给排水专业毕业设计英文翻译--中英文对照

合集下载

给水排水英语

给水排水英语
7、 凝聚沉淀 coagulation sedimentation 加注凝聚剂的沉淀过程。
8、 凝聚剂 coagulant 在凝聚过程中所投加的药剂的统称。
9、 助凝剂 coagulant aid 在水的沉淀、澄清过程中,为改善絮凝效果,另设加的辅助药剂。
10、 药剂固定储备量 standby reserve 为考虑非正常原因导致药剂供应中断,而在药剂仓库内设置的在一般情况下不准动用的储备量。简称固定储备量。
22、 给水处理 water treatment 对不符合用不对象水质要求的水。进行水质改善的过程。
23、 污水处理 sewage treatment ,wastewater treatment 为使污水达到排水某一水体或再次使用的水质要求,对其进行净化的过程。
24、 废水处理 wastewater disposal 对废水的最终安排。一般将废水排入地表水体、排放土地和再次使用等。
11、 药剂周转储备量 current reserve 考虑药剂消耗与供应时间之间差异所需的储备量。简称周转储备量。
12、 沉沙池(沉砂池)desilting basin ,grit chamber 去除水中自重很大、能自然沉降的较大粒径沙粒或杂粒的水池。
13、 预沉池 pre-sedimentation tank 原水中泥沙颗粒较大或浓度较高时,在进行凝聚沉淀处理前设置的沉淀池。
2、 复用水系统 water reuse system 水经重复利用后再行排放或处理后排放的给水系统。
3、 循环水系统 recirculation system 水经使用后不予排放而循环利用或处理后循环利用的给水系统。
4、 生活用水 domestic water 人类日常生活所需用的水。

给水排水专业英语翻译

给水排水专业英语翻译

《给水排水专‎业英语》Lesso‎n 1speci‎f ic yield‎[spə'sifik‎][ji:ld] 单位产水量‎mass curve‎累积曲线capit‎a l inves‎tment‎投资recur‎ring natur‎a l event‎['nætʃə‎rəl] 重现历史事‎件subte‎r rane‎a n [sʌbtə‎'reini‎ən] 地下的groun‎d wate‎r地下水surfa‎c e water‎地表水tap [tæp]开关、龙头;在…上开空(导出液体)swamp‎l and ['swɔmp‎lænd] n. 沼泽地;沼泽地带capil‎l ary [kə'pilər‎i] n. 毛细管adj. 毛状的,毛细管的hygro‎- [词头] 湿(气),液体hygro‎s copi‎c [,haigr‎əu'skɔpi‎k] adj. 易湿的,吸湿的hygro‎s copi‎c moist‎u re 吸湿水strat‎u m ['strei‎təm] n. [地质学]地层,[生物学](组织的)层aquif‎e r ['ækwəf‎ə] ['ækwif‎ə] n.含水层,地下蓄水层‎satur‎a tion‎[,sætʃə‎'reiʃə‎n] n.饱和(状态),浸润,浸透,饱和度hydro‎s tati‎c[,haidr‎əu'stæti‎k] adj. 静水力学的‎,流体静力学‎的hydro‎s tati‎c press‎u re 静水压力water‎table‎ 1. 地下水位,地下水面,潜水面2. 【建筑学】泻水台;承雨线脚;飞檐;马路边沟[亦作 water‎-table‎]Phrea‎t ic surfa‎c e [fri(:)'ætik]地下水(静止)水位,浅层地下水‎面Super‎f icia‎l [sju:pə'fiʃəl‎] adj. 表面的,表观的,浅薄的Poros‎i ty [pɔ:'rɔsit‎i] n. 多孔性,有孔性,孔隙率Uncon‎f ined‎ ['ʌnkən‎'faind‎] adj. 无约束的,无限制的Perme‎a bili‎t y [,pə:miə'bilit‎i] n. 弥漫, 渗透, 渗透性Perme‎a mete‎r [pə:mi'æmitə‎] n.渗透仪,渗透性试验‎仪)Clay [klei] n. 粘土,泥土grave‎l ['ɡrævə‎l] n.[总称]砾,沙砾,小石;砾石cone of depre‎s sion‎[kəun] 下降漏斗, [水文学]下降锥体drawd‎o wn ['drɔ:daun] n. 水位下降(降落,消耗,减少)integ‎rate ['intig‎r eit] 【数学】作积分运算‎;求积分obser‎v atio‎n well [,əbzə:'veiʃə‎n] 观测井,观测孔extra‎c tion‎ [ik'stræk‎ʃən] n. 抽出,取出,提取(法),萃取(法)deriv‎a tion‎ [deri'veiʃə‎n] n. 1. 导出,引(伸)出,来历,出处,得出,得到;诱导,推论,推理;溯源【数学】1) (定理的)求导,推导2) 微商,微分,导数【语言】词源,衍生deple‎t e [di'pli:t] v. 耗尽, 使...衰竭refus‎e [ri'fju:z] n. 废物,垃圾vt. 拒绝,谢绝dump [dʌmp] n. 垃圾场,垃圾堆,堆存处vt. 倾卸,倾倒(垃圾)uncon‎f ined‎ aquif‎e r 潜水含水层‎,非承压含水‎层,无压含水层‎confi‎n ed aquif‎e r 自流含水层‎,承压含水层‎homog‎e neou‎s [,hɔməu‎'dʒi:njəs] adj. 同类的,相似的,均匀的,均相的;同种类的,同性质的;相同特征的‎Aquac‎l ude 不透水层,难渗透水的‎地层Offse‎t['ɔ:fset] n.偏移量抵销,弥补,分支,胶印,平版印刷,支管,乙字管Vt. 弥补,抵销,用平版印刷‎vi. 偏移,形成分支sophi‎s tica‎t ed [sə'fisti‎k eiti‎d] adj. 复杂的,需要专门技‎术的;诡辩的,久经世故的‎equil‎i briu‎m [,i:kwi'libri‎əm] n. 平衡,均衡Water‎Suppl‎y(给水工程)A suppl‎y of water‎is criti‎c al to the survi‎v al of life, as we know it.(众所周知,水对生命的‎生存至关重‎要。

给水排水专业英语翻译

给水排水专业英语翻译

《给水排水专业英语》Lesson 1specific yield [spə'sifik] [ji:ld] 单位产水量mass curve 累积曲线capital investment 投资recurring natural event ['nætʃərəl] 重现历史事件subterranean [sʌbtə'reiniən] 地下的groundwater 地下水surface water 地表水tap [tæp]开关、龙头;在…上开空(导出液体)swampland ['swɔmplænd] n. 沼泽地;沼泽地带capillary [kə'piləri] n. 毛细管adj. 毛状的,毛细管的hygro- [词头] 湿(气),液体hygroscopic [,haigrəu'skɔpik] adj. 易湿的,吸湿的hygroscopic moisture 吸湿水stratum ['streitəm] n. [地质学]地层,[生物学](组织的)层aquifer ['ækwəfə] ['ækwifə] n.含水层,地下蓄水层saturation [,sætʃə'reiʃən] n.饱和(状态),浸润,浸透,饱和度hydrostatic [,haidrəu'stætik] adj. 静水力学的, 流体静力学的hydrostatic pressure 静水压力water table 1. 地下水位,地下水面,潜水面2. 【建筑学】泻水台;承雨线脚;飞檐;马路边沟[亦作water-table]Phreatic surface [fri(:)'ætik]地下水(静止)水位,浅层地下水面Superficial [sju:pə'fiʃəl] adj. 表面的,表观的,浅薄的Porosity [pɔ:'rɔsiti] n. 多孔性,有孔性,孔隙率Unconfined ['ʌnkən'faind] adj. 无约束的,无限制的Permeability [,pə:miə'biliti] n. 弥漫, 渗透, 渗透性Permeameter [pə:mi'æmitə] n.渗透仪,渗透性试验仪)Clay [klei] n. 粘土,泥土gravel ['ɡrævəl]n.[总称]砾,沙砾,小石;砾石cone of depression [kəun] 下降漏斗, [水文学]下降锥体drawdown ['drɔ:daun] n. 水位下降(降落,消耗,减少)integrate ['intigreit] 【数学】作积分运算;求积分observation well [,əbzə:'veiʃən] 观测井,观测孔extraction [ik'strækʃən] n. 抽出,取出,提取(法),萃取(法)derivation [deri'veiʃən] n. 1. 导出,引(伸)出,来历,出处,得出,得到;诱导,推论,推理;溯源【数学】1) (定理的)求导,推导2) 微商,微分,导数【语言】词源,衍生deplete [di'pli:t] v. 耗尽, 使...衰竭refuse [ri'fju:z] n. 废物,垃圾vt. 拒绝,谢绝dump [dʌmp] n. 垃圾场,垃圾堆,堆存处vt. 倾卸,倾倒(垃圾)unconfined aquifer 潜水含水层,非承压含水层,无压含水层confined aquifer 自流含水层,承压含水层homogeneous [,hɔməu'dʒi:njəs] adj. 同类的,相似的,均匀的,均相的;同种类的,同性质的;相同特征的Aquaclude 不透水层,难渗透水的地层Offset ['ɔ:fset] n.偏移量抵销,弥补,分支,胶印,平版印刷,支管,乙字管Vt. 弥补,抵销,用平版印刷vi. 偏移,形成分支sophisticated [sə'fistikeitid] adj. 复杂的,需要专门技术的;诡辩的,久经世故的equilibrium [,i:kwi'libriəm] n. 平衡,均衡Water Supply(给水工程)A supply of water is critical to the survival of life, as we know it.(众所周知,水对生命的生存至关重要。

给排水工程屋顶排水中英文对照外文翻译文献

给排水工程屋顶排水中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Short and Long Term Advantage roof drainage design performance Decade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems.Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect.1. IntroductionIn the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device isgradually reduced, but the urban environment relatively high demand areas still require 100% waterproof and rapid drainage, such as the roof. Typically roof drainage system in the design, construction and maintenance has not been given due attention. Although the drainage system investment costs account for only a small portion of the total construction investment, but not able to judge the loss caused by poor design.There are two different forms of roof drainage system design methods, namely the traditional and siphon method. Traditional systems rely on atmospheric pressure work, the drive ram affected sink flow depth. Therefore, the conventional roof drainage systems require a relatively large diameter vertical drop tube, prior to discharge, all devices must be connected to the groundwater collection pipe network. In contrast, siphonic roof drainage pipe systems are generally designed to full flow (turbulent flow means that require less exhaust pipe), which will form a negative pressure, the larger the higher flow rate and pressure head. Typically siphon system requires less down pipe work under negative pressure to the water distribution network can mean higher altitude work, thereby reducing the amount of underground pipe network.Both systems consists of three parts: the roof, rainwater collection pipes, pipe network.All of these elements are able to change the water pressure distribution system. This section focuses on the role and performance of each part. Due to the principle of siphon system has not been well understood, resulting argument is relatively small, this article will highlight siphon system.2. RoofThe roof is usually designed by the architect, designer and not by the drainage design. There are three main roof.2.1 Flat roofFlat roofs are used in industrial buildings less rainfall regions and countries. This roof is not completely flat, but lower than the minimum roof slope may require. For example, the United Kingdom require maximum slope of 10 °. Setting minimum slope in order to avoid any unnecessary water.Despite the flat roof if it is not properly maintained will have more problems, but it will reduce the dead zone within the building, and the ratio of sloping roofs in favor of indoor air.2.2 sloping roofsMost residential and commercial buildings are pitched roof, inclined roof is the biggest advantage can quickly drain, thereby reducing leakage. In temperate regions, we need to consider carrying roof snow load. Once it rains, rainfall through the sloping roofs can be determined by calculation. When rainfall data can be used, you can use the kinematic theory to solve such problems.2.3 green roof (flat or inclined)It can prove roof is the oldest green roofs, including rainfall can reduce or disperse roof planted with plants. It can be planted with trees and shrubs roof garden, it can also be a vegetated roof light carpet. Wherein the latter technique has been widely used. Some of these applications tend to focus on aesthetic requirements and are often used in green development. Since the aesthetic requirements and pressure requirements, as well as green roofs thermal insulation function, reduce the heat island effect, silencer effect, extend the life of the roof.Green roofs in Germany, the most widely used, followed in North America, but to consider the impact on the aesthetics. Germany is by far the most experienced countries in the 19th centuryhave practical application, then as an alternative to reduce the risk of fire tar roof an option in urban areas. Germany is currently the main research question on the cultivation of other issues to consider smaller cities. A study from 1987 to 1989, was found packed with 70 mm thick green roof can be reduced by 60% -80% of heat loss. In a Canadian work computer model based on the roof indicates that as long as the sump, the area can reach 70% of the roof area can be reduced by 60 percent in one year, the same model was also used for artificial rainfall, which the results indicate that rainfall in the catchment season helps to drain away rainwater.However, none of these studies show that green roofs can play a useful role in the rainfall season, or how high collection efficiency of water supply. The United States did some tests, as long as the green roofs regular watering, can reduce 65 percent of the runoff in a rainfall. America's most authoritative green roof guidelines by the New Jersey state environmental agencies promulgated. The main principle is to solve the structural problems of light, and how can the normal drainage after two years.Rainfall period is based on the probability of failure is determined. The system is typically based on rainfall during rainstorms two minutes, two minutes, have a choice. Although this model will get more traffic, but there is no other better alternative. Studies have shown that the traditional model is applied to study green roofs are premature.Loss factor than traditional roof records should be small, about 98.7%.Peak flow will be reduced, although not penetrate, the surface roughness but also have a significant impact.Concentrated rainfall than two minutes for a long time, especially for large roof areas, such as public buildings, commercial buildings, industrial buildings.Urban drainage design should also consider other factors, for a complex system, a green roof in a rain is not enough. Water flow duration curve shows a longer than traditional systems. And two independent and will affect between is possible, which requires a more precise time period. 3. Rainwater CollectorBasic requirements rainwater collector is designed to be able to accommodate rainfall rainstorms. Although it is possible to make a slightly inclined roof drainage purposes, but the nature of the construction industry and building settlement will become flat roof Typically, the tank is placed in a horizontal, sectional view of the water is outwardly inclined, which the role of hydrostatic.3.1 drain outletAnalyzing rainwater collector has sufficient volume is the key to the sump outlet external setting conditions. Also affect the flow rate into the storm water drainage system piping, but also affect the depth of the water catchment. Although the depth of the sump will not bring any particular problems, but too deep can cause excessive sump.Numerous studies in the 1980s showed that the flow of conventional roof drainage system outlet can be divided into two cases. It depends on the size of the depth and size of the outlet. When the water depth is less than half the diameter of the outlet, the flow of the first type, and the outlet of the flow can be calculated by an appropriate equation; water depth increases, exports are slowly clogging the flow will become another form forms, at the same time, the flow of exports can be obtained through other equations. While conventional roof drainage systems are designed to be free-draining, but may cause limitations encountered in the design of the flow is not free. In this case, it will require additional depth.Siphon roof drainage systems, the outlet is designed to be submerged stream. In this case, the depth of the outlet of the decision is more complicated, because the design of the sump depends on the flow. Recent studies have shown that conventional roof drainage systems use a variety of non-standard catchment, their depth and height, bigger than the diameter of the outlet. This will eventually result in a siphon effect. For a given catchment, the flow depends on the starting end of the drop tube diameter. A similar phenomenon has also been used to study the standard catchment, in these circumstances, only limited siphon action occurs within relatively close distance from the exit.3.2 tank flow classificationIn the complex flow sump outlet flow classification, can be seen from Table 2a, the flow will be uniform layering, regardless of whether the same inlet flow. Table 2b and 2c show, export distribution will greatly influence the flow.When the outlet is not a free jet, sump outlet complex flow classification is difficult to describe. Because each catchment tank pressures are likely to be merged. For example, the siphon tube system design point is at near full jet outlet flow classification depends on the energy loss of each branch.3.3 hydrostatic sectionalSump shape of the water surface in the canal can be classified according to the flow equation. In most cases, a low flow rate means that there is less friction loss, if exports are free jet, the friction loss is negligible cross-section through the hydrostatic equation 1 to determine the horizontal distance.Where Q-- flow (m3 / s)T- surface width (m)g- acceleration of gravity (m / s2)F- flow area (m2)Equation 1 can not be ignored when the friction required to correct (or very long pipe velocity is large), or not a free jet.3.4 The current design methodsThe previous discussion has highlighted the main factors that should be considered with sink design. However, without the help of a certain number of models, computing hydrostatic sectional roof drainage system, the volume of the sump is possible. This large commercial and manufacturing industry, is a development opportunity, you can merge several kilometers of water routes. Thus, the conventional drainage system sump design methods are mainly based on experience, and assume that exports are free jet.Sump location in the building, it may cause the example to fail.Different interface sumpExcept in the case cited above, but also allows designers to use empirical data.3.5 Digital ModelLarge number of digital models can be used to accurately describe the flow of any form of catchment tank, regardless of whether the roof flows stable. An example of this model is a combination of roof space model. This model enables users to classify different aspects of the data indicated, includes: details of the rains, the roof surface drainage and other details. Kinematics have also been used to study rainwater tank to flow from the research collection. A typical method is based on open system to solve a basic problem of spatial mobility. This model automaticallyresolve the sump outlet flow situation, but also to deal with the case of free jet can also be simulated space limited mobility and submerged discharge. Output values include depth and flow rate.Currently, the model is essentially just a variety of research tools, but also through practical engineering test. However, we should face up to the various role models.4 pipe systems groupComposition in the form and scope of the tube group determines the roof drainage system relies mainly on the traditional system or siphon action.4.1 Traditional stormwater systemsConventional roof drainage systems, the ground plane is generally vertical pipe-line network, connected to the sump outlet and underground drainage systems, critical systems as well as compensating tube. It should be emphasized that the angle between the ground and the compensating tube is less than 10 °. Capacity of the entire system relies mainly on the outlet tube instead of down.Flow vertical tube is usually free-flowing, full of only 33%, the efficiency depends on the excess length of the tube. If the drop tube long enough (typically greater than 5m), there may be an annular flow. Similarly, under normal circumstances flow compensation pipe is free-flowing, full of up to 70%. Such designed process both for the design, various equations can also be used.4.2 Siphon roof drainage systemIn contrast with the traditional drainage systems, Siphon roof drainage system relies on air flow outside the system, and the tube is full pipe flow stream.The designs are usually made on the assumption that the design of heavy rain, the system can quickly siphon discharge rainwater. This assumption allows the application of hydrostatic siphon system theory. Often used steady flow energy equation. While this approach ignores the small amount of energy loss at the entrance, but after the experiment showed that there are still conducive to practical use.However, steady-state design methods in the siphon system is exposed to rain when the system does not meet the standard requirements or changes in rainfall intensity is large is not applied. In the first case, there will be some mixing of air quality, annular flow occurs. These problems are not integrated in the system when more serious. Because usually designed rains are common, it is clear now design methodology over time may not apply to siphon system. This is a major disadvantage, because the design of the main problem is the noise and vibration problems.Despite the disadvantages of the prior design approach, but a lot of the world's very few engineering failure reports. When a failure occurs, most likely for the following reasons: An incorrect understanding of the operation pointsSubstandard materials listInstallation defectsMaintenance mismanagementTo overcome these disadvantages, we have recently launched a series of research projects, to discuss the siphon system, and the development of digital models. From this work we learn a lot. In contrast with conventional design methods of some assumptions, siphon system mainly has the following aspects:1) non-flow system of full flow2) levels of certain pipe-flowing full pipe flow3) full pipe flow downstream propagation through a vertical pipe, riser, etc.4) the inner tube flow occurs over the vertical section, the system to reduce the pressure5) downward tube is full pipe flow, there will be air lock6) appears completely siphon action until well into the air system is lower than a certain levelTable 4a column data indicate that below the design point, the system will siphon unstable flow, depth of the water collecting tank is insufficient to maintain the siphon action. Table 4b show that the unsteady flow in siphon system when it will appear.Table 5 lists the data output of a digital model. It can be seen that the model can accurately describe the siphon action, siphon and steady state, the data also show that the model can accurately describe the complex siphon action.5 ConclusionThis article has illustrated the critical roof drainage systems, but these are often overlooked in the urban drainage system design. This article also shows that the design process is a complex process, rely mainly on the performance of exports. The following conclusions are based on the design summed up:1) Run depend on three interacting parts: the roof, sump, water pipes2) Green roofs can reduce traffic and beautify the city3) the export performance of the system is essential4) siphon drainage system have a greater advantage in large-scale projects, but must be considered high maintenance costs5) Design siphon drainage system should consider additional capacity and operational issuesAlthough the green roof is a more attractive option, but the traditional roof of a building in the country will continue to dominate. Green roofs will be gradually developed, and gradually been widely accepted. Similarly, the roof drainage system shown effective that it will continue to play a huge role in the commercial building drainage systems.Roof drainage system of the greatest threats from climate change, existing systems tend to be not simply aging; rainfall patterns of change will result in inefficient operation, self-cleaning rate will be reduced. Changes in wind speed and the roof will also accelerate the aging of the roof, it is necessary to carry out maintenance. Taking into account the climate change, the increase in materials, roof collected rainwater will be more extensive. Currently, the amount of rain around the globe per person per day 7-300 liters in the UK, with an average consumption of 145L / h / d, of which only about one liter is used by people, about 30 per cent of the toilet, study shows If water shortage, rainwater collected on the roof of developed and developing countries are recommended approach.屋顶排水设计性能的近期与远期优势最近十年见证了屋顶排水系统设计方面的巨大变化,特别的是,虹吸雨水排水系统已经得到逐步改善,并且有可能得到重点应用。

给水排水中英文对照外文翻译文献

给水排水中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North ChinaAbstract The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are tomaintain long-term dynamic balance between input and output of theground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve theproblem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,insustuial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.Keywords combination system of water drainage,water supply and eco-environment protection,optimal combination,resourcification of mine water.1Analyses of necessity for the combinationThere are three related problems in the basin.It is well known that the major mine-hydrogeological characteristics of the coal accumulated basin in North China display a stereo water-filling structure,which is formed by multi-layer aquifers connected hydraulically together with various kinds of inner or outer boundaries.Mine water hazards have seriously restricted the healthy development of coal industry in China because of more water-filling sources and stronger water-filling capacity in coal mines of the basin.Coal reserves in the basin are threatened by the water hazards.In Fengfeng,Xingtai,Jiaozuo,Zibao,Huaibei and Huainan coal mine districts,for example,it is estimatedthat coal reserves are threatened by the water hazards up to 52%,71.%40,%,60%,48%and 90%of total prospecting reserves respectively.It is obvious that un-mining phenomenon caused by the water hazards is serious.Water-bursting accidents under coal layers have seriously influenced safe production.Some statistical data show that there were 17 water-bursting accidents with over 1 m3/s inflow from 1985.Water drainage is an increasing burden on coal mines threatened by water hazards:high cost of water drainage raises coal prices and reduces profits of the enterprise.On the other hand,it is more and more difficult to meet the demand of water supply in coal mine districts in the basin.The reasons are not only arid and semi-arid weather conditions,but also a large amount of water drainage with deep drawdown in coal mines and irrational water exploitation.The deterioration of eco-environment is another problem.Phenomena of land surface karst collapse can be found.Many famous karst springs,which are discharge points for the whole karst groundwater syatem,stop flowing or their discharge rates decrease on a large scale.Desert cremophytes in large areas in west China die because of falling groundwater level.These three problems are related and contradictory.In order to solve the problems while ensuring safe mining,meeting water resource demands and slowing down the pace of eco-environment deterioration,it is necessary to study the optimum combination of water drainage,water supply and eco-environment protection in the basin.2The state of the art of research and the problemsAlthough research into the combination of water drainage and water supply started much earlier in some countries,their conception is simple and some shortcomings remain in their study on the theory and pattern of combination.China’s research history on the combination can be divided into three stages.The first stage is the utilization of mine water.A century ago mine water started to be used as water supply for mines.But the utilization scale and efficiency were quite limited at that time.The second stage is a comprehensive one:mine water was used while water hazards were harnessed.Great progress was made both in theory and practice of the combination.For example,the combination of water drainage and water supply not only means the utilization of mine water,but also means that it is a technique of preventing water hazards.It is unfortunate,however,that the combination research in this stage offered less sense ofeco-environment protection.Optimum combination management of water drainage,water supply and eco-environment protection is the third stage.Main features in this stage are to widen traditional research,and to establish an economic-hydraulic management model,in which safe mining,eco-environment protection and sustainable development demands,etc.are simultaneously considered as constraint conditions.3Trinity systemThe trinity system combines water drainage,water supply and eco-environment quality protection.The water-collecting structures of the system consist of land surface pumping wells in the mines,shallow land surface well in groundwater recharge areas and artificial relief wells under the mines.Both integration and coordination for the trinity system are distinguished according to the combination.The integration for the system means to utilize drainage water under the mines and pump water onto the land surface as water supply for different purposes without harming the eco-environmental quality.The coal mines are not only drainage sites,but also water supply sources.The purpose of drilling pumping wells on the land surface is to eliminate special influences on different consumers,which are caused by terminating drainage processes under the mines due to unexpected accidents in mining.The coordination for the system means to bulid some water supply sources for different consumers while ensuring eco-environmental quality in groundwater recharge positions,where pumping groundwater is quite effective on lowering groundwater heads in the mine areas.Itintercepts in advance the recharging groundwater flow towards the mines,which may not only provide consumers with good quality groundwater,achieve the goal of dropping down groundwater heads in the mines,but also effectively reduce the high costs of drainage and water treatment,which are needed by traditional dewatering measures with large drainage flow rates under the mines.The coordination changes the traditional passive pattern of preventing and controlling groundwater hazards under the mines into that of active surface interception.Both very developed karst flow belts and accumulated groundwater recharge ones under the ground are relatively ideal interceptive coordination positions in the system.For the integration of the trinity system,artificial relief wells under the mines and the land surface pumping wells mainly penetrate into direct thin bedded karst aquifers interbedded with the mining coal layers,while for the coordination of the system,the shallow land surface wells mainly penetrate into very thick karst aquifer.Therefore,hydrogeological conceptual model for the system involves the multi-layer aquifers connected hydraulically by different inner boundaries.Setting up stereo hydrogeological conceptual models and corresponding mathematical models is a prerequisite for solving the managemental problems for the system.Management of the trinity system not only considers the effects of lowering groundwater heads and safe operation for water drainage subsystem,but also pays attention to the water demands for water supply subsystem and quality changes for eco-environment protection subsystem.They play the same important role in the whole combination system.It controls the groundwater heads in each aquifer to satisfy the conditions of safe mining with certain water head pressures in the mines,and to guarantee a certain amount of water supply for the mines and near areas,but the maximum drawdown of groundwater must not be ex ceded,which may result in lowering eco-environmental quality.4Economic-hydraulic management modelIn the trinity system management,groundwater resources in the mines and nearby areas,which are assessed on the premise of eco-environment qualities and safe operation in the mines,may be provided as water supply prices,drainage costs,transportation costs(including pipeline and purchasing the land costs)and groundwater quality treatment costs for the three different waterconsumers,the optimum management models may automatically allocate to each consumer a certain amount of groundwater resources and a concrete water supply scenario based on comparisons of each consumer’s economic contribution to the whole system in objective function.Therefore the management studies on the optimal combination among water drainage,water supply and eco-environment protection involve both the management of groundwater hydraulic techniques and the economic evaluations,eco-environment quality protection and industrial structure programs.In addition to realizing an economic operation,they also guarantee a safe operation which is a key point for the combination of the whole system.5The management model for the trinity system can reach water supply goals with drainage water under the mines and the land surface pumping water on the premise of ensuring eco-environmental quality.And it can make use of one model to lay down comprehensively optimum management scenarios for each subsystem by means of selecting proper constraints and maximum economic benefit objective produced by multiple water consumers.The model can raise the security and reliability of operation for the whole trinity system,and the drainage water can be forecast for the mines and the management of water supply resource and the evaluation of eco-environment quality can be performed at the same time so as to respectively stop the separate or closed management,of departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation.This,in economic aspect,can not only avoid much geological survery and special assessment work which are often repeated by the three departments,and save a lot of funds,but also ,in technical aspect,make use of one model to simultaneously consider interference and influence on each other for different groundwater seepage fields so as to guarantee calculating precision of the forecast,the management and the evaluation work.The economic-hydraulic management model can be expressed as follows.6 A case studyA typical sector is chosen.It is located in the east of Jiaozuo coal mine,Henan Province,China.Itconsists of three mines:Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.The land surface is flat,and the whole area is about 30 km2.An intermittent river Shanmen flows through the sector from the north to the south.Average annual precipitation in the sector is about 662.3mm.Theprecipitation mainly concentrates inJune,July,August and September each year.Strata in the sector consist of very thick limestone in Middle Ordovician,coal-bearing rock series in Permo Carboniferous and loose deposits in Quaternary.There are four groups of faulted structures.The first is in northeast-southwest direction such as F3 and F1..The second is in the northwest-southeast direction such as Fangzhuang fault.The third is in the east-west direction such as Fenghuangling fault.The last is almost in north-south.These faults are all found to be normal faults with a high degree of dip angle.Four major aquifers have been found in the sector.The top one is a semi-confined porous aquifer.The next one is a very thin bedded limeston aquifer.The third is a thin bedded limestone aquifer.The last one at the bottom is a very thick limestone aquifer.Objective function of the management model is designed to be maximum economic benefit produced by domestic,industrial and agricultural water supply.Policy making variables of the model are considered as the domestic,industrial and agricultural groundwater supply rates in every management time step,and they are supplied by artificial relief flow wells under the mines,the land surface pumping wells in the mines and the shallow land surface wells in the groundwater recharge areas.All the 135 policy making variables are chosen in the model,27 for drainage wells under the mines in aquifer,27 for the land surface pumping wells in the mine districts in aquifer 27 in aquifer 27 in aquifer O2 27 for the shallow land surface wells in aquifer O2Based on the problems,the following constraint conditions should be considered:(1)Safe mining constraint with groundwater pressure in aquifer L8.There are altogether three coalmines in the typical sector,i.e.Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.Elevations of mining level for these mines are different because it is about 88-150 m in the second mining level for Hanwang Mine,and -200m in the second mining level for Yanmazhuang Mine,and-225 m in the first mining level for Jiulishan Mine.According to mining experiences,pressure-loaded heights for groundwater heads in safe mining state are considered as about 100-130m.Therefore,the groundwater level drawdowns in the three management time steps for aquifer L8 at three mines have to be equivalent to safe drawdown values at least in order to pervert groundwater hazards under the mines and to guarantee their safe operation.(2)Geological eco-environment quality constraint.In order to prevernt groundwater leakage fromupper contaminater porous aquifer into bottom one and then to seepage further down to contaminate the thin bedded limestone aquifer in the position of buried outcrop,the groundwater heads in the bottom porous aquifer must keep a certain height,i.e.the groundwater drawdowns in it are not allowed to exceed maximum values.(3)Groundwater head constraint at the shallow land surface wells in aquifer O2,The shallow landsurface wells should penetrate in aquifer O2 in order to avoid geological environment hazards,such as karst collapse and deep karst groundwater contamination.Groundwater head drawdowns in aquifer O2 for the shallow land surface wells are not allowed to exceed criticalvalues.(4)Industrial water supply constraint for the groundwater source in aquifer O2 .The rate ofindustrial water supply needed by the planned thermal power plant in the north of the sectoris designed to be 1.5 m3/s according to the comprehensive design of the system in thesector.In order to meet the demands of water,the rate industrial water supply for thegroundwater source in aquifer O2 in every management time step must be equivalent at leastto 1.5 m3/s.(5)Maximum amount constraint of groundwater resource available for abstraction.In order tomaintain the balance of the groundwater system in the sector for a long time and to avoid anyharmful results caused by continuous falling of groundwater head,the sum of groundwaterabstraction in each management time step is not allowed to exceed the maximum amount ofgroundwater resource available for abstraction.Since there is not only water drainage in the mines,but also water supply in the whole combination system,management period for the model is selected from June 1,1978 to May 31,1979,in which annual average rate of precipitation is about 50%.Management time steps for the period are divided into three.The first one is from June to September,the second from October to next January,and the last one from next February to May.According to comprehensive information about actual economic ability,economic development program and industrial structure adjustment in the sector at present and in the near future,and different association forms of water collecting structures among the land surface pumping wells,the shallow land surface wells and artificial relief flow wells under the mines,this paper designs 12 management scenarious,all of which take the safe operation in the trinity system as the most important condition.After making comparisons of optimum calculation results for the 12 scenarious,this paper comes to a conclusion that scenarios is the most ideal and applicable one for the typical sector.This scenario not only considers the effective dewatering advantage of the artificial relief flow wells under the mines and safe stable water supply advantage of the land surface pumping wells,but also pays attention to the disadvantage of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment in the land surface pumping wells.Meanwhile,eh shallow land surface wells inaquifer O2in this scenario would not only provide water supply for the thermal power plant as planned,but also play an important role in dewatering the bottom aquifer,which is major recharge source of groundwater for the mines.If the drainage subsystem under the mines runs normally,this scenario could fully offer the effective dewatering functions of the artificial relief flow wells under the mines,and makes the trinity system operate normally.But if the drainage subsystem has to stop suddenly because of unexpected accidents,the scenario could still fully utilize the land surface pumping wells and the shallow land surface wells,and increae their pumping rates in order to make up for temporary shortage of water supply for the trinity system and to make its economic losses reduced to a minimum extent.Increasing groundwater abstraction rate for the land surface pumping wells and the shallow land surface wells,in fact,is very favorable for harnessing the water-accidents under the mines and for recovery production of the mines.To sum up,this scenario sets up a new pattern for the combination of water drainage,water supply and eco-environment protection.It solves quite well the conflicts between the low safe guaranty rate and the effective dewatering result for the artificial relief flow wells under the mines.It makes full use of beneficial aspect of the conflicts,and meanwhile compensates for the unbeneficial one by arranging the land surface pumping wells in the coal mine districts.Therefore,this scenario should be comprehensive and feasible.In this scenario,Hanwan Mine,Yanmazhuang Mine and Jiulishan Mine are distributed optimally for certain amount of domestic and industrial water supply,but not for much agricultural water supply.The land surface pumping wells are also distributed for different purposes of water supply.The water supply for the thermal power plant (1.5 m3/s) is provided by the shallow land surface prehensive effects,produced by the above three kinds of water collecting structures,completely satisfy all of the constraint conditions in the management model,and achieve an extremely good economic objective of 16.520551million RMB yuan per year.In order to examine the uncertainty of the management model,12management scenarios are all tested with sensitive analysis.7Conclusion(1)The optimum combination research among water drainage,water supply and eco-environmentprotection is of great theoretical significance and application value in the basin of North China for solving unbalanced relation between water supply and demands,developing new potential water supply sources and protecting weak eco-environment.(2)The combination research is concerned not only with hydraulic technique management but alsowith constraints of economic benefits,society,ecology,environment quality,safe mining and sustainable development in the coal mines.(3)The combination model,for the first time,breaks up the closed situation existing for a longtime,under which the government departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation work respectively.Economically,it can spare the repeated geological survey and special assessment work done by the three departments and save a lot of funds;technically,one model is made use of to cover the interference and influence each other for different groundwater seepage fields soas to guarantee a high calculating precision of the forecast,the management and the evaluation work.(4)The management scenario presented in the case study is the most ideal and applicable for thetypical sector.This scenario not only makes full use of the effective dewatering advantages of the artificial relief flow wells under the mines and safe stable water supply advantages of the land surface pumping wells,but also pays attention to the disadvantages of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment for the land surface pumping wells.References1.Investigation team on mine-hydrogeology and engineering geology in the Ministry ofGeology and Mineral Resources.Investigation Report on Karst-water-filling Mines(inChinese).Beijing:Geological Publishing House,19962.Liu Qiren,Lin Pengqi,Y u Pei,Investigation comments on mine-hydrogeological conditionsfor national karst-water-filling mines,Journal of Hydrogeology and Engineering Geology(in Chinese),19793.Wang Mengyu,Technology development on preventing and curing mine water in coalmines in foreign countries,Science and Technology in Coal(in Chinese),19834.Coldewey,W.G.Semrau.L.Mine water in the Ruhr Area(Federal Republic of Germany),inProceedings of 5th International Mine Water Congress,Leicestershire:Quorn SelectiveRepro Limited,19945.Sivakumar,M.Morten,S,Singh,RN,Case history analysis of mine water pollution,inProceedings of 5th International Mine Water Congress,Leicestershire;Quorn SelectiveRepro Limited,19946.Ye Guijun.Zhang Dao,Features of Karst-water-filling mines and combination betweenwater drainage and water supply in China,Journal of Hydrogeology and EngineeringGeology(in China),19887.Tan Jiwen,Shao Aijun,Prospect analyses on Combination between water drainage andwater supply in karst water basin in northern China,Jounnal of Hebei College ofGeology(in Chinese),19858.Xin Kuide,Yu Pei,Combination between water drainage and water for seriouskarst-water-filling mines in northern China,Journal of Hydrogeology and Engineering Geology(in Chinese),19869.Wu Qiang,Luo Yuanhua,Sun Weijiang et al.Resourcification of mine water andenvironment protection,Geological Comments(in Chinese),199710.Gao Honglian,Lin Zhengping,Regional characteristics of mine-hydrogeological conditionsof coal deposits in China,Journal of Hydrogeology and Engineering Geology(in Chinese),198511.Jiang Ben,A tentative plan for preventing and curing measures on mine water in coal minesin northern China,Geology and Prospecting for Coaofield(in Chinese),1993中国北方煤炭积聚区的最佳组合排水,供水和生态环境保护摘要为了开采中国北方煤炭资源丰富的区域,不合理的排水使排水、供水和保护生态环境之间的冲突日趋严重。

给排水工程外文翻译

给排水工程外文翻译

给排水工程外文翻译 Final approval draft on November 22, 2020Short and Long Term Advantage roof drainage design performanceDecade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems.Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect.1. IntroductionIn the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device is gradually reduced, but the urban environment relatively high demand areas still require 100% waterproof and rapid drainage, such as the roof. Typically roof drainage system in the design, construction and maintenance has not been given due attention. Although the drainage system investment costs account for only a small portion of the total construction investment, but not able to judge the loss caused by poor design.There are two different forms of roof drainage system design methods, namely the traditional and siphon method. Traditional systems rely on atmospheric pressure work, the drive ram affectedsink flow depth. Therefore, the conventional roof drainage systems require a relatively large diameter vertical drop tube, prior to discharge, all devices must be connected to the groundwatercollection pipe network. In contrast, siphonic roof drainage pipe systems are generally designed to full flow (turbulent flow meansthat require less exhaust pipe), which will form a negative pressure, the larger the higher flow rate and pressure head. Typically siphon system requires less down pipe work under negative pressure to the water distribution network can mean higher altitude work, thereby reducing the amount of underground pipe network.Both systems consists of three parts: the roof, rainwater collection pipes, pipe network.All of these elements are able to change the water pressure distribution system. This section focuses on the role and performance of each part. Due to the principle of siphon system has not been well understood, resulting argument is relatively small, this article will highlight siphon system.2. RoofThe roof is usually designed by the architect, designer and not by the drainage design. There are three main roof.2.1 Flat roofFlat roofs are used in industrial buildings less rainfall regions and countries. This roof is not completely flat, but lower than the minimum roof slope may require. For example, the United Kingdom require maximum slope of 10 °. Setting minimum slope in order to avoid any unnecessary water.Despite the flat roof if it is not properly maintained will have more problems, but it will reduce the dead zone within the building, and the ratio of sloping roofs in favor of indoor air.2.2 sloping roofsMost residential and commercial buildings are pitched roof, inclined roof is the biggest advantage can quickly drain, thereby reducing leakage. In temperate regions, we need to consider carrying roof snow load. Once it rains, rainfall through the sloping roofs can be determined by calculation. When rainfall data can be used, you can use the kinematic theory to solve such problems.2.3 green roof (flat or inclined)It can prove roof is the oldest green roofs, including rainfall can reduce or disperse roof planted with plants. It can be planted with trees and shrubs roof garden, it can also be a vegetated roof light carpet. Wherein the latter technique has been widely used. Some of these applications tend to focus on aesthetic requirements and are often used in green development. Since the aesthetic requirements and pressure requirements, as well as green roofs thermal insulation function, reduce the heat island effect, silencer effect, extend the life of the roof.Green roofs in Germany, the most widely used, followed in North America, but to consider the impact on the aesthetics. Germany is by far the most experienced countries in the 19th century have practical application, then as an alternative to reduce the risk of fire tarroof an option in urban areas. Germany is currently the main research question on the cultivation of other issues to consider smaller cities. A study from 1987 to 1989, was found packed with 70 mm thick green roof can be reduced by 60% -80% of heat loss. In a Canadianwork computer model based on the roof indicates that as long as the sump, the area can reach 70% of the roof area can be reduced by 60 percent in one year, the same model was also used for artificial rainfall, which the results indicate that rainfall in the catchment season helps to drain away rainwater.However, none of these studies show that green roofs can play a useful role in the rainfall season, or how high collection efficiency of water supply. The United States did some tests, as long as the green roofs regular watering, can reduce 65 percent of the runoff ina rainfall. America's most authoritative green roof guidelines by the New Jersey state environmental agencies promulgated. The mainprinciple is to solve the structural problems of light, and how can the normal drainage after two years.Rainfall period is based on the probability of failure is determined. The system is typically based on rainfall during rainstorms two minutes, two minutes, have a choice. Although this model will get more traffic, but there is no other better alternative. Studies have shown that the traditional model is applied to study green roofs are premature.Loss factor than traditional roof records should be small, about 98.7%.Peak flow will be reduced, although not penetrate, the surface roughness but also have a significant impact.Concentrated rainfall than two minutes for a long time,especially for large roof areas, such as public buildings, commercial buildings, industrial buildings.Urban drainage design should also consider other factors, for a complex system, a green roof in a rain is not enough. Water flow duration curve shows a longer than traditional systems. And two independent and will affect between is possible, which requires a more precise time period.3. Rainwater CollectorBasic requirements rainwater collector is designed to be able to accommodate rainfall rainstorms. Although it is possible to make a slightly inclined roof drainage purposes, but the nature of the construction industry and building settlement will become flat roofTypically, the tank is placed in a horizontal, sectional view of the water is outwardly inclined, which the role of hydrostatic.3.1 drain outletAnalyzing rainwater collector has sufficient volume is the key to the sump outlet external setting conditions. Also affect the flow rate into the storm water drainage system piping, but also affect the depth of the water catchment. Although the depth of the sump will not bring any particular problems, but too deep can cause excessive sump.Numerous studies in the 1980s showed that the flow of conventional roof drainage system outlet can be divided into two cases. It depends on the size of the depth and size of the outlet. When the water depth is less than half the diameter of the outlet, the flow of the first type, and the outlet of the flow can be calculated by an appropriate equation; water depth increases, exports are slowly clogging the flow will become another form forms, at the same time, the flow of exports can be obtained through other equations. While conventional roof drainage systems are designed to be free-draining, but may cause limitations encountered in the design of the flow is not free. In this case, it will require additional depth.Siphon roof drainage systems, the outlet is designed to be submerged stream. In this case, the depth of the outlet of the decision is more complicated, because the design of the sump depends on the flow. Recent studies have shown that conventional roof drainage systems use a variety of non-standard catchment, their depth and height, bigger than the diameter of the outlet. This will eventually result in a siphon effect. For a given catchment, the flow depends on the starting end of the drop tube diameter. A similar phenomenon has also been used to study the standard catchment, in these circumstances, only limited siphon action occurs within relatively close distance from the exit.3.2 tank flow classificationIn the complex flow sump outlet flow classification, can be seen from Table 2a, the flow will be uniform layering, regardless of whether the same inlet flow. Table 2b and 2c show, exportdistribution will greatly influence the flow.When the outlet is not a free jet, sump outlet complex flow classification is difficult to describe. Because each catchment tank pressures are likely to be merged. For example, the siphon tube system design point is at near full jet outlet flow classification depends on the energy loss of each branch.3.3 hydrostatic sectionalSump shape of the water surface in the canal can be classified according to the flow equation. In most cases, a low flow rate meansthat there is less friction loss, if exports are free jet, thefriction loss is negligible cross-section through the hydrostatic equation 1 to determine the horizontal distance.Where Q-- flow (m3 / s)T- surface width (m)g- acceleration of gravity (m / s2)F- flow area (m2)Equation 1 can not be ignored when the friction required to correct (or very long pipe velocity is large), or not a free jet.3.4 The current design methodsThe previous discussion has highlighted the main factors that should be considered with sink design. However, without the help of a certain number of models, computing hydrostatic sectional roof drainage system, the volume of the sump is possible. This large commercial and manufacturing industry, is a development opportunity, you can merge several kilometers of water routes. Thus, the conventional drainage system sump design methods are mainly based on experience, and assume that exports are free jet.Sump location in the building, it may cause the example to fail. Different interface sumpExcept in the case cited above, but also allows designers to use empirical data.3.5 Digital ModelLarge number of digital models can be used to accurately describe the flow of any form of catchment tank, regardless of whether the roof flows stable. An example of this model is a combination of roof space model. This model enables users to classify different aspects of the data indicated, includes: details of the rains, the roof surface drainage and other details. Kinematics have also been used to study rainwater tank to flow from the research collection. A typical method is based on open system to solve a basic problem of spatial mobility. This model automatically resolve the sump outlet flow situation, but also to deal with the case of free jet can also be simulated space limited mobility and submerged discharge. Output values include depth and flow rate.Currently, the model is essentially just a variety of research tools, but also through practical engineering test. However, we should face up to the various role models.4 pipe systems groupComposition in the form and scope of the tube group determinesthe roof drainage system relies mainly on the traditional system or siphon action.4.1 Traditional stormwater systemsConventional roof drainage systems, the ground plane is generally vertical pipe-line network, connected to the sump outlet and underground drainage systems, critical systems as well as compensating tube. It should be emphasized that the angle between the ground and the compensating tube is less than 10 °. Capacity of the entire system relies mainly on the outlet tube instead of down.Flow vertical tube is usually free-flowing, full of only 33%, the efficiency depends on the excess length of the tube. If the drop tube long enough (typically greater than 5m), there may be an annular flow. Similarly, under normal circumstances flow compensation pipe is free-flowing, full of up to 70%. Such designed process both for the design, various equations can also be used.4.2 Siphon roof drainage systemIn contrast with the traditional drainage systems, Siphon roof drainage system relies on air flow outside the system, and the tubeis full pipe flow stream.The designs are usually made on the assumption that the design of heavy rain, the system can quickly siphon discharge rainwater. This assumption allows the application of hydrostatic siphon system theory. Often used steady flow energy equation. While this approach ignores the small amount of energy loss at the entrance, but after the experiment showed that there are still conducive to practical use.However, steady-state design methods in the siphon system is exposed to rain when the system does not meet the standard requirements or changes in rainfall intensity is large is not applied. In the first case, there will be some mixing of air quality, annular flow occurs. These problems are not integrated in the system when more serious. Because usually designed rains are common, it is clear now design methodology over time may not apply to siphon system. This is a major disadvantage, because the design of the main problem isthe noise and vibration problems.Despite the disadvantages of the prior design approach, but a lot of the world's very few engineering failure reports. When a failure occurs, most likely for the following reasons:An incorrect understanding of the operation pointsSubstandard materials listInstallation defectsMaintenance mismanagementTo overcome these disadvantages, we have recently launched aseries of research projects, to discuss the siphon system, and the development of digital models. From this work we learn a lot.In contrast with conventional design methods of some assumptions, siphon system mainly has the following aspects:1) non-flow system of full flow2) levels of certain pipe-flowing full pipe flow3) full pipe flow downstream propagation through a vertical pipe, riser, etc.4) the inner tube flow occurs over the vertical section, the system to reduce the pressure5) downward tube is full pipe flow, there will be air lock6) appears completely siphon action until well into the air system is lower than a certain levelTable 4a column data indicate that below the design point, the system will siphon unstable flow, depth of the water collecting tank is insufficient to maintain the siphon action. Table 4b show that the unsteady flow in siphon system when it will appear.Table 5 lists the data output of a digital model. It can be seen that the model can accurately describe the siphon action, siphon and steady state, the data also show that the model can accurately describe the complex siphon action.5 ConclusionThis article has illustrated the critical roof drainage systems, but these are often overlooked in the urban drainage system design. This article also shows that the design process is a complex process, rely mainly on the performance of exports. The following conclusions are based on the design summed up:1) Run depend on three interacting parts: the roof, sump, water pipes2) Green roofs can reduce traffic and beautify the city3) the export performance of the system is essential4) siphon drainage system have a greater advantage in large-scale projects, but must be considered high maintenance costs5) Design siphon drainage system should consider additional capacity and operational issuesAlthough the green roof is a more attractive option, but the traditional roof of a building in the country will continue to dominate. Green roofs will be gradually developed, and gradually been widely accepted. Similarly, the roof drainage system shown effective that it will continue to play a huge role in the commercial building drainage systems.Roof drainage system of the greatest threats from climate change, existing systems tend to be not simply aging; rainfall patterns of change will result in inefficient operation, self-cleaning rate will be reduced. Changes in wind speed and the roof will also accelerate the aging of the roof, it is necessary to carry out maintenance. Taking into account the climate change, the increase in materials, roof collected rainwater will be more extensive. Currently, the amount of rain around the globe per person per day 7-300 liters in the UK, with an average consumption of 145L / h / d, of which onlyabout one liter is used by people, about 30 per cent of the toilet, study shows If water shortage, rainwater collected on the roof of developed and developing countries are recommended approach.屋顶排水设计性能的近期与远期优势最近十年见证了屋顶排水系统设计方面的巨大变化,特别的是,虹吸雨水排水系统已经得到逐步改善,并且有可能得到重点应用。

给排水专业英语课文翻译

给排水专业英语课文翻译

There are several species of bacteria that are widely found in the aquatic environment but so not normally cause illness in the immuno-competent. They are not therefore particularly associated with health problems from drinking-water. It is important to be aware of them nevertheless, as they have occasionally been associated with disease where people may already be ill with other conditions or their immune system is reduced and unable to cope (Dufour 1990).They are usually known as environmental bacteria, but I have also come across the terms adventitious or heterotrophic in this context (although heterotrophic strictly means they get their source of energy and cellular carbon from the oxidation of organic material, that is, by feeding on plants or animals-rather than photosvnchesis). Where laboratories carry out plare counts, it is often these bacteria that are cultured. There will be many different types of environmental bacturia but the imporiant ones for drinking-water safety are listed here.AeromonasAeromonas are commonly found in both fresh and salt waters. There are several species, each one favouring a particular environmental niche. Aeromonas bydropbila is found mainly in clean river water, Aeromonas sobria in stagnant water and Aeromonas caviae in marine water. They are so common that people have tried to use them in rivers as indicators of pollution. They are known to cause diarrhoea and infection in soft tissue where damaged skin comes into contact with contaminated river or lake water.Aeromonas caviae is the one most commonly associated with diarrhoea. Diarrhoeal infection is usually mild, although more severe symptoms have occasionally been known, including bloody diarrhoea and chronic colitis (inflammation of the colon).Aeromonas have been found in treated chlorinated water and sometimes, there is re-growth in the distribution pipes. Chlorine only appears to have a temporary effect on them and this may mean that it stops them from reproducing but does not kill them. If left (presumably so they can get their breath back and have a bit of a rest after the chlorine attack) they can continue as normal.有一些种类的细菌在水生环境中被发现,但通常不引起疾病immuno-competent。

建筑给排水文献毕设翻译

建筑给排水文献毕设翻译

英文翻译院(系)环境与市政工程专业班级给水排水工程1001班姓名李倩昱学号100320115指导教师王俊萍2014年 04月 18日The effect of rainwater storage tanks on design stormsFrom Urban WaterG. Vaes *, J. Berlamont AbstractThe effect of source control measures on the design of combined sewer systems can in most cases only be correctly assessed using the intrinsic temporal rainfall variability, because long antecedent periods can have an important influence. A conceptual model was built to assess the effect of rainwater tanks on the rainfall runoff using long term historical rainfall series. The outflow of the rainwater tank model is converted to equivalent rainfall series. Based on intensity/duration /frequency-relationships (IDF-relationships) for this equivalent flattened rainfall, modified design storms are developed. ○C2001 Elsevier Science Ltd. All rights reserved.Keywords: Design storm; Intensity/duration/frequency-relationships; Rainwater;Source control; Storage tanks1. IntroductionThe driving force behind the behaviour of many hydraulic structures and systems is the rainfall input. In order to simplify design calculations and limit simulation time, representative single storm events are often used. In Flanders, standard design storms are used for the design of combined sewer systems, based on intensity/duration/frequency-relationships (IDF-relationships) (Vaes, 1999). These design storms are called `composite' storms (Fig. 1), because for one return period all storm durations are included in one storm [comparable with the well-known Chicago-storms (Keifer & Chu, 1957)].However, the variability of the rainfall is high. A comparison between the simulation results (flow, water depth, etc. in hydrologic/hydraulic systems) obtained with continuous simulations and simulations with design storms indicate that significant differences may be found for the probability of an event when the intrinsic variability of the rainfall is neglected (Dahl, Harremoes, & Jacobsen, 1996; Vaes, 1999). The differences will be small for systems, which behave linearly, because the immediate rainfall determines the peak flow and maximum water levels. When the systems behaves more as `capacitive' systems (i.e., where the storage becomes an important parameter), the differences will be larger. A capacitive system has a `memory' that is influenced by the antecedent rainfall. Often combined sewer systems have an emptying time, which tends towards 12 h. For source control structures, the emptying time is even larger (weeks or months). If a severe storm occurs within a short period after an earlier storm, the antecedent rainfall may still occupy a large amount of the storage capacity in the combined sewer system or retention structure. The larger the influence of the memory is, the larger the intrinsic variability of the rainfall will influence the simulation results. For example, for a combined sewer system in a flat region with one pump at the downstream end, the throughflow is almost independent of the storage volume. The stored volume in the system is therefore mainly dependent on the inflow. This is also the case for infiltration structures, where the infiltration capacity is only slightly determined bythe storage in the structure and the remaining storage capacity in the structure is therefore mainly a function of the input history.More and more `capacitive' systems have been built in the last years and will still be built in future. Large storage volumes are necessary to retain the rainfall and to attenuate the flow. These storage volumes can be built in the sewer system (on-line storage) or at the combined sewer overflow (off-line storage). However, more and more attention is now going to `source control'. This means that storage is provided in rainwater tanks, infiltration trenches, etc. upstream of the drainage system. For these source control implementations the influencing antecedent rainfall period is even larger than for storage in the combined sewer system. It has been found that source control requires larger storage volumes (relative to the contributing area) than for down-stream storage (Vaes & Berlamont, 1998, 1999); as well found by Herrmann and Schmida (1999). Due to the longer emptying times for upstream storage, the available storage for retention is much smaller. This all amplifies the need to take into account the intrinsic variability of the rainfall for specific design calculations.2. Effect of retention facilities on downstream drainage systemsThe effect of source control on the design of combined sewer systems can in most cases only be correctly assessed using the intrinsic temporal variability, because long antecedent periods can have an important influence. When storage is built in upstream of the combined sewer system (i.e., before the rainwater enters into the sewer pipes), the rainfall input used to simulate the runoff to the sewer system can be preprocessed in order to take into account the effect of the upstream storage.These local source control implementations are easy to model with a simple reservoir model, which can handle continuous long term simulations in a very short computation time. This preprocessed rainfall can then be used to design the downstream drainage systems. This approach can for example be used for rainwater tanks and infiltration trenches. For rainwater tanks the antecedent rainfall up to one month before may have an effect.With the same simple models the optimal design parameters for rainwater tanks can be determined (e.g.,Herrmann& Schmida,1999; Mikkelsen, Adeler, Albrechtsen, & Henze, 1999), which has led to a design graph for rainwater tanks in Flanders asshown in Fig. 2 (Vaes & Berlamont, 1998, 1999). Furthermore, using simple models for the upstream retention structure as well as for the sewer system (Vaes, 1999), the impact of the upstream retention on the combined sewer overflows can be investigated (Herrmann & Schmida, 1999; Vaes,1999; Vaes & Berlamont, 1998, 1999).3. MethodologyTo incorporate the effect of rainwater tanks on the sewer system design, a model was built to assess the effect of a rainwater tank on the historical rainfall series and to incorporate this effect into a modified composite storm.For this, a simple reservoir model is used with a constant outflow equal to the mean rainwater use in the household (Fig. 3). The fraction α of the rainfall that falls on the roof will flow to the rainwater tank. The rest of the rainfall (1-α) that falls on the other impervious areas is drained directly to the combined sewer system. A small rainwater reuse discharge is slowly emptying the rainwater tank as long as there is water available in the tank. This rainwater will flow to the combined sewer system after it has been used. If the tank is full, all the extra water will flow to the combined sewer system.In Fig. 4 an overview of the implemented methodology is shown. The outflowof the rainwater tank model is converted to equivalent rainfall. A reduction coefficient is determined as the ratio of the IDF-relationship for this equivalent flattened rainfall over the corresponding IDF-relationship for the original rainfall series. The original composite storms are corrected with this reduction coefficient, which is (approximately) a linear function of the storm duration. The reason for the use of a reduction coefficient on the original composite storm is that a more elaborate extreme value analysis was performed to create these original composite storms.4. Extreme value estimationAs the rainfall data have a large intrinsic variability, certainly for high return periods, a specific regression is needed, corresponding to the extreme value estimation for the original IDF-relationships. However, the rain-water tank appears to change the type of the extreme value distribution. The very extreme rainfall events are rarely affected by the storage in the rainwater tanks and thus still fit to the original exponential distribution (Willems, 1998). The more frequent rainfall events are affected more by the smoothing caused by the storage in the rainwater tank and evolve to another exponential distribution. The resulting distribution thus containstwo exponential distributions, which gradually fade into each other. This compound exponential distribution can be approximated by a Pareto distribution, at least for interpolation purpose as in this case. A Pareto distribution has a more heavy tail, which means that there is a larger probability for the extreme events. This Pareto distribution leads to a linear relationship between rain-fall intensity i and return period T in a double logarithmic co-ordinate system (a1 and a2are regression constants):log i =a1+a2 log T.The influence of this smoothing is more pronounced for small storm durations and for rainwater tanks with a large retention function. Depending on which regression will give the best correlation, the exponential distribution will be kept or the Pareto distribution will be used. The application of a simple regression will be sufficient in this case, because no extrapolation will be made for return periods higher than the total length of the original rainfall series. In the end, a linear regression will be used on the reduction coefficients as a function of the storm duration, to obtain a monotonous modified composite storm.5. Practical applicationAs many parameters are involved, this methodology has been implemented in a software program, which was called `Rewaput' (`REgenWAterPUT' is the Dutch word for `rainwater storage tank'). The same methodology can be used to incorporate the effect of rainfall runoff models or upstream infiltration trenches into the designstorms. As more and more source control is applied, this approach will certainly lead to better rainfall input for design calculations in the future.Infiltration and retention facilities often behave non-linearly, because the outflow is often very strictly limited. Continuous long term simulations are thus necessary. The implementation of a simple conceptual model for the upstream retention facilities is simple and the simulation of long time series in this conceptual model does not require long calculation times. In this model 27 years of rainfall is incorporated, which is the same series of rainfall that has been used to determine the Flemish composite design storms (period 1967-1993). One set of parameters for the Rewaput model requires only about five seconds of calculation time on a Pentium III 733 MHz computer. If the parameters vary over a specific catchment, the parameter distributions can be discretised and several sets of parameters can be taken into account. In this case the discretisation step, the deviation on the parameters and the number of varying parameters determine the number of calculations, which have to be performed. In the model Rewaput, a triangular distribution is implemented to approximate the stochastic character of the storage volume and the water consumption (i.e., variation over a catchment) (Fig. 5). For each variation within this triangular distribution the effect is multiplied by the weight corresponding to the parameter distribution in order to calculate the global effect. Using two stochastic parameters the calculation time quadratically increases. To reduce the calculation time the discretisation step has to be chosen taking into account the deviation on the parameters.6. ResultsAlthough the storage in rainwater tanks and infiltration facilities is not always completely available during severe rainfall (i.e. because the facility is already filled with the antecedent rainfall), this kind of upstream retention facility still can have a large influence on the rainfall runoff to the sewer system. It has been shown that well-designed rainwater tanks can even significantly reduce the peak flow in sewer systems, if they are installed on a sufficiently large scale. In Fig. 6, an example is shown of what the possible effect of rainwater tanks on a design storm can be. In this case, it is assumed that rainwater tanks of 5000 l per 100 m2 roof area are built for 30% of the total impervious area and that 100 l per day and per 100 m2roof arearainwater is consumed. This almost reduces the peak of the composite storm for 5 years to the value of the composite storm for 1 year. It is impossible to predict this effect using a single storm design approach.7. ConclusionsThis methodology shows the large impact of source control facilities on design rainfall for the downstream drainage systems. Furthermore, it shows that it is important to incorporate the real variability of the rainfall in order to obtain an accurate estimation of the effect of upstream retention. In order to limit the calculation times this can be successfully applied using simple models.This methodology can also be used to incorporate the effect of a non-linear surface runoff model or to simulate the effect of infiltration facilities, even when they are influenced by the ground water table. Currently, in Flanders, for sewer system design a fixed runoff coefficient of 0.8 is used for the impervious area. When (long term) measurements are available, a more realistic runoff model (i.e., a more capacitive (depression storage based) runoff model) can be calibrated. This can then be included in the design calculations by routing long rainfall series through the simple conceptual runoff model and incorporate the effect in the design storms. The same is valid for infiltration facilities and runoff from pervious areas. Simple conceptual models can be used to reshape the design storms, so that simple design storms are obtained without neglecting the effect of the rainfall variability on theupstream retention facilities.AcknowledgementsThe authors are grateful to the Belgian Royal Meteorological Institute that made the rainfall series available in digitised form for research purposes and to the Flemish water company Aquafin for their support to this research.References[1] Herrmann, T., & Schmida, U. (1999). Rainwater utilisation in Germany:efficiency, dimensioning, hydraulic and environmental aspects. Urban Water, 1(4), 307-316.[2] Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design.Journal of Hydraulic Div., 83(4).[3] Mikkelsen, P. S., Adeler, O. F., Albrechtsen, H.-J., & Henze, M. (1999).Collected rainfall as a water source in Danish households -what is the potential and what are the costs? Water Science Technology, 39(5), 49-56.[4] Vaes, G. (1999). The influence of rainfall and model simplification on the designof combined sewer systems. Ph.D thesis. University of Leuven, Belgium.[5] Vaes, G., & Berlamont, J. (1998). Optimization of the reuse of rainwater. InProceedings of the international WIMEK congress on options for closed water systems, Wageningen, Netherlands.[6] Vaes, G., & Berlamont, J. (1999). The impact of rainwater reuse on CSOemissions. Water Science Technology, 39(5), 57-64.[7] Willems, P. (1998). Hydrological applications of extreme value analysis. InInternational conference on hydrology in a changing environment, Exeter, UK.雨水储存槽对暴雨设计的影响选自《城镇水网》作者:乔.沃思;简.伯夏娜摘要在大多数情况下设计联合排水系统,水量控制影响能正确评估天然的暂时性降雨,因为长时间的前期降雨会产生极大的影响,建立一个概念性的模型能够评估雨水储存槽系统能在长期历史降水时期的降雨量,雨水槽系统模型将水流量变为平均流出量。

中英文对照的建筑给排水设计说明

中英文对照的建筑给排水设计说明

中英文对照的建筑给排水设计说明MECHANICAL PRELIMINARY DESIGN REPORTSTADIUM1.给排水设计饮用水和污水1.Sanitary DesignWater and sewage water.设计基础- 甲方提供的设计任务书和市政管网综合图- 建筑专业提供的条件图- 国家现行的设计规范及有关规定设计简章.Design basesDesign Brief and Municipal integrated network drawing offered by the client. Condition drawings from architectural discipline.Current national design codes and related stipulations2. 给水系统通过一根DN200的进水管将水引入.水表安装在进水管上,离红线1米处.供水管在红线内连成环路管网,并接到供应楼的消防水池和给排水水池.由环路管网向必需的室外消火栓和绿化带的喷淋器供水.2. Water supply systemFor water supply of this project, DN200 water intake pipes are led in. Water meters are installed on the intake pipes 1.0 m away from the red line. The water supply pipes are connected into loop networks in the red line and then led to the fire pool and sanitary water pool in the supply buildings respectively. Necessary number of outdoor hydrants and sprinklers for green area will be provided on the loop networks. 设计范围包括红线内的饮用水,污水,雨水,建筑消防.Design scopeDesign scope of this project includes water, sewage water, rainwater, fire-protection in the building, and water and sewage water within the red line. 给排水水池与消防水池分开,容量为100m3 .体操馆供水管埋地敷设.Sanitary water pool is separated from fire water pool, volume of sanitary water pool is 100m3. Water supply pipes for the stadium will be laid in the earth.3.用水量标准- 体育馆: 15升/顾客·日 K=2.0- 宾馆: 150升/人·日 K=2.0- 餐厅: 50升/顾客·日 K=2.0- 工作人员: 25升/人·日 K=2.0- 地面冲洗用水: 3升/m2日- 冷却塔补水量:按用水量的2%计- 未预见水量: 按日用水量20%计- 消防用水:消火栓:室内40升/秒,室外30升/秒,火灾延续时间为3小时;自动喷洒按22升/秒,火灾延续时间为1小时卷帘水幕用水0.5升/秒·米,火灾延续时间为3小时;Water consumption standard- Stadium: 15L/visitor·day K=2.0- Hotel: 150L/visitor·day K=2.0- Restaurant: 50L/customer·day K=2.0- Staff 25L/perso n·day K=2.0- Floor cleaning: 3L/m2·dayMake-up water for cooling tower: 2% of theactual cold water consumption.Unforeseen water consumption: 20% of the dailywater consumption.Water for fire protectionHydrant: 40L/s indoor, 30L/s outdoor, fireduration time is 3h;Sprinkler: 22L/s, fire duration time is 1h;Drencher for rolling shutter: 0.5L/s·m, fire duration time is 3h;在适当的位置设置饮用水机,在主进口为残障人设置两个饮用水机.为此饮用水系统安装循环泵.机房设在地下室的水除了机房.当饮用水机不被使用时,应排空,以免水质腐败.在客房和餐厅内设置电热水器,同时亦为热水供应设置循环泵.在更衣间旁设置电热水器,为淋浴和洗盥供应热水.为楼板清洁安装一定数量的水龙头.Some suitable places are supplied with portable water drinking units, two drinking units for disable people are provided at main entrances, for this portable water system, circulating pumps are adopted, the equipment room is located in water treatment center in the basement. When there is no use, portable water will be drained completely to avoid deterioration.Electric water heaters are installed in guest rooms and restaurant, also hot watercirculating pumps will be provided for supplying hot water.Electric water heaters are installed near the changing and clothing rooms for supplying hot water for shower and washing.Certain number of water taps are installed for floor-cleaning.4.用水量最大日用水量:2.200m3/日最大时用水量:220m3/时Water consumption demandMaximum daily water consumption: 2.200m3/dayMaximum hourly water consumption: 220m3/hour却循环系统冷却水循环系统采用机械循环系统.总冷却水用量为460m3/h.在供应楼顶设置三台超低噪音冷却塔(230 m3/h, 2x 115 m3/h).进水温度37Co,出水温度32Co .补充水量9,6 m3/h.补充水由市政供水网直接提供.Cooling water circulation systemThere are cooling water circulation system in this project, cooling water for the refrigerators adopts mechanical circulation system. Total water consumption of cooling towers is 460m3/h. On roof of the supply building there are 3 ultra-low noise cooling towers (230 m3/h, 2x 115 m3/h), inlet temperature of 37Co, outlet temperature of 32Co, with make-up water of 9,6 m3/h. Make-up water of the cooling towers will be supplied directly by the municipal network.在消防泵房内有消火栓泵(一个运行,一个备用),喷淋泵(一个运行,一个备用),卷帘雨淋泵(一个运行,一个备用).用于地下车库的泡沫喷淋设备,如报警阀,泡沫压缩罐,化学药剂泵安装在消防设备中心.30.0m3 消防水箱和消防稳压装置分别安装在车库的四面墙.In the fire water pump room, there are hydrant pumps (one operation, one standby), sprinkler pumps (one operation, one standby) and rolling shutter drencher pumps (one operation, one standby).Fire equipment, which are used for the foam sprinkler system in underground garage, such as fire alarm valves, foam concentrated tank and chemical dosing pump, etc. are provided in fire equipment centers. Four 30.0m3 fire water tanks and fire protection stabilized pressure devices are respectively located at four sides next to the garages.消防用水消火栓:室内按40升/秒,室外按30升/秒,火灾延续时间按3个小时计自动喷洒按22升/秒,火灾延续时间按1小时计卷帘水幕用水量 0.5升/秒·米,火灾延续时间按3个小时计消火栓:室内,室外用水量皆为756m3;自动喷洒用水量为79.2 m3;卷帘水幕用水量为 270m3;一次火灾用水量为1.861,2;Water for fire protectionWater consumption standard for fire protectionHydrant: 40L/s indoor, 30L/s outdoor, fire duration is 3hSprinkler: 22L/s, fire duration is 1hDrencher for rolling shutter: 0.5L/s·m, fire duration is 3hWater consumption for fire protectionHydrant: indoor and outdoor water consumptions are 756m3 respectively Sprinkler: 79.2 m3Drencher for rolling shutter: 270m3Water consumption for one fire: 1.105,2 m3消火栓的布置在整个建筑物内沿墙,沿柱,沿走廊,风塔上及楼梯附近设有必要数量的室内消火栓,消火栓间距小于30米.消火栓管网水平,竖向皆成环状布置,消火栓箱内配有DN65消火栓一支,25米衬胶水龙带一条,φ19毫米喷咀水枪一支,并配消防卷盘(DN25消火栓一支,30米胶管,φ9毫米喷咀水枪一支)且设有可直接启动消火栓泵的按钮;在室内消火栓箱下设有磷酸铵盐手提式灭火器箱.室内消火栓系统在室外设有三组水泵接合器.Hydrant arrangementNecessary number of hydrants are installed indoors along the wall, columns, corridors, and staircases, at intervals of less than 30m. Hydrant networks are connected as a loop both horizontally and vertically. Inside each hydrant box, a DN65 hydrant, a 25m long rubber lined hose, a water nozzle of φ19mm, hose reel (a DN25 hydrant, a 30m long rubber lined hose and a water nozzle ofφ9mm), and a direct starting button for the hydrant pump are provided.Under each indoor hydrant box, a portable ammonium phosphate powder extinguisher box is installed. There are three sets of pump adopters being installed outdoors for the indoor hydrant system.消防系统防水泵房及消防水池供水管DN200在红线内连成环路管网,管网上安装一定数量的消火栓.两根DN200供水管分别引入供应楼内两个消防泵房内的消防水池.消防水池总容量不应小于4000m3, 每个为2.000m3.Fire protection systemWater pump room and water pool for fire protectionThe lead-in pipes (DN200) are connected as a loop inside the red line, on the loop, certain number of hydrants are installed.Two water supply pipes (DN200) are led into the fire water pools at each fire water pump room in supplybuilding. In consideration of the importance of the project, the volume of the fire water pools should be not less than 4000m3, each is 2.000m3.自动喷淋系统自动喷淋系统安装在全建筑范围,除了室外和高于10 米的房间.喷淋泵安装在地下的消防泵房内.报警阀设置在地下的消防泵房内和中间的消防设备中心内,水流显示器设在每个防火分区内.Sprinkler systemSprinkler systems will be provided inside the whole building except outside areas and roomshigher than 10m, with sprinkler pumps installed in the underground fire water pump rooms. Alarming valves installed in underground fire water pump rooms and four fire equipment centers in the middle, water flow indicators are installed by fire compartments.除了安装一个封闭喷淋系统,将为地下车库设置一个泡沫喷淋系统.餐厅内安装93oC启动的自动喷淋头,但在其它房间,仅安装93oC启动的普通和快速反应自动喷淋头.三组泵接合器安装在室外.Besides an enclosed sprinkler system, a foam sprinkler system composed of a proportioning mixer and a foam concentrated tank is provided for the underground garage. Sprinkler actuated at 93oC are provided in the restaurants, but in other rooms, only ordinary sprinklers and fast response sprinklers actuated at 68oC are provided.Three sets of pump adaptors for this system will be installed outdoors.排水系统为排水系统设置污水主立管和特别垂直排气管.排气管与污水管在每层连接,污水排出体操馆.餐厅的污水首先在油脂分离池中处理,然后排入室外排水网.给排水污水将被在化粪池收集和处理,然后排入市政排水管网.化粪池在输送区旁.最大天排水量为870m3/天.9. Drainage systemMain vertical sewage pipes and special vertical vent pipes are provided for the drainage system. The vent pipes are connected with sewage pipe at each floor; sewage water is drained out of stadium. Sewage water in the restaurants and garage are treated in the grease and oil separation tank, and then discharged into the outdoor drainage networks. Sanitary sewage water is collected and treated in the septic tank,then drained into the municipal drainage. The septic tanks are located besides the deliverycircle. Maximum daily drainage amount is 870m3/day.卷帘水幕系统地下车库设置有卷帘水幕系统.水幕泵安装在消防水泵房内,采用开式雨淋头,电动或手动控制.十组泵接合器安装在室外Drencher system for rolling shuttersRolling shutter protected by drenchers are provided for the underground garage, the drencher pumps are installed in the fire water pump rooms, open drencher heads are selected, and are controlled both by electrically and manually. Ten pump adapters will be installed outdoors for this system.地下室内污水设有污水坑,废水设有废水坑,生活污水,废水经潜污泵提升排至室外排水管网,潜污泵的启停皆由磁性浮球控制器的控制.地下汽车库废水设有废水坑,废水经潜污泵提升排至室外,经隔油池处理后排入室外雨水管网.There are cesspits for sewage water and wastewater pits for wastewater in the basement, the sewage and wastewater is sucked up and drained to the outdoor drainage networks by submerged sewage pumps.Operation of the pumps is controlled by the magnetic floating ball controllers. Wastewater pits are provided for the underground garage, wastewater is sucked up and drained to outdoor oil separation tank by submerged sewage pumps, after treated, wastewater is drained to the outdoors rainwater networks.在柴油发电机房,变配电房和通讯设备机房设低压二氧化碳气体灭火系统.Low pressure CO2 extinguisher systems are provided in diesel generator rooms, transformer substations and telecommunication equipment rooms.在本建筑内按"建筑灭火器配置设计规范"在每个消火栓箱下设手提式灭火器箱,箱内设有必要数量的磷酸铵盐手提式灭火器.According to the Code for Design of Extinguisher Disposition in Buildings, portable fire extinguisher box, in which there are necessary number of portable ammonium phosphate powder extinguishers, will be installed under every hydrant box.在每个消防电梯井底旁设有消防排水坑,废水经潜污泵提升排至室外.Fire water drain pit is provided at side of bottom of each fire elevator well, waste water will be sucked up and drained out by the pumps.雨水系统雨水排水屋顶采用压力流排水.雨水设计重现期按P=10年计算,降雨历时为5分钟,暴雨强度公式按Q=998.002(1+0.568lgP)/(t+1.983)0.465计算.沿柱在屋面设置雨水沟.雨水通过雨水沟收集,然后进入雨水头和下排管,然后到室外雨水观察井.10. Rainwater systemPressurized drainage system is adopted for roof rainwater drainage system. Here, return period P=10 years, rainfall duration is 5 minutes, stormwater amount is calculated by the following formula:Q=998.002(1+0.568lgT)/(t+1.983)0.465Rainwater gutters are provided on roof along columns, skylight. Rainwater is collected in the gutter, then to rainwater heads and downpipes, and to the outdoors rainwater inspection wells.11.管材- 生活给水管,冷却塔补水管采用铜管,氩弧焊接.- 直饮水管采用不锈管.- 消火栓管,冷却循环管,水幕管,水泵吸水管采用焊接钢管,焊接.- 自动喷洒水管,雨淋水管采用热镀锌钢管,丝扣连接或卡压连接.-二氧化碳管采用无缝钢管焊接.- 地下车库泡沫喷淋水管采用不锈钢管,卡压连接.Pipe materialCopper pipes connected by argon arc welding are adopted for the sanitary water pipes, make-up water pipes for cooling towers.Stainless stell pipes are adopted for portable water pipes.Welded steel pipes connected by welding are selected for hydrant pipes, cooling circulating pipes, drencher pipes, pump suction pipes.Hot-galvanized steel pipes connected by threads or compression-seizing are selected for sprinkler and deluge sprinler pipes.Seamless steel pipes connected by welding are selected for CO2 pipes. Stainless steel pipes connected by pressed clamp is selected for the pipes of foam sprinklers in the underground garage.当雨水两超出雨水沟设计量时,雨水可沿屋檐自由排放.雨水被收集,然后排入市政集水池. When the amount of rainwater is more than the design value of the gutters, water is discharged naturally along the eaves. Rainwater is collected, and then drained to the municipal catch basins.围绕体育馆的循环池将用于喷洒运动场和作为室外绿化带的储水池.此池将作为一个循环过滤设施,可容水约7.500 m .喷洒压力设备和其它必须的过滤设备安装在供应楼里.The circular senic pool surround stadium will be used for spraying sportsfield andas reservoir for outdoor greening.The pool will be used as a circular filtering facility and will be adopted with a water volume of about 7.500 m .The spray water pressurizing equipment as well as further necessary filtering equipment will be adopted in the supply building.2.0 制冷2.0 Cooling冷源:空调冷负荷(估算):本工程建筑面积共50.000平方米,包括观众区,休息室,更衣室,小会议室,餐厅,办公室和其它附属房.空调设计日峰值冷负荷为2.4MW,设计日总冷负荷为3 kW.Refrigerating sourceCooling load of air conditioning systemTotal floor area for this building is 50,000sqm, which includes spectator areas, lounges, Clothing and changing rooms small meeting rooms, restaurant, office and other auxiliary rooms. Designed dayly peak cooling load is 2,4MW, designed total dayly cooling load is 3kW.每台1200kW制冷机配一台流量为206m3/h离心泵.各配一台备用泵一次泵采用压差旁路控制.通过埋地敷管,向游泳体操馆供应冷冻水.A centrifugal pump with a flow rate of 103m3/h is provided for each 1200kW chiller. One operation pump with a standby corresponds to one chiller.Pressure difference branch control is adopted for primary pumpVia earth laid pipes from supply building to gymnasium chilled water supply will be deliverded.冷源的选择:根据建筑的实际情况,3台制冷机将安装在供应楼内的冷冻机房.设计容量为4800kW. 为了实现能量的效率化使用,设计方案为,1台制冷机的出力为总设计容量的50%.而另2 台.每台出力为总设计容量的25%.冷冻水系统的主要设备包括3台电动制冷机,一级冷冻泵,二级冷冻泵,自动控制阀等等.冷冻水的供/回水温度为-7/ 12°C.Selection of refrigerating sourceAccording to the real condition of the building, 3 chillers are located in the refrigerating plant rooms in the supply building, designed capacity is 2400kW. For actuing in an energy efficient way one chiller about 50% of total capacity (1.200 kW) and two chillers with 25% of total (600 kW each)capacity each are adopted.Main equipment of chilled water system includes 3 electrical chiller, primary cool water pump, secondary chilled water pump and automatic controlled valve, etc. supply/return temperature of the chiller is-7/ 12°C.二次泵系统:根据使用功能,各制冷机房又分成不同的循环支路.二次泵采用变频调速控制.根据负荷侧供回水管的压差,控制水泵的转速.二次泵循环支路的管道采用异程式.Secondary pump system:Each refrigerating plant room is subdivided into different circulation branch loops according to use functions.Variable-frequency speed-regulating control is adopted for secondary pumps. The rotating speed of a water pump is controlled according to the pressure difference between water supply and return pipes.Direct return system is adopted for the pipes of circulating branch of secondary pumps空调冷冻水系统由于本工程占地面积大,功能复杂,有连续使用,也有间歇使用,为了达到运行灵活,节能的目的,空调冷冻水系统采用两管制二次泵系统.Chilled water systemDue to the large occupied area of this project, the complicated functions and the combination of continuous utilization and intermittent utilization, in order to accomplish the purpose of flexible operation and energy saving, the chilled water system is of two-pipe secondary pump system.管材:水管采用焊接钢管及无缝钢管.本工程的风管除土建风道外,均采用镀锌铁皮咬口制作.每节风管之间用法兰连接.Pipe and duct materialsThe water pipes adopt welded steel pipes and seamless steel pipes.Air ducts for this project are made of galvanized sheet steel by seaming except ducts by civil construction. Air ducts are connected together by flanges.一次泵系统:供应楼冷冻机房2400kW制冷机配一台离心泵, 流量为412m3/h.配一台备用泵.Primary pump system:Chiller room supply buildingA centrifugal pump with a flow rate of 412m3/h is provided for 1200kW chiller. Oneoperation pump with a standby corresponds to one chiller.保温材料:空调供,回水管,冷凝水管采用酚醛管壳保温.空调送,回风管以及处理后的新风管采用外贴铝箔的离心玻璃棉板保温.- 管道穿防火墙的空隙处采用岩棉材料等非燃材料填充.Thermal materialsphenolic pipes are adopted for thermal insulation of water supply and return pipes for air conditioning, as well as air-conditioning condensate pipes.Aluminum foil faced glass fiber boards are adopted for thermal insulation of air-conditioning air supply and return ducts as well as fresh air ducts after chillers.Non-flammable material will be selected to fill the interspace in the fire protection wall where the ducts go through.消声与隔振:冷水机组,水泵等设备采用减振台座,弹簧减振器或橡胶减振垫减振降噪.在空调机组,新风机组,通风机的进出口采用涂胶帆布软管连接.- 水泵进出水管上采用可曲挠橡胶接头,使设备振动与配管隔离.Noise reduction and vibration isolationShock absorption bases, spring shock absorbers on rubber shock absorption pads are adopted for equipment, such as water chiller units, pumps, etc to reduce vibration and lower noise.Flexible rubber-coated canvas hoses are adopted far connections of inlets and outlets of air-conditioning units, fresh air handling units and ventilators. Flexible rubber couplings are adopted for the water intake and delivery pipes of the pumps to isolate equipment vibration from their pipes.3.0空调和通风系统3.0 Air Conditioning and Ventilation Systems方案设计范围Scope of schematic design空调设计Air Conditioning Design在体育馆内,一些区域设置空调系统.这些区域划分为:西侧地下二层的贵宾休息室东侧地下二层酒店门廊地下一层的输送区,技术机房,运动员更衣间,医务服务,热身区,裁判区,健身中心,酒店大堂,会议室,厨房,特许区和贵宾大堂混合区.首层的酒店大堂,酒店区,贵宾门廊,急救In the stadium, in some ranges air conditioning systems are used. These ranges subdividethemselves as follows:VIP – Lobby in West of levelel -2Hotel lobby in the east of level –2Delivary Circle, technical Plantrooms, Changingrooms for the athletes, Medical Service and warm up area, Judges Area, Fitness Center, Hotel Lobby, Conferenz, Kitchen and Concession, Vip lobby- Mixed Zone in level -1Hotel lobby, Hotel area, Vip lobby, Vip Area, First aid in 0空调和通风机组设置于靠近地下一层楼梯底部的机防.新风从楼梯底的风室被引入机房而被空调处理器吸入.从此,通过水平和垂直风道送至使用区.用于以上区域的空调机组分为12 台暖通空调机组,具有以下特点The air conditioning and ventilation units for the using ranges are placed in die mechanical plantroom nearby the stairs in the bottom of the stadium in Level -1. The outside air will be brought into the Plantrooms from fresh air chambers under these stairs and let to the air handling units. From here, the will be led via horizontal an vertical duct to the using ranges.The air conditioning units for the ranges specified above will be devided into 12 HV AC- units (drawings) with the following characteristics:以下区域仅设置排风系统:地下二层停车区域地下二层电气机房地下一层卫生间首层卫生间一层卫生间宾馆客房设置分散式风机盘管加新风系统.贵宾室设置风机盘管.For the following ranges, only exhaust air systems are planed:Parking area in Level –2Electrical Plantrooms in Level –2Toilets in Level –1Toilets in Level 0Toilets in Level +1For the guestrooms of the Hotel decentralized Fancoil Units with ourside air connection are planed. The VIP- boxes will be equiped with Fancoil Units.AC1, AC6, AC7, AC12地下一层的附属用房(储存,机房,楼层,观众区 )换气次数 2 – 6 次/小时; 新风100%, 通过螺旋风口送出双风机,全空气系统排风机同时作为机械排烟用AC1, AC6, AC7, AC12Siderooms ( Storage, Plantrooms, Floors, Spectaors area) in Level -1Air Changing rate 2- 4 times/ h; supply via spiral outlets, outdoor air 100% Dual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 2地下一层的医务服务,热身区,运动员更衣间,裁判区换气次数 2 – 4 次/小时; 新风100%, 通过螺旋风口送出夏季最高室内温度29°C, 相对湿度 65 %冬季最高室内温度 22 –24°C室内发热量:- 照明 20 W/m- 机器 10 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 2Medival Service Area, Warm up Area, Changing rooms Athletes, Judges Are in Level- 1Air Changing rate 2- 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityin SummerRoomtemperatur 22 –24 °C in WinterIndoor heat loadLighting 20 W/mMachines 10 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 4地下一层的医务中心,办公室换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 4Media Center, Offices in Level –1Air Changing rate 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 3地下二层的贵宾休息室,地下一层的贵宾大堂,混合区,首层的贵宾办公室和贵宾区换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 20 W/m- 机器 10 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 3VIP Lobby in Level –2, VIP Lobby, Mixed zone in Level –1, VIP Offices and VIP area in Level 0Air Changing rate 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 20 W/mMachines 10 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 5地下一层的厨房,服务和特许区厨房的换气次数 100m /m 小时,新风100%, 通过螺旋风口送出服务和特许区的换气次2-4数次/小时, 新风100%, 通过螺旋风口送出双风机,全空气系统最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 80 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 5Kitchen, Service and Concession area in Level -1Air Changing rate 100 m /m h for the Kitchen; supply via spiral outlets, outdoor air 100%Air Changing rate 2-4 times/h for the Service and Concession area; supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 80 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smokeAC 8地下一层的健身中心,员工更衣间,特许区换气次数 2 – 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 80 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 8Fitness Center, Changingrooms Staff, Concessio in Level -1Air Changing rate 2-4 times/h; Fitness Center 6 times/ h; supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 80 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smokeAC 10地下二层地的宾馆走廊,地下一层的宾馆走廊和餐厅,首层的宾馆区换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 10可能亦用于人防区的送风.此部分的设计由人防技术设备设计工程师审核.AC 10Hotel Lobby in Level- 2, Hotel Lobby and Restaurant in Level -1, Hotel area in Level 0Air Changing rate 4 times/h; Restaurant 8 times/h;supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.The AC- unit No. 10 might also be used as a supply air unit for the shelter. This has to be checked by the engeneers who will plan the technical equipment for the shelter.AC 9通风地下车库:设计一个换气次数 6次/小时的排气排烟通风系统.由地下一层的空调机组送风,送风经过车库顶棚的垂直风口进入水平风道,然后送至各处.输送区:输送区设置一个隧道通风系统.空气通过北侧被吸入建筑物,然后通过轴流风机输送到输送区.空气通过南侧的就近道路排出.VentilationUnderground Garage:For the underground garage an air exhaust an smoke exhaust ventilation system with an air exchange rate of 6 times/h is provided. The supply air for the garage will be delivered from the AC- Units in Level- 1 an brougt into the garage via vertical openings in the ceiling of the garage and distributed over horizontal ducts. Delivery Circle:For the delivery circle a tunnel ventilation system is installed. Air is sucked at the south side of the stadium into the building and transported by axial jet fan through the delivery zone.各功能区的规划包括水平管道和竖井.各区域无异味和污染物的排风将被作为送风送入车库. 剩余的排风和排烟将通过一个地下风道送到供应楼,并通过屋顶排出.排烟内部区域均设置机械排烟.通风系统的管道亦即排烟道. 在空调机房内,烟气通过一条旁通风道送至车库排风机,亦为排烟机(300°/ 30 分).The development of the functional areas is made by horizontal ducts and vertical pits. The exhaust air from ranges which are not smell-loaded or contained pollutants are brought as supply air into the garage.The remaining exhaust air and the removal of smoke exhaust air are led over an underground channel to the supplying building and blown out there over roof. Smoke ExhaustionAll ranges on the inside are exhaustet from smoke mechanically.The duct system of the existing ventilation systems is used. In the HVAC plant rooms, the flue gases are led over a bypass channel to the exhaust air fan for the garage, which have to be designed to be used as smoke- exhaust fan (300°/ 30 min).室内储存和技术房:此区内,设置简单的送排通风系统.卫生间:地下一层和首层的卫生间由临近区域的通风系统供应新风.一层卫生间通过向外开口进风.地下一层卫生间排气排入输送区.首层和一层卫生间将通过独立的排气扇将废气排入在看台下部.Indoor storing and technical plant rooms:For this ranges simple supply- and exhaust ventilationsystem will be installed Toilets:The WCs in level -1 and level 0 are supplied with fresh air by the ventilation systems of the adjacent ranges.The WCs in level +1 receive the fresh air over opening to the outside.The WC in level -1 is aired out separately into the range of the delivary circle. The exhaust air of the WC ranges in level 0 and level +1 will be led by separate exhaust fans into the ranges underneath the grandstand.车库的排气和烟气被加压,通过地下风道送至供应楼,而通过其屋顶排出.停车场有烟雾时,空调机组的送风量是不足的.在这种情况下,新风将通过阀门从新风室(在体育馆底层楼梯下)直接向车库进风.The exhaust air of the garage and the smoke will be pressed through the circularly air duct and then through the underground channel to the supplying building and will there be led over roof into the free.In case that smoke is detected in Parking garage, the supply air from the AC- Units which is normaly used for the supply of the garage is not sufficient.In this case the fresh air will be brought directly into the garage via dampers from the freshair chamber, placed underneath the stairs in the bottom of the stadium. 主送风和回风道均设防火阀. 当温度超过70°C, 防火阀将自动关闭,同时风机停止运行,关闭信号将被传送.自动转换防火阀安装于排风排烟共用系统.Both, the main air supply and return ducts of all AHUs are provided with fire dampers. Then a temperature over 70°C happens, the fire dampers wil l be closed automatically and at the same time the fan stops operation and cut-off signal is transmitted. Automatic changeover fire damper is provided for the system used both return air and smoke exhaust.空调和通风系统的电力供应控制与消防控制中心相连. 当某个防火分区火灾报警, 而且消防中心对此信号经过分析确认后,此防火分区内的通风系统停止运行,而同时排烟系统和加压送风系统启动.The power supply controls for the air conditioning and ventilation systems are connected to the fire control center. When fire alarm occurs in a certain fire compartment, the ventilation system in this fire compartment stops operation and at the same time the smoke exhaust system and pressurized air supply system are started after judgement and confirmation by the fire control center.被其它房间包围的楼梯间将设置有加压通风系统.The staircases that are surounded by other rooms will be provided with overpressure ventilation systems.空调机组的详细技术参数集合在被报告末的技术数据报告.The exact technical datas of the AC- units are summarized in the " Technivcal Data Report at the end of the Report.。

给水排水专业英语翻译

给水排水专业英语翻译

《给水排水专业英语》Lesson 1specific yield [spə'sifik] [ji:ld] 单位产水量mass curve 累积曲线capital investment 投资recurring natural event ['nætʃərəl] 重现历史事件subterranean [sʌbtə'reiniən] 地下的groundwater 地下水surface water 地表水tap [tæp]开关、龙头;在…上开空(导出液体)swampland ['swɔmplænd] n. 沼泽地;沼泽地带capillary [kə'piləri] n. 毛细管adj. 毛状的,毛细管的hygro- [词头] 湿(气),液体hygroscopic [,haigrəu'skɔpik] adj. 易湿的,吸湿的hygroscopic moisture 吸湿水stratum ['streitəm] n. [地质学]地层,[生物学](组织的)层aquifer ['ækwəfə] ['ækwifə] n.含水层,地下蓄水层saturation [,sætʃə'reiʃən] n.饱和(状态),浸润,浸透,饱和度hydrostatic [,haidrəu'stætik] adj. 静水力学的, 流体静力学的hydrostatic pressure 静水压力water table 1. 地下水位,地下水面,潜水面2. 【建筑学】泻水台;承雨线脚;飞檐;马路边沟[亦作water-table]Phreatic surface [fri(:)'ætik]地下水(静止)水位,浅层地下水面Superficial [sju:pə'fiʃəl] adj. 表面的,表观的,浅薄的Porosity [pɔ:'rɔsiti] n. 多孔性,有孔性,孔隙率Unconfined ['ʌnkən'faind] adj. 无约束的,无限制的Permeability [,pə:miə'biliti] n. 弥漫, 渗透, 渗透性Permeameter [pə:mi'æmitə] n.渗透仪,渗透性试验仪)Clay [klei] n. 粘土,泥土gravel ['ɡrævəl]n.[总称]砾,沙砾,小石;砾石cone of depression [kəun] 下降漏斗, [水文学]下降锥体drawdown ['drɔ:daun] n. 水位下降(降落,消耗,减少)integrate ['intigreit] 【数学】作积分运算;求积分observation well [,əbzə:'veiʃən] 观测井,观测孔extraction [ik'strækʃən] n. 抽出,取出,提取(法),萃取(法)derivation [deri'veiʃən] n. 1. 导出,引(伸)出,来历,出处,得出,得到;诱导,推论,推理;溯源【数学】1) (定理的)求导,推导2) 微商,微分,导数【语言】词源,衍生deplete [di'pli:t] v. 耗尽, 使...衰竭refuse [ri'fju:z] n. 废物,垃圾vt. 拒绝,谢绝dump [dʌmp] n. 垃圾场,垃圾堆,堆存处vt. 倾卸,倾倒(垃圾)unconfined aquifer 潜水含水层,非承压含水层,无压含水层confined aquifer 自流含水层,承压含水层homogeneous [,hɔməu'dʒi:njəs] adj. 同类的,相似的,均匀的,均相的;同种类的,同性质的;相同特征的Aquaclude 不透水层,难渗透水的地层Offset ['ɔ:fset] n.偏移量抵销,弥补,分支,胶印,平版印刷,支管,乙字管Vt. 弥补,抵销,用平版印刷vi. 偏移,形成分支sophisticated [sə'fistikeitid] adj. 复杂的,需要专门技术的;诡辩的,久经世故的equilibrium [,i:kwi'libriəm] n. 平衡,均衡Water Supply(给水工程)A supply of water is critical to the survival of life, as we know it.(众所周知,水对生命的生存至关重要。

给排水英汉对照

给排水英汉对照

Hot source and hot water is from boiler room with supptemperature of 90℃and return temperature of 70℃.生活热水温度45℃~55℃,当t<55℃时,电磁阀关闭,当t<45℃时阀打开。

Domestic hot water has a temperature range of 45℃~55℃ Magnetic valve closes when t>55℃ and op 清扫口至井段可用UPVC管。

UPVC may be used from cleanout to well .管道与设备连接截止阀,支管与干连接处安装隔离阀。

Provide shut-off valves at piping connecting to equipment installation.provide isolation valves at oranch connection to piping mains.喷淋头的布置应与暖通专业的散流器和建筑的吊顶布置相协作。

Coordinate sprinkler hads with HVAC diffusers and architectural reflected ceiling消火栓安装:消火栓暗装,栓口安装高距地面均为1.1MInstallation of fire hydrant: concealed mounted with distance of 1.1m from floor t未注明的穿框架梁的自动喷水灭火管道标高均距梁底300MM.穿连系梁的自动喷水灭火管道标高均距梁底Unless otherwise indicated,all automatic sprinkling pipes passing through frame beam are 300mm fromthrough tie beam are 200mm from beam bottom.空调平面图air handling layoutMU-1-3新风系统图MU-1-3make-up air system diagramAHU-1净化空调系统图air purfication & air handling system diagram, AHU-1空调通风平剖面图ventilation & air conditioning plan/section吊顶空调平剖面图air conditioning ceiling plan/section吊顶通风和采暖,空调用水管平面图ventilation and heating piping plan above ceiling室内采暖空调平面图room heating and air conditioning plan吊顶以下净化空调平面图air purification & air conditioning above ceiling拉丝区+14.0米送风平面图air supply plan at level of +14.00,drawing areaS-1,2送风系统图S-1,2air supply system diagram室内回风口平面图indoor air return grill plan洁净室回风平面图air return grill plan in clean rooms空调用冷热水管平面图A.C water piping plan空调供热流程图A.C heating supply system diagram屋顶排风平面图Roof exhaust plan排风系统图exhaust system diagram送风系统图air supply system diagramAHU-1水系统图AHU-1 water piping system diagram净化空调系统控制原理图air purification & airconditioning system control priciple diagram AHU-15变风量空调系统图AHU-15 VAV system diagram冷冻水、冷却水管道系统图CHW and CW piping system diagram热水采暖系统图hot water heating system diagram空调机房平面图air handling room plan最冷月和最热月平均温度temperature,coldest month or hotest month (mean)年、月、平均温度,最高、最低temperature,yearly,monthly,mean,highest,lowest最高或最低绝对温度absolute temperature,highest or lowest温球温度wet bulb temperature干球温度dry bulb temperature温球温度计wet bulb thermometer干球温度计dry bulb thermometer采暖地区region with heating provision不采暖地区region without heating provision采暖室外计算温度calculating outdoor temperature for heating通风(冬季)室外计算温度calculating outdoor temperature for ventilation(winter)绝对大气压absolute atmospheric pressure蒸发量volume of vaporizationemperature of 70℃.oses when t>55℃ and opens when t<45℃ling plan.oor to mouth center.水灭火管道标高均距梁底200MM.from beam bottom while those passing。

建筑给排水中英文对照外文翻译文献_图文03

建筑给排水中英文对照外文翻译文献_图文03

建筑给排水中英文对照外文翻译文献_图文03 建筑给排水中英文对照外文翻译文献_图文03建筑给排水中英文对照外文翻译文献(文档含英文原文和中文翻译)外文:Sealed building drainage and vent systems—an application of active air pressure transient control andsuppression AbstractThe introduction of sealed building drainage and vent systems is considered a viable proposition for complex buildings due to the use of active pressure transient control and suppression in the form of air admittance valves and positive air pressure attenuators coupled with the interconnection of thenetwork&#39;s vertical stacks.This paper presents a simulation based on a four-stack network that illustrates flow mechanisms within the pipework following both appliance discharge generated, and sewer imposed, transients. This simulation identifies the role of the active air pressure control devices in maintaining system pressures at levels that do not deplete trap seals.Further simulation exercises would be necessary to provide proof of concept, and it would be advantageous to parallel these with laboratory, and possibly site, trials for validation purposes. Despite this cautionthe initial results are highly encouraging and are sufficient to confirm the potential to provide definite benefits in terms of enhanced system security as well as increased reliability and reduced installation and material costs.Keywords: Active control; Trap retention; Transient propagationNomenclatureC+-——characteristic equationsc——wave speed, m/sD——branch or stack diameter, mf——friction factor, UK definition via Darcy Δh=4fLu2/2Dgg——acceleration due to gravity, m/s2K——loss coefficientL——pipe length, mp——air pressure, N/m2t——time, su——mean air velocity, m/sx——distance, mγ——ratio specific heatsΔh——head loss, mΔp——pressure difference, N/m2Δt——time step, sΔx——internodal length, mρ——density, kg/m3Article OutlineNomenclature1. Introduction—air pressure transient control and suppression2. Mathematical basis for the simulation of transient propagation in multi-stack building drainage networks3. Role of diversity in system operation4. Simulation of the operation of a multi-stack sealed building drainage and vent system5. Simulation sign conventions6. Water discharge to the network7. Surcharge at base of stack 18. Sewer imposed transients9. Trap seal oscillation and retention10. Conclusion—viability of a sealed building drainage and ventsystem1.Air pressure transients generated within building drainage andvent systems as a natural consequence of system operation may be responsible for trap seal depletion and cross contamination of habitable space [1]. Traditional modes of trap seal protection, based on the Victorian engineer&#39;s obsession with odour exclusion [2], [3] and [4], depend predominantly on passive solutions where reliance is placed on cross connections and vertical stacks vented toatmosphere [5] and [6]. This approach, while both proven and traditional, has inherent weaknesses, including the remoteness of the vent terminations [7], leading to delays in the arrival of relievingreflections, and the multiplicity of open roof level stack terminations inherent within complex buildings. The complexity of the vent system required also has significant cost and space implications [8].The development of air admittance valves (AAVs) over the past two decades provides the designer with a means of alleviating negative transients generated as random appliance dischargescontribute to the time dependent water-flow conditions within the system. AAVs represent an active control solution as they respond directly to the local pressure conditions, opening as pressure falls to allow a relief air inflow and hence limit the pressure excursions experienced by the appliance trap seal [9].However, AAVs do not address the problems of positive air pressure transient propagation within building drainage and vent systems as a result of intermittent closure of the free airpath through the network or the arrival of positive transients generated remotely within the sewer system, possibly by some surcharge event downstream—including heavy rainfall incombined sewer applications.The development of variable volume containment attenuators [10] that are designed to absorb airflow driven by positive air pressure transients completes the necessary device provision to allow active air pressure transient control and suppression to be introduced into the design of building drainage and vent systems, for both ‘standard’ buildings and those requiring particularattention to be paid to the security implications of multiple roof level open stack terminations. The positive air pressure attenuator (PAPA) consists of a variable volume bag that expands under theinfluence of a positive transient and therefore allows system airflowsto attenuate gradually, therefore reducing the level of positive transients generated. Together with the use of AAVs the introduction of the PAPA device allowsconsideration of a fully sealed building drainage and vent system. illustrates both AAV and PAPA devices, note that the waterless sheath trap acts as an AAFig. 1. Active air pressure transient suppression devices to control both positive and negative surges. Active air pressure transient suppressionand control therefore allows for localized intervention to protect trap seals from both positive and negative pressure excursions. This has distinct advantages over the traditional passive approach. The time delay inherent in awaiting the return of a relievingreflection from a vent open to atmosphere is removed and the effectof the transient on all the other system traps passed during its propagation is avoided.2.Mathematical basis for the simulation of transient propagation in multi-stack building drainage networks.The propagation of air pressure transients within building drainage and vent systems belongs to a well understood family of unsteady flowconditions defined by the St Venant equations of continuity and momentum, and solvable via a finite difference scheme utilizing the method of characteristics technique. Air pressure transient generation and propagation within the system as a result of air entrainment by thefalling annular water in the system vertical stacks and the reflection and transmission of these transients at the system boundaries, including open terminations, connections to the sewer, appliance trap seals and both AAV and PAPA active control devices, may be simulated with proven accuracy. The simulation [11] provides local air pressure, velocity and wave speed information throughout a network at time and distanceintervals as short as 0.001 s and 300 mm. In addition, the simulation replicates localappliance trap seal oscillations and the operation of active control devices, thereby yielding data on network airflows and identifying system failures and consequences. While the simulation has been extensively validated [10], its use to independently confirm the mechanism of SARS virus spread within the Amoy Gardens outbreak in 2003 has provided further confidence in its predictions [12].Air pressure transient propagation depends upon the rate of changeof the system conditions. Increasing annular downflow generates an enhanced entrained airflow and lowers the system pressure. Retarding the entrained airflow generates positive transients. External events mayalso propagate both positive and negative transients into the network.The annular water flow in the ‘wet’ stack entrains an airflowdue to the condition of ‘no slip’ established between theannular water and air core surfaces and generates the expected pressure variation down a vertical stack. Pressure falls from atmospheric above the stack entry due to friction and the effects of drawing air through the water curtains formed at discharging branch junctions. In the lower wet stack the pressure recovers to above atmospheric due to the traction forces exerted on the airflow prior to falling across the water curtain at the stack base.The application of the method of characteristics to the modelling of unsteady flows was first recognized in the 1960s [13]. The relationships defined by Jack [14] allows the simulation to model the traction force exerted on the entrained air. Extensive experimental data allowed the definition of a ‘pseudo-frictionfactor’ applicable in the wet stack and operable acro ss the water annular flow/entrained air core interface to allow combined discharge flows and their effect on air。

给排水专业毕业设计翻译中英文对照(20页)

给排水专业毕业设计翻译中英文对照(20页)

Oxidize ditch craft in dirty water handle of application and development Summary: This text expatiated primarily the Carrousel oxidizes the construction, craft mechanism of the ditch and circulate the problem exsited in the process with the homologous the method of solution.Finally, introduce the Carrousel oxidize the latest research progress of the ditch and pointed out the future and main research direction.Key phrase: The Carrousel oxidizes ditch divideds by the phosphor takes off the nitrogen construction mechanism Application and Development of Carrousel Oxidation Ditch Process on Wastewater TreatmentAbstract: The structure and the techniques of carrousel oxidation ditch process on nitrogen and phosphor removal are introduced in this paper. The problems inrunning and their corresponding resolvent are also pointed. At last, The authorshowed the up to date research improvement and the mainly future research dire-ction.Key words: Carrousel; oxidation ditch; nitrogen and phosphor removal; structure;techniques1. ForewordOxidize the ditch( oxidation ditch) again a continuous circulation spirit pond( Continuous loop reactor), is a live and dirty mire method a kind of to transform.Oxidizing the dirty water in ditch handles the craft be researched to manufacture by the hygiene engineering graduate school of Holland in the 50's of 20 centuries success.Since in 1954 at Dutch throw in the usage for the very first time.Because its a water fluid matter good, circulate the stability and manage convenience etc. technique characteristics, already at domestic andinternational and extensive application in live the dirty water to is dirty to manage aqueously with the industry[1].Current application than oxidize extensively the ditch type include:The ( Pasveer) oxidizes the ditch, the ( Carrousel) oxidizes the ditch, ( Orbal) oxidizes the ditch, the type of T oxidizes the ditch( three ditch types oxidize the ditch), the type of DE oxidizes the ditch to turn to oxidize the ditch with the integral whole.These oxidize the ditch because of the difference of esse in construction with circulating, therefore each characteristics[2].This text will introduce construction, mechanism, existent problem and its latest developments that Carrousel oxidize ditches primarily.2. The Carrousel oxidizes the construction of the ditchThe Carrousel oxidize the ditch to be researched to manufacture by Dutch DHV company development in 1967.Oxidize the last the company of DHV in foundation of the ditch in the original Carrousel to permited specially the company EIMCO to invent again with its patent in the United States Carrousel 2000 system( see the figure ), realizes the living creature of the higher request takes off the nitrogen with divided by the function of .There has been in the world up to now more than 850 Carrousels oxidize the ditch with the Carrousel 2000 system are circulating[3].From diagram therefore, the Carrousel oxidizes the ditch the usage the spirit of that definite direction control with shake up the device, face to mix with the liquid deliver the level speed, from but make drive the liquid of admixture that shake up is in oxidize ditch shut match outlet circulate flow.Therefore oxidize the ditch have the special hydraulics flows the , current complete mix with the characteristics of the type reactor, have the characteristics that push the flow type reactor again, the ditch inside exsits obviously of deliquescence oxygen density steps degree.Oxidizing the ditch crosssection is rectangle or trapezoids, the flat surface shape is many for oval, the ditch internal water is deep general for 2.5 ~4.5 m, the breadth is deep compare for 2:1, also have the deep water amount to 7 ms of, ditch inside average speed in water current is 0.3 ms/ s.Oxidize ditch spirit admixture equipments contain surface spirit machine, the spirit of turn to brush or turn the dish and shoot to flow the spirit machine, pipe type spirit machine with promote take care of type spirit machine etc., match with in recent years usage still contain underwater push machine[4~6].3. The Carrousel oxidizes the mechanism of the ditch3.1 The Carrousel oxidizes the ditch handles dirty and aqueous principleThe at the beginning common Carrousel oxidizes the dirty water in inside in craft of the ditch direct with dirty mire in reflux together enter oxidize the ditch system.The surface spirit machine makes fuse in the liquid of admixture the density of the oxygen DO increases about 2 the 3 mgs/ L.Under this kind of well the term of the oxygen , the microorganism gets the enough deliquescence oxygen comes and go to divided by the BOD;At the same time, the ammonia were too oxidized nitrate with second nitrate, this time, mix with the liquid be placed in the oxygen appearance.In the spirit machine downstream, after water current be become by the swift flow appearance of the spirit District of even flow the appearance, the water current maintains in the minimum current velocity, guaranteeing the live and dirty mire be placed in the floats the appearance.( average current velocity>0.3 ms/ s)Oxidize microbially the process consumed to fuse the oxygen in the water, until the value of DO declines for zero, mixing with the liquid report the anoxia appearance.Versa nitric that turn the function through anoxia area, mix with the liquid enter to have the oxygen area, completing once circulating.That system inside, theBOD declines the solution is a continuous process, the nitric turns the function to turn with the versa nitric the function take place in same pond.Because of structural restrict, this kind of oxidize the ditch although can then valid whereabouts BOD, divided by the phosphorus take off the nitrogenous ability limited[7].For the sake of the acquisition better divided by the phosphorus take off the nitrogenous result, Carrousel 2000 systems increased a oxygen District before common Carrousel oxidize ditch with the unique oxygen area.( call again that the versa nitric in front turns the area)The dirty mire in all refluxes enters the anaerobic District with 10-30% dirty water, can under the anoxia with 10-30% carbon source term complete remaining of dirty mire in reflux inside nitric acid nitrogen to versa nitric to turn, creates for the unique oxygen pond of hereafter unique oxygen term.At the same time, anaerobic District inside of concurrently the sex germs convert the dissolubility BOD VFA, the germ acquire the VFA its assimilation PHB, the energy source needed solves in the phosphoric water and cause phosphatic releasing.The anaerobic District a water enters the inner part installs the unique oxygen area that have the mixer, the so-called unique oxygen is a pond inside to mix with liquid since have no the numerator oxygen, also have no the compound oxygen( nitric acid root), the here unique oxygen environment is next,70-90% dirty water can provide the enough carbon source, can make the germ of released the phosphorus well.The unique oxygen area connects behind the common Carrousel oxidizes the ditch system, further completing to do away with the BOD and take off the nitrogen with divided by the phosphorus .Finally, mix with the liquid transfer the dirty mire inside in oxidize ditch enrich oxygen area eject, while enriching the oxygen environment germ surfeit, phosphorus from the water, ejecting the system with the dirty mire in surplus.Like this, in Carrousel 2000systems, than completed to do away with the BOD, COD with take off at the same time goodly the nitrogen divided by the phosphorus .Synthesizing and dirty water in the river City , long sand City decontamination center[s of the dirty the factory of water in the first in Kunming of adoption that crafts handles the movement result of the factory therefore:Through Carrousel 2000 system after handling, the BOD, COD, SS does away with the rate to all come to a 90% above, the TN does away with the rate comes to a 80%, the TP does away with the rate to also come to a 90%.3.2 The Carrousel oxidizes the ditch divideds by the phosphorus takes off the nitrogenous influence factor.Affecting the Carrousel oxidizes the ditch divideds by the phosphoric factor is dirty mire , nitrate density and quality densities primarily.The research expresses, being total and dirty mire as 11% that a hour biggest phosphorus 4% with deal is its fuck dirty mire deal within live and dirty mire, keep for the the germ physical endowment measures, but when dirty mire over 15 d hour dirty mire the inside is biggest to contain the obvious descent in deal in phosphorus , canning not reach the biggest divideding by the result of phosphorus on the contrary.Therefore, prolong persistently the dirty mire ( for example 20ds,25ds,30ds) is to have no necessary, proper choose to use within the scope of 8~15 d.At the same time, high nitrate density with low quality density disadvantage in divided by the process of phosphorus .Affecting the Carrousel oxidizes the ditch takes off the nitrogenous and main factor is DO, nitrate density and carbon source densities.The research expresses, oxidizing the ditch inside exsits deliquescence oxygen density steps degree namely the good oxygen area DO attains 3~3.5 mgs/ L, the anoxia area DO attains 0~0.5 mgs/ L is a prior condition to take place nitric turn reaction and versa nitricsturn the reaction.At the same time, ample carbon source and higher C/ the N ratio benefits to take off to complete nitrogenously[7].4. The Carrousel oxidizes problem and solution methods of the ditch esse.Though the Carrousel oxidizes the ditch has a water fluid matter good, the anti- pounds at the burthen ability strong, divided by the phosphorus take off the nitrogen efficiency. But, in physically of movement process, still exsits a series of problem.4.1 Dirty mire inflation problemWhen discard the aquatic carbohydrate more, the N, P contains the unbalance of deal, the pH value is low, oxidizing the dirty mire in inside in ditch carries high, fuse the oxygen density the shortage, line up the mire not etc. causes easily dirty mire in germ in form in silk inflation;Not the dirty mire in germ in form in silk inflation takes place primarily at the waste water water temperature is lower but the dirty mire carries higher hour.The microbial burthen is high, the germs absorbed the large quantity nourishment material, is low because of the temperature, metabolism the speed is slower, accumulating the rises large quantity is high to glue sexual and many sugar materials, making the surface of the live and dirty mire adhere to the water to increase consumedly, SVI the value is very high, becoming the dirty mire inflation.Cause that aim at the dirty mire inflation, can adopt the different counterplan:From the anoxia, water temperature high result in of, can enlargement tolerance or lower into the water measures to alleviate burthen, or the adequacy lowers the MLSS( control dirty mire reflux measure), making need the oxygen measures decrease;If the dirty mire carries high, can increase MLSS, to adjust the burthen, necessity the hour can stop into the water, stuffy a period of time;Can pass the hurl add the nitrogen fertilizer, phosphorus fatty, adjust the admixturenourishment in the liquid material equilibrium( BOD5:N:P=100:5:1);The value of pH over low, can throw to add the lime regulate;Bleach the powder with the liquid chlorin( press to fuck 0.3% of the dirty mire~0.6% the hurl adds), can repress the silk form germ breed, controling the dirty mire in combinative water inflation[11].4.2 Foam problemBecause entering to take the grease of large quantity in the water, handling system can't completely and availably its obviation, parts of greases enriches to gather in in the dirty mire, through turn to brush the oxygen agitation, creation large quantity foam;The mire is partial to long, the dirty mire is aging, and also easy creation foam.Spray to pour the water or divided by with the surface the of do away with the foam, in common use divided by the an organism oil, kerosene, the oil of silicon, throw deal as 0.5~1.5 mgs/ L.Pass to increase dirty mire in pond in spirit in density or adequacies let up the tolerance of , also can control the foam creation effectively.When contain the live material in surface in the waste water more, separate with the foam easily and in advance method or other methods do away with.Also can consider to increase to establish a set of divideding by the oil device moreover.But enhance most importantly the headwaters manage, reducing to contain the oil over the high waste water and other poisonous waste water of into[12].4.3 Float the problem on the dirty mireWhen contain in the waste water the oil measures big, whole system mire quality become light, can't like to control very much in operate process its at two sink the pond stop over time, resulting in the anoxia easily, producing the corrupt and dirty mire ascend to float;When spirit time over long, take place in pond the high degree nitric turn the function, making nitrate density high, at two sink theversa nitric in easy occurrence in pond turn the function, creation nitrogen spirit, make dirty mire ascend float;Moreover, contain the oil in the waste water?Take place the dirty mire ascend after floating should pause enter water, broke off or dirty mire in clearance, judge the clear reason, adjust the operation.The dirty mire sinks to decline the sex bad, can throw to add of oagulate or sloth materials, the improvement precipitates the sex;Such as enter the water carries big let up into the water measures or the enlargement reflux measures;Such as the dirty mire grain small lower the spirit machine turn soon;If discovers versa nitric turning, should let up the toerance , enlarge the reflux or row the mire measures;If discover the dirty mire is corrupt, should enlargement tolerance, the clearance accumulates the mire, and try the ameliorative pond internal water dint term[12].4.4 Current velocity is not all and the dirty mire sinks to accumulate the problemIn Carrousel oxidize ditch, for acquiring its special admixture with handles result, mix with liquid must with certain current velocity is in ditch circulate flow.Think generally, the lowest current velocity should should attain for an average current velocity for, doing not take place sinking accumulating 0.3~0.5 ms/ s.The spirit equipments that oxidize the ditch is general to turn to brush for the spirit of to turn the dish with the spirit of , turning to brush of immerse to have no depth for 250~300 mms, turn the dish immerse to have no depth for 480~530 mms.With oxidize the ditch water the deep(3.0~3.6 ms) comparing, turn to brush occupied the deep 1/10~ in water 1/12, turned the dish to also occupy the 1/6~ only 1/7, therefore result in to oxidize the ditch upper part current velocity bigger( roughly 0.8~1.2 ms, even larger), but the bottom current velocity is very small( especially at the water is deep 2/3 or 3/4 below, mix with theliquid has no current velocity almost), causing ditch bottom large quantity accumulate the mire( sometimes accumulate the mire thickness amount to a 1.0 ms), the valid capacity that reduced to oxidize the ditch consumedly, lowered to handle result, affected a water fluid matter.Adding the top, downstream leads to flow the plank is a valid method that ameliorative current velocity distribute, increases the oxygen ability with the most convenient measure.The upper stream leads to flow the plank installs at be apart from to turn the 4.0 places( upper stream) :dish( turn to brush) axis, lead to flow plank high degree as the deep 1/5~ in water 1/6, combine the perpendicularity install in the surface;The downstream leads to flow the plank installs at be apart from to turn dish( turn to brush) axis 3.0 ms.Leading to flow knothole material can use metals or glass steels, but regard glass steel as good.Lead to flow the plank compares with other ameliorative measure, can't not only increase the motive consumes with revolves cost, but also can still than significantly exaltation 充oxygen ability with theories motive efficiency[13].Moreover, pass in the spirit on board swim to establish the underwater push machine can also turn to the spirit of the liquid of admixture that brush the bottom low speed area circulates to flow to rise positive push function, from but the solution oxidizes the problem that low and dirty mire in current velocity in bottom in ditch sink accumulates.Establish the underwater push machine useds for exclusively the push mixs with the liquid can make movement method that oxidize the ditch much more vivid, this for economy energy, lift the high-efficiency having the very important meaning[14].5. The Carrousel oxidizes the development of the ditchBecause the dirty water handles standard inside to divided by the phosphorus take off the nitrogenous request more and more strict,the development that Carrousel further oxidized the ditch to also get.Current, the research and application includes morely below two category type:Tiny bore spirit type Carrousel 2000 systems, Carrousel 3000 system.5.1 Tiny bore spirit type Carrousel 2000 systemTiny bore spirit type Carrousel 2000 tiny bore in adoption in system spirit( provide oxygen equipments as the drum breeze machine), the tiny bore spirit machine can produce the diameter of large quantity as a surface for or so and small spirit steeping, this consumedly increases spirit bubble accumulates, undering the certain circumstance in capacity in pond make the oxygen transfer the gross measures aggrandizement.( if deep increment in pond, its spread the quality efficiency will be higher)Produce the technique ability of the factory house according to the current drum breeze machine, the valid water of the pond is deep biggest amounting to a 8 ms, therefore can select by examinations according to the different craft request the fit water is deep.The tradition oxidizes the ditch pushes to flow is to make use of to turn to brush, turn a disc or pour the umbrella type form machine realizes of, its equipments utilization is low, the motive consumes big.Tiny bore spirit type Carrousel 2000 systems then adopted the underwater pushes the way that flow, rises to dive the propeller the leaf the motivation that round creation the direct function namely in the of water, at push to flow the function to can keep dirty mire from sinking to decline effectively again at the same time.As a result, the adoption dives the propeller since lower the motive consume, making mire water got again to mixs with adequately.Seeing from water power characteristic, tiny bore spirit type Carrousel 2000 systems are wreaths form the fold flows the pond type, concurrently pushing the flow type with complete mix with the typeflows .In regard to whole oxidize ditch, can think that oxidize the ditch is a complete mix with spirit pond, its density variety coefficient smallest even can neglect to do not account, enter the water will get the dilution quickly, therefore it have the very strong anti- pounds at the burthen ability.But have oxidize ditch inside of a certain very much the some pushing the characteristic of the flow type, in the nearby district in downstream in machine in spirit inDO density higher, but along with increase with spirit machine distance continuously then the density of DO lowers continuously.( appear the anoxia area)This kind of structure method makes friendly oxygen in area in anoxia area exsited to build the thing inside , making use of its water power characteristic well, coming to an efficiently the living creature takes off the nitrogenous purpose.Tiny bore spirit type Carrousel 2000 system though have the oxygen ability strong, divided by the phosphorus take off the nitrogen effective, cover the area little with can consume low etc. advantage, it also exsits at the same time the problem that tiny bore spirit equipments maintain.Current, the service life of the local and tiny bore spirit machine is 5 years in 4~, can amount to 10 years in 8~ goodly, but with import the tiny bore spirit machine compare to still have the certain margin.The spirit machine maintains unlike the form equipments is so convenient, it need to fuck the pond talent fixs, and also is to say once the tiny bore spirit machine appears the problem to need the adoption parallel two inconvenience for or third sets to solving problem, or adopting promoting device waiting to resolving, this too will giving production with managing bringing biggest[15 16].5.2 Carrousel 3000 systemCarrousel 3000 systems are in the Carrousel 2000 systems are ex- to plus a living creature the choice the area.That living creaturechoice area is a craft to make use of high organism carries to sieve germ grow, repress silk form germ increase, increase each pollutant do away with the rate, afterward principle together Carrousel 2000 system.Carrousel 3000 system of bigger increases to express at:An is to increased the pond deep, can amount to 7.5~8 ms, united at heart circle type, the pond wall uses totally, reducing to cover the area, lowering to build the price to increases to bear the low temperature ability at the same time;( can amount to 7 ℃ )Two is the liquid of admixture that spirit equipments that skillful design, the form machine descends to install to lead to flow , the anoxia of take out , adopt the underwater propeller solution current velocity problem;Three is to used the advanced spirit controller QUTE.( it adopt the much aer kind of changing the deal control mode)Four is to adopt the integral whole turn the design, starting from the center, including below wreath form consecution craft unit:Enter the well of water with the cent water machine that used for the live and dirty mire in reflux;Difference from four-part the choice pond that cent constitute with 厌oxygen pond.This outside is a Carrousel to have three spirit machine with a prepare versa nitric turn the pond 2000 system.( such as figure 2 show)Five is tube line that the design that the circular integral whole turn to make oxidize the ditch do not need additionally, can immediately realize dirty mire in reflux allotment in different craft unit[17].6. ConclusionThe Carrousel oxidizes the ditch because of having the good a phosphorus takes off the nitrogen ability, anti- pounds at the burthen ability with circulate to manage the convenience etc. the advantage, having got the extensive application.But because of technological development with social advance, that craft is necessarily willexaltation getting further.The author thinks:The Carrousel oxidizes the future research direction of the ditch will now of main below several aspects.1 Combination living creature method, research with develop the living creature model Carrousel oxidize the ditch.Like this can not only increases the microorganism gross of the unit reactor measures, from but increases the organism carries, but also living creature oneself the inside that have places the A/ the system of O enhances to take off the nitrogen result[18].2 Increases continuously the Carrousel oxidize the microbial activity in inside in ditch.For example throw to add the EM in oxidize ditch with single mind the germ grow, throws in that the salt of iron make the microorganism tame the live char in iron, devotion in living creature to become the formation to strengthen the germ gum regiment and increases to bear the toxicity pound at etc..3 Increasing the Carrousel oxidizes the ditch equipments function with supervise and control the technique.Function that increases form machine, underwater propeller, reduce to maintain the workload;Making use of DO, etc. of ORP many targets supervises and control the technique and changes the technique of is from now on the Carrousel oxidizes ditch science circulate necessarily from it road.4 Increasing the Carrousel oxidizes the ditch resistant to cold and bear toxicity can, reduce to cover the area to build the price with the engineering.Theoretical application, deep pond in water power term with the research of the craft function is to lowers the engineering builds the price and increases resistant to cold bear the toxicity can wait to provide the possible direction.氧化沟工艺在污水处理中的应用与发展摘要:本文主要阐述了Carrousel氧化沟的结构、工艺机理、运行过程中存在的问题和相应的解决方法。

给排水毕业设计外文翻译

给排水毕业设计外文翻译

生物质源技术100(2009)3820-3824内容列表供给在ScienceDirect 生物质源技术期刊主页在一个 A2O-MBR 反响器中实现污泥的脱氮除磷技术J. Rajesh Banu, Do Khac Uan, Ick-Tae Yeom *土木及环境工程部门,SungKyunKwan大学,300,Chunchun-dongJangan-gu,Suwon-Si,440-746、韩国,文章有关信息文章根源2008 年 7 月 20 日收录修正于 2008 年 12 月 11 日2008 年 12 月 15 日经过2009 年 2 月 25 日公布在网上重点词A2O 反响器MBR脱氮除磷技术TMP纲要在当前的研究中, 一种先进的污水办理工艺研制出了在A2O-MBR过程归并减少节余污泥和回收磷的技术。

A2O-MBR反响器在 17LMH流量下连续运转210 天。

而后在两周内逐渐提升设计流量。

这座反响器运转在两种不一样的MLSS范围。

热化学消化污泥运转在一个固定的pH 值(11) 和温度 (75 ℃ ) 下,可溶解的COD含量为 25%。

开释出的磷经过积淀,转变为有机物等过程被送回厌氧罐。

污泥的厌氧消化对COD和总磷的去除没有任何影响。

反响器在210天的运转中 ,MBR经过膜过滤压差保持相对稳固。

研究结果表示,所提出的流程配置在不降低办理水水质的状况下,有可能减少节余污泥的产生。

2008 年 Elsevier Ltd。

版权全部。

1. 前言节余污泥的减少和脱氮除磷是污水办理厂两个有关的重要课题。

MBR 过程因为拥有更长的污泥龄,所以办理程度更高,污泥的产量相对较低(Wen et al., 2004) 。

在 MBR 反响器内污泥的产量大体降低 28-68%,这取决于所用的污泥龄(Xia et al.,2008) 。

但是,经过减少污泥龄来降低污泥产量是遇到限制的,因为生物膜上齐集太多的MLSS 可能会有潜伏的危害 (Yoon et al., 2004) 。

给排水专业英文文献翻译

给排水专业英文文献翻译

Sewage treatmentAbstract:Sewage treatment, or domestic wastewater treatment, is the process of removing contaminants from wastewater and household sewage, both runoff (effluents) and domestic. It includes physical, chemical, and biological processes to remove physical, chemical and biological contaminants. Its objective is to produce a waste stream (or treated effluent) and a solid waste or sludge suitable for discharge or reuse back into the environment. This material is often inadvertently contaminated with many toxic organic and inorganic compounds.Key words: Sewage treatment,fixed-film and suspended-growth, Activated sludge Origins of sewageSewage is created by residences, institutions, and commercial and industrial establishments. Raw influent (sewage) includes household waste liquid from toilets, baths, showers, kitchens, sinks, and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce. The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world, with greywater being permitted to be used for watering plants or recycled for flushing toilets. A lot of sewage also includes some surface water from roofs or hard-standing areas. Municipal wastewater therefore includes residential, commercial, and industrial liquid waste discharges, and may include stormwater runoff. Sewage systems capable of handling stormwater are known as combined systems or combined sewers. Such systems are usually avoided since they complicate and thereby reduce the efficiency of sewage treatment plants owing to their seasonality. The variability in flow also leads to often larger than necessary, and subsequently more expensive, treatment facilities. In addition, heavy storms that contribute more flows than the treatment plant can handle may overwhelm the sewage treatment system, causing a spill or overflow. It is preferable to have a separate storm drain system for stormwater in areas that are developed with sewer systems.As rainfall runs over the surface of roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Some jurisdictions require stormwaterto receive some level of treatment before being discharged directly into waterways. Examples of treatment processes used for stormwater include sedimentation basins, wetlands, buried concrete vaults with various kinds of filters, and vortex separators (to remove coarse solids).Process overviewSewage can be treated close to where it is created (in septic tanks, biofilters or aerobic treatment systems), or collected and transported via a network of pipes and pump stations to a municipal treatment plant (see sewerage and pipes and infrastructure). Sewage collection and treatment is typically subject to local, state and federal regulations and standards. Industrial sources of wastewater often require specialized treatment processes (see Industrial wastewater treatment).Conventional sewage treatment may involve three stages, called primary, secondary and tertiary treatment. Primary treatment consists of temporarily holding the sewage in a quiescent basin where heavy solids can settle to the bottom while oil, grease and lighter solids float to the surface. The settled and floating materials are removed and the remaining liquid may be discharged or subjected to secondary treatment. Secondary treatment removes dissolved and suspended biological matter. Secondary treatment is typically performed by indigenous, water-bornemicro-organisms in a managed habitat. Secondary treatment may require a separation process to remove the micro-organisms from the treated water prior to discharge or tertiary treatment. Tertiary treatment is sometimes defined as anything more than primary and secondary treatment. Treated water is sometimes disinfected chemically or physically (for example by lagoons and microfiltration) prior to discharge into a stream, river, bay, lagoon or wetland, or it can be used for the irrigation of a golf course, green way or park. If it is sufficiently clean, it can also be used for groundwater recharge or agricultural purposes.Pre-treatmentPre-treatment removes materials that can be easily collected from the raw wastewater before they damage or clog the pumps and skimmers of primary treatment clarifiers (trash, tree limbs, leaves, etc).ScreeningThe influent sewage water is strained to remove all large objects carried in the sewage stream. This is most commonly done with an automated mechanically raked bar screen in modern plants serving large populations, whilst in smaller or less modern plants a manually cleaned screen may be used. The raking action of a mechanical bar screen is typically paced according to the accumulation on the bar screens and/or flow rate. The solids are collected and later disposed in a landfill or incinerated.Grit removalPre-treatment may include a sand or grit channel or chamber where the velocity of the incoming wastewater is carefully controlled to allow sand, grit and stones to settle.Primary treatmentIn the primary sedimentation stage, sewage flows through large tanks, commonly called "primary clarifiers" or "primary sedimentation tanks". The tanks are large enough that sludge can settle and floating material such as grease and oils can rise to the surface and be skimmed off. The main purpose of the primary sedimentation stage is to produce both a generally homogeneous liquid capable of being treated biologically and a sludge that can be separately treated or processed. Primary settling tanks are usually equipped with mechanically driven scrapers that continually drive the collected sludge towards a hopper in the base of the tank from where it can be pumped to further sludge treatment stages. Grease and oil from the floating material can sometimes be recovered for saponification.Secondary treatmentSecondary treatment is designed to substantially degrade the biological content of the sewage which are derived from human waste, food waste, soaps and detergent. The majority of municipal plants treat the settled sewage liquor using aerobic biological processes. For this to be effective, the biota require both oxygen and a substrate on which to live. There are a number of ways in which this is done. In all these methods, the bacteria and protozoa consume biodegradable soluble organiccontaminants (e.g. sugars, fats, organic short-chain carbon molecules, etc.) and bind much of the less soluble fractions into floc. Secondary treatment systems are classified asfixed-film and suspended-growth.Fixed-film OR attached growth system treatment process including trickling filter and rotating biological contactors where the biomass grows on media and the sewage passes over its surface.In suspended-growth systems, such as activated sludge, the biomass is well mixed with the sewage and can be operated in a smaller space than fixed-film systems that treat the same amount of water. However, fixed-film systems are more able to cope with drastic changes in the amount of biological material and can provide higher removal rates for organic material and suspended solids than suspended growth systems.Roughing filters are intended to treat particularly strong or variable organic loads, typically industrial, to allow them to then be treated by conventional secondary treatment processes. Characteristics include typically tall, circular filters filled with open synthetic filter media to which wastewater is applied at a relatively high rate. They are designed to allow high hydraulic loading and a high flow-through of air. On larger installations, air is forced through the media using blowers. The resultant wastewater is usually within the normal range for conventional treatment processes. Activated sludgeMain article: Activated sludgeIn general, activated sludge plants encompass a variety of mechanisms and processes that use dissolved oxygen to promote the growth of biological floc that substantially removes organic material.The process traps particulate material and can, under ideal conditions, convert ammonia to nitrite and nitrate and ultimately to nitrogen gas, (see also denitrification).Surface-aerated basinsMost biological oxidation processes for treating industrial wastewaters have in common the use of oxygen (or air) and microbial action. Surface-aerated basins achieve 80 to 90% removal of Biochemical Oxygen Demand with retention times of 1 to 10 days. The basins may range in depth from 1.5 to 5.0 metres and usemotor-driven aerators floating on the surface of the wastewater.In an aerated basin system, the aerators provide two functions: they transfer air into the basins required by the biological oxidation reactions, and they provide the mixing required for dispersing the air and for contacting the reactants (that is, oxygen, wastewater and microbes). Typically, the floating surface aerators are rated to deliver the amount of air equivalent to 1.8 to 2.7 kg O2/kW·h. However, they do not provide as good mixing as is normally achieved in activated sludge systems and therefore aerated basins do not achieve the same performance level as activated sludge units.Biological oxidation processes are sensitive to temperature and, between 0 °C and 40 °C, the rate of biological reactions increase with temperature. Most surface aerated vessels operate at between 4 °C and 32 °C.Filter beds (oxidizing beds)Main article: Trickling filterIn older plants and plants receiving more variable loads, trickling filter beds are used where the settled sewage liquor is spread onto the surface of a deep bed made up of coke (carbonized coal), limestone chips or specially fabricated plastic media. Such media must have high surface areas to support the biofilms that form. The liquor is distributed through perforated rotating arms radiating from a central pivot. The distributed liquor trickles through this bed and is collected in drains at the base. These drains also provide a source of air which percolates up through the bed, keeping it aerobic. Biological films of bacteria, protozoa and fungi form on the media’s s urfaces and eat or otherwise reduce the organic content. This biofilm is grazed by insect larvae and worms which help maintain an optimal thickness. Overloading of beds increases the thickness of the film leading to clogging of the filter media and ponding on the surface.Biological aerated filtersBiological Aerated (or Anoxic) Filter (BAF) or Biofilters combine filtration with biological carbon reduction, nitrification or denitrification. BAF usually includes a reactor filled with a filter media. The media is either in suspension or supported by a gravel layer at the foot of the filter. The dual purpose of this media is to support highly active biomass that is attached to it and to filter suspended solids. Carbon reduction and ammonia conversion occurs in aerobic mode and sometime achieved in a single reactor while nitrate conversion occurs in anoxic mode. BAF is operated either in upflow or downflow configuration depending on design specified by manufacturer.Membrane bioreactorsMembrane bioreactors (MBR) combine activated sludge treatment with a membrane liquid-solid separation process. The membrane component uses low pressure microfiltration or ultra filtration membranes and eliminates the need for clarification and tertiary filtration. The membranes are typically immersed in the aeration tank; however, some applications utilize a separate membrane tank. One of the key benefits of an MBR system is that it effectively overcomes the limitations associated with poor settling of sludge in conventional activated sludge (CAS) processes. The technology permits bioreactor operation with considerably higher mixed liquor suspended solids (MLSS) concentration than CAS systems, which are limited by sludge settling. The process is typically operated at MLSS in the range of 8,000–12,000 mg/L, while CAS are operated in the range of 2,000–3,000 mg/L. The elevated biomass concentration in the MBR process allows for very effective removal of both soluble and particulate biodegradable materials at higher loading rates. Thus increased Sludge Retention Times (SRTs) — usually exceeding 15 days — ensure complete nitrification even in extremely cold weather.The cost of building and operating an MBR is usually higher than conventional wastewater treatment. Membrane filters can be blinded with grease or abraded by suspended grit and lack a clarifier's flexibility to pass peak flows. The technology has become increasingly popular for reliably pretreated waste streams and has gainedwider acceptance where infiltration and inflow have been controlled, however, and the life-cycle costs have been steadily decreasing. The small footprint of MBR systems, and the high quality effluent produced, make them particularly useful for water reuse applications.There are MBR plants being built throughout the world, including North Librty, Iowa, Georgia, and Canada.Secondary sedimentationThe final step in the secondary treatment stage is to settle out the biological floc or filter material and produce sewage water containing very low levels of organic material and suspended matter.Rotating biological contactorsMain article: Rotating biological contactorRotating biological contactors (RBCs) are mechanical secondary treatment systems, which are robust and capable of withstanding surges in organic load. RBCs were first installed in Germany in 1960 and have since been developed and refined into a reliable operating unit. The rotating disks support the growth of bacteria and micro-organisms present in the sewage, which breakdown and stabilise organic pollutants. To be successful, micro-organisms need both oxygen to live and food to grow. Oxygen is obtained from the atmosphere as the disks rotate. As themicro-organisms grow, they build up on the media until they are sloughed off due to shear forces provided by the rotating discs in the sewage. Effluent from the RBC is then passed through final clarifiers where the micro-organisms in suspension settle as a sludge. The sludge is withdrawn from the clarifier for further treatment.A functionally similar biological filtering system has become popular as part of home aquarium filtration and purification. The aquarium water is drawn up out of the tank and then cascaded over a freely spinning corrugated fiber-mesh wheel before passing through a media filter and back into the aquarium. The spinning mesh wheel develops a biofilm coating of microorganisms that feed on the suspended wastes in the aquarium water and are also exposed to the atmosphere as the wheel rotates. This is especially good at removing waste urea and ammonia urinated into the aquariumwater by the fish and other animals.污水处理摘要自然或生活污水处理,是指清除包括家庭排放的和地面径流在内的污水废水和地面污染物的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北建筑工程学院毕业设计(论文)外文资料翻译系别:城建系专业:给水排水工程班级:姓名:学号:外文出处:Wan Fang foreign languages(用外文写)literature datebase附件:1、外文原文;2、外文资料翻译译文。

1、外文原文(复印件)Supplying and draining waterin hospital construction With the fact that modern medicine science promptness develops,new technique , the new armamentarium are continuing without end , modernized medical treatment thereby consonant with that is building a hospital , are also are confronted with new design idea and new technology applying. Disregarding secondary hospital building function , what whose gets along environment, still , finclause the hospital builds equipment and is equipped with system, the request is without exception higher and higher. Because of it is to ensure daily work living not only need the rapid and intense life relevance recovering from the illness , avoiding crippling , rescuing, and promote with giving treatment to a patient. Not only the design accomplishing to the special field draining away water need to satisfy the request being unlike a function in hospital building on equipment , but also safety is be obliged to reliable. Following is built according to the hospital.一HOSPITAL GIVES A SEWERAGE1) Modernized hospital equipment and equipment system content is numerous , the function is peculiar , the request is very high. Except demanding to swear to continue supplying with the use water according with quality level sufficiently, need more according to demand of different medical treatment instrument and different administrative or tehcnical office to water quality , water pressure , the water temperature, classify setting up water treatment system and be in progress to system to increase pressure reduction.2) The hospital operating rooms , the delivery room operation the water hygiene, saliva washing hands by shower bath water , the dentistry dentistry chair ought to adopt the water purifying degassing. In the homeland few are large-scale , the high rank hospital centre supplies a room, the centre disinfecting has also adopted to purify the water disinfecting, now that swear to there be no dust , the sterility , to remove the pathopoiesia source , to avoid the blockage infecting , cutting down equipment microtubule.3) Hospital preparation rooms preparation uses water to adopt distilled water, and sets up in making distilled water system to have part pressure boost facilities. The handicraft responds to according to different hospital preparation handicraft but fixes concrete system distilled water, should satisfy demand of whose handicraft to water quality , water yield , water pressure act in close coordination that the preparation handicraft reserves corresponding to drain-pipe andallocation chilled water circulatory system by the special field draining away water.4) Hospital operating rooms , delivery rooms , baby rooms , supply rooms , medical treatment of the dermatological department wards, door emergency call, cures skill every administrative or tehcnical office and the request difference that the staff and worker logistics branch supplies to hot water need to set up hot water respectively supplying system more. Ordinary circumstances door emergency call, cures skill administrative or tehcnical office , centre supply a room , the staff and worker logistics branch supplies hot water to water supply the regular time, the comparison supplying time is consistent. The hospital is based on major part at present financial resources, ward building hot water supplies basic to the regular time , ought to be that 24 hs supply hot water judging from long-term angle but. Operating room , the delivery room operation wash hands, the hygiene h by the fact that the shower bath ought to be 24 supplies hot water, moreover the block of wood5) Considers beautification to the environment , is inadvisable to adopt the steam boiled water stove , completely eradicates occurrence aroused the ward building pantry inner floor moistness , avoided interior wall mustiness phenomenon by leak or sparse steam water implement aerofluxus thereby. The hospital disregards size , boiled water supplies to should adopt automation volume or the electricity boiled water stove, a general disease area considers one , volume ascertains that according to using condition. The first easy to protect labor is managed, two is supplying ensuring that to the patient , improves the internal environment of ward at the same time.6)Especially infecting the section ward every door emergency call administrative or tehcnical office, every consulting room , the hand movement water curing a room , washing a basin should set up mistake chew , may adopt elbow style , knee style or dyadic switch of pedal. If using the dyadic switch of pedal to must use the product guarding against leakage, the floor is to avoid using a place often damp , makes the patient , the medical personnel slip down , an accident happened. Operation waits for the operating room , the delivery room to wash hands should adopt the constant temperature muddy water valve , the constant temperature to produce water, taking as an example infrared ray induced electromagnetic valve control mode for fine. Cure skill part control laboratory , laboratory of administrative or tehcnical office have the peculiar request , water chews the form should ascertain whose water according to every administrative or tehcnical office coming functional request chewing.7)Many administrative or tehcnical office, especially downstream pipelines such as picklingbath , the pool disinfecting , develop pool in administrative or tehcnical office such as checking the room , the control laboratory , emitting section responds to of hospitals are adopt to be able to bear the rotten PVC2U draining off silent stock tube.8) Pair of filth , waste water of all kinds must classify strictly according to the country in connection with the effluent standard , the field carrying out a pertinency with different treatment handicraft deals with and handles.9) Uses a function to need since the modern hospital needs to be satisfied with not only , wants to think that the interior outside environment is beautiful too at the same time. The building needs especially door emergency call, cures skill sometimes because of medical treatment function , give the horizontal stroke draining away water , erect a tube arrange to lie scattered comparatively, more bright dew is in interior, warm the pipeline exchanging special field up in addition sometimes , make the pipeline that the room inner clearly shows more than the correct or required number , both inelegant, and affect hygiene. This demands right away in the process of engineering design , the rational arrangement the structure form should fully utilize not being the same as is carried out, needs to make the various pipeline conceal arrangement to the full according to the function , pays attention to beautiful befitting one's position or suited to the occasion under not affecting the premise being put into use. Certainly, these require that building structure special field is dense. Tier of furred ceilings and the basement top sometimes are every special field pipeline aggregation field , every special field norm and request having every special field , each sometimes arranges if the building designs middle in the ward,whose result either increase building storey height, or cannot attend to one thing without neglecting another. For overcoming this one abuse, should think in general that bigger flue pipe arrangement be in the most superjacent, it's on the down part is that several special field arrangement props up the public space being in charge of , down part is to arrange to give draining off , driving force , strong , weak electricity every system to do a tube again. Such is arranged than form arrangement is other comparatively economical , pragmatic.10) Exchangers forms choice. In the system the tradition hospital hot water is supplied, people adopt volume mainly dyadic exchanger. Have been to think that what be provided steam amounts and hot water supplies the adjustment amounts dispatching value between maximum value mainly , have diminished a steam boiler designing amounts , have decreased by boiler room Zhan field area , have saved one time investment. People demands but more highly, and morehighly, especially the example discovering army group bacterium pathopoiesia in life hot water to water quality now , the altitude arousing people takes seriously. Be a bacterium mainly because of in the water 55 ~C is the easiest to breed an army group in 30 ~C ~, WHO (WHO) is recommended by for this purpose: "Hot water responds to in 60 ~C use And cycle at least above 50 ~C. Come if some users, need to fall to 40 ~C or 50 ~C or so with the faucet water temperature, to come true being able to use a thermoregulation to blend a valve at this time. The growth being a temperature Bu Li Yu pneumonia diplococcus swear to store water, is a regulating valve's turn to should set up the place closing down and suspending operation of point in drawing near". This be especially important to the hospital. Because of being in hospital the weak having disease,if bacterium of army group happened within the hospital is to be harmful for patient to treat and recover from the illness,the hospital has a grave responsibility. At present small hospital within the hospital especially a little condition is relatively poor , include the part area level hospital, 24 unable hs supply hot water, and volume the dyadic converter inner water temperature is to use echelon in inside of exchanger, the water temperature very difficult to make keeps in 60 ~C or so. Thereby, lead to volume produce the bacterium of army group in the pipeline supplying hot water system within dyadic exchanger , change a hospital using the exchanger form to respond to be a task of top priority. Adopt half to be to heat up style or be a dyadic hot exchanger , make whose hot water supply the system water temperature keeping the water supply being in progress in all above 60 ~C area all the time, occurrence propagating , completely eradicating the bacterium of army group in order to avoiding the bacterium of army group.二MULTILAYER WATER SUPPL Y SYSTEMAt present, great majority cities municipal administration pipe network pressure can maintain above 2 kilograms in the homeland , take place individual small town water pressure can reach 4 kilograms even. The pressure therefore, building the municipal administration pipe network's to the same multilayer has been already sufficient , has been in a small town especially since but municipal administration pipe network water yield supplying water , water pressure fluctuation are bigger. Have several kinds the following types mainly for overcome these shortcomings , multilayer water supply system design.1) Direct water supply type is that pressure , direct water supply , sort making use of municipal administration pipe network directly apply to slightly high area of municipal administration pipe network pressure or higher range of water works vicinity pressure inner. Theshortcoming it is water yield , water pressure to be able to not ensure that. This water supply scheme economy function is very good but, to less pipe network of scale , does not need any other equipment or measure.2) Water box water supply types have led municipal administration pipe network water to roof water box , discrepancy in elevation , gravity depending on a water box and using the water appliance have supplied water , have overcome water pressure water yield block of wood stability and then. Since but, secondary pollution, moreover, water box volume that the water box there exists in possibility is bigger,this way does not encourage therefore.3) Water boxes , pipe networks ally self with a type when the ordinary time water yield water pressure is sufficient , unnecessary water enters the roof water box when covering water supply , overpressure as with a net directly from municipal administration, think that the water box supplies water to the consumer by gravity automation when pressure or the water yield is insufficient. The main force who is that regular directness supplies water on physics structure stretches the top cut-over water box , sets up and one exhalent siphon from the water box. Owe a scheme the volume having diminished a water box, and make water not need to enter a water box staying this one step , hygiene reliability increase by. The problem is (that the municipal administration now pipe network can accomplish) but if longtime stabilivolt supplies water , the water sojourn time in water box is on the contrary greatly increase by , easier to be contaminated. And, the water box all must readjust oneself to a certain extent in the building in all usage water boxes system most higher place, attractive looks being able to affect a building in some occasion , the physical design building even.4) Pressure jars supply water since insecure water box factor , reason why use the jar sealing off reliable pressure to replace, and the pressure jar does not need, high position lay down, attractive looks and structure not affecting a building bearing , go down well very much over the past few years. Pressure jar system requires that the water pump and autocontrol system have to fit but , feasible cost increases by to some extent. However, in the late years whose market price already lets many consumers be able to choose.Systematic pressure jar principle is to make use of a water pump water compression to be sent to receive the pipe network building the inside , thinks that water enters the pressure jar , reaches certain pressure time , water pump motor stoppage or reduces the speed when pressure is too big,While pressure is smaller than regulation value, the pressure jar conveys water to the outside and starts the water pump or acceleration at the sametime (frequency conversion water pump).5) Two time of compression types can make do for to small-scale consumer ,if the building , the pressure jar are only systematic. The direction that the dwelling house spends at present to housing estate develops but, shows for the cluster arrangement that multilayer builds , concentrates stabilivolt mainly. The ability can not satisfy a request with pressure jar volume , the water pump concentrates compression therefore having appeared give first place to, pressure jar stabilivolt (remove the system water hammer) is subsidiary way. Economy cost rises only , also needs the specially-assigned person upkeep. Besides, pipe network system belongs to low pressure since tier of numbers are not many, pipeline, the direct cut-over without exception with layers consumer is be OK , comparatively simple. The steel tube prepares pipeline material with low pressure low pressure PPR silent stock tube give first place to.2、外文资料翻译译文医院建筑给水排水随着现代医学科学的迅速发展,新技术、新医疗设备层出不穷,从而与之相符的现代化医疗建筑———医院,也面临着新的设计理念和新技术的运用。

相关文档
最新文档