2012年全国初中数学竞赛试题及答案_河南赛区

合集下载

2012年全国初中数学竞赛试题及答案(正题、副题)2012年全国初中数学竞赛试题及答案(正题、副题)

2012年全国初中数学竞赛试题及答案(正题、副题)2012年全国初中数学竞赛试题及答案(正题、副题)

2012年全国初中数学竞赛试题(正题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为().(第1(甲)题)(A)2c-a(B)2a-2b(C)-a(D)a1(乙).如果,那么的值为().(A)(B)(C)2 (D)2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)(C)(D)3(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.,AD = 3,BD = 5,则CD的长为().(第3(乙)题)(A)(B)4 (C)(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().(A)1 (B)2 (C)3 (D)44(乙).如果关于x的方程是正整数)的正根小于3,那么这样的方程的个数是().(A)5 (B)6 (C)7 (D)85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().(A)(B)(C)(D)5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是.(第6(甲)题)6(乙). 如果a,b,c是正数,且满足,,那么的值为.7(甲).如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是 .(第7(甲)题)(第7(乙)题)7(乙).如图,的半径为20,是上一点.以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于x的方程x2+kx+k2-3k+= 0的两个实数根分别为,,那么的值为.8(乙).设为整数,且1≤n≤2012. 若能被5整除,则所有的个数为 .9(甲).2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为.风味试卷试题根据语境9(乙).如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且a≤b≤c,则的取值范围是.D10(甲).如图,四边形ABCD内接于⊙O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BF⊥EC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为.的小伙子化学教案他离开公司后化学教案会去哪(第10(甲)题)10(乙.已知是偶数,且1≤≤100.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系xOy中,AO = 8,AB = AC,sin∠ABC=.CD与y轴交于点E,且S△COE = S△ADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.(第11(乙)题)12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE的延长线与交于点,求证:△BOC∽△.(第12(甲)题)12(乙).如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD = 2BD.(第12(乙)题)13(甲).已知整数a,b满足:a-b是素数,且ab是完全平方数. 当a≥2012时,求a的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由14(甲).求所有正整数n,使得存在正整数,满足,且.14(乙).将(n≥2)任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O 的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD.故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.…………(20分)2012年全国初中数学竞赛试题(副题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1. 小王在做数学题时,发现下面有趣的结果:由上,我们可知第100行的最后一个数是().(A)10000 (B)10020 (C)10120 (D)102002. 如图,在3×4表格中,左上角的1×1小方格被染成黑色,则在这个表格中包含黑色小方格的矩形个数是().(A)11 (B)12 (C)13 (D)14(第2题)3.如果关于的方程有两个有理根,那么所有满足条件的正整数的个数是().(A)1 (B)2 (C)3 (D)44. 若函数y=(k2-1)x2-(k+1)x+1(k为参数)的图象与x轴没有公共点,则k的取值范围是().(A)k>,或k<-1 (B)-1<k<,且k≠1(C)k>,或k≤-1 (D)k≥,或k≤-15. △ABC中,,分别为上的点,平分,BM=CM,为上一点,且,则与的大小关系为().(A)(B)(C)(D)无法确定二、填空题(共5小题,每小题7分,共35分)6. 如图,正方形ABCD的面积为90.点P在AB上,;X,Y,Z三点在BD上,且,则△PZX的面积为.(第6题)7.甲、乙、丙三辆车都匀速从A地驶往B地.乙车比丙车晚5分钟出发,出发后40分钟追上丙车;甲车比乙车晚20分钟出发,出发后100分钟追上丙车,则甲车出发后分钟追上乙车.8. 设a n=(n为正整数),则a1+a2+…+a2012的值 1.(填“>”,“=”或“<”)9.红、黑、白三种颜色的球各10个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等,那么共有种放法.10. △ABC中,已知,且b=4,则a+c= .②将醚层依次用饱和亚硫酸三、解答题(共4题,每题20分,共80分)11. 已知c≤b≤a,且,求的最小值.12. 求关于a,b,c,d的方程组的所有正整数解.13. 如图,梯形ABCD中,AB∥CD,AC,BD相交于点O.P,Q分别是AD,BC上的点,且,.求证:OP=OQ.(第13题)14.(1)已知三个数中必有两个数的积等于第三个数的平方,求的值.(2)设为非零实数,为正整数,是否存在一列数满足首尾两项的积等于中间项的平方?(3)设为非零实数,若将一列数中的某一项删去后得到又一列数(按原来的顺序),满足首尾两项的积等于中间项的平方. 试求的所有可能的值.2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z,得.设甲车出发后t分钟追上乙车,则,即,解得.8.<解:由a n==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p=(a+b+c).在Rt△AIF中,tan∠IAF=,即tan.同理,tan,tan.代入已知等式,得.因此a+c=.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5.当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b≤.从而,b=2(舍去),3.当b=3时,c=(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA至,使得,则,于是△DPC∽△,故,所以PO∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.41。

2012年全国初中数学竞赛试题及参考答案

2012年全国初中数学竞赛试题及参考答案
形 . LA DC=3 。 D =3 D =5 0 ,A ,B ,则 C 的长 为 ( D )





c 口+a b的 ÷一 + 值为— — . +
7 甲) 图 4 ( .如 ,正 方 形 A C 的 边 BD ,E、F分 别 是 A B、B 的 C
( A)3 / 、2
4 甲) ( .小倩 和小玲每人都有若干面值为整数元的人民币. 小
题均给 出了代 号为 A,B,c ,D的 四个选项 ,其 中有且只有 一 倩对小 玲说 :“ 若给我 2元 ,我 的钱数将 是你 的 n倍” 你 ;小玲
个 选 项 是 正 确 的 .请 将 正 确 选 项 的 代 号 填 入 题 后 的 括 号 里 , 不 对小倩说 :“ 你若给我 n元 ,我的钱数将是你 的 2倍” .其 中 n为 填 、 多填 或错 填都 得 0分 )
( B)4
长为 2
曰 C
( C)2 / 、5
( D)45 .
中 点 ,AF与 D E、D 分 别 交 于 点 、 B N, ̄ AD MN的面积是
图2
3 5

7 乙 ) 如 图 5 60 的半 径 为 2 , ( . , 3 0 C 点 E在 O D. D上 ,且 DC=D E,B E的 延 长 线 与 6 0 交 于点 F 3.
( )P B 。
( D)P 3



2 甲) ( .如果 正 比例 函数 Y=一( ≠0 与反 比例 函数 Y Ⅱ ) = ( ≠0 的图象有两个交点 ,其 中一个交点 的坐标为( 3 2 ,那 b ) 一 ,一 ) 么另一个交点的坐标为 (
( ( ,3 A) 2 ) ( C)( 2

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题

2012全国初中数学竞赛各省市试题汇编重排版目录一2012广东初中数学竞赛预赛................................................................................................- 2 -二2012年全国初中数学竞赛预赛试题及参考答案(河南赛区)........................................- 5 -三2012年北京市初二数学竞赛试题..................................................................................... - 10 -四2012年全国初中数学竞赛(海南赛区)......................................................................... - 11 -五2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案......................................... - 13 -六2012年全国初中数学竞赛试卷答案(福建赛区)......................................................... - 15 -七2012年全国初中数学竞赛试题......................................................................................... - 19 -八2012年全国初中数学竞赛天津赛区初赛试卷................................................................. - 21 -九2012年全国初中数学联赛(浙江赛区)试题及参考答案..............................................- 26 -十2012年四川初中数学联赛(初二组)初赛试卷 .................................................................. - 29 -十一2012年全国初中数学竞赛试题【安徽赛区】............................................................. - 30 -十二2012届湖北省黄冈地区九年级四科联赛数学试题..................................................... - 35 -十三2012年全国初中数学竞赛试题(副题)..................................................................... - 39 -十四2012年全国初中数学竞赛试题(副题)参考答案..................................................... - 41 -十五2012年全国初中数学竞赛试题(正题)..................................................................... - 50 -十六2012年全国初中数学竞赛试题(正题)参考答案......................................................- 55 -小贴士:word目录发生下列问题ctrl+左键显示“由于本机的限制,该操作已被取消,请与系统管理员联系”请按下列步骤自行解决1.开始,运行里输入regedit,回车2.在注册表中,找到HKEY_CURRENT_USER\Software\Classes\.html 项3.在默认项上点右键选择修改4.将Max2.Association.HTML改为Htmlfile,确认,然后退出注册表5.重启正在使用的Office程序,然后再次点Office里面超链接,ok了2012广东初中数学竞赛预赛2012年全国初中数学竞赛预赛试题及参考答案(河南赛区) 一、选择题(共6小题,每小题6分,共36分.1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】(A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解:完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m <【答】C .解:一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩ 解得1m >.3.如图,在⊙O 中, CD DA AB ==,给出下列三个结论:(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30°时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3【答】D .解:因为 CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的内角和为180°得:2(30)180x x -︒+=︒,解得80x =︒. 4. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【 】第3题图(A )34 (B )23 (C )13 (D )21【答】B .解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5.在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△ABC 为等腰三角形,则符合要求的点C 的位置共有【 】(A )2个 (B )3个 (C )4个【答】D .解:由题意可求出AB =5,如图,以点A 为圆心AB 的长为半径画弧,交y 轴于C 1和C 2,利用勾股定理可求 出OC 1=OC 2=)62,0(),62,0(21-C C , 以点B 为圆心BA 的长为半径画弧,交y 轴于点C 3和C 4, 可得34(0,1),(0,7)C C -,AB 的中垂线交y 轴于点C 5,利用 三角形相似或一次函数的知识可求出)617,0(5-C . 6.已知二次函数221y x bx =++(b 为常数),当b 物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【 】(A )221y x =-+ (B )2112y x =-+ (C )241y x =-+ (D )2114y x =-+【答】A .解:221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=. 二、填空题(共6小题,每小题6分,共36分)7.若2=-n m ,则124222-+-n mn m 的值为 . 【答】7.解:71221)(212422222=-⨯=--=-+-n m n mn m . 8.方程112(1)(2)(2)(3)3x x x x +=++++的解是 .【答】120,4x x ==-.解:11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++y xO 第6题图 第5题图11213(1)(3)x x x x =-=++++.∴22(1)(3)3x x =++,解得 1x 9.如图,在平面直角坐标系中,点B 的坐标是(1,0),若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转 90°得到线段BA ',则点A '的坐标是 .【答】(1,1)b a +-+.解:分别过点A 、A '作x 为C 、D .显然Rt △ABC ≌Rt △B A 'D . 由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+.10.如图,矩形ABCD 中,AD =2,AB =3,AM =1, DE是以点A 为圆心2为半径的41圆弧, NB是以点M 为圆心2为半径的41圆弧,则图中两段弧之间的阴影部分的面积为 . 【答】2.解:连接MN ,显然将扇形AED 向右平移可与扇形MBN 重合,图中阴影部分的面积等于 矩形AMND 的面积,等于221=⨯.11.已知α、β是方程2210x x +-=的两根,则3510αβ++的值为 . 【答】2-.解:∵α是方程2210x x +-=的根,∴212αα=-.∴ 322(12)22(12)52αααααααααα=⋅=-=-=--=-,又 ∵2,αβ+=-∴ 3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个.【答】36.解:利用抽屉原理分析,设最多有x 个小朋友,这相当于x 个抽屉,问题变为把145颗糖放进x 个抽屉,至少有1个抽屉放了5颗或5颗以上,则41x +≤145,解得x ≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为x ,个位数字为y (x 、y 均为0 ~ 9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况: …………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,A BM 第10题图 E 第9题图整理,得 1011,2xy -=x 、y 均为0 ~ 9的整数,∴0.x = 此时 5.y =∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得 111022x y =-,故x 为偶数,又1021110211,09,22x xy --=≤≤ ∴ 779,11x ≤≤ ∴ 8.x = 此时7.y = ∴王亮的出生年份是1987年,今年25周岁. …………………14分 综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y kx b =+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.解:(1)直线y kx b =+经过P (0,3),∴ 3b =.∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =- ∴ 41 3.1k -≤≤解得13.3k --≤≤……………………………………………7分 (2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………9分又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫-⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22, ∴125224a <-<.解得 822525a -<<-.……………………………………15分 15. 如图,扇形OMN 的半径为1,圆心角是90°.点B 是 MN上一动点, BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)求证:四边形EPGQ 是平行四边形;(2)探索当OA 的长为何值时,四边形EPGQ 是矩形;(3)连结PQ ,试说明223PQ OA +是定值. 解:(1)证明:如图①, ∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形. ∴OC AB OC AB =,//. ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE =∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分 连接OB , ∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴ GF ∥OB ,DE ∥OB , ∴ PG ∥EQ ,∴四边形EPGQ 是平行四边形.………………………………………………6分(2)如图②,当∠CED =90°时,□EPGQ 是矩形. 此时 ∠AED +∠CEB =90°.又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE .∴△AED ∽△BCE .………………………………8分 ∴AD AEBE BC=. 设OA =x ,AB =y ,则2x ∶2y =2y ∶x ,得222y x =.…10分又 222OA AB OB +=,即2221x y +=.∴2221x x +=,解得x =∴当OA的长为3时,四边形EPGQ 是矩形.………………………………12分 (3)如图③,连结GE 交PQ 于O ',则.,E O G O Q O P O '=''='.过点P 作OC 的平行线AB C ODEF GP QMN 图②A B CO D EF GPQM N图①分别交BC 、GE 于点B '、A '.由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴ PA '=23A B ''=13AB , GA '=13GE =13OA ,∴ 1126A O GE GA OA '''=-=.在Rt △PA O ''中,222PO PA A O ''''=+,即 2224936PQ AB OA =+, 又 221AB OA +=, ∴ 22133PQ AB =+,∴ 2222143()33OA PQ OA AB +=++=.……………………………………18分2012年北京市初二数学竞赛试题 .选择题(每小题5分,共25分).方程|2x -4|=5的所有根的和等于( ).A .-0.5B .4.5C .5D .4.在直角坐标系xOy 中,直线y =ax +24与两个坐标轴的正半轴形成的三角形的面积等于72,则不在直线y =ax +24上的点的坐标是( ).A .(3,12)B .(1,20)C .(-0.5,26)D .(-2.5,32).两个正数的算术平均数等于,则期中的大数比小数大( ).A .4B.C .6D ..在△ABC 中,M 是AB 的中点,N 是BC 边上一点,且CN =2BN ,连接AN 与MC 交于点O ,四边形BMON 的面积为14cm2,则△ABC 的面积为( ).A .56cm2B .60cm2C .64cm2D .68cm2.当a =1.67,b =1.71,c =0.46时,222121a ac ab bc b ab bc ac c ac bc ab++--+--+--+等于( ).A .20B .15C .10D .5.55 .填空题(每小题7分,共35分).计算:1×2-3×4+5×6-7×8+…+2009×2010-2011×2012=___..由1到10这十个正整数按某个次序写成一行,记为a1,a2,…,a10,S1=a1,S2=a1+a2,…,S10=a1+a2+…+a10,则在S1,S2,…,S10中,最多能有__个质数. .△ABC 中,AB =12cm ,AC =9cm ,BC =13cm ,自A 分别作∠C 平分线的垂线,垂足为M ,作∠B 的平分线的垂线,垂足为N ,连接MN ,则AMNABCS S ∆∆=____..实数x 和y 满足x2+12xy +52y2-8y +1=0,则x2-y2=___. .P 为等边△ABC 内一点,AP =3cm ,BP =4cm ,CP =5cm ,则四边形ABCP 的面积等于__cm2.B'N MA'QP O'GF E D C BA O 图③(满分10分).求证:对任意两两不等的三个数a,b ,c ,222()()()()()()()()()a b c b c a c a b a c b c b a c a c b a b +-+-+-++------是常数.(满分15分).已知正整数n 可以表示为2011个数字和相同的自然数之和,同时也能表示为2012个数字和相同的自然数之和,试确定n 的最小值.(满分15分).如图,在△ABC 中,∠ABC =∠BAC =70°,P 为形内一点,∠PAB =40°,∠PBA =20°,求证:PA +PB =PC .2012年全国初中数学竞赛(海南赛区)初 赛 试 卷(本试卷共4页,满分120分,考试时间:3月11日8:30——10:30)一、选择题(本大题满分50分,每小题5分) 1、下列运算正确的是( )A .x 2‧x 3=x 6B . 2x +3x =5x 2C .(x 2)3=x 6D . x 6÷x 2=x 32、有大小两种游艇,2艘大游艇与3艘小游艇一次可载游客57人,3艘大游艇与2艘小游艇一次可载游客68人,则3艘大游艇与6艘小游艇一次可载游客的人数为( ) A .129 B .120 C .108 D .963、实数a =20123-2012,下列各数中不能整除a 的是( ) A .2013 B .2012 C .2011 D .20104、如图1所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是( )A .251B .252C .256D .25245、一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是( )P CBA图16、要使1213-+-x x 有意义,则x 的取值范围为 A .321 x ≤≤ B .321 <x ≤ C .321x <≤ D . 321<x<7、菱形的两条对角线之和为L 、面积为S ,则它的边长为( )A .S L 4212-B .S L 2212-C .S L 4221-D .2421L S -8、如图2,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处, 且DE ∥BC ,下列结论中,一定正确的个数是( )①△CEF 是等腰三角形 ②四边形ADFE 是菱形③四边形BFED 是平行四边形 ④∠BDF +∠CEF =2∠AA .1B .2C .3D .4 9、如图3,直线x =1是二次函数 y =ax 2+bx +c 的图象的对称轴,则有A .a +b +c =0B .b >a +cC .b =2aD .abc >010、铁板甲形状为直角梯形,两底边长分别为4cm ,10cm ,且有一内角为60°;铁板乙形状为等腰三角形,其顶角为45°,腰长12cm .在不改变形状的前提下,试图分别把它们从一个直径为8.5cm 的圆洞中穿过,结果是( )A.甲板能穿过,乙板不能穿过 B .甲板不能穿过,乙板能穿过 C .甲、乙两板都能穿过 D .甲、乙两板都不能穿过 二、填空题(本大题满分40分,每小题5分)11、x 与y 互为相反数,且3=-y x ,那么122++xy x 的值为__________. 12、一次函数y =ax +b 的图象如图4所示,则化简1++-b b a 得________.13、若x=-1是关于x 的方程a 2x 2+2011ax -2012=0的一个根,则a 的值为__________. 14、一只船从A 码头顺水航行到B 码头用6小时,由B 码头逆水航行到A 码头需8小时,则一块塑料泡沫从A 码头顺水漂流到B 码头要用______小时(设水流速度和船在静水中的速度不变).15、如图5,边长为1的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是 .16、如图6,直线l 平行于射线AM ,要在直线l 与射线AM 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.17、如图7,△ABC 与△CDE 均是等边三角形,若∠AEB =145°,则∠DBE 的度数是________. 18、如图8所示,矩形纸片ABCD 中,AB =4cm ,BC =3cm ,图3 图4AB C D E F 图2图7 A B C D E图5 F 图6 l B ' D 'C DG把∠B、∠D分别沿CE、AG翻折,点B、D分别落在对角线AC的点B'和D'上,则线段EG的长度是________.三、解答题(本大题满分30分,每小题15分)19、某市道路改造工程,如果让甲工程队单独工作,需要30天完成,如果让乙工程队单独工作,则需要60天方可完成;甲工程队施工每天需付施工费2.5万元,乙工程队施工每天需付施工费1万元.请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作10天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65万元,甲、乙两个工程队最多能合作几天?(4)如果工程必须在24天内(含24天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图9,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图9(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图9(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图9(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案一、选择题(本大题满分50分,每小题5分)图9 (2)图9(1)MNQAB CDP79、分析:由函数的图象可知:当x=1时有a +b +c <0,当x=-1时有a-b +c >0,即a +c >b,即b <a +c ,函数的对称轴为12=-=ab x ,则b =-2a ,因为抛物线的开口向上,所以a >0,抛物线与y 轴的交点在负半轴,所以c <0,由b =-2a 可得b <0.所以abc >0,因而正确答案为D 10、分析:分别计算铁板的最窄处便可知,如图A,直角梯形,AD=4cm ,BC=10cm ,∠C=60°,过点A 过AE//CD ,交BC 于点E ,过点B 作BE ⊥CD 于点F ,可求得AB=36cm >8.5cm ,BE=35cm >8.5cm 铁板甲不能穿过,如图B,等腰三角形ABC 中,顶角∠A=45°,作腰上的高线BD ,可求得BD=26cm <8.5cm , 所以铁板乙可以穿过; 所以选择B二、填空题(本大题满分40分,每小题5分)11、 45- 12、a +1 13、 a 1=2012, a 2=-1 14、4815、41单位面积 16、3个 17、85° 18、1017、分析:易证△CEA 与△CDB 全等,从而有∠DBC=∠EAC ,因为,∠ABE+∠BAE=180°-145°=35°所以有∠EAC+∠EBC=120°-35°=85°, 所以∠EBD=∠EBC+∠DBC=85°18、分析:AB =4cm ,BC =3cm ,可求得AC=5cm ,由题意可知C B '=BC=3cm ,A B '=2cm 设BE=x ,则AE=4-x ,则有(4-x )2-x 2 =22,x =1.5cm ,即BE=DG=1.5cm ,过点G 作GF ⊥AB 于点F ,则 可求出EF=1 cm ,所以EG=103122=+三、解答题(本大题满分30分,每小题15分)19、本题满分15分,第(1)、(2)、(3)小题,每小题4分,第(4)小题3分. 解:(1)设甲、乙两个工程队一起合作x 天就可以完成此项工程,依题意得:1)601301(=+x ,解得:x =20 答:甲、乙两个工程队一起合作20天就可以完成此项工程.(2)设完成这项道路改造工程共需y 天,依题意得:16010301=+⨯y ,解得y =40 。

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .3 B .3C .3D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=. 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC .∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM //BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b c =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE.因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM //BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E .证明:∠BAE =∠ACB .证明:连接OA ,OB ,OC ,BD . ∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB . 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC .求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE .因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662by x b=--++-.易求得两抛物线的交点为Q23(312102)2bb+-+.由∠QBO=∠OBC可得tan∠QBO=tan∠OBC.作QN⊥AB,垂足为N,则N(312b+-,又233(x b b=+=,所以tan∠QBO=QNBN2310212b+=12=22111)]22==⋅.又tan∠OBC=OCOB1(2b==⋅,所以111)](22b⋅=⋅-.解得4b=(另一解45)03b=<,舍去).因此,抛物线的解析式为21466y x x=-+-.。

全国初中数学竞赛试题及答案(2012年)

全国初中数学竞赛试题及答案(2012年)

2012年“数学周报杯”全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c||||a b b c ++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果2a =-1123a+++的值为( ).(A) (B(C )2 (D)2(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为2 E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。

2012年全国初中数学联赛试题详解

2012年全国初中数学联赛试题详解

2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。

3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。

4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题

第 1 页 共 3 页2012年全国初中数学竞赛试题考试时间 2012年3月18日 9:30-11:30 满分150分答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.如果实数a ,b ,ca b b c +++可以化简为( )A .2c -aB . 2a -2bC . –aD .a2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标(x ,y )的个数为( )A .10B .9C . 7D .53.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.∠ADC =30°,AD =3,BD =5,则CD的长为( )A .B .4C .D .4.5(第1题图)BADC(第3题图)第 2 页 共 3 页4.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( )A .1B .2C .3D .45.黑板上写有1111,,,,23100⋅⋅⋅共有100个数字.每次操作先从黑板上的数中选取2个数a ,b ,然后删去a ,b ,并在黑板上写上数a+b+ab ,则经过99次操作后,黑板上剩下的数是( )A .2012B .101C .100D .99二、填空题(共5小题,每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是____________.7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且OC =12.延长BC ,与⊙O 分别交于D ,E 两点,则CE -BD 的值等于___________.8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为x 1,x 2,那么2011120122x x 的值为_______________.9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为_____________.10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD =DC .分别延长BA ,CD ,交点为E .作BF ⊥EC ,并与EC 的延长线交于点F .若AE =AO ,BC =6,则CF 的长为___________.(第6题图)AB OCED(第7题图)(第10题图)第 3 页 共 3 页三、解答题(共4题,每题20分,共80分)11.如图,在平面直角坐标系xOy 中,AO =8,AB =AC ,sin ∠ ABC =45.CD 与y 轴交于点E ,且C O E A D E S S ∆∆=.已知经过B ,C ,E 三点的图像是一条抛物线,求这条抛物线对应的二次函数的解析式.12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证:(1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD .13.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数.当a ≥2012时,求a 的最小值.14.将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a ,b ,c (可以相同)使得ba c =,求n 的最小值.IABDOC。

2012年全国初中数学联赛试卷

2012年全国初中数学联赛试卷

2012年全国初中数学联赛试卷一、选择题:(本题满分42分,每小题7分)223.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.2244..5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=_________.8.(7分)使得5×2m+1是完全平方数的整数m的个数为_________.9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=_________.10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2= _________.三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.2012年全国初中数学联赛试卷参考答案与试题解析一、选择题:(本题满分42分,每小题7分)﹣b=﹣﹣=,=+,=+1=<<,<<,22,3.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.DE=DE=.,=.2244..≤,﹣+≤时,时,﹣(﹣)+×+﹣,,或a=﹣5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.然后利用得到有关+﹣=[+﹣(+)得=4﹣(),﹣(﹣.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=±1.=t,b+=t=t,=t,得:=t=t,时,﹣时,a+8.(7分)使得5×2m+1是完全平方数的整数m的个数为1.或9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.BCBAE=PAsin60=AP==故答案为:10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2=.,同理可得:,=+,+=,=,即整理得:,=故答案为:三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.∴只可能是或或,三角形的外接圆的面积为12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.中,,的横坐标为:﹣=3b,纵坐标为:b的坐标为是一元二次方程,.,即,.代入,解得(另一解舍去)∴抛物线的解析式为。

全国初中数学竞赛试题含答案

全国初中数学竞赛试题含答案

中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分)1.如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式22||()||a a b c a b c -++-++可以化简为( ). (A )2c a (B )2a 2b (C ) a (D )a2.如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)3.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )144.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )45.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p(第1题图)二、填空题(共5小题,每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .7.如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 .8.如果关于x 的方程x 2+kx+43k 2-3k+92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD = DC. 分别延长BA ,CD ,交点为E. 作BF ⊥EC ,并与EC 的延长线交于点F. 若AE = AO ,BC = 6,则CF 的长为 .三、解答题(共4题,每题20分,共80分)11.已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围.(第7题图)(第10题图)12.如图,⊙O 的直径为AB ,⊙O 1过点O ,且与⊙O 内切于点B .C 为⊙O 上的点,OC 与⊙O 1交于点D ,且OD CD >.点E 在OD 上,且DC DE =,BE 的延长线与⊙O 1交于点F ,求证:△BOC ∽△1DO F .13.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值.14.求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<<,且122012122012n x x x +++=.(第12题图)中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题 1.C解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以||||()()()a b b c a a b c a b c ++=-+++--+a =-.2.D解:由题设知,2(3)a -=⋅-,(3)(2)b -⋅-=,所以263a b ==,.解方程组236y x y x⎧=⎪⎪⎨⎪=⎪⎩,,得32x y =-⎧⎨=-⎩,; 32.x y =⎧⎨=⎩,所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).3.D解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a a b a b++++++=, 于是 4423421444a b a b ++++-=.4.D解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得2(2)2()x n y y n x n +=-⎧⎨+=-⎩,, 消去x 得 (2y -7)n = y+4,2n =721517215)72(-+=-+-y y y .因为1527y -为正整数,所以2y -7的值分别为1,3,5,15,所以y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1;x 的值分别为14,7,6,7.5.D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以01239891036363636p p p p ====,,,,因此3p 最大.二、填空题6.7<x ≤19解:前四次操作的结果分别为3x -2,3(3x -2)-2 = 9x -8,3(9x -8)-2 = 27x -26,3(27x -26)-2 = 81x -80.由已知得 27x -26≤487, 81x -80>487.解得 7<x ≤19.容易验证,当7<x ≤19时,32x -≤487 98x -≤487,故x 的取值范围是 7<x ≤19.7.8解:连接DF ,记正方形ABCD 的边长为2a . 由题设易知△BFN ∽△DAN ,所以21AD AN DN BF NF BN ===, 由此得2AN NF =,所以23AN AF =.在Rt △ABF 中,因为2AB a BF a ==,,所以225AF AB BF a =+=,于是 25cos AB BAF AF ∠==. 由题设可知△ADE ≌△BAF ,所以 AED AFB ∠=∠,0018018090AME BAF AED BAF AFB ∠=-∠-∠=-∠-∠=.(第7题)于是 25cos AM AE BAF =⋅∠=, 245315MN AN AM AF AM =-=-=,415MND AFD S MN S AF ∆∆==. 又21(2)(2)22AFD S a a a ∆=⋅⋅=,所以2481515MND AFD S S a ∆∆==. 因为15a =8MND S ∆=. 8.32-解:根据题意,关于x 的方程有∆=k 2-4239(3)42k k -+≥0,由此得 (k -3)2≤0.又(k -3)2≥0,所以(k -3)2=0,从而k=3. 此时方程为x 2+3x+49=0,解得x 1=x 2=32-.故2012220111x x =21x =23-. 9.8解:设平局数为a ,胜(负)局数为b ,由题设知23130a b +=,由此得0≤b ≤43. 又 (1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++. 于是0≤130(1)(2)b m m =-++≤43,87≤(1)(2)m m ++≤130,由此得 8m =,或9m =.当8m =时,405b a ==,;当9m =时,2035b a ==,,5522a b a +>=,不合题设. 故8m =.(第10题)10.223 解:如图,连接AC ,BD ,OD.由AB 是⊙O 的直径知∠BCA =∠BDA = 90°. 依题设∠BFC = 90°,四边形ABCD 是⊙O 的内接四边形,所以∠BCF =∠BAD,所以 Rt △BCF ∽Rt △BAD ,因此BC BACF AD=. 因为OD 是⊙O 的半径,AD = CD ,所以OD 垂直平分AC ,OD ∥BC , 于是2DE OEDC OB==. 因此 223DE CD AD CE AD ===,.由△AED ∽△CEB ,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,, 所以 32322BA AD AD BA ⋅=⋅,BA=22AD ,故AD CF BCBA =⋅=2=. 三、解答题11.解: 因为当13x -<<时,恒有0y <,所以23420m m ∆=+-+>()(),即210m +>(),所以1m ≠-. ………(5分) 当1x =-时,y ≤0;当3x =时,y ≤0,即2(1)(3)(1)2m m -++-++≤0,且 233(3)2m m ++++≤0,解得m ≤5-. ………(10分)设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方程根与系数的关系得()121232x x m x x m +=-+=+,.因为1211910x x +<-,所以 121239210x x m x x m ++=-<-+, 解得12m <-,或2m >-.因此12m <-. …………(20分) 12. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形.…………(5分)设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为OC OB =,所以22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠.…………(15分)又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F . …………(20分)13.解:设a -b = m (m 是素数),ab = n 2(n 是正整数). 因为 (a+b)2-4ab = (a -b)2, 所以 (2a -m)2-4n 2= m 2,(2a -m+2n)(2a -m -2n) = m 2. ………(5分)因为2a -m+2n 与2a -m -2n 都是正整数,且2a -m+2n >2a -m -2n (m 为素数),所以 2a -m+2n =m 2,2a -m -2n =1.解得 a =2(1)4m +,n =214m -.于是 b = a -m =214m -(). …………(10分)又a ≥2012,即2(1)4m +≥2012.(第12题)又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025.当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025. …………(20分) 14.解:由于122012x x x ,, ,都是正整数,且122012x x x <<<,所以1x ≥1,2x ≥2,…,2012x ≥2012.于是 122012122012n x x x =+++≤1220122012122012+++=.…………(10分) 当1n =时,令12201220122201220122012x x x ==⨯=⨯,, ,,则1220121220121x x x +++=.…………(15分) 当1n k =+时,其中1≤k ≤2011,令 1212k x x x k ===,, ,,122012(2012)(1)(2012)(2)(2012)2012k k x k k x k k x k ++=-+=-+=-⨯,,,则1220121220121(2012)2012k k x x x k+++=+-⋅-1k n =+=. 综上,满足条件的所有正整数n 为122012, , , . …………(20分)。

2012年全国初中数学竞赛试题及答案 Microsoft Word 文档

2012年全国初中数学竞赛试题及答案 Microsoft Word 文档

2012年全国初中数学竞赛试题(正题)一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为().(第1(甲)题)(A)2c-a(B)2a-2b(C)-a(D)a1(乙).如果,那么的值为().(A )(B )(C)2 (D )2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().(A)1 (B )(C )(D )3(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC 是等边三角形.,AD = 3,BD = 5,则CD的长为().(第3(乙)题)(A )(B)4 (C )(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().(A)1 (B)2 (C)3 (D)44(乙).如果关于x的方程是正整数)的正根小于3,那么这样的方程的个数是().(A) 5 (B)6 (C)7 (D)85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().(A )(B )(C )(D )5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是.(第6(甲)题)6(乙). 如果a,b,c是正数,且满足,,那么的值为.7(甲).如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是 .(第7(甲)题)(第7(乙)题)7(乙).如图,的半径为20,是上一点.以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于x的方程x2+kx+k2-3k+= 0的两个实数根分别为,,那么的值为.8(乙).设为整数,且1≤n≤2012. 若能被5整除,则所有的个数为.9(甲).2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m的值为.9(乙).如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且a≤b≤c,则的取值范围是.10(甲).如图,四边形ABCD内接于⊙O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BF⊥EC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为.(第10(甲)题)10(乙).已知是偶数,且1≤≤100.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于x 的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系xOy中,AO = 8,AB = AC,sin∠ABC =.CD与y轴交于点E,且S△COE = S△ADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.(第11(乙)题)12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE 的延长线与交于点,求证:△BOC ∽△.(第12(甲)题)12(乙).如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD = 2BD .(第12(乙)题)13(甲).已知整数a,b满足:a-b是素数,且ab是完全平方数. 当a≥2012时,求a的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由14(甲).求所有正整数n ,使得存在正整数,满足,且.14(乙).将(n≥2)任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值.2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt △中,于是DE =,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y 元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF ,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF 中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得(k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x +=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA =AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC =,,所以AB = 10.由勾股定理,得BO =.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E 的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM ,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC ∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD.故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以(2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n (m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a ,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a ≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n 为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.…………(20分)2012年全国初中数学竞赛试题(副题)一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1. 小王在做数学题时,发现下面有趣的结果:由上,我们可知第100行的最后一个数是().(A)10000 (B)10020 (C)10120 (D)102002. 如图,在3×4表格中,左上角的1×1小方格被染成黑色,则在这个表格中包含黑色小方格的矩形个数是().(A)11 (B)12 (C)13 (D)14(第2题)3.如果关于的方程有两个有理根,那么所有满足条件的正整数的个数是().(A)1 (B)2 (C)3 (D)44. 若函数y=(k2-1)x2-(k+1)x+1(k为参数)的图象与x轴没有公共点,则k的取值范围是().(A)k>,或k<-1 (B)-1<k<,且k≠1(C)k>,或k≤-1 (D)k≥,或k≤-15. △ABC中,,分别为上的点,平分,BM=CM,为上一点,且,则与的大小关系为().(A)(B)(C)(D)无法确定二、填空题(共5小题,每小题7分,共35分)6. 如图,正方形ABCD的面积为90.点P在AB上,;X,Y,Z三点在BD上,且,则△PZX的面积为.(第6题)7.甲、乙、丙三辆车都匀速从A地驶往B地.乙车比丙车晚5分钟出发,出发后40分钟追上丙车;甲车比乙车晚20分钟出发,出发后100分钟追上丙车,则甲车出发后分钟追上乙车.8. 设a n=(n为正整数),则a1+a2+…+a2012的值1.(填“>”,“=”或“<”)9.红、黑、白三种颜色的球各10个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等,那么共有种放法.10. △ABC 中,已知,且b=4,则a+c= .三、解答题(共4题,每题20分,共80分)11. 已知c≤b≤a ,且,求的最小值.12. 求关于a,b,c,d的方程组的所有正整数解.13. 如图,梯形ABCD中,AB ∥CD,AC,BD相交于点O .P,Q分别是AD,BC上的点,且,.求证:OP=OQ.(第13题)14.(1)已知三个数中必有两个数的积等于第三个数的平方,求的值.(2)设为非零实数,为正整数,是否存在一列数满足首尾两项的积等于中间项的平方?(3)设为非零实数,若将一列数中的某一项删去后得到又一列数(按原来的顺序),满足首尾两项的积等于中间项的平方. 试求的所有可能的值.2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z ,得.设甲车出发后t 分钟追上乙车,则,即,解得.8.<解:由a n ==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p =(a+b+c).在Rt△AIF中,tan∠IAF =,即tan.同理,tan,tan.代入已知等式,得.因此a+c =.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a ≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5. 当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b ≤.从而,b=2(舍去),3.当b=3时,c =(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA 至,使得,则,于是△DPC ∽△,故,所以PO ∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD ,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.。

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共60分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.如果实数a ,b ,c 在数轴上的位置如图所示,||||a b b c ++可以化简为( ).(A )2c -a (B )2a -2b (C )-a (D )a 2.如果2a =-11123a+++的值为( ).(A ) (B ) (C )2 (D )3.如果正比例函数y = ax (a ≠ 0)与反比例函数y =x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2) 4. 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )55.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )146.如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.57.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )48.如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 89.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p10.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 11.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .12.如图,正方形ABCD 的边长为, E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 .13.如果关于x 的方程x 2+kx +43k 2-3k +92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .14.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 .15.如图,四边形ABCD 内接于⊙O , AB 是直径,AD = DC . 分别延长BA ,CD , 交点为E . 作BF ⊥EC ,并与EC 的延长线 交于点F . 若AE = AO ,BC = 6,则CF 的 长为 .三、解答题(共4题,每题15分,共60分)16.已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围.17.如图,⊙O 的直径为AB ,⊙O 1O 过点O ,且与⊙O 内切于点B .C 为⊙O 上的点,OC 与1O 交于点D ,且OD CD >.点E 在OD 上,且DC DE =,BE 的延长线与1O 交于点F ,求证:△BOC ∽△1DO F .18.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值.19.求所有正整数n ,使得存在正整数122012x x x ,, ,,满足12201x x x <<<,且122012122012n x x x +++=.2012年全国初中数学竞赛试题参考答案一、选择题1 。

【数学竞赛】2012年全国初中数学联赛试题答案

【数学竞赛】2012年全国初中数学联赛试题答案

【数学竞赛】2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =-,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A B C D 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即。

2012年全国初中数学竞赛试题(副题答案)

2012年全国初中数学竞赛试题(副题答案)

2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z,得.设甲车出发后t分钟追上乙车,则,即,解得.8.<解:由a n==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p=(a+b+c).在Rt△AIF中,tan∠IAF=,即tan.同理,tan,tan.代入已知等式,得.因此a+c=.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5.当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b≤.从而,b=2(舍去),3.当b=3时,c=(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA至,使得,则,于是△DPC∽△,故,所以PO∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.2012-04-16 人教网。

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19. 6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4). …………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为. …………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线. …………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD. 故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2. …………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m. …………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025. …………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。

2012全国初中数学竞赛试题及答案(现只有选择题答案)

2012全国初中数学竞赛试题及答案(现只有选择题答案)

中国教育学会中学数学教学专业委员会答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1. 如果2a =-+11123a+++的值为( ).(A )(B (C )2 (D )解:B∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22. 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )5 解:B解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内, 画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3. 如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 解:4. 如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 解:C∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x∴正根为3242<++qp p 解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p5. 黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 解:C1)1)(1(-++=++b a ab b a∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分)6. 如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 . 解:7 在910111=+++++a c c b b a 两边乘以9=++c b a 得 103=++++++a c b c b a b a c 即7=+++++ac b c b a b a c7. 如图,正方形ABCD 的边长为2E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 解:8易证△ABF ≌△DAE ,因此AF ⊥DE ∴()()351515222=+==AF DE∴323515152=⋅=AM ,()()343215222=-=DM易证△AND ∽△FNB ,且相似比为2:1∴331032==AF AN ,33531==AF FN ∴334323310=-=MN ∴83433421=⋅⋅=∆DMN S8. 设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n240252012⋯⋯=÷所以共有2012-402=1600个数9. 如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c (,,)均为三角形数,且a ≤b ≤c ,则a c的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+ac b c b a 111,所以a c b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得 c a a c a +-<1即ac a c a c -<-化简得0322<+-c ac a ,两边除以2c 得0132<+-⎪⎭⎫⎝⎛c a c a所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤ca综合得1253≤<-ca10. 已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 . 解:依题意得()()b a b a b a n -+=-=22由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个三、解答题(共4题,每题20分,共80分)11. 已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围. 解:12. 如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线; (2)AB +AD = 2BD .13.给定一个正整数n,凸n边形中最多有多少个内角等于150︒?并说明理由.,,(可14.将2,3,…,n(n≥2)任意分成两组,如果总可以在其中一组中找到数a b c以相同)使得b a c=,求n的最小值.。

2012年全国初中数学竞赛(河南赛区)预赛试卷

2012年全国初中数学竞赛(河南赛区)预赛试卷

2012年全国初中数学竞赛(河南赛区)预赛试卷一、选择题(共6小题,每小题6分,共36分.以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)3.(6分)如图,在⊙O中,,给出下列三个结论:(1)DC=AB;(2)AO⊥BD;(3)当∠BDC=30°时,∠DAB=80°.其中正确的个数是()4.(6分)有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面.C D.5.(6分)在平面直角坐标系中,点A的坐标是(1,0),点B的坐标是(﹣3,﹣3),点C是y轴上一动点,要使6.(6分)已知二次函数y=2x2+bx+1(b为常数),当b取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是()x x二、填空题(共6小题,每小题6分,共36分)7.(6分)若m﹣n=2,则2m2﹣4mn+2n2﹣1的值为_________.8.(6分)方程=的解是_________.9.(6分)如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是_________.10.(6分)如图,矩形ABCD中,AD=2,AB=3,AM=1,是以点A为圆心2为半径的圆弧,是以点M为圆心2为半径的圆弧,则图中两段弧之间的阴影部分的面积为_________.11.(6分)已知α、β是方程x2+2x﹣1=0的两根,则α3+5β+10的值为_________.12.(6分)现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有_________个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.(15分)王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?14.(15分)如图,在平面直角坐标系中,直角梯形OABC的顶点A、B的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y=kx+b.(1)求k的取值范围;(2)当k为取值范围内的最大整数时,若抛物线y=ax2﹣5ax的顶点在直线PQ、OA、AB、BC围成的四边形内部,求a的取值范围.15.(18分)如图,扇形OMN的半径为1,圆心角是90°.点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)求证:四边形EPGQ是平行四边形;(2)探索当OA的长为何值时,四边形EPGQ是矩形;(3)连接PQ,试说明3PQ2+OA2是定值.2012年全国初中数学竞赛(河南赛区)预赛试卷参考答案与试题解析一、选择题(共6小题,每小题6分,共36分.以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)3.(6分)如图,在⊙O中,,给出下列三个结论:(1)DC=AB;(2)AO⊥BD;(3)当∠BDC=30°时,∠DAB=80°.其中正确的个数是()=24.(6分)有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面.C D..5.(6分)在平面直角坐标系中,点A的坐标是(1,0),点B的坐标是(﹣3,﹣3),点C是y轴上一动点,要使=5=22x,,,﹣=,).22,﹣6.(6分)已知二次函数y=2x2+bx+1(b为常数),当b取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是()x x的顶点坐标是(﹣,),,,=二、填空题(共6小题,每小题6分,共36分)7.(6分)若m﹣n=2,则2m2﹣4mn+2n2﹣1的值为7.8.(6分)方程=的解是x1=0,x2=﹣4.﹣+﹣=﹣=,进而求出即可.,﹣+=,﹣=,此题主要考查了分式方程的解法,将原式化简为=9.(6分)如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是(b+1,﹣a+1).10.(6分)如图,矩形ABCD中,AD=2,AB=3,AM=1,是以点A为圆心2为半径的圆弧,是以点M为圆心2为半径的圆弧,则图中两段弧之间的阴影部分的面积为2.11.(6分)已知α、β是方程x2+2x﹣1=0的两根,则α3+5β+10的值为﹣2.12.(6分)现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.(15分)王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?y=y=≤14.(15分)如图,在平面直角坐标系中,直角梯形OABC的顶点A、B的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y=kx+b.(1)求k的取值范围;(2)当k为取值范围内的最大整数时,若抛物线y=ax2﹣5ax的顶点在直线PQ、OA、AB、BC围成的四边形内部,求a的取值范围.求出对称轴解析式,然后求出顶点坐标,依题意,得,≤;﹣﹣﹣,=a,﹣ax=,解方程组,得的交点坐标为(,),<﹣a<<﹣15.(18分)如图,扇形OMN的半径为1,圆心角是90°.点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)求证:四边形EPGQ是平行四边形;(2)探索当OA的长为何值时,四边形EPGQ是矩形;(3)连接PQ,试说明3PQ2+OA2是定值.,则=:x=的长为==GE= GE OA,).参与本试卷答题和审题的老师有:caicl;nhx600;gsls;gbl210;马兴田;Liuzhx;星期八;HJJ;lantin;zhxl;hdq123;zcx(排名不分先后)菁优网2013年3月10日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国初中数学竞赛预赛试题及参考答案一、选择题(共6小题,每小题6分,共36分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】 (A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解:完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m <【答】C .解:一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩解得1m >.3.如图,在⊙O 中,CD DA AB ==,给出下列三个 结论:(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30° 时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3 【答】D .解:因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的内角和为 180°得:2(30)180x x -︒+=︒,解得80x =︒.第3题图O DCBA4. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【 】(A )34 (B )23 (C )13 (D )21【答】B .解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=.5.在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△ABC 为等腰三角形,则符合要求的点C 的位置共 有【 】(A )2个 (B )3个 (C )4个 (D )5个 【答】D .解:由题意可求出AB =5,如图,以点A 为圆心AB 的长为半径画弧,交y 轴于C 1和C 2,利用勾股定理可求出OC 1=OC 2=)62,0(),62,0(21-C C , 以点B 为圆心BA 的长为半径画弧,交y 轴于点C 3和C 4, 可得34(0,1),(0,7)C C -,AB 的中垂线交y 轴于点C 5,利用 三角形相似或一次函数的知识可求出)617,0(5-C . 6.已知二次函数221y x bx =++(b 为常数),当b 取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型 抛物线),这条抛物线的解析式是【 】第5题图(A )221y x =-+ (B )2112y x =-+(C )241y x =-+ (D )2114y x =-+【答】A .解:221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42bb , 设4bx -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=.二、填空题(共6小题,每小题6分,共36分)7.若2=-n m ,则124222-+-n mn m 的值为 . 【答】7.解:71221)(212422222=-⨯=--=-+-n m n mn m .8.方程112(1)(2)(2)(3)3x x x x +=++++的解是 .【答】120,4x x ==-. 解:11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++11213(1)(3)x x x x =-=++++. ∴22(1)(3)3x x =++,解得 120,4x x ==-.9.如图,在平面直角坐标系中,点B 的坐标是(1,0), 若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转yxO 第6题图90°得到线段BA ',则点A '的坐标是.【答】(1,1)b a +-+.解:分别过点A 、A '作x 轴的垂线,垂足分别 为C 、D .显然Rt △ABC ≌Rt △B A 'D . 由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+.10.如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,则图中两段弧之间的阴影部分的面积为 .【答】2.解:连接MN ,显然将扇形AED 向右平移 可与扇形MBN 重合,图中阴影部分的面积等于 矩形AMND 的面积,等于221=⨯.11.已知α、β是方程2210x x +-=的两根,则3510αβ++的值为 .【答】2-.解:∵α是方程2210x x +-=的根,∴212αα=-. ∴ 322(12)22(12)52αααααααααα=⋅=-=-=--=-, 又 ∵2,αβ+=-∴ 3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-.M第10题图E 第9题图12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有个.【答】36.解:利用抽屉原理分析,设最多有x个小朋友,这相当于x个抽屉,问题变为把145颗糖放进x个抽屉,至少有1个抽屉放了5颗或5颗以上,则41x+≤145,解得x≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为x,个位数字为y(x、y均为0 ~ 9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况:…………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为200010x y++,依题意,得2012(200010)20x y x y-++=+++,整理,得1011,2xy-=x、y均为0 ~ 9的整数,∴0.x=此时 5.y=∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为190010x y++,依题意,得2012(190010)19x y x y-++=+++,整理,得111022x y=-,故x为偶数,又1021110211,09, 22x xy--=≤≤∴779,11x≤≤∴8.x=此时7.y=∴王亮的出生年份是1987年,今年25周岁.…………………14分综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC的顶点A、B的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y kx b=+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.解:(1)直线y kx b =+经过P (0,3),∴ 3b =.∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0)∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =- ∴ 41 3.1k -≤≤解得13.3k --≤≤……………………………………………7分(2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………9分又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫- ⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22, ∴125224a <-<.解得 822525a -<<-.……………………………………15分15. 如图,扇形OMN 的半径为1,圆心角是90°.点B 是MN 上一动点, BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)求证:四边形EPGQ 是平行四边形;(2)探索当OA 的长为何值时,四边形EPGQ 是矩形;(3)连结PQ ,试说明223PQ OA +是定值.解:(1)证明:如图①, ∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形. ∴OC AB OC AB =,//.∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE =∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分 连接OB , ∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴ GF ∥OB ,DE ∥OB , ∴ PG ∥EQ ,∴四边形EPGQ 是平行四边形.………………………………………………6分(2)如图②,当∠CED =90°时,□EPGQ 是矩形. 此时 ∠AED +∠CEB =90°.又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE .∴△AED ∽△BCE .………………………………8分 ∴AD AEBE BC=. 设OA =x ,AB =y ,则2x ∶2y =2y ∶x ,得222y x =.…10分 又 222OA AB OB +=,即2221x y +=. ∴2221x x +=,解得x =A B COD E F GP QMN 图②A BCO D EFGPQM N图①∴当OA时,四边形EPGQ 是矩形.………………………………12分(3)如图③,连结GE 交PQ 于O ',则.,E O G O Q O P O '=''='.过点P 作OC 的平行线分别交BC 、GE 于点B '、A '.由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴ PA '=23A B ''=13AB , GA '=13GE =13OA ,∴ 1126A O GE GA OA '''=-=.在Rt △PA O ''中,222PO PA A O ''''=+,即 2224936PQ AB OA =+, 又 221AB OA +=, ∴ 22133PQ AB =+,∴ 2222143()33OA PQ OA AB +=++=.……………………………………18分B'N MA'QP O'GF E D C BA O 图③。

相关文档
最新文档