇形图给出的是地球上海洋、陆地的表面积约占地球总表面积的百分比,若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是 . 8、(湛江)21. 有五张除字不同其余都相同的卡片分别放在甲、乙两盒子中,已知甲盒子有三张,分别写有“北”、“京”、“奥”字样,乙盒子有两张,分别写有“运”、“会”字样,若依次从甲乙两盒子中各取一张卡片,求能拼成“奥运”两字的概率.9、(茂名)18.(本题满分8分)不透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2分) (2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.(6分)10、(东莞)17.(本题满分7分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄 球的概率都是31,你认为对吗?请你用列表或画树状图的方法说明理由.。
2008年广州市数学中考试题(2)_2
2008年河南省中考化学临考必背知识总结速查1.怎样才能减少“白色污染”?①少使用塑料②回收利用③研制可分解塑料2.怎样检验某人是否患糖尿病?取尿样少量加入新制Cu(OH)2并加热,如果产生红色沉淀,证明某人患糖尿病。
3.为什么煮沸的方法可以消毒医疗器械?细菌的生命基础是蛋白质,煮沸可以使蛋白质凝固,失去生理活性。
4.聚乙烯塑料和聚氯乙烯塑料怎样鉴别?分别取一块点燃,有刺激性气味的是聚氯乙烯塑料,无刺激性气味是聚乙烯塑料。
5.某学生做实验时,不小心将稀硫酸溅到衣服上,他认为不是浓硫酸没有大问题,但不久发现衣服上出现几个小洞,这是为什么?稀硫酸中水蒸发,变成浓硫酸,浓硫酸具有脱水性,所以使衣服出现几个小洞。
6.避免水污染的措施有哪些?①工业“三废”经过处理后再排放②农业上合理使用农药和化肥③生活污水经处理后再排放(或加强对水质监侧)……7.写出鉴别下列物质的方法,现象和结论(1) 硬水和软水分别取少量两种液体于两支试管中,加入适量的肥皂水,如果无泡沫、产生沉淀的是硬水,无沉淀产生,泡沫多的是软水。
(2) 葡萄糖溶液和淀粉溶液方法一:各取少量分别放入两支试管中,再分别加入碘水,出现蓝色沉淀是淀粉溶液。
方法二:各取少量分别放入两支试管中,再分别加入新制Cu(OH)2并加热,有红色沉淀产生的是葡萄糖溶液。
8.我国有许多盐碱湖,湖中溶有大量氯化钠和纯碱,那里的农民冬天捞纯碱,夏天晒盐.试用所学知识说明:(1)冬天捞纯碱的道理.碳酸钠溶解度随温度的升高而增大,冬天温度低,碳酸钠溶解度减小,所以从盐湖中析出来。
(2)夏天晒盐的道理氯化钠溶解度随温度变化不大,夏天水分不断蒸发,氯化钠将析出来。
※该题必须把碳酸钠、氯化钠溶解度随温度变化规律答出来,然后再加以分析。
9. 1989年世界卫生组织确认,长期或大量摄入铝元素对人体神经系统将造成损害,建议限制导致人体摄入铝元素的各种应用。
根据你的经验,举出二例受限制的应用。
08年广州中考试题
秘密★启用前2008年广州市初中毕业生学业考试物理本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1到3页,第二部分4至8页,共8页。
总分100分。
考试时间80分钟。
注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号;再用2B铅笔把对应该两号码的标号涂黑。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3.非选择题答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域;除作图题可用2B 铅笔作图外,其他各题必须用黑色字迹钢笔或签字笔作答.不准使用涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将本试卷和答题卡一并交回。
5.全卷共六大题,请考生检查题数。
第一部分(选择题共36分)一、选择题(每小题3分,共36分)每小题给出的四个选项中,只有一个是正确的,请把正确的答案选出来.1.人能分辨出二胡和小提琴发出的声音.主要因为这两种乐器发出的声音A.响度不同B.音色不同C.音调不同D.振幅不同2. 如图1所示,用导线把灯泡、电池和四种物品分别相连,灯泡一定不发光...的是3.把两种不同的金属片插入柠檬,制成“水果电池”.用电压表测量水果电池的电压,如图2所示.下列说法正确的是A.金属片B 是水果电池的正极B.水果电池把化学能转化为电能C.水果电池把内能转化为电能D. 水果电池把电能转化为化学能4. 如图3,钢珠沿竖直平面上的光滑轨道abcd 从a 点运动到d 点,钢珠 A. 通过d 时的速度比通过c 时大 B. 在c 点比在b 点的重力势能小C. 从a 运动到b 的过程中,动能转化为重力势能D.从b 运动到c 的过程中,机械能转化为重力势能5. 如图4所示为内燃机的能量流向图,热机效率(η)等于 A .10041⨯E E % B .⨯14E E 100% C .⨯+143E E E 100% D .⨯++++543214E E E E E E 100%图1ABCD6. 嫦娥一号卫星的微波探测仪可探测“月壤”发出的频率3.0GHz 、7.8GHz 、19.35GHz 和37.0GHz 的微波辐射.下列说法正确的是 A. 微波属于电磁波 B. 微波是可见光C. 这四种微波在真空中波长一样D. 这四种微波在真空中传播速度不同7. 把高2cm 的发光棒立于焦距为5cm 的凸透镜前, 在凸透镜后的光屏上成了4cm 高的像,物体离凸透镜的距离可能是A.7.5cmB.12.5cmC.4.5cmD.10cm 8. 下列说法正确的是 A .物体不受力,一定静止 B .作用在运动物体的力一定不平衡 C .物体受到力的作用,速度大小一定改变 D .物体运动方向发生改变,则一定受到力的作用9. 如图5所示,升降机以1m/s 的速度匀速上升时,升降机对人的支持力为500N,下列说法正确的是A.升降机静止在十楼时对人的支持力小于500NB. 升降机以1.5m/s 的速度匀速上升时对人的支持力大于500NC. 升降机以2m/s 的速度匀速下降时对人的支持力等于500ND. 升降机以1m/s 的速度匀速下降时对人的支持力小于500N10. 如图6所示,绳子OO ′悬吊着质量忽略不计的杆,在杆的a 点挂上重物G , 在O 右侧某点b 处挂上钩码.重物G 的质量及a 到O 的距离不变,要使杆保持水平, b处挂的钩码个数(各个钩码质量相同)和b到O点的距离的关系是图7中哪一幅图11.两个相同的容器里分别装了质量相同的两种液体,用同一热源分别加热,液体温度与加热时间关系如图8所示. 根据图线可知A. 甲液体的比热容大于乙液体的比热容B. 如果升高相同的温度,两种液体吸收的热量相同C. 加热时间相同,甲液体吸收的热量大于乙液体吸收的热量D. 加热时间相同,甲液体温度升高比乙液体温度升高得多12.图9所示是某同学连接的电铃电路,开关闭合后,电路中始终有电流,但电铃只响一声就不再响了,原因是A.电磁铁始终没有磁性B.衔铁没有向下运动C.衔铁一直被电磁铁吸着不能回弹D.电池正、负极接反了第二部分(非选择题共64分)二、填空题(每小题4分,共16分)13.(1)电冰箱里的食物容易变干和相互“窜味”,请你从物理角度分析,食物“窜味”属于___________现象,电冰箱里的食物主要是通过______或_____方式失去水分的.(2)小明触摸电冰箱门时感到手“麻”,下表列出小明对造成手“麻”原因的四种猜想,你认为其中的______猜想是合理的(填写序号).14. 据报道:“一男子陷在泥沼里, 他挣扎着力图把一只脚拔出来,结果下陷得更快更深.抢救队员在泥沼上铺上木板,从木板上靠近该男子,把绳索递给他.大家合力把他拉出后,让他平躺在泥沼上以蛙泳姿势移离泥沼. ”(1)报道中描述________________的过程对泥沼的压强增大;图11 (2) )报道中描述________________和_____________的过程对泥沼的压强减小,你判断的依据是:_______________________.15.电动机车利用电动机产生动力以200km/h 高速行驶,电动机把_______能转化为__________能. 由于______________,所以行驶的列车在动力消失后不能立即停下.当高速运行的列车开始制动时,电动机变成发电机,将动能转化为电能实现减速,发电机应用______________物理现象工作.16.小明用天平、大杯、小杯和密度为ρ的水测一石块的密度. (1)天平平衡时如图10所示,石块的质量m =__________. (2)小明测量石块体积的操作步骤如下: a.测出空小杯的质量m 1b.把装了水的大杯和空的小杯如图11放置c.把石块缓缓放入大杯中,大杯中部分水溢进小杯d.测出承接了溢出水的小杯总质量m 2请你指出步骤b 错误之处:__________________;(3) 用本题中出现过的物理量符号表示石块体积为__________________;石块密度为______________(设步骤b 中的错误已改正) . 三、作图题(9分)17.(1)(1分)在图12中用线代表绳子,将两个滑轮连成省力的滑轮组,要求人用力往下拉绳使重物升起.(2)(3分)在图13画出小球受力的示意图.18.(2分)图14所示的a 、b 是经平面镜反射后的反射光线,画出对应的入射光线. 19.(3分) 在方框中画灯泡L 1和灯泡L 2并联,电流表测灯泡L 1电流的电路图,并在图15上连接实物图.图13图10四、计算题(15分)解答应写出必要的文字说明、公式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,演算过程及结果都要在数字的后面写上正确的单位.20.(8分)小明要设计一个照明电路,现有两盏规格为“12V 12W”的灯泡和一个12V 的太阳能电池.(1) 一盏“12V 12W”的灯泡正常发光,10h 消耗多少千瓦时的电能? (2)若这两灯泡串联接在太阳能电池上,总功率是多少? (3)若这两灯泡并联接在太阳能电池上,总功率是多少?(4)要提高照明效果,两灯泡应该串联还是并联接入电路.为什么?21.(7分)距离传感器发出的超声波遇到物体后反射回传感器.传感器收到信号后自动计算出物体与传感器的距离,并显示物体的距离(s )-时间(t )图象.超声波在空气中的速度是340m/s.(1)若传感器在发出信号后0.01s 收到从物体反射回来的信号. 物体距传感器多远? (2)若显示物体的s -t 图象如图16,物体在0至15s 的运动情况如何.(3)如图17所示,一物体在F =10N 的水平拉力作用下,沿水平地面做直线运动.传感器显示物体的s -t 图象如图18. 求: 在0至15s 内物体受到的摩擦力多大?拉力的功率多大? 五、问答题(5分)22. 如图19所示, 小纸条靠近水龙头流下的稳定的水流.你预测小纸条的运动情况是怎样的,物理依据是什么?图15六、实验、探究题(共19分)23.(6分) (1)在实验室里,三组同学测得水的沸点分别为97℃、93℃、102℃;有同学猜想导致这种现象的原因是各组用的温度计有偏差.请你设计一个简单的方法验证这猜想:____________________.(2)小明要自制一支能测水沸点的温度计,现有表中所列的两种物质,他应选用表中______做测温物质,原因是____________.在一个大气压下,把温度计先后放入冰水混合物和沸水中,分别标出温度计中液柱达到的位置A 和B .将该温度计放在刻度尺旁,如图20所示,图中刻度尺的分度值是:_______,此时温度计显示的温度是:_________.24.(6分)某同学希望通过比较电路中不同位置电流表的读数来研究串联电路的电流规律.所接电路图如图21所示,闭合开关后,两电流表指针偏转情况如图22.(1)电流表A 2的读数是 。
2008年广东省广州市中考数学试题及参考答案
2008年广州市数学中考试题一、选择题(每小题3分,共30分) 1、(2008广州)计算3(2)-所得结果是( ) A 6- B 6 C 8- D 82、(2008广州)将图1按顺时针方向旋转90°后得到的是( )3、(2008广州)下面四个图形中,是三棱柱的平面展开图的是( )4、(2008广州)若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-5、(2008广州)方程(2)0x x +=的根是( )A 2x =B 0x =C 120,2x x ==-D 120,2x x == 6、(2008广州)一次函数34y x =-的图象不经过( )A 第一象限B 第二象限C 第三象限D 第四象限 7、(2008广州)下列说法正确的是( )A “明天降雨的概率是80%”表示明天有80%的时间降雨B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C “彩票中奖的概率是1%”表示买100张彩票一定会中奖D “抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数8、(2008广州)把下列每个字母都看成一个图形,那么中心对成图形有( )O L Y M P I CA 1个B 2个C 3个D 4个9、(2008广州)如图2,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) AB 2CD10、(2008广州)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>二、填空题(每小题3分,共18分) 11、(2008的倒数是12、(2008广州)如图4,∠1=70°,若m ∥n ,则∠2= 13、(2008广州)函数1xy x =-自变量x 的取值范围是 14、(2008广州)将线段AB 平移1cm ,得到线段A ’B ’,则点A 到点A ’的距离是 15、(2008广州)命题“圆的直径所对的圆周角是直角”是 命题(填“真”或“假”) 16、(2008广州)对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB ∥CD ;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是三、解答题(共102分)17、(2008广州)(9分)分解因式32a ab -18、(2008广州)(9分)小青在九年级上学期的数学成绩如下表所示图2图3图4(1)计算该学期的平时平均成绩;(2)如果学期的总评成绩是根据图5所示的权重计算, 请计算出小青该学期的总评成绩。
2008年广东省初中毕业生数学学业考试(word版,有答案)
2008年某某市初中毕业升学考试数学试题一、用心填一填:本大题共12小题,每小题2分,共24分1、如果向东走3米记作+3米,那么向西走5米记作米。
103、温家宝总理在十一届全国人大一次会议上的政府工作报告指出,今年中央财政用于教育投入将达到1562亿元,用科学记数法表示为亿元。
4、已知△ABC 中,BC =10CM ,D 、E 分别为AB 、AC 中点,则DE =CM 。
5数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 。
6如图,∠ACD =1550,∠B =350,则∠A =度。
7、函数x 2+的自变量x 的取值X 围是。
8、某物业公司对本小区七户居民2007年全年用电量进行统计,每户每月平均用电量(单位:度)分别是:56、58、60、56、56、68、74。
这七户居民每户每月平均用电量的众数是度 9、一元二次方程2x 2x 1=0--的根为。
10、两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为11、如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为。
12、如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是。
二、仔细选一选:本大题共8小题,每小题3分,共24分13、在下列实数中,无理数是( )A 5 22、0.1 B、 C、-4 D、 714、左图是由四个相同的小立方体组成的立体图形,它的左视图是( )15、已知下列命题:①若A >0,B >0,则AB >0; ②平行四边形的对角线互相垂直平分;③若∣x ∣=2,则x =2; ④圆的切线经过垂直于切点的直径,其中真命题是( ) A 、①④B 、①③C 、②④D 、①②16、已知圆锥的侧面积为8πCM 2, 侧面展开图的圆心角为450,则该圆锥的母线长为( ) A 、64CMB 、8CMC、 D17、2008年5月12日,某某汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S(千米)与行进时间t (小时)的函数大致图像,你认为正确的是( )A B C D第14题图18、如图,在Rt △ABC 中,∠C =900,∠A =300,E 为AB 上一点且AE :EB =4:1 ,EF ⊥AC 于F ,连结FB ,则t AN ∠CFB 的值等于( )3235353A 、 、、 、BCD19、在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
2008年广州市普通高中毕业班综合测试(一)数 学(文科)
2008年广州市普通高中毕业班综合测试(一)数 学(文科) 2008.3本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再将答案填写在对应题号的横线上。
漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}22A x x =-<<,{}220B x x x =-≤,则A B =A .()0,2B .(]0,2C .[]0,2D .[)0,22.已知3cos 5α=,则cos 2α的值为A .2425-B .725-C .725D .24253.一个几何体的三视图如图1所示,其中正视图与左视图都是边长为2的正三角形,则这个几何体的侧面积为AB .2πC .3πD .4π4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比 赛得分的情况用如图2所示的茎叶图表示,则甲、乙两名运动员 得分的中位数分别为 A .19、13 B .13、19C .20、18D .18、20图2图1 正(主)视图 左(侧)视图俯视图5.已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩若1()2f a =,则a = A .1- BC .1-D .1或 6.已知a ∈R ,则“2a >”是“22a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.设()f x 、()g x 是R 上的可导函数,()f x '、()g x '分别为()f x 、()g x 的导函数,且()()()()0f x g x f x g x ''+<,则当a x b <<时,有A .()()()()f x g b f b g x >B .()()()()f x g a f a g x >C .()()()()f x g x f b g b >D .()()()()f x g x f a g a > 8.直线20ax y a -+=与圆229x y +=的位置关系是A .相离B .相交C .相切D .不确定9.抽气机每次抽出容器内空气的60%,要使容器内剩下的空气少于原来的0.1%,则至少要抽(参考数据:lg 20.3010=,lg30.4771=)A .14次B .13次C .9次D .8次10.在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=,则PBC ∆与ABC ∆的面积之比是A .13 B .12 C .23 D .34二、填空题:本大题共5小题,每小题5分,满分20分.本大题分为必做题和选做题两部分.(一)必做题:第11、12、13题是必做题,每道试题考生都必须做答.11.若复数()()2563i z m m m =-++-是实数,则实数m = .12.在空间直角坐标系中O xyz -,点()1,2,3-关于坐标平面yOz 的对称点的坐标为 .13.按如图3所示的程序框图运算. 若输入8x =,则输出k = ;若输出2k =,则输入x 的取值范围是 . (注:“1=A ”也可写成“1:=A ”或“1←A ”,均表示 赋值语句)(二)选做题:第14、15题是选做题,考生只能选做一题,两题全答的,只计算第一题的得分. 14.(坐标系与参数方程选做题)在极坐标系中,过点,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在边AB 上,且:1:2AE EB =,DE 与AC交于点F ,若AEF ∆的面积为62cm ,则ABC ∆的面积为 2cm .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“3x y +≤”的概率; (2)求事件“2x y -=”的概率. 17.(本小题满分12分)已知函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫⎪⎝⎭和,12π⎛⎫⎪⎝⎭. (1)求实数a 和b 的值;(2)当x 为何值时,()f x 取得最大值. 18.(本小题满分14分)如图4所示,在边长为12的正方形11AA A A''中,点,B C 在线段AA '上,且3AB =,4BC =,作1BB 1AA ,分别交11A A '、1AA '于点1B 、P ,作1CC1AA ,分别交11A A '、1AA '于点1C 、Q ,将该正方形沿1BB 、1CC 折叠,使得1A A ''与1AA 重合,构成如图5所示的三棱柱111ABC A B C -.(1)在三棱柱111ABC A B C -中,求证:AB ⊥平面11BCC B ;(2)求平面APQ 将三棱柱111ABC A B C -分成上、下两部分几何体的体积之比.19.(本小题满分14分)已知数列}{n a 中,51=a 且1221nn n a a -=+-(2n ≥且*n ∈N ).(1)求2a ,3a 的值;(2)是否存在实数λ,使得数列2n na λ+⎧⎫⎨⎬⎩⎭为等差数列,若存在,求出λ的值;若不存在,请说明理由. 20.(本小题满分14分)已知过点()0,1P -的直线l 与抛物线24x y =相交于11()A x y ,、22()B x y ,两点,1l 、2l 分别是抛物线24x y =在A 、B 两点处的切线,M 、N 分别是1l 、2l 与直线1y =-的交点. (1)求直线l 的斜率的取值范围;(2)试比较PM 与PN 的大小,并说明理由.21.(本小题满分14分)已知函数()x f x e x =-(e 为自然对数的底数). (1)求函数()f x 的最小值;(2)若*n ∈N ,证明:1211n n n nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.2008年广州市普通高中毕业班综合测试(一)数学(文科)试题参考答案及评分标准40分.10.由PA PB PC AB ++= ,得PA PB BA PC +++=0,即2PC AP =,所以点P 是CA 边上的第二个三等分点,如图所示.故23PBC ABC S BC PC S BC AC ∆∆⋅==⋅. 二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中第13题第一个空2分,第二个空3分. 11.3 12.()1,2,3-- 13.4;(]28,57 14.cos 2ρθ= 15.72三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查古典概率等基础知识,考查运算求解能力)解:设(),x y 表示一个基本事件,则掷两次骰子包括:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,……,()6,5,()6,6,共36个基本事件.(1)用A 表示事件“3x y +≤”,则A 的结果有()1,1,()1,2,()2,1,共3个基本事件. ∴()313612P A ==.答:事件“3x y +≤”的概率为112. (2)用B 表示事件“2x y -=”,则B 的结果有()1,3,()2,4,()3,5,()4,6,()6,4,()5,3,()4,2,()3,1,共8个基本事件.∴()82369P B ==.答:事件“2x y -=”的概率为29. 17.(本小题满分12分)(本小题主要考查特殊角的三角函数、三角函数的性质等基础知识,考查运算求解能力) 解:(1)∵函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫⎪⎝⎭和,12π⎛⎫⎪⎝⎭,∴sin cos 0,33sin cos 1.22a b a b ππππ⎧+=⎪⎪⎨⎪+=⎪⎩即10,221.b a +=⎪⎨⎪=⎩解得1,a b =⎧⎪⎨=⎪⎩ (2)由(1)得()sin f x x x =12sin 2x x ⎛⎫= ⎪ ⎪⎝⎭2sin 3x π⎛⎫=- ⎪⎝⎭. ∴当sin 13x π⎛⎫-= ⎪⎝⎭,即232x k πππ-=+,即526x k ππ=+()k ∈Z 时,()f x 取得最大值2. 18.(本小题满分14分)(本小题主要考查空间几何体中线、面的位置关系,考查空间想象能力和运算求解能力)(1)证明:在正方形11AA A A''中,∵5A C AA AB BC ''=--=, ∴三棱柱111ABC A B C -的底面三角形ABC 的边5AC =.∵3AB =,4BC =,∴222AB BC AC +=,则AB BC ⊥.∵四边形11AA A A''为正方形,11AA BB ,∴1AB BB ⊥,而1BC BB B = ,∴AB ⊥平面11BCC B .(2)解:∵AB ⊥平面11BCC B ,∴AB 为四棱锥A BCQP -的高.∵四边形BCQP 为直角梯形,且3BP AB ==,7CQ AB BC =+=,∴梯形BCQP 的面积为()1202BCQP S BP CQ BC =+⨯=, ∴四棱锥A BCQP -的体积1203A BCQP BCPQ V S AB -=⨯=,由(1)知1B B AB ⊥,1B B BC ⊥,且AB BC B = , ∴1B B ⊥平面ABC .∴三棱柱111ABC A B C -为直棱柱, ∴三棱柱111ABC A B C -的体积为111172ABC A B C ABC V S BB -∆=⋅=. 故平面APQ 将三棱柱111ABC A B C -分成上、下两部分的体积之比为722013205-=. 19.(本小题满分14分)(本小题主要考查等比数列、递推数列等基础知识,考查综合运用知识分析问题和解决问题的能力)解:(1)∵51=a ,∴22122113a a =+-=,33222133a a =+-=.(2)方法1:假设存在实数λ,使得数列2n na λ+⎧⎫⎨⎬⎩⎭为等差数列, 设2n n n a b λ+=, 由}{n b 为等差数列,则有3122b b b +=. ∴321232222a a a λλλ+++⨯=+. ∴13533228λλλ+++=+. 解得,1λ=-. 事实上,1111122n n n n n n a a b b +++---=-()111212n n n a a ++=-+⎡⎤⎣⎦()1112112n n ++⎡⎤=-+⎣⎦1=. 综上可知,存在实数1λ=-,使得数列2n na λ+⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. 方法2:假设存在实数λ,使得2n na λ+⎧⎫⎨⎬⎩⎭为等差数列, 设2n n na b λ+=,由}{n b 为等差数列,则有122n n n b b b ++=+(*n ∈N ). ∴12122222n n n n n n a a a λλλ+++++++⨯=+. ∴1244n n n a a a λ++=--()()121222n n n n a a a a +++=--- ()()12221211n n ++=---=-.综上可知,存在实数1λ=-,使得数列2n na λ+⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. 20.(本小题满分14分)(本小题主要考查直线与圆锥曲线等基础知识,考查数形结合的数学思想方法,以及推理论证能力、运算求解能力)解:(1)依题意,直线l 的斜率存在,设直线l 的方程为1y kx =-.由方程214.y kx x y =-⎧⎨=⎩,消去y 得2440x kx -+=. ············· ①∵直线l 与抛物线24x y =相交于A ,B 两点,∴216160k ∆=->,解得1k >或1k <-.故直线l 斜率的取值范围为()(),11,-∞-+∞ . (2)解法1:∵1x ,2x 是方程①的两实根,∴12124,4.x x k x x +=⎧⎨=⎩ ∴10x ≠,20x ≠. ∵214y x =,∴12y x '=.∵21114y x =,∴切线1l 的方程为211111()24y x x x x =-+.令1y =-,得点M 的坐标为2114,12x x ⎛⎫-- ⎪⎝⎭. ∴21142x PM x -=. 同理,可得22242x PN x -=.∵22121221222121212142444124444PMx x x x x x x PN x x x x x x x ---=⋅===---(12x x ≠).故PM PN =. 解法2:可以断定PM PN =. ∵1x ,2x 是方程①的两实根, ∴12124,4.x x k x x +=⎧⎨=⎩ ∴10x ≠,20x ≠. ∵214y x =,∴12y x '=.∵21114y x =,∴切线1l 的方程为211111()24y x x x x =-+. 令1y =-,得点M 的坐标为2114,12x x ⎛⎫--⎪⎝⎭. 同理可得点N 的坐标为2224,12x x ⎛⎫-- ⎪⎝⎭. ∵()()2212121212124440222x x x x x x x x x x +---+==. ∴点P 是线段MN 的中点.故PM PN =.21.(本小题满分14分)(本小题主要考查函数的导数、最值、等比数列等基础知识,考查分析问题和解决问题的能力、以及创新意识) (1)解:∵()1xf x e'=-,令()0f x '=,得0x =.∴当0x >时,()0f x '>,当0x <时,()0f x '<. ∴函数()x f x e x =-在区间(),0-∞上单调递减,在区间()0,+∞上单调递增. ∴当0x =时,()f x 有最小值1.(2)证明:由(1)知,对任意实数x 均有1xe x -≥,即1xx e +≤.令k x n =-(*,1,2,,1n k n ∈=-N ),则01kn k e n-<-≤,∴1(1,2,,1)nnkk n k e e k n n --⎛⎫⎛⎫-≤==- ⎪ ⎪⎝⎭⎝⎭. 即(1,2,,1)n k n k e k n n --⎛⎫≤=- ⎪⎝⎭ . ∵1,n n n ⎛⎫= ⎪⎝⎭∴(1)(2)211211n n n nn n n n e e e e n n n n -------⎛⎫⎛⎫⎛⎫⎛⎫++++≤+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵(1)(2)2111111111n n n e eeee e e e e ----------+++++=<=--- , ∴ 1211n n n nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.。
08年广东省各地域中考数学试题汇编——四边形
2008年广东各地域中考数学试题分类汇编——四边形一、(佛山)7. 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M 、N . 则线段BM 、DN 的大小关系是( ).A . DN BM >B . DN BM <C . DN BM =D . 无法确信二、(茂名)7.正方形内有一点A ,到各边的距离从小到大依次是一、二、3、4,则正方形的周长是( ) A.10 B.20 C.24 D.253、(茂名)10.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部份的面积是△ABC 的面积的 ( )A.91 B.92C.31 D.944、(肇庆)4.一个正方形的对称轴共有( )A .1条B .2条C .4条D .无数条五、(肇庆)14.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是(佛山)12.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 . 6、(湛江)23. 如图7所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.7、(佛山)23. 如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形.(1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形;(2) 当AB = AC 时,按序连结A 、D 、F 、E 四点所组成的图形有哪几类?直接写出组成图形的类型和相应的条件.第7题图第23题图EFDABC((第10题图)8、(肇庆)21.(本小题满分7分)如图5,在等腰Rt △ABC 中,∠C =90°,正方形DEFG 的极点D 在边AC 上,点E 、F 在边AB 上,点G 在边BC 上.(1)求证AE =BF ;(2)若BC =2cm ,求正方形DEFG 的边长.9、(茂名)23.(本题满分10分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分)(2)探讨当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 相互垂直?请回答并说明理由.(5分)F EDCBA (第23题图)图810、(梅州)18.本题满分8分.如图8,四边形ABCD是平行四边形.O是对角线AC的中点,过点O的直线EF别离交AB、DC于点E、F,与CB、AD的延长线别离交于点G、H.(1)写出图中不全等的两个相似三角形(不要求证明);(2)除AB=CD,AD=BC,OA=OC这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.11、(梅州)21.本题满分8分.如图10所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证: ∆ADE∽∆BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出那个最大值.1二、(东莞)18.(本题满分7分)如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF.(1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.13、(东莞)21.(本题满分9分)(1)如图7,点O 是线段AD 的中点,别离以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . 求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,维持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD不能重叠),求∠AEB 的大小.C B OD 图7 A B A O D CE 图8。
2008年广东省广州市中考数学试卷
2008年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)32.(3分)(2008•广州)将图按顺时针方向旋转90°后得到的是().C D..C D.8.(3分)(2008•广州)把下列每个字母都看成一个图形,那么中心对称图形有()9.(3分)(2008•广州)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是().D.10.(3分)(2008•广州)四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是()二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2008•广州)的倒数是_________.12.(3分)(2008•广州)如图,∠1=70°,若m∥n,则∠2=_________度.13.(3分)(2008•广州)函数y=中的自变量x的取值范围是_________.14.(3分)(2008•广州)将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是_________cm.15.(3分)(2008•广州)命题“圆的直径所对的圆周角是直角”是_________命题.(填“真”或“假”)16.(3分)(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_________.三、解答题(共9小题,满分102分)17.(9分)(2008•广州)分解因式:a3﹣ab2.(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.19.(10分)(2008•广州)如图,实数a、b在数轴上的位置,化简:.20.(10分)(2008•广州)如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.求证:四边形AECD是等腰梯形.21.(12分)(2008•广州)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.22.(12分)(2008•广州)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.23.(12分)(2008•广州)如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且.(1)求证:AC=AE;(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.2008年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)32.(3分)(2008•广州)将图按顺时针方向旋转90°后得到的是().C D..C D.8.(3分)(2008•广州)把下列每个字母都看成一个图形,那么中心对称图形有()9.(3分)(2008•广州)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是().D.•,答案选1+10.(3分)(2008•广州)四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是(),而二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2008•广州)的倒数是.得倒数为..12.(3分)(2008•广州)如图,∠1=70°,若m∥n,则∠2=70度.13.(3分)(2008•广州)函数y=中的自变量x的取值范围是x≠1.14.(3分)(2008•广州)将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是1cm.15.(3分)(2008•广州)命题“圆的直径所对的圆周角是直角”是真命题.(填“真”或“假”)16.(3分)(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.=三、解答题(共9小题,满分102分)17.(9分)(2008•广州)分解因式:a3﹣ab2.(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.=8619.(10分)(2008•广州)如图,实数a、b在数轴上的位置,化简:.最后计算20.(10分)(2008•广州)如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.求证:四边形AECD是等腰梯形.CAE=∠BAC=∠21.(12分)(2008•广州)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.点的坐标代入得y=y=点坐标代入得,解得.22.(12分)(2008•广州)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.,两车同时23.(12分)(2008•广州)如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且.(1)求证:AC=AE;(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.∠∠FEC=MCE=24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.CE=..))25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.=××=2((MN=(QR BQ CR ×﹣×(﹣×﹣t10<﹣最大值为TB=BR=TR=BR=TB TR=××=t+时,开口向上,﹣=102最大值为。