结构力学题库第九章 力矩分配法习题解答

合集下载

力矩分配法例题及详解

力矩分配法例题及详解

力矩分配法例题及详解1. 引言嘿,大家好!今天我们来聊聊一个听起来有点复杂,但其实非常实用的概念——力矩分配法。

首先,别被这个名字吓到了,力矩听起来就像是一种神秘的力量,但其实它和我们日常生活息息相关,像是开门、搬家具,甚至是扔飞盘,都能用上哦!接下来,我们就从一些基础概念说起,慢慢让这个看似高深的东西变得简单易懂。

2. 力矩的基本概念2.1 力矩是什么?那么,力矩到底是什么呢?简单来说,力矩就是一个力在某个点上产生的转动效果。

你可以想象一下,你在转动一个门把手。

门把手离门铰链越远,你转动的效果就越明显。

也就是说,力矩=力×距离,这里的距离就是你施力的点到铰链的距离。

明白了吗?就像你拉开冰箱门的时候,越往边上拉,门就开得越大,没错吧?2.2 力矩的方向力矩不仅仅有大小,还有方向哦!通常我们用“顺时针”和“逆时针”来描述。

比如你在玩转盘游戏时,顺时针转动力矩可以让转盘指向某个数字,而逆时针则可能指向另一个数字。

方向的不同,有时候就能让你赢得游戏,没错,力矩在生活中可真是无处不在。

3. 力矩分配法的应用3.1 生活中的例子好了,咱们说了这么多,来点实际的例子吧!想象一下你和朋友们一起搬一个大沙发。

沙发很重,大家都想用力去推,但如果每个人都往同一个方向使劲,结果可能就是沙发半天也动不了。

这时候,你就需要用到力矩分配法!大家可以分成两组,一组在沙发一端推,另一组在另一端拉,利用力矩的原理,沙发就能轻松移动,简单又有效。

3.2 力矩分配法的步骤说到这儿,大家肯定好奇,具体怎么分配力矩呢?首先,得找到一个合适的支点。

然后,大家围绕这个支点站好,确定每个人施力的方向和位置。

最后,再开始施力,看看大家的默契如何!这个过程就像打篮球一样,配合得当才能得分;而力矩分配法就能让你在各种“搬运”中轻松获胜。

4. 小结最后,总结一下今天的内容。

力矩分配法听上去复杂,但其实它的原理就是利用每个人的力量,合理分配到不同的位置,达到最佳效果。

结构力学章节习题及参考答案

结构力学章节习题及参考答案
第3章静定梁与静定刚架习题解答
习题3.1是非判断题
(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( )
(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( )
(3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( )
(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。( )
(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。( )
习题 2.1(6)图
习题2.2填空
(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2) 习题2.2(2)图所示体系为__________体系。
习题 2-2(2)图
(4)习题5.1(3)图(a)和(b)所示两结构的变形相同。( )
习题7.2填空题
(1)习题5.2(1)图(a)所示超静定梁的支座A发生转角,若选图(b)所示力法基本结构,则力法方程为_____________,代表的位移条件是______________,其中1c=_________;若选图(c)所示力法基本结构时,力法方程为____________,代表的位移条件是______________,其中1c=_________。
(3) 习题7.2(3)图所示刚架各杆的线刚度为i,欲使结点B产生顺时针的单位转角,应在结点B施加的力矩MB=______。
习题 7.2(1)图习题 7.2(2)图 习题 7.2(3)图
(4) 用力矩分配法计算习题7.2(4)图所示结构(EI=常数)时,传递系数CBA=________,CBC=________。

结构力学第9章__力矩分配法(新)

结构力学第9章__力矩分配法(新)

9-2 单结点的力矩分配——基本运算
①求固端弯矩; ②将会交于结点的固端弯矩之和按分配系数分配给每一个杆端。 ③各杆按各自的传递系数向远端传递。 ④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
9-2 单结点的力矩分配——基本运算
例题
12kN/m
i
6m
16kN
2i
3m
3m
0.4 0.6
固端弯矩 -36
第9章 渐进法及超静定力的影响线 9-1 力矩分配法的基本概念 9-2 单结点的力矩分配法 9-3 多结点的力矩分配法 9-4 计算结果的校核
9-1力矩分配法的基本概念
M
4
2 i12 1
i14
i13
3
4i12Δ1
2i12Δ1
i13Δ1 i13Δ1
3i14Δ1
M12 4i121 M13 i131 M14 3i141
M
1 M21 2 M12 M31 M13 M41 0 M14
9-1力矩分配法的基本概念
1 转动刚度:梁端发生单位转角产生的弯矩。
M ik Sik 1
4iik 远端为固定端
S ik
3iik iik
远端为铰支端 远端为平行支链杆
0 远端为自由端
2 分配系数:与转动刚度成正比
ik
96 64 → 32
-23.6 ← -47.3 -47.3 → -23.6 14.2 9.4 → 4.7
-1.2 ← 0.7 0.5 →
-2.3 -2.3 → -1.2 0.3
-0.1 -0.2
200.9 -200.9
237.3 -237.3 87.7
200.9
237.3
87.7

结构力学_第九章_作业参考答案

结构力学_第九章_作业参考答案
解:
截面
DA
AD
AB
BA
BE
分配 系数 固端 弯矩
0.333
0.667
0.4
0.2
第一次
12←
24
12
第二次 -2←
-4
-8
→-4
第三次
0.8←
1.6
0.8
第四次 -0.13← -0.26
-0.54 →-0.27
第五次
0.05←
0.11
0.05
最终 弯矩
-2.13
-0.02 -4.28
-0.03 4.28
1/4 结构
3
华南农业大学 水利与土木工程学院(College of water conservancy and Civil Engineering, SCAU)
9-12 试计算图示空腹梁弯矩,绘制 M 图。 E = 常数
解:
截面
AB
BA
BC
CB
CD
CE
EC
分配 系数 固端 弯矩
0.856
0.143
0.143
0.856
0
1
1
0
1
第一次
0.286← -0.286 -1.714
0
第二次
-1.101 -0.185 →-0.185
第三次
0.026
0.159
0
第四次
最终
弯矩
-1.101
1.101
0.555 -1.555
1
注:表中弯矩× Fl 12
1/4 结构
4
0.0588 -18.75
第一次
-1.47←
1.47
第二次

结构力学练习题及答案讲解

结构力学练习题及答案讲解

一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共11分)1 . (本小题 3分)图示结构中DE 杆的轴力F NDE =F P /3。

( ).2 . (本小题 4分)用力法解超静定结构时,只能采用多余约束力作为基本未知量。

( )3 . (本小题 2分)力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。

( )4 . (本小题 2分)用位移法解超静定结构时,基本结构超静定次数一定比原结构高。

( )二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分)图示结构EI=常数,截面A 右侧的弯矩为:( )A .2/M ;B .M ;C .0; D. )2/(EI M 。

2. (本小题4分)图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj;D.cj.23. (本小题 4分)图a 结构的最后弯矩图为:A. 图b;B. 图c;C. 图d;D.都不对。

( )( a) (b) (c) (d)4. (本小题 4分)用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。

( ) 5. (本小题3分)图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3/(24EI); B. F P l 3/(!6EI); C. 5F P l 3/(96EI); D. 5F P l 3/(48EI).三(本大题 5分)对图示体系进行几何组成分析。

F P=1四(本大题 9分)图示结构B 支座下沉4 mm ,各杆EI=2.0×105 kN ·m 2,用力法计算并作M 图。

五(本大题 11分) 用力矩分配法计算图示结构,并作M 图。

EI=常数。

六(本大题14分)已知图示结构,422.110 kN m ,10 kN/m EI q =⨯⋅=求B 点的水平位移。

结构力学第3章-第9章在线测试题及答案

结构力学第3章-第9章在线测试题及答案

《结构力学》第03章在线测试剩余时间:46:42答题须知:1、本卷满分20分。

2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。

3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。

第一题、单项选择题(每题1分,5道题共5分)1、在梁的弯矩图发生突变处作用有什么外力?A、轴向外力B、横向集中力C、集中力偶D、无外力2、静定结构的内力与刚度A、无关B、绝对大小有关C、比值有关D、有关3、温度变化对静定结构会产生A、轴力B、剪力C、弯矩D、位移和变形4、桁架计算的结点法所选分离体包含几个结点A、单个B、最少两个C、任意个D、最多两个5、桁架计算的截面法所选分离体包含几个结点A、单个B、只能有两个C、两个或两个以上D、无穷多个第二题、多项选择题(每题2分,5道题共10分)1、外力作用在基本梁上时,附属梁上的A、内力为零B、变形为零C、位移为零D、反力为零E、位移不为零2、下列哪些因素对静定梁不产生内力A、荷载B、温度改变C、支座移动D、制造误差E、材料收缩3、梁上横向均布荷载作用区段的内力图的特征是A、剪力图平行轴线B、剪力图斜直线C、剪力图二次抛物线D、弯矩图平行轴线E、弯矩图二次抛物线4、如果某简支梁的剪力图是一平行轴线,则梁上荷载可能是A、左支座有集中力偶作用B、右支座有集中力偶作用C、跨间有集中力偶作用D、跨间均布荷载作用E、跨间集中力作用5、静定梁改变截面尺寸,下列哪些因素不会发生改变?位移A、轴力B、剪力C、弯矩D、支座反力E、位移第三题、判断题(每题1分,5道题共5分)1、对于静定结构,改变材料的性质,或改变横截面的形状和尺寸,不会改变其内力分布,也不会改变其变形和位移。

正确错误2、静定结构在支座移动作用下,不产生内力。

正确错误3、刚架内杆件的截面内力有弯矩、轴力和剪力。

正确错误4、静定结构满足平衡方程的内力解答由无穷多种。

正确错误5、零杆不受力,所以它是桁架中不需要的杆,可以撤除。

钢结构力矩分配法习题

钢结构力矩分配法习题
求剪力静定杆的固端弯矩时 ➢先有平衡条件求出杆端剪力; ➢将杆端剪力看作杆端荷载, 按该端滑动,另端固定的杆计 算固端弯矩。
3、剪力静定杆的转动刚度和传递系数:
➢剪力静定杆的 S= i C=-1
2kN/m
↓↓↓↓↓↓↓↓
2kN/m
↓↓↓↓↓↓↓↓
Δ
A
θA
B
确定图示梁的转动刚度SAB,SBA 和传递系数CAB,CBA
B
E
0.4 0.6
1.5i - 0.6i - 0.9i - 0.6i 0.6i
C
2/3 1/3
- 1.5i 1.0i 0.5i
- 0.5i 0.5i
k11
DG
0.55i
0.6i
0.55i k11 8 4
0.5i
k11
1.1i 4
MCE 3(2i) l 1.5i
M BE
3(2)i
l
1.5i
0.762 0.238 33.3 -288
129141.1.7 60.6 -51.4
41.7 13
-9.1 288
1解,3 :
2
1,3
1) 求分配2.系7 2数.5: 2)M求1 固 7端8.弯1-矩100:.92
0.5 0.4
.0S121323A1A212-102M1..3430.32407(.i.i9k.357-,N61306M.5..339m256.,.3.,147)686,213,S323BS331B2.23300-.64.324261371i38i...789268830359..,24.462,85,4
0, SA4
4, 1A1
5 14

4-6、定性分析图示刚架结点B的水平位移的方向。

结构力学习题及答案

结构力学习题及答案

结构力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进行几何组成分析。

若是具有多余约束的几何不变体系,则需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-1 1W=2-1 9W-=2-3 3-W=2-4 2W-=2-5 1W=-2-6 4=W-2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

(a)(b)(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

(a)(b)(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定结构的弯矩图是否正确。

(a)(b)(c)(d)部分习题答案3-1 (a )m kN M B ⋅=80(上侧受拉),kN F RQB 60=,kN F L QB 60-=(b )m kN M A ⋅=20(上侧受拉),m kN M B ⋅=40(上侧受拉),kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c) 4Fl M C =(下侧受拉),θcos 2F F L QC =3-2 (a) 0=E M ,m kN M F ⋅-=40(上侧受拉),m kN M B ⋅-=120(上侧受拉)(b )m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11(下侧受拉)(c )m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10(左侧受拉),m kN M DF ⋅=8(上侧受拉),m kN M DE ⋅=20(右侧受拉) 3-4 m kN M BA ⋅=120(左侧受拉)3-5 m kN M F ⋅=40(左侧受拉),m kN M DC ⋅=160(上侧受拉),m kN M EB ⋅=80(右侧受拉)3-6 m kN M BA ⋅=60(右侧受拉),m kN M BD ⋅=45(上侧受拉),kN F QBD 46.28=3-7 m kN M C ⋅=70下(左侧受拉),m kN M DE ⋅=150(上侧受拉),m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0(上侧受拉),m kN M BA ⋅=36.0(右侧受拉) 3-9 m kN M AB ⋅=10(左侧受拉),m kN M BC ⋅=10(上侧受拉) 3-10 (a )错误 (b )错误 (c )错误 (d )正确第4章 静定平面桁架和组合结构的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

力矩分配法课后习题答案

力矩分配法课后习题答案

力矩分配法课后习题答案力矩分配法课后习题答案力矩分配法是一种常用的力学分析方法,用于计算物体上的力矩分布。

在工程学和物理学中,力矩分配法被广泛应用于解决各种问题,包括结构力学、机械设计和静力学等。

下面将通过几个具体的习题来介绍和解答力矩分配法的应用。

习题1:一个均匀的杆AB长为L,质量为m,放置在两个支点A和B上。

支点A距离杆的左端点的距离为a,支点B距离杆的右端点的距离为b。

求支点A和B所受的力。

解答:根据力矩分配法,我们可以先计算出杆的重心位置。

重心位置可以通过以下公式计算得出:x = (m1 * x1 + m2 * x2) / (m1 + m2)其中,m1和m2分别是杆上两个质点的质量,x1和x2分别是这两个质点的位置。

在本题中,我们可以将杆分为两个部分:左侧的部分质量为m1,右侧的部分质量为m2。

左侧部分的质心位置为a/2,右侧部分的质心位置为L - b/2。

代入公式,我们可以得到:x = (m1 * a/2 + m2 * (L - b/2)) / (m1 + m2)接下来,我们可以计算出支点A和B所受的力。

根据平衡条件,支点A所受的力的大小应该等于杆上重心位置处的力矩与杆的重力矩之和。

支点B所受的力的大小应该等于杆上重心位置处的力矩与杆的重力矩之差。

因此,我们可以得到以下两个方程:Fa = (m1 + m2) * g - (m1 * a/2 + m2 * (L - b/2)) * gFb = (m1 + m2) * g + (m1 * a/2 + m2 * (L - b/2)) * g其中,g是重力加速度。

通过解这两个方程,我们可以求解出支点A和B所受的力。

习题2:一个悬挂在墙上的杆,杆的质量为m,长度为L。

杆的左端点与墙壁接触,右端点悬挂在墙上的钩子上。

求杆的重心位置和墙壁对杆的支持力。

解答:首先,我们可以计算出杆的重心位置。

由于杆是均匀的,重心位置就在杆的中点。

因此,杆的重心位置为L/2。

第九章 力矩分配法3-2

第九章  力矩分配法3-2

9.4 无剪力分配法
一、两个概念
1、有侧移杆与无侧移杆
杆件两端没有垂直于杆轴的相对线位移,称无侧移杆
杆件两端在垂直杆轴的方向上有相对线位移,称有侧移杆
2、剪力静定杆 杆件内的各截面剪力可以 由静力平衡条件唯一确定 的杆称为剪力静定杆
B
A C
A
图(A)
二、无剪力分配法
1、刚架特点:竖杆为剪力静定杆,节点A水平移动时,竖杆除 受本身的弹性约束外无其他杆件或支座的约束。 位移法解题:一般A处加刚臂,C点加支杆,基本结构如右下图 力矩分配法:通常只适用于计算仅以节点角位移为基本未知量
B
SBA
SBC 1
B C
i2
1
i2
0.2 0.8
3i1
-2.67 -3.75 1.28 5.14
-1.39 1.39 -5.33
i2 A
CBA 1
1.39
1.39 5.70
-1.28 -6.61
S BA i2 3 S BC 3i1 12 3 BA 3 12 0.2 12 0.8 BC 3 12
A
图(C)
B
A
A
图(D)
B
A
加刚臂阻止转动 放松节点使产生真实转角 A
A
C
A
C
SAC= 3iAC
SAB= iAB
A
B
A
(节点A处产生 不平衡力矩) B
(A处不平衡力矩 反号后待分配) MAB A
B 右1图因节点A,C 同时 水平移动,AC 杆作 刚体平 移不引起内力
SAB=iAB A 右2图A处实际转角时, 水平杆在A端有转动 Q=0 CAB=-1 刚度,AB杆受弯 B -MAB (参与A节点不平衡 力矩的分配)

结构力学-力矩分配法

结构力学-力矩分配法

5.8 5097.1 -62.342-.3109.3
1,3
16 15.2 1537.6 20.9
2
-5.2 -10.3-18.2
0.762 0.238 33.3 -288
129141.1.7 60.6 -51.4
41.7 13
-9.1 288
1解,3 :
2
1,3
1) 求分配2.系7 2数.5: 2)M求1 固 7端8弯.1-矩100:.92
SBA=4×3i=12i SBC=3×4i=12i
AA -15
BB
CC
-30
M-图30(kN.m)
μBA=12i/24i=1/2 μBC=12i/24i=1/2
3)叠加1)、2)得到最后杆端弯矩。 计算过程可列表进行
返回
例题 2
单结点力矩分配法
用力矩分配法计算,画M图。
解:1)求μ
μAB= 4/9 μAC= 2/9
AA1155kkNN↓↓↓↓44↓↓i00↓↓=kk↓↓1NN↓↓↓↓//mm↓↓↓↓ DD
MA 10
80
mAB
M=15 i=2
mAD mAC CC
MM图图((kkNN..mm))
22mm
22mm
44mm
A
C
D
AD
AC
CA
DA
3/9
2/9
- 80
15
10
-10 返回
- 65
10
- 10
三、多结点力矩分配法
3iij
由此可见,在同一结点上各杆杆端转角相等的前提下,两杆i端的
DM ' ik
DM ik

1 2
DM

第九章 力矩分配法

第九章  力矩分配法

BC ( M B ) M BC
例1. 用力矩分配法作图示连续梁 (1)B点加约束 的弯矩图。 167.2 M图(kN· m) 200 6 115.7 F 200kN 150 kN m MAB = 20kN/m 8 90 300 F= 150 kN m M BA EI EI C B A 2 20 6 90kN m MBCF= 3m 6m 3m 8 MB= MBAF+ MBCF= 60 kN m 200kN 60 20kN/m (2)放松结点B,即加-60进行分配 C 设i =EI/l B A 计算转动刚度: -150 150 -90 SBA=4i SBC=3i + -60 4i 0.571 0.429 BA 0.571 分配系数: 4i 3i C A -17.2 -34.3 B -25.7 0 0.571 A -150
Hale Waihona Puke 第9章 力矩分配法【例9-6】设图示连续梁支座A顺时针转动了0.01rad,支座B、C分别下沉了
ΔB =3cm和ΔC =1.8cm,试作出M图,并求D端的角位移θD。已知 EI=2×104kN· m2。
A =0.01rad
B A EI
B
C EI =3cm 4m EI
C =1.8cm
D
4m 3.47 A
分 配 与 传 递
-5.72
+2.86 +2.86 -0.41 +0.21 +0.20 -81.93 +81.93
-11.43 -8.57
4i 0.625 4i 3 0.8i DE BA 0.375
2、计算固端弯矩
F M DE 2kN m F M DC 5.62kN m F M CD 9.38kN m

结构力学第九章习题及参考答案(7-12)

结构力学第九章习题及参考答案(7-12)

9-7试求图示等截面单跨梁的极限荷载。

梁的截面为矩形b ×h=5 cm×20 cm,s σ=235 Mpa 。

解 根据弯矩图形状,很容易判断,形成机构说,塑性铰出现在B 、D 两点,故()Pu u u 22u e Pu 11335cm 20cm 235MPa 4704kN F l M M M bh F l l l lσ-=⨯⨯====习题9-7图9-8试求图示等截面单跨梁的极限荷载。

解:梁变成机构时,任意截面的弯矩为3u23u u 11()66d ()110d 6231166M x qlx qx M l M x ql qx x x l M ql q M q l =--=-===--=9-9试求图示等截面超静定梁的极限荷载。

解: 第一跨变成机构时,()()11Pu u Pu u 181.56m 2(kN)49F M F M ⨯⨯==第二跨变成机构时,()()22Pu u Pu u 16m 1.5(kN)4F M F M ⨯⨯==极限弯矩为()2Pu Pu u (kN)F F M ==习题9-8图9-10试求图示等截面连续梁的极限弯矩。

解: 第一跨变成机构时,()211u u 1320kN/m 6m 60kNm 82M M ⨯⨯==()()()()()()()()()()2u11u u 211111u u u uu 1122u u 212u 11()22d ()1110d 221111112222211822361.92kNm 2xM x qlx qx M lM M x ql qx M x l x l qlM M M M ql l q l l M ql ql l ql M M ql ql M ql =--=--==-⎛⎫⎛⎫⎛⎫=----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-+-== 第二跨变成机构时,()()()222u u 1120kN/m 6m 40kN 6m 275kNm 84M M ⨯⨯+⨯⨯==第三跨变成机构时,()()33u u 1332080kN 8m kNm 106.7kNm 423M M ⨯⨯=== 极限弯矩为()3u u 106.7kNm M M ==9-11试求图示阶形柱的极限荷载。

结构力学 力矩分配法

结构力学  力矩分配法

二、力矩分配法的三个基本概念 用SAB表示,施力端A称为近端,B端称为远端。 1. SAB与线刚度i=EI/l有关,还与远端的支承情况有关。
A
S AB
B
(a )
远端固定
SAB = 4 i
A
S AB
( b)
B
远端铰支 远端定向支承 远端自由
SAB = 3 i
SAB = i SAB = 0
A
S AB
(c )
171.4
力矩分配法是直接计算 A 各杆的杆端弯矩。
解:
分配系数 μ
1 2 ql 200 8 100 kN/m 57.13 B EI 854 .73 m
C
EI 4m
固端弯矩M g 133.3
4 3 7 7 133.3 0
M图 ( kN m )
0 0 0
B结点一次 分配传递 38.09 76.17 57.13 M 总或 M 171.4 57.13 57.13
1.由转动刚度计算分配系数: μ
S
A
SAj
2.固端弯矩和不平衡力矩 R 计算:R
g M A
3.计算分配弯矩和传递弯矩: ' M 'jA CAj M 'Aj M Aj μ Aj ( R )
分配弯矩下划横线表示已平衡,箭头表示传递方向。
4.叠加求和,计算杆端弯矩: 5.校核。(结点平衡)
例2、用力矩分配法计算图示结构,并作M图。
M图 ( kN m ) A
36 80kN 1 Pl 80 30kN m 4 C B 6 2 EI 2m 2m
R B
30
g M BC 60
解:
分配系数 μ

结构力学题库第九章力矩分配法习题解答

结构力学题库第九章力矩分配法习题解答

1、清华5-6 试用力矩分配法计算图示连续梁,并画其弯矩图和剪力图。

C清华V图M(kN解:(1)计算分配系数:320.632440.4324BABABA BCBCBCBA BCs is s i is is s i iμμ⨯===+⨯+⨯⨯===+⨯+⨯(2)计算固端弯矩:固端弯矩仅由非结点荷载产生,结点外力偶不引起固端弯矩,结点外力偶逆时针为正直接进行分配。

3360667.51616FABFBAMPlM=⨯⨯===⋅kN m(3)分配与传递,计算列如表格。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

(5)根据弯矩图作剪力图如图所示。

0153027.60153032.63517.58.756AB BA AB AB AB BA BA BA BC CB BC CB M M V V l M M V V l M M V V l ++=-=-=++=-=--=+--==-=-=5kN 5kN kN2、利用力矩分配法计算连续梁,并画其弯矩图和剪力图。

4m1m2m2m原结构简化结构·解:(1)计算分配系数:,4,34BA BC BA BC EIi i i S i S i =====令 430.4290.5714343BC BA BA BC BA BC BA BC s s iis s i is s i iμμ======++++(2)计算固端弯矩:CD 杆段剪力和弯矩是静定的,利用截面法将外伸段从C 处切开,让剪力直接通过支承链杆传给地基,而弯矩暴露成为BC 段的外力偶矩,将在远端引起B 、C 固端弯矩。

22204101088154102020828F FAB BA F F BCCB Pl M M ql m M M ⨯=-=-=-⋅⋅⨯=-+=-+=-⋅=⋅kN m,=kN m kN m,kN m(3)分配与传递,计算列如表格。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

结构力学 朱慈勉 第9章课后答案全解

结构力学 朱慈勉 第9章课后答案全解

第9章超静定结构的实用计算方法与概念分析习题答案9-1 试说出何为杆端转动刚度、弯矩分配系数和传递系数,为什么弯矩分配法一般只能用于无结点线位移的梁和刚架计算。

9-2 试用弯矩分配法计算图示梁和刚架,作出M 图,并求刚结点B 的转角φB 。

解:设EI=6,则5.1,1==BC AB i i53.05.13145.1347.05.131414=⨯+⨯⨯==⨯+⨯⨯=BCBA μμ结点 A BC 杆端 AB BA BC 分配系数 固端 0.47 0.53 绞支 固端弯矩 -60 60 -30 0 分配传递 -7.05 -14.1 -15.9 0 最后弯矩-67.0545.9-45.9()()()逆时针方向215.216005.6721609.4522131m KN EIEI m M m M i AB AB BA BA B ⋅-=⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡---=θ(b)解:设EI=9,则3,31,1====BE BD BC AB i i i i6m3m 3m2m6m2m12.0141333331316.0141333331436.01413333333=⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==BC BA BE BD μμμμ结点 A BC 杆端 AB BA BC BD BE 分配系数 固端 0.16 0.12 0.36 0.36 绞支 固端弯矩 0 0 0 45 -90 0 分配传递 3.6 7.2 5.4 16.2 16.2 0 最后弯矩3.67.25.461.2-73.8()()()顺时针方向22.1606.32102.732131m KN EIEI m M m M i AB AB BA BA B ⋅=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡---=θ9-3 试用弯矩分配法计算图示刚架,并作出M 图。

(a)解:B为角位移节点设EI=8,则1==BC AB i i ,5.0==BC BA μμ 固端弯矩()m KN l b l Pab M BA ⋅=⨯⨯⨯⨯=+=4882124432222 m KN l M BC ⋅-=⋅+-=582621892 结点力偶直接分配时不变号结点 A BC 杆端 AB BA BC 分配系数 铰接 0.5 0.5 固端弯矩 0 48 -58 12 分配传递50 50 55124m 4m8m2m最后弯矩 0103 -3 12(b)解:存在B 、C 角位移结点 设EI=6,则1===CD BC AB i i i 73741413145.0141414==⨯+⨯⨯==⨯+⨯⨯==BC CB BC BA μμμμ固端弯矩: mKN M M M m KN M m KN M CDCB BC BA AB ⋅-=⨯+⨯-===⋅-=⋅-=14021808640080802结点 A BC杆端 AB BA BC CB CD 分配系数 固结 0.5 0.5 4/7 3/7 固端弯矩-80 80 0 0 -140 分配传递-20 -40 -40 -20 47.5 91.4 68.6 -11.4 -22.8 -22.8 -11.4 3.25 6.5 4.9 -0.82-1.63-1.63-0.820.6 0.45 最后弯矩-112.2215.57-15.4866.28-66.052m 6m2m2m2m 6m(c)解:B 、C 为角位移结点51411,5441454414,51411=+==+==+==+=CD CBBC BA μμμμ固端弯矩:mKN M mKN M mKN M mKN M mKN M mKN M DC CD CB BC BA AB ⋅-=⨯-=⋅-=⨯-=⋅=⨯=⋅-=⨯-=⋅=⨯=⋅=⨯=10065242003524501252450125241283424646424222222结点 A BCD 杆端 AB BA BC CB CD 滑动 分配系数 滑动 0.2 0.8 0.8 0.2 -100固端弯矩64 128 -50 50 -200 分配传递15.6 -15.6 -62.4 -31.272.48 144.96 36.24 -36.24 14.5 -14.5 -58 -29 11.6 23.2 5.8 -5.8 2.32-2.32-9.28-4.643.7 0.93 -0.93 最后弯矩96.4295.58-95.6157.02-157.03-142.974m5m5m3m96.42(d) 解:11313141413114131414145.0141414=⨯+⨯+⨯⨯===⨯+⨯+⨯⨯===⨯+⨯⨯=DBDE DC CD CA μμμμμ 固端弯矩:mKN M mKN M ED DE ⋅=⋅-=⨯-=383812422结点 A CD E 杆端 AC CA CD DC DB DE ED 分配系数 固结 0.5 0.5 4/11 3/11 4/11 固结固端弯矩0 0 0 0 0 -2.67 2.67 分配传递-5-10 -10 -546/33 92/33 69/33 92/33 46/33 -0.35 - 23/33- 23/33-0.350.127 0.096 0.127 0.064 最后弯矩-5.35-10.7-9.3-2.442.190.254.12(e)4m6m4m4m4m解:当D 发生单位转角时:()()2414-=⨯⨯=m EI K Y C 则())假设12(441==⨯=-m EI EIM DC73,74,3716,379,371216,12,16,9,12=====∴=====∴EB ED DE DA DC DE EB DE DA DC S S S S S μμμμμ 结点 D EB 杆端 DC DA DE ED EB BE 分配系数 12/37 9/37 16/37 4/7 3/7 固结 固端弯矩0 0 -9 9 0 0 分配传递-2.57 -5.14 -3.86 -1.93 3.75 2.81 5 -2.5 -0.72 -1.43 -1.07 -0.54 0.230.18 0.31 0.16 最后弯矩3.982.99-6.985-5-2.47(f)解:截取对称结构为研究对象。

结构力学第9章 3

结构力学第9章 3
F 13 u 13 F 13
F 1j
F u F M14 M14 M14 M14 14 M1Fj

F u M 21 M 21 C12 M12 F u M 31 M 31 C13 M13 F u M 41 M 41 C14 M14
固端弯矩+分配弯矩
除承受本层荷载
外,还受有柱顶 剪力(柱顶以上 各层所有水平荷 载的代数和)。
谢谢大家!
S14 M S14 Z1 R1P 14 M1Fj S1 j
u 14
u C14 M 14
力矩分配法的基本原理—引例
各近端的最后弯矩:
各远端的最后弯矩:
F 1j
M12 M M M 12 M
F 12 u 12 F 12
M13 M M M 13 M
= 固端弯矩+传递弯矩
力矩分配法的基本原理—引例
力矩分配法的分析过程归纳为两步:
1.固定结点,即加入刚臂。 此时各杆端有固端弯矩,结点上有不平衡力矩,它暂时由刚 臂来承担。 2.放松结点,即取消刚臂,让结点转动。 这相当于在结点上又加入一个反号的不平衡力矩,于是结点 获得平衡。此反号不平衡力矩将按转动刚度系数大小的比例,即 分配系数,分配给各近端,于是近端得到分配弯矩,远端得到传 递弯矩。
u M 13 S13 Z1
S13 R1P 13 M1Fj S1 j
S14 M S14 Z1 R1P 14 M1Fj S1 j
u 14
力矩分配法的基本原理—引例
分配系数:
1 j
S
1
S1 j
1j
由于结点1的转动,各近端获得分配弯矩: S12 u M 12 S12 Z1 R1P 12 M1Fj S1 j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、清华5-6 试用力矩分配法计算图示连续梁,并画其弯矩图和剪力图。

C清华V图M(kN解:(1)计算分配系数:320.632440.4324BABABA BCBCBCBA BCs is s i is is s i iμμ⨯===+⨯+⨯⨯===+⨯+⨯(2)计算固端弯矩:固端弯矩仅由非结点荷载产生,结点外力偶不引起固端弯矩,结点外力偶逆时针为正直接进行分配。

3360667.51616FABFBAMPlM=⨯⨯===⋅kN m(3)分配与传递,计算列如表格。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

(5)根据弯矩图作剪力图如图所示。

0153027.60153032.63517.58.756AB BA AB AB AB BA BA BA BC CB BC CB M M V V l M M V V l M M V V l ++=-=-=++=-=--=+--==-=-=5kN 5kN kN2、利用力矩分配法计算连续梁,并画其弯矩图和剪力图。

4m1m2m2m原结构简化结构·解:(1)计算分配系数:,4,34BA BC BA BC EIi i i S i S i =====令 430.4290.5714343BC BA BA BC BA BC BA BC s s iis s i is s i iμμ======++++(2)计算固端弯矩:CD 杆段剪力和弯矩是静定的,利用截面法将外伸段从C 处切开,让剪力直接通过支承链杆传给地基,而弯矩暴露成为BC 段的外力偶矩,将在远端引起B 、C 固端弯矩。

22204101088154102020828F FAB BA F F BCCB Pl M M ql m M M ⨯=-=-=-⋅⋅⨯=-+=-+=-⋅=⋅kN m,=kN m kN m,kN m(3)分配与传递,计算列如表格。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

(5)根据弯矩图作剪力图如图所示。

位移法和力矩分配法的习题解207.1415.717.8624207.1415.7112.142415415.712028.932415415.712031.0724AB BA AB AB AB BA BA BA BC CB BC BC BC CB CB CB M M V V l M M V V l M M V V l M M V V l +-+=-=-=+-+=-=--=-+⨯-+=-=-=+⨯-+=-=--=-kN kNkNkN3、9-2a 利用力矩分配法计算连续梁,并画其弯矩图。

(2)计算固端弯矩:固端弯矩仅由非结点荷载产生。

22222222224524454240,20661581080,8012123340645,1616FFABBAF FBC CB F F CDDC Pab Pba MMl l ql M M Pl M M ⨯⨯⨯⨯=-=-=-⋅==-=⋅⨯=-=-+=-⋅=⋅⨯⨯=-=-=-⋅=kN m kN mkN m kN m kN m(3)分配与传递,计算列如表格。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

4、9-3c 利用力矩分配法计算刚架,并画其弯矩图。

40.75 1.5342,43628420.42330.6231.534332846230.63220.432BA BC BA BABA BC BC BC BA BC CB CD CB CBCB CD CD CD CB CD EI B EI EI EI EIS S s s s s s s C EI EI EI EIS S s s s s s s μμμμ==⨯===⨯=====++===++=⨯===⨯=====++===++令结点:结点:,解:(1)计算分配系数:题9-2aM 图(kN·m)(d)7.5(kN ·m)3m4m1m3m(·m解:(1)计算分配系数:22 1.53 1.53,32,4246623,2,230.37533220.2533230.375332BA BC BE BA BC BE BA BA BA BC BE BC BC BA BC BE BE BC BA BC BE EI EI EIS EI S EI S EI EI S S S s s s S s s s S s s s S μμμ=⨯===⨯===⨯=========++++===++++===++++令则,(2)计算固端弯矩:刚结点处力偶不引起固端弯矩,结点外力偶逆时针为正直接进行分配。

CD 杆段剪力和弯矩是静定的,利用截面法将外伸段从C 处切开,让剪力直接通过支承链杆传给地基,而弯矩暴露成为BC 段的外力偶矩,将在远端引起B 、C 固端弯矩。

225433406100104088162162100F FFABBABC F F FABEB BE ql Pl m MM M M M M ⨯⨯⨯===⋅=-+=-+=-⋅=⋅==⋅,kN m kN m,kN m kN m(3)分配与传递,计算如图所示。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

9-3d 利用力矩分配法计算刚架,并画其弯矩图。

位移法和力矩分配法的习题解(a )2m4m 4m-1(d)(c )(b )解:(1)计算分配系数:4 2.5333,442,4544444,4430.332420.23244324CB CB CG CG CFCF CD CD CB CB CB CG CF CD CG CGCB CG CF CD CF CF CB CG CF CD EI EIS i EI S i EI EI EIS i EI S i EIS EIs s S S EI EI EI EI S EIs s S S EI EI EI EI S EIs s S S EI EI μμμ==⨯===⨯===⨯=======++++++===++++++==+++++0.40.1324CD CD CB CG CF CD EI EI S EIs s S S EI EI EI EIμ=+===++++++(2)计算固端弯矩:AB 杆段剪力和弯矩是静定的,利用截面法将外伸段从B 处切开,让剪力直接通过BE 杆传给地基,而弯矩暴露成为BC 段的外力偶矩,将在远端C 引起固端弯矩。

2220104201028282.545220F FBCCBF FCD DC F FCGGC m ql MM Pl M M M M -⨯=-⋅=+=+=⋅⨯==-=-=-⋅==kN m kN mkN m(3)分配与传递,计算如图所示。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

9-3e 利用力矩分配法计算刚架,并画其弯矩图。

-0.75-18.7521.130.133(d )(c )(b )1m4.5m6m(a )解:(1)计算分配系数: B 刚结点:2223,4,44.53636313BA BC BE BABC BE EI EI EI S EI S EI S EI μμμ=⨯==⨯==⨯====C 刚结点:224,463630.5CB CF CBCF EI EI S EI S EI μμ=⨯==⨯=== (2)计算固端弯矩:CD 杆段剪力和弯矩是静定的,利用截面法将外伸段从B 处切开,让剪力直接通过位移法和力矩分配法的习题解CF 杆传给地基,而弯矩暴露成为作用于刚结点B 的外力偶矩,将在远端C 不引起固端弯矩。

222211246722467212121212F FBCBCql ql MM=-=-⨯⨯=-⋅==⨯⨯=⋅kN mkN m 无荷载杆无固端弯矩。

(3)分配与传递,计算如图所示。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

9-3h 利用力矩分配法计算刚架,并画其弯矩图。

(c )0.1013.342.322m2m4m4m(a )解:(1)计算分配系数: B 刚结点:4,4,440.52BA BC BABC EI EIS EI S EI EIEIμμ=⨯==⨯====C 刚结点:33,4,444440.36434340.27234CD CF CB CFCB CDEI EI EI EI S S EI S EI EIEIEI EI EI EIEI EI μμμ=⨯==⨯==⨯====++==++ (2)计算固端弯矩:222211304403044012121212338046016160FFBAAB FCD F F F BC CB CF ql ql M M Pl M M M M ==⨯⨯=⋅=-=-⨯⨯=-⋅=-=-⨯⨯=-⋅===kN m kN mkN m无荷载杆无固端弯矩。

(3)分配与传递,计算如图所示。

(4)叠加固端弯矩和分配弯矩或传递弯矩,得各杆端的最后弯矩,作弯矩图如图所示。

5、9-4b 利用对称性,采用力矩分配法计算刚架,并画其弯矩图。

8.51-0.03-1.465kN/mq=5kN/m(d )6、9-4d 利用对称性,采用力矩分配法计算刚架,并画其弯矩图。

位移法和力矩分配法的习题解(e)(b)2224q l --2427、9-9c 利用无剪力分配法计算刚架,并画其弯矩图。

(a )题9-9a(g)((e)(d)19.72-19.72A解:(1)由于刚架是对称的,因此可将荷载分解为正对称和反对称两部分,如上图(b )、(c )所示。

而正对称结点荷载作用下刚架处于无弯矩状态,原图的弯矩图只考虑反对称荷载作用。

考虑刚架和荷载的对称性,可以取半刚架如(d)所示。

由于(d)图半刚架立柱的剪力是静定的,每一跨都可以化为单跨超静定梁,因此选取如图(e)所示无剪力分配法力学计算模型。

(2)计算分配系数: A 结点:3340.92334110.083341AG AG AG AG AC AG ACAC AC ACAG AC AG AC S i S S i i S i S S i i μμ⨯⎧====⎪++⨯+⎪⎨⎪====⎪++⨯+⎩C 结点:110.073134114334120.863134114110.073134114CA CA CACA CH CE CA CH CE CH CH CH CA CH CE CA CH CE CE CE CE CA CH CE CA CH CE S i S S S i i i S i S S S i i i S i S S S i i i μμμ⎧=====⎪+++++⨯+⎪⎪⨯=====⎨+++++⨯+⎪⎪=====⎪+++++⨯+⎩(2)计算固端弯矩:266kN m 2224618kN m22F FAC CA F F CE ECP l M M P l M M ⋅⨯==-=-=-⋅⋅+⨯==-=-=-⋅上上+下()1604120kN m 2F FBC CB M M ==-⨯⨯=-⋅位移法和力矩分配法的习题解(3)弯矩的分配与传递计算过程如图(f )所示。

相关文档
最新文档