超定方程用最小二乘法求解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据解的存在情况,线性方程可以分为:
有唯一解的恰定方程组,
解不存在的超定方程组,
有无穷多解的欠定方程组。
对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。
线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB 中,利用左除命令(x=A\b)来寻求它的最小二乘解;
还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。
左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;
广义逆法是建立在对原超定方程直接进行 householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;
独立方程个数大于独立的未知参数的个数的方程,称为超定方程,在matlab里面有三种方法求解,
一是用伪逆法求解,x=pinv(A)*b,二是用左除法求解,x=A\b,三是用最小二乘法求解,
x=lsqnonneg(A,b)
(3)矩阵求逆
行数和列数相等的矩阵称为方阵,只有方阵有逆矩阵。方阵的求逆函数为:
B=inv(A)
该函数返回方阵A的逆阵。如果A不是方阵或接近奇异的,则会给出警告信息。
在实际应用中,很少显式的使用矩阵的逆。在MATLAB中不是使用逆阵x=inv(A)*B来求线性方程组Ax=B的解,
而是使用矩阵除法运算x=A\B来求解。因为MATLAB设计求逆函数inv时,采用的是高斯消去法,而设计除法解线性方程组时,
并不求逆,而是直接采用高斯消去法求解,有效的减小了残差,并提高了求解的速度。
因此,MATLAB推荐尽量使用除法运算,少用求逆运算。
(4)除法运算
在线性代数中,只有矩阵的逆的定义,而没有矩阵除法的运算。而在MATLAB 中,定义了矩阵的除法运算。
矩阵除法的运算在MATLAB中是一个十分有用的运算。根据实际问题的需要,定义了两种除法命令:左除和右除。
矩阵左除:
C=A\B或C=mldivide(A,B)
矩阵右除;
C=A/B或C=mrdivide(A,B)
通常矩阵左除不等于右除,
如果A是方阵,A\B等效于A的逆阵左乘矩阵B。也就是inv(A)*B。
如果A是一个n*n矩阵,B是一个n维列向量,或是有若干这样的列的矩阵,则A\B就是采用高斯消去法求得的方程AX=B的解。
如果A接近奇异的,MATLAB将会给出警告信息。
如果A是一个m*n矩阵,其中m不等于n,B是一个m维列向量,或是由若干这样的列的矩阵,
则X=A\B是不定或超定方程组AX=B的最小二乘解。通过QR分解确定矩阵A 的秩k,方程组的解X每一列最多只有k个非零元素。
如果k matlab中关于左除的定义: mldivide(A,B) and the equivalent A\B perform matrix left division (back slash). A and B must be matrices that have the same number of rows, unless A is a scalar, in which case A\B performs element-wise division —that is, A\B = A.\B. If A is a square matrix, A\B is roughly the same as inv(A)*B, except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n elements, or a matrix with several such columns, then X = A\B is the solution to the equation AX= B. A warning message is displayed if A is badly scaled or nearly singular. If A is an m-by-n matrix with m ~= n and B is a column vector with m components, or a matrix with several such columns, then X = A\B is the solution in the least squares sense to the under- or overdetermined system of equations AX= B. In other words, X minimizes norm(A*X - B), the length of the vector AX- B. The rank k of A is determined from the QR decomposition with column pivoting. The computed solution X has at most k nonzero elements per column. If k < n, this is usually not the same solution as x = pinv(A)*B, which returns a least squares solution. 注:在不理解矩阵分解的条件下,使用左除求解超定方程的解。 A*X=B, A:M*N, M>N, B-N*1; X=A\B;