各个热力学函数的运算公式

合集下载

热力学函数的基本关系式

热力学函数的基本关系式

dU = TdS- pdV
(1-108)
dH = TdS + Vdp
(1-109)
dA = -SdT- pdV
(1-110)
dG = -SdT + Vdp
(1-111)
式(1-108),(1-109),(1-110),(1-111)称为热力学基本方程
dU = TdS- pdV dH = TdS + Vdp dA = -SdT- pdV dG = -SdT + Vdp
常用的是式(1-120)及式(1-121),这两等式右边的变化率是可以由 实验直接测定的,而左边则不能。可用等式右边的变化率代替左
4.热力学状态方程
由dU=TdS-pdV
定温下, dUT=TdST-pdVT
等式两边除以dVT 即
dUT T dST p
dVT
dVT
由麦克斯韦方程 于是
U T S p V T V T S p V T T V
式(1-116)及 (1-117)叫吉布斯 - 亥姆霍茨方程。
(1-117)
G-H方程常用的形式为:



(G / T )
T p


H T2
加△
(1-116)
Gibbs自由能随压力的变化

(эG/эP)T,n=V
(э△G/эP)T,n=△V 此即G---V关系式
只要知道△V--p关系式,在定温下P1的△G1就可求算出P2的△G2。
在定压下从T1到 T2积分得: (△G)2/ T2- (△G)1/ T1=- =∫T1 T2 △H/T2dT 若知△H--T关系以及T1时的△G1就可求算T2时的△G2 而: △H= △H T0+∫ T0 T △CpdT △H T0是T0时的焓变。

热力学公式地总结

热力学公式地总结

热力学公式地总结热力学是研究热能与其他形式能量之间转换规律的学科。

在热力学中,有许多重要的公式和定律用于描述和计算热能转换的过程,并且有助于解决各种热力学问题。

下面是对一些重要的热力学公式进行总结:1.热力学温度公式:热力学温度是物体或系统的热平衡性质,可以通过测量气体的压力和体积来定义。

热力学温度的公式为:T=(P*V)/(n*R)其中,T表示温度,P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R为气体常数。

2.热力学第一定律:热力学第一定律描述了能量守恒的原理,它表明能量不会被创造或消失,只会从一种形式转换为另一种形式。

热力学第一定律的公式可表示为:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收或释放的热量,W表示系统所做的功。

3.热力学第二定律:热力学第二定律描述了能量转化的方向性,它表明在自发过程中,热量只能从高温物体传递到低温物体,而不会发生相反的情况。

热力学第二定律有多种表达方式,其中最常见的是卡诺热机效率公式:η=1-(Tc/Th)其中,η表示卡诺热机的效率,Tc表示冷源温度,Th表示热源温度。

4.熵变公式:熵变是描述系统无序程度的物理量,熵的增加表示系统的无序性增加。

熵变的公式为:ΔS=Q/T其中,ΔS表示系统的熵变,Q表示系统所吸收或释放的热量,T表示系统的温度。

5.黄金法则:黄金法则是热力学中重要的定律之一,它描述了热力学过程的方向性。

根据黄金法则,一个孤立系统的熵的变化应该使系统朝着熵增的方向发展。

黄金法则的公式为:ΔS总=ΔS系统+ΔS环境≥0其中,ΔS总表示系统和环境的总熵变,ΔS系统表示系统的熵变,ΔS环境表示环境的熵变。

6.等温过程的功公式:在等温过程中,系统与外界交换的热量正好能够被完全转化为对外界所做的功。

等温过程的功公式为:W = Q = nRT ln(Vf/Vi)其中,W表示系统对外界所做的功,Q表示系统所吸收或释放的热量,n表示气体的摩尔数,R为气体常数,T表示气体的温度,Vi和Vf分别表示过程开始和结束时气体的体积。

大学物理化学公式大全(最新整理)

大学物理化学公式大全(最新整理)

dT
RT 2
(3)外压对蒸汽压的影响: ln
pg
p
g
= Vm l
RT
p
e-p
g
pg是在惰性气体存在总
压为pe时的饱和蒸汽压。
吉不斯-杜亥姆公式:SdT-Vdp+ n Bd B =0
B
dU=TdS-pdV+ n Bd B
B
dH=TdS+Vdp+ n Bd B
B
dF=-SdT-pdV+ n Bd B
对二组分体系:
ln ln
pA xA
T

ln ln
pB xB
T
稀溶液依数性:
(1)凝固点降低: Tf=Kf mB
(2)沸点升高: Tb=KbmB (3)渗透压: V=nBRT
K
f=
R
fus
Tf Hm
2
A
AMA
K
b=
R
vap
Tb Hm
2
A
AMA
化平衡学
8
化学反应亲和势:A=- rGm=- BB
0
CVdT
CpdT
理想气体多 方可逆过程 pVγ=常数 可逆相变(等 温等压)
nR(T2-T1) 1-
p外ΔV
ΔU+W Qp
化学反应(等
温等压)
p外ΔV
Qp
CVdT
CpdT
Qp-W
Qp-W ΔrUm= ΔrHm-
BRT
B
Qp(相变热)
Qp
ΔrHm=
B
f
H
m
B
B
溶液-多组分体系体系热力学在溶液中的应用
凝固点下降法:溶剂
ln
a
A=

物理高中热学公式

物理高中热学公式

物理高中热学公式1. 热力学第一定律:ΔU = Q + W,其中ΔU为内能变化,Q为系统与外界交换的热量,W为系统所做的功。

2. 热力学第二定律:ΔS = Q/T,其中ΔS为系统熵的变化,Q为热量,T为温度。

3. 热容:C = Q/ΔT,其中C为热容,Q为系统吸收或释放的热量,ΔT为温度变化量。

4. 比热容:c = C/m,其中m为物体的质量。

5. 热传导定律:Q = kAΔT/x,其中Q为热量,k为热导率,A为面积,ΔT为温度差,x为导热距离。

6. 热辐射定律:P = σA(T^4 – T0^4),其中P为单位时间内辐射的能量,σ为斯蒂芬—玻尔兹曼常数,A为发射体参考面积,T为发射体温度,T0为参考温度。

7. 热力学循环效率:η = (W净 / Q热) × 100%,其中W净为系统净工作量,Q热为系统吸收的热量。

8. 热力学效率公式:η = (T1 – T2) / T1,其中T1为热源温度,T2为冷源温度。

9. 热平衡方程:m1c1ΔT1 = m2c2ΔT2,其中m为物体的质量,c为比热容,ΔT为温差。

10. 热力学势公式:G = H – TS,其中G为吉布斯自由能,H为焓,T为温度,S为熵。

11. 熵变公式:ΔS = Qrev / T,其中ΔS为系统的熵变,Qrev为可逆过程吸放热量,T为温度。

12. 等温过程:Q = W,即等温过程中外界对系统所做的功等于系统吸收的热量。

13. 等体过程:W = 0,即等体过程中系统不做功,热量全部转化为内能。

14. 等压过程:W = PΔV,即等压过程中外界对系统所做的功等于压力乘以体积的变化量。

15. 等焓过程:Q = ΔH,即等焓过程中外界与系统的热交换量等于系统焓的变化量。

工程热力学的公式大全

工程热力学的公式大全

工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。

2.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的温度。

3.等温过程:Q=W在等温过程中,系统所吸收的热量等于所做的功。

4.绝热过程:P1V1^γ=P2V2^γ在绝热过程中,气体的压强与体积之积的γ次方是一个常数,γ为气体的绝热指数。

5.等容过程:ΔU=Qv在等容过程中,系统内能的变化等于吸收的热量。

6.等压过程:Q=ΔH在等压过程中,系统所吸收的热量等于焓的变化。

7.等焓过程:ΔH=Qp在等焓过程中,焓的变化等于吸收的热量。

8.热机效率:η=1-,Qc,/,Qh热机效率表示热机从高温热源吸收的热量减去放出的低温热量占高温热量的比例。

9.士温定理:η=1-(Tc/Th)士温定理是热力学第二定律的一种表述,表示热机效率与高温热源温度和低温热源温度的比值有关。

10.开尔文恒等式:η=1-(Tc/Th)=1-(,Qc,/,Qh,)开尔文恒等式是士温定理的另一种形式,表示任何热机的效率都不可能达到100%。

11.准静态过程:ΔS=∫(dQ/T)准静态过程中,系统的熵变等于系统吸收的微小热量除以系统的温度积分得到。

12.绝热可逆过程:ΔS=0在绝热可逆过程中,系统的熵不发生变化。

13.熵的增加原理:ΔS总=ΔS系统+ΔS环境≥0根据熵的增加原理,系统与环境的熵的变化之和大于等于0。

14.卡诺循环效率:η=1-(Tc/Th)卡诺循环是理想热机,其效率由高温热源温度和低温热源温度决定。

15.等温膨胀系数:β=(1/V)*(∂V/∂T)p等温膨胀系数表示单位温度升高时体积的变化与体积的比值。

16.等压热容量:Cp=(∂Q/∂T)p等压热容量表示在等压条件下单位温度升高吸收的热量与温度的比值。

17.等容热容量:Cv=(∂Q/∂T)v等容热容量表示在等容条件下单位温度升高吸收的热量与温度的比值。

热力学计算公式整理

热力学计算公式整理

热力学计算公式整理热力学是研究物质的热与能的转化关系的学科,是广泛应用于化学、物理、工程等领域的重要理论基础。

在热力学计算中,有一系列公式被广泛应用于热力学参数的计算和分析。

1.热力学基本方程:对于一个热力学系统,其内部能量U可以由其热力学状态变量来表示,常用的基本方程有:U=TS-PV+μN其中,U为内部能量,T为温度,S为熵,P为压力,V为体积,μ为化学势,N为摩尔数。

2.热力学函数的计算:(1)焓(H)的计算公式:H=U+PV其中,H为焓,U为内部能量,P为压力,V为体积。

(2)外界对系统做的功(W)计算公式:W=-∫PdV其中,W为功,P为压力,V为体积,积分为从初态到末态的过程。

(3)熵(S)的计算公式:dS=dQ/T其中,S为熵,dS为熵的微分,dQ为系统的热量变化,T为温度。

(4) Helmholtz自由能(A)的计算公式:A=U-TS其中,A为Helmholtz自由能,U为内部能量,T为温度,S为熵。

(5) Gibbs自由能(G)的计算公式:G=U-TS+PV其中,G为Gibbs自由能,U为内部能量,T为温度,S为熵,P为压力,V为体积。

3.热力学热力学参数的计算:(1)热容的计算公式:Cv=(∂U/∂T)V其中,Cv为定容热容,∂U/∂T为导数,V为体积。

Cp=(∂H/∂T)P其中,Cp为定压热容,∂H/∂T为导数,P为压力。

(2)趋近于绝对零度时的熵变ΔS的计算公式:ΔS = Cvln(T2/T1) + Rln(V2/V1)其中,ΔS为熵的变化,Cv为定容热容,T2和T1为温度的变化,R 为气体常数,V2和V1为体积的变化。

(3)等温过程中的吸热计算公式:q=ΔH=nCpΔT其中,q为吸热,ΔH为焓的变化,n为物质的摩尔数,Cp为定压热容,ΔT为温度的变化。

(4)等温过程中的做功计算公式:w=-ΔG=PΔV其中,w为做功,ΔG为Gibbs自由能的变化,P为压力,ΔV为体积的变化。

热力学函数的基本关系式

热力学函数的基本关系式
△S=QR/T; T △S= QR 故△G= △H- T △S=0- T △S= QR= WR=-RTlnP1/P2=5744Jmol-1 解法二: △G=∫ p1 p2Vdp = RTlnP2/P1=5744Jmol-1.
⑵等温等压相变△G 对于等温等压的可逆相变,直接可得(△G)T,P=0.对于非等温 等压的非可逆相变或同温同压下两个相态的△G,可以通过设计可 逆过程进行计算,也可根据G---P关系公式求算。
1.8 热力学函数的基本关系式
H
U、H、S、A、G 、 p、V、T H =U+pV,A =U-TS,G =H-TS 1. 热力学基本方程
U
pV
TS A pV
TS
G
δWr ′=0时,则δWr=-pdV,于是
一微小可逆过程
dU=δQr+δWr,
dS δ Qr T
δWr ′ =0时,则δWr=-pdV,于是
=8586Jmol-1 故△G= △G1+ △G2 + △G3=8584Jmol-1 依Gibbs自由能减少原理,298K,1atm水不能经等温等压过程转变 为同温 同压的水蒸气,但其逆过程则是可以的。因此在298K, 1atm下液态水是稳定态。
⒊应用Gibbs--helmholtz方程求△G 将 G--H方程:{э(△G/T)/эT}P=- △H/T2
△S=0,△T=0,△H=0,
△G=0
⑵理气在等温等压的Gibbs自由能改变 △G = △H-T △S (△H=0) △S=-R∑nilnXi △G= RT∑nilnXi 其中ni为组分i的量,Xi为理想混合气中
为组分I的摩尔数。
⒌非等温等压两态的△G 若体系的两态温度,压力都不相等,根据G的定义:

大学物理化学公式大全

大学物理化学公式大全

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。

(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。

如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。

热 Q :体系吸热为正,放热为负。

热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。

热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2)热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BA B A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。

热力学四个基本关系式

热力学四个基本关系式

热力学四个基本关系式
热力学的四个基本公式:dU=TdS-PdV;dH=TdS+VdP;dF=-SdT-PdV;dG=-SdT+VdP。

热力学是从宏观角度研究物质的热运动性质及其规律的学科。

属于物理学的分支,它与统计物理学分别构成了热学理论的宏观和微观两个方面。

热力学定律,是描述物理学中热学规律的定律,包括热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律。

其中热力学第零定律又称为热平衡定律,这是因为热力学第一、第二定律发现后才认识到这一规律的重要性;热力学第一定律是能量守恒与转换定律在热现象中的应用;热力学第二定律有多种表述,也叫熵增加原理。

大学化学公式

大学化学公式

大学化学公式热力学第一定律功:δW =δW e +δW f (1) 膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。

(2) 非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。

如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。

热 Q :体系吸热为正,放热为负。

热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。

热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =Hp T ⎪⎪⎭⎫⎝⎛∂∂=-()p T C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BA B A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式: (1) 组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2) M axwell 关系:T V S ⎪⎭⎫ ⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂ Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫⎝⎛∂∂ (3) 热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。

第一章 化学热力学基础 公式总结

第一章  化学热力学基础  公式总结

第一章 化学热力学基础 公式总结1.体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程.定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5.摩尔热容 Cm ( J ·K-1·mol-1 ): 定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R1221ln lnP PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4RCp,m = Cv,m + R6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结7.定义:△fHm θ(kJ ·mol-1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。

8.热效应的计算由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则△rHm (T2) = △rHm (T1) + △Cp ( T2 - T1)10.热机的效率为 dTC p T T ⎰∆21121211Q QQ Q Q QW+=+=-=η对于卡诺热机 1211Q Q Q Q W R +=-=η= 可逆循环过程< 不可逆循环过程11.熵变定义式 (体系经历一可逆过程的热温商之和等于该过程的熵变.)12.热力学第二定律的数学表达式(不等式中, “ > ”号表示不可逆过程 , “ = ” 号表示可逆过程 “ T ”—环境温度 , 对可逆过程也是体系温度. )13.熵增原理 (孤立体系的熵永不减少) △S 孤立 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡.对于封闭体系△S 孤立 = △S 封闭 + △S 环境 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡14.定温定压的可逆相变15.化学反应熵变的计算 △rS θm = ∑νBS θm ,B16.△rH θm 和△rS θm 与温度的关系:△rH θ m (T2) = △rH θ m (T1) +△rS θ m (T2) = △rS θ m (T1) +121T T T -=02211≤+T Q T Q RBAA B TQS S S )(δ⎰=-=∆∑≥∆ii iT Q S )(δTQdS δ≥环体环环环境T Q T Q S -==∆相变,相变T H n S m ∆=∆dTC p T T ⎰∆21d TTC p T T ∆⎰21。

四个热力学基本公式巧记

四个热力学基本公式巧记

四个热力学基本公式巧记热力学是研究能量转化和能量传递的理论,它以一系列基本方程和公式来描述和分析热力学系统的性质和行为。

在学习热力学时,有四个基本公式非常重要,它们是:1.热力学第一定律:能量守恒定律。

热力学第一定律是能量守恒的表达方式,它指出系统的内能变化等于系统所吸收的热量减去系统所做的功。

数学上表达为:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统从外界吸收的热量,W 表示系统对外界所做的功。

这个公式告诉我们能量既不能被创造也不能被毁灭,只能转化形式。

2.热力学第二定律:熵增原理。

热力学第二定律是判断一个过程的方向和可能性的基本原理。

它表明在一个孤立系统中,熵(表示系统的无序度)总是不断增加,只有在特定条件下,系统的熵才会保持不变。

这个定律可以通过下面的公式来表达:ΔS≥0其中,ΔS表示系统的熵变。

熵增原理告诉我们永远无法将热量完全转化为有用的功,总会有一部分能量损失为无序的热量。

3.热力学第三定律:绝对零度不可达到。

热力学第三定律规定在有限步骤内,任何物体都无法降低温度至绝对零度。

这个定律可以用以下公式来表示:lim(T→0) S = 0其中,T表示温度,S表示熵。

这个公式表明在温度趋近于绝对零度时,熵趋近于零,但永远无法达到零。

4.理想气体状态方程。

理想气体状态方程是用来描述理想气体性质的方程,它是热力学中最重要的方程之一、理想气体状态方程可以用以下公式表示:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的绝对温度。

这个方程表明在一定温度下,理想气体的压力和体积成正比。

这四个热力学基本公式是研究热力学系统时非常重要的工具。

它们帮助我们理解热力学原理,分析系统的性质,预测和计算热力学过程。

熟练掌握这些公式,对于学习热力学和应用热力学原理具有重要意义。

物理化学1.15-1 热力学函数的基本关系式

物理化学1.15-1  热力学函数的基本关系式
§1.15 热力学函数的基本关系式
8个热力学函数: 可直接测定
p、V、T、U 、H 、S、A、G
定 H =U+pV 义 式 A =U-TS
可求得
G =H-TS=A+pV
1.热力学基本方程
封闭系统 dU =δQ + δW
可逆过程
=δQr -pdV + δWr′
δQr =TdS
dU = TdS -pdV + δWr' δWr'=0:
dA = -SdT- pdV dG = -SdT + Vdp
G S T p

G p
T
V
证明:无相变和化学变化的封 闭系统,在定温下其吉布斯自 由能随压力的改变恒为正值。
证明:
dG = -SdT + Vdp
G ( p )T
V
>0
解: dG = -SdT + Vdp
S T2 nCV ,mdT nR ln V2 ,
T1
T
V1
A nRT ln V2 V1
应(用ቤተ መጻሕፍቲ ባይዱ()i封条i()i无i闭件i)非可系:体逆统积过,功程,。
可用于: (i)定量,定组成的单相系统;
(ii) 保持相平衡及化学平衡的系统.
8个派生公式: dU = TdS- pdV dH = TdS + Vdp
U T S V U p V S
dU = TdS -pdV
dU=TdS-pdV
H=U+pV dH=dU+pdV+Vdp
A=U-TS dA=dU-TdS-SdT
dH=TdS+Vdp
dA= - SdT - pdV

热力学公式

热力学公式

1.理想气体状态方程式nRTRT M m pV ==)/(或RTn V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。

m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。

R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2.气体混合物(1)组成摩尔分数y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy A m,A 式中∑AA n 为混合气体总的物质的量。

Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。

∑*AA m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2)摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M 式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。

上述各式适用于任意的气体混合物。

(3) VV p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B的分压力。

*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3.道尔顿定律p B = y B p ,∑=BBp p 上式适用于任意气体。

对于理想气体VRT n p /B B =4.阿马加分体积定律VRT n V /B B =*此式只适用于理想气体。

1.热力学第一定律的数学表示式WQ U +=∆或'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中 p amb 为环境的压力,W ’为非体积功。

上式适用于封闭体系的一切过程。

2.焓的定义式3.焓变(1))(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。

高中热学公式

高中热学公式

二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。

气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。

温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。

三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。

(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。

Welcome !!! 欢迎您的下载,资料仅供参考!。

第一章 化学热力学基础 公式总结

第一章  化学热力学基础  公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程。

定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5.摩尔热容 Cm ( J ·K —1·mol —1 ):定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2。

5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp ,m = 4RCp ,m = Cv ,m + R6。

理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结7。

定义:△fHm θ(kJ ·mol —1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ-298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B ) —298K 时物质B 的标准摩尔燃烧焓。

8.热效应的计算1221ln ln P PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) +如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1)10。

热力学三个基本函数

热力学三个基本函数

热力学三个基本函数
热力学三个基本函数是:内能函数(U)、焓函数(H)和自由能函数(G)。

1. 内能函数(U):内能是系统所包含的全部微观粒子的能量之和,包括系统的动能和势能。

内能函数是温度(T)、体积(V)和粒子数(N)的函数,可以表示为U=U(T,V,N)。

2. 焓函数(H):焓是系统在常压下对外界做功的能量,也可以看作是内能和对外界所做的体积功之和。

焓函数是温度(T)、压力(P)、体积(V)和粒子数(N)的函数,可以表示为H=H(T,P,V,N)。

3. 自由能函数(G):自由能是系统可用于做功的能量,也可以看作是系统的内能与对外界所做的非体积功之差。

自由能函数是温度(T)、压力(P)、体积(V)和粒子数(N)的函数,可以表示为G=G(T,P,V,N)。

这三个函数可以描述系统的能量状态和热力学性质,并且它们之间存在一定的关系,如G=U-TS、H=U+PV等。

在热力学中,通过对这些函数的研究和分析,可以推导出系统的热力学性质和热力学方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混合气体之B组分
B= (T) + RTlnfB/po
fB= xB= pB
po的B种ig.
( pB= po,= 1 )
(假想态)
(T)
路易斯-兰道尔规则: 为纯B在pB=p总时的逸度系数
理想溶液(is.)中之B组分
B= (T, p) + RTlnxB
(T, p) = (T) + RTln /po
T,po下纯液体B
H - PV
H / T
- PV
0
化学反应
dT = 0
dP = 0
H
PeV
H - PeV
U–TS
-T
或RT lnQp/Kp
不同形态物质的化学势表达式和某些符号的物理意义
物质
化学势表达式
标准态
标准态化学势符号
备注
理想气体ig.
单组分
=o(T) + RT lnp/po
T,po的ig.
o(T)
p为该ig.的压力
(T, p) = (T) + RTlnkcco/po
(T,po)
非理想溶液
溶剂A
A= (T, p) + RTlnaA,x
aA,x=A,xxA
T,po下纯溶剂A
xA= 1 ,A,x= 1 ,
aA,x= 1
(T,po)
相对于遵守拉乌尔定律的组分作校正
溶质B
(1)xB
B= (T, p) + RTlnaB,x
(T,po)
(1)各组分遵守拉乌尔定律
(2)一般忽略总压对 的影响



(ds.)
溶剂A
A= (T, p) + RTlnxA
(T, p) = (T) + RTln /po
T,po下纯溶剂A
(T,po)
溶剂服从拉乌尔定律
溶质B
(1)xB
B= (T, p) + RTlnxB
(T, p) = (T) + RTlnkx/po
(3)cB
B= (T, p) + RTlnaB,c
aB,c=B,ccB/ co
(T,po)
T,po下,当
xB= 1 ,
mB=mo,
cB=co时
仍服从亨利定律
的B组分
(假想态)
(T,po)
溶质服从亨利定律:
pB=kxxB
=kmmB
=kccB
(2)mB
B= (T, p) + RTlnmB/ mo
(T, p) = (T) + RTlnkmmo/po
(T,po)
(3)cB
B= (T, p) + RTlncB/ co
aB,x=B,xxB
T,po下,在
aB,x= 1
aB,m= 1
aB,c= 1
时仍服从亨利定律的溶液之溶质
(假想态)
(T,po)
(1)相对于遵守亨利定律的稀溶液之溶质作校正
(2)为活度系数,当xB或mB、cB趋近于零时= 1
(2)mB
B= (T, p) + RTlnaB,m
aB,m=B,mmB/mo
(T,po)
混合气体之B组分
B= (T, p) + RTlnxB
(T,p) = (T) + RTln p /po
T,po的B种ig.
(T)
p为总压,不是标准态化学势,是T,p的函数
实际气体rg.
单组分
=o(T) + RT lnf/po
f =p
T,po的ig.
(p = po,= 1)
(假想态)
o(T)
为逸度系数,f为逸度
一些基本过程中各个热力学函数的运算公式(ig.Wf= 0)
过程
Q
W
U
H
S
A
G
等温可逆
dT = 0
nRT ln V2/ V1
nRT ln V2/ V1
0
0
nR ln V2/ V1
nRT ln P2/ P1
nRT ln P2/ P1等容来自逆dV = 00
H–(TS)
等压可逆
dP = 0
PeV
U–(TS)
H–(TS)
绝热可逆
dS = 0
0
0
U–ST
H–ST
自由膨胀
0
0
0
0
nR ln V2/ V1
nRT ln P2/ P1
nRT ln P2/ P1
节流膨胀
dH = 0
0
P2V2–P1V1
P1V1–P2V2
0
nR ln V2/ V1
+ nCv,m ln T2/ T1
U
–(TS)
可逆相变
dG = 0
H
PV
相关文档
最新文档