数学物理方程讲义课后答案一二章姜礼尚版本
数学物理方程第一章、第二章习题全解
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
普通物理学程守洙江永久03守恒定律习题详细解答
目录 结束
3-4 一根特殊弹簧,在伸长x m时,沿它 伸长的反方向的作用力为(52.8x +38.4x2)N。 (1)试求把弹簧从x=0.50拉长到 x =1.00 时,外力克服弹簧力所作的功。 (2)将弹簧的一端固定,在另一端栓一质 量为 2.17 kg 的物体 ,然 后 把 弹 簧 拉到 x =1.00,开始无初速地释放物体,试求弹簧 缩回到x=0.5。时物体的速率。
目录 结束
已知: l = 3.6m m = 50kg M = 100kg 解:由动量守恒 M V m v = 0 v mv V V dt = m v dt V= M M t m t v dt s = 0V d t = l M 0 t m s + s´= l s´= 0 v d t s = s´ M m s s s m = = = s´ M M + m s ´+ s l m 50 × 3.6 = 1.2m s= l = M +m 100 + 50 目录 结束
设弹簧最大伸长为 x m
1 mv 2 + 1k x 2 mg x0 = 0 0 2 2 mg 将 x0= 代入,得: k mg 1 1k ( m g ) 2 2 mg = mv 0 + 2 k k 2 mg 2 v = k
2 0
m v 0 =g k
目录 结束
3-9 一小船质量为100kg,船头到船尾共 长3.6m。现有一质量为50kg的人从船尾走 到船头时,船头将移动多少距离?假定水的 阻力不计。
b
2
1 mbω 2 Ay = 0 m y dy = ω 2 两分力的功和路径无关,是一恒量。 所以有心力为保守力。
目录 结束
3-3 一根原长 l0 的弹簧,当下端悬挂质 量为m的重物时,弹簧长l = 2l0 。现将弹簧 一端悬挂在竖直放置的圆环上端A点。设环 的半径R=l0把弹簧另一端所挂重物放在光滑 圆环的B点,如图所示。已知AB长为1.6R。 当重物在B无初速地沿圆环滑动时,试求: A (1)重物在B点的加 速度和对圆环的正压力; (2)重物滑到最低点 R C 时的加速度和对圆环 B 的正压力。
数理方程习题解答
+
α
2 2
=
α32
+
α
2 4
,取单位特征方向,
α12
+
α
2 2
+ α32
+
α
2 4
= 1。所以,α12
+
α
2 2
= α32
+
α
2 4
=
1 2
。记
α1
=
1 2
cosθ ,
α2
=
1 2
sinθ ,α3
=
1 2
cosϑ,
α4
=
1 2
sinϑ
,则
α
=
⎛ ⎜⎝
1 2
cosθ ,
1 sinθ , 2
1 2
cosϑ,
则杆上各点 在时刻 的位移是
。
在杆上任取一段,其两端点静止时的坐标为
,此小杆段在时刻 的相对伸长
为: 律知张力为
,令
得 点在时刻 的相对伸长为ux (x, t) ,由 Hooke 定
,再此小杆段上用 Newton 第二定律得
两边同除 并令
得:
若杨氏模量为 为常数则得:
。
1 牛顿(Newton)第二定律与动量守恒定律等价,也可以用动量守恒定律来见方程,见《数学物理方程 讲义》 (姜礼尚、陈亚浙)P1
=
1 2
sinθ ,α3
=
±
1 sinθ ,则 2
α
=
⎛ ⎜⎝
cosθ
,
1 sinθ , ± 2
1 2
sin
θ
⎞ ⎟⎠
。
( ) 2 对波动方程utt − a2 uxx + uyy = 0 过直线l : t = 0, y = 2x 的特征平面。
数学物理方程第二版答案(平时课后习题作业)
数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。
定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。
解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。
仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。
x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。
且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。
§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。
数学物理方程讲义姜礼尚答案
数学物理方程讲义姜礼尚答案11许绍浦《数学分析教程》南京大学出版社这些书应该够了,其他书不一一列举。
从中选择一本当作课本就可以了。
外国数学分析教材:11《微积分学教程》菲赫金格尔茨著数学分析第一名著,不要被它的大部头吓到。
我大四上半年开始看,发现写的非常清楚,看起来很快的。
强烈推荐大家看一下,哪怕买了收藏。
买书不建议看价格,而要看书好不好。
一本好的教科书能打下坚实的基础,影响今后的学习。
12《数学分析原理》菲赫金格尔茨著上本书的简写,不提倡看,要看就看上本。
13《数学分析》卓立奇观点很新,最近几年很流行,不过似乎没有必要。
14《数学分析简明教程》辛钦课后没有习题,但是推荐了《吉米多维奇数学分析习题集》里的相应习题。
但是随着习题集的更新,题已经对不上号了,不过辛钦的文笔还是不错的。
15《数学分析讲义》阿黑波夫等著莫斯科大学的讲义,不过是一本讲义,看着极为吃力,不过用来过知识点不错。
16《数学分析八讲》辛钦大师就是大师,强烈推荐。
17《数学分析原理》rudin中国的数学是从前苏联学来的,和俄罗斯教材比较像,看俄罗斯的书不会很吃力。
不过这本美国的书还是值得一看的。
写的简单明了,可以自己试着把上面的定理推导一遍。
18《微积分与分析引论》库朗又一本美国的经典数学分析书。
有人认为观点已经不流行了,但是数学分析是一门基础课目的是打下一个好的基础。
19《流形上的微积分》斯皮瓦克分析的进一步。
中国的数学分析一般不讲流形上的微积分,不过流形上的微积分是一种潮流,还是看一看的好。
20《在南开大学的演讲》陈省身从中会有一些领悟,不过可惜好像网络上流传的版本少了一些内容。
21华罗庚《高等数学引论》科学出版社数学分析习题集不做题就如同没有学过一样。
希望将课本后的习题一道道自己做完,不要看答案。
买习题集也要买习题集,不买习题集的答案。
1《吉米多维奇数学分析习题集》最近几年人们人云亦云的说这本书多么不好,批评计算题数目过多,不适合数学系等等。
数学物理方程第二版答案
2u u g [(l x) ] 。 2 x x t
5. 验证
u ( x, y , t )
1 t x y
2 2 2
在锥 t x y >0 中都满足波动方程
2 2 2
2u 2u 2u 1 2 2 2 在锥 t x y >0 内对变量 2 2 证:函数 u ( x, y, t ) 2 2 2 2 t x y t x y
同理,若 x 0 为自由端,则相应的边界条件为
(3)若 x l 端固定在弹性支承上, 而弹性支承固定于某点, 且该点离开原来位置的 偏移由函数 v(t ) 给出,则在 x l 端支承的伸长为 u(l , t ) v(t ) 。由虎克定律有
u ∣ x 0 0 x
E
u ∣ x l k[u(l , t ) v(t )] x u u ) ∣ x l f (t ) x
利用微分中值定理,消去 x ,再令 x 0 得
2u u u x sx 2 . ES b x s x t x x t
若 s( x) 常数,则得
x
2 u u u E b x 2 x x t t
其中 ( x) 表示 T ( x) 方向与 x 轴的夹角 又 于是得运动方程
sin tg
u x.
x
2u u u [l ( x x)] ∣ x x g [l x] ∣ x g 2 x x t
利用微分中值定理,消去 x ,再令 x 0 得
+
x at 1 (h ) ( )d . 2a(h x) x at
即为初值问题的解散。 2. 问初始条件 ( x) 与 ( x) 满足怎样的条件时, 齐次波动方程初值问题的解仅由右传 播波组成? 解:波动方程的通解为 u=F(x-at)+G(x+at) 其中 F,G 由初始条件 ( x) 与 ( x) 决定。初值问题的解仅由右传播组成,必须且只须对 于任何 x,
数学物理方程课后参考答案第二章
第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xuk t s x u k t s x u k dQ x x x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程课后作业答案
于 杆 x=L 端 为 自 由 振 动 , 故
u x |x = L = 0
u |x=0 = 0 。综上所述,定解条件为:
⎧ u t |t = 0 = 0 ⎪ b ⎪ u | = k x = 1 + x ⎪ t=0 L ⎨ ⎪ u |x = 0 = 0 ⎪ ⎪ ⎩ u x |x= L = 0
tan β L = −
5. 一根均匀弦两端分别在 x=0 及 x=L 处固定,设初始速度为零,初 始时刻弦的形状为一抛物线,抛物线的顶点为( ,h) 。求弦振动的 位移。 解:设位移函数为 u ( x, t ) ,他是下列定解问题的解:
L 2
⎧ ⎪ 2 u = a u xx , tt ⎪ ⎪ ⎨u x =0 = u x = L = 0, ⎪ ⎪u = 4h x ⎛1 − x ⎞;u t =0 t ⎜ ⎟ ⎪ L ⎝ L⎠ ⎩
于是得到固有值问题:
⎧ X // ( x ) + λ X ( x ) = 0 ⎪ ⎨ X ( x ) x =0 = 0 ⎪ / ⎩[ X ( x ) + hX ( x )] x= L = 0
所以当 λ > 0时,X = A cos β x + B sin β x
X
x=0
= A=0
∴ A = 0, B ≠ 0
2. (2)
u xx + 2u xy − 3u yy = 0
△=2 -4×(-3)=16﹥0 dy ⎛ dy ⎞ ⎜ ⎟ −2 −3 = 0 dx ⎝ dx ⎠
2
2
解:由题意可知: => 双曲型
=>
dy = 3 或 -1 dx
3
⎧ε = 3 x − y 令 ⎨ ⎩η = x + y
数学物理方程—第一、二章 课后习题答案
所以
2u x 2
2u y 2
t x
2
2
5 2 2 y
u 2t 2 x 2 y 2 . t 2
2
x
即得所证。 6. 在单性杆纵振动时,若考虑摩阻的影响,并设摩阻力密度涵数(即单位质量所受的摩阻力) 与杆件在该点的速度大小成正比 (比例系数设为 b), 但方向相反,试导出这时位移函数所满足的微 分方程. 解: 利用第 1 题的推导,由题意知此时尚须考虑杆段 x, x x 上所受的摩阻力.由题设,单位质 量所受摩阻力为 b
运动方程为:
2u 2u 2u t 2 x 2 y 2
2
x sx x
2u t
2
u u u ES x x ES x b x s x x x t t
利用微分中值定理,消去 x ,再令 x 0 得
其相对伸长等于 令
[ x x u ( x x, t )] [ x u ( x, t )] x u x ( x x, t ) x
E
u ∣ x l k[u (l , t ) v(t )] x u u ) ∣ x l f (t ) x
(
设杆的横截面面积为 S ( x), 则作用在杆段 ( x, x x) 两端的力分别为
同理,若 x 0 端固定在弹性支承上,则得边界条件
u u ) ∣ x l 0 。 x
E ( x) S ( x)u x ( x, t ); E ( x x) S ( x x)u x ( x x, t ).
其中
x 0 ,取极限得在点 x 的相对伸长为 u x ( x, t ) 。由虎克定律,张力 T ( x, t ) 等于
(整理)数理方程第二版课后习题答案
第一章曲线论§ 1向量函数1 .证明本节命题3、命题5中未加证明的结论略2 .求证常向量的微商等于零向量。
证:设31,回为常向量,因为r(t4- At) -r(t) c-c 11m = lim = 0it —AtAt —At所以E33 .证明⑹ p 2(t)则此向量在该区间上是常向量 证:设[=«r)=)⑴ 返 [回 回1为定义在区间口上的向量函数,因为 回在区间口上可导当且仅当数量函数 晅],EH3和EH3在区间 口上可导。
所 以,।° I ,根据数量函数的Lagrange 中值定理,有证毕4.利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,x(t) - X(t o ) 4- %)y(t) =y(S)+ y r (日”(t -力式 t) = z(M)+ /(%)《一其中 51,囹,因介于口与口之间。
从而* =3(口 =比⑷ y(t) 4 t)} =+ £(%)(「-1) y(j) + 4(%)«-咐 《%) +={刀(珀 “幻)+ X(sp 4电)/(%)}("明=『口 +年一%)上式为向量函数的 0阶 Taylor 公式,其中 :—卜("'_‘(")_一 ⑻):。
如果在 区间口上处处有F ⑴=口⑷ *)曰!,则在区间口上处处有适三从而F = (,©) y'(%) ,(1)] = o]于是E3。
证毕5 .证明左逗1具有固定方向的充要条件是F 黑亍二°1证:必要性:设F=1a)l 具有固定方向,则F =直力1可表示为F =, 其中四为某个数量函数,目为单位常向量,于是f"=。
⑴P 住"X" Q] 充分性:如果区三可,可设[_叫,令巨运三叵画,其中四为某个 数量函数,回为单位向量,因为F=p 岸前⑴+。
("'⑴]于是r x ? = O-*p(t)2(t) x [p'(t)?(t) + p(t)e (t) - O^*p 2(f)[e(t) x e (t) - 0 因为回,故国亘1,从而F⑷x.(t)=。
数学物理方程讲义课后答案一二章 姜礼尚版本
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
数理方程第一章、第二章习题全解
u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则
有
所以 于是
u t
第1章部分习题解答(理论力学--金尚年第二版)
写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:YX设s为质点沿摆线运动时的路程,取=0时,s=0S== 4 a (1)设为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。
该质点在平衡位置附近作振动时,振动周期与振幅无关,为.证明:设一质量为m 的小球做任一角度0θ的单摆运动运动微分方程为θθθF r r m =+)2( θθsin mg mr = ①给①式两边同时乘以d θ θθθθd g d r sin = 对上式两边关于θ积分得 c g r +=θθcos 212 ② 利用初始条件0θθ=时0=θ 故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ-•=lg 上式可化为dt d lg=⨯-•θθθ0cos cos 2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121由于上面算的过程只占整个周期的1/4故⎰-==00222sin 2sin 124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin 2cos 0=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin022θ=K 通过进一步计算可得glπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K n n K Kzp点yx解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加,R2=R+,此时总质量不变,仍为M,此时表面的重力加速度可求:④由④得:⑤则,半径变化后的g的变化为⑥Bmge ө e tөy对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变时,表面的重力加速度的变化为:。
数理方程课后习题(带答案)
T nC n co n ls atD n sin n lat
un XnTn B nsin ln x (C n cn o la ts D n sin ln a t) (C nco n la s t D nsin ln at)sin lnx
u
un
n 1
na
na n
n 1(C ncolstD nsin l t)silnx
由此可得:w (x)1
xt
dt
f()dC xA ,
a2 0 0
其中
C1 l(BAa 1 2 0 ldt0 tf()d),
数学物理方程与特殊函数
第2章习题选讲
然后用分离变量解
v(vt0,t)a2
2v x2 , 0, v(l,
t)
0,
0 x l,t 0 t 0
v(x,0) g(x) w(x), 0 x l
2 lu(x,0) n
2l
n
Dnna0
t
sin l
xdxna0x(lx)sinl
姜礼尚数学物理方程讲义(第三版)课后习题答案
公众号:菜没油
8
uv uv fv dx + x uv g v ds u = v ds v udx uv fvdx x uv gv ds n
u u u f vdx v x u g ds 0 2 n
6.解: 设 u u x, y, z, y 为 t 时刻在 x, y, z 处的温度,k 为导热系数, 0 为热交换 系数,于是有如下定解问题:
公众号:菜没油
4
10.泛定方程:ut a2 u 0
20.初始条件:u x, y, z, 0 100 u 0 37 u n
30.边界条件:u x, y, 0, t u 0 k
公众号:菜没油
5
10.解: 取传送带所在直线为 x 轴,起点为原点,任取一段传送带 x1 , x2 ,时间段
t1 , t2 .
由质量守恒: 即 dx
x1 x2 t2 x2 x1
t2
t dx dt a
2 2 2
从而由动量守恒及胡克定律可知:
S x xutt x, t ES x u x
再令 x 0 ,即有
2 x 2 x u 1- E 1 2 x h 2 h t 2
x x
ux
x
u x
0 0 1 1 1 1
u 0 y 0 u ydx 2 ydx y 0 0
0 0
u 2 0 u 0 1 0 u 1 0 u x2 x 2
《数学物理方法》答案
z 4 + a4 = 0 ( a > 0) 。
4
⎛z⎞ ⎜ ⎟ = −1 ( a > 0 ) 4 4 ; 解:由题意 z = − a ,所以有 ⎝ a ⎠
θ + 2 kπ i ⎛z⎞ z iπ = cos π + sin π = i e = e 4 (k = 0,1, 2,3) ⎜ ⎟ ⎝a⎠ ;所以 a ;
k = 0, ±1, ±2, ⋅⋅⋅
π
+ i 2kπ = ln 2 + i ( + 2kπ ) 4 4
π
3i = eiLn 3 = ei (ln 3+ 2 kπ ) = cos ln 3 + i sin ln 3 e 2+i = e 2 ei = e 2 (cos1 + i sin1) sin z lim =1 z →0 z 22,求证 sin z sin( x + iy ) lim = lim z →∞ x , y →∞ z x + iy 证: z = x + iy (x,y,均为实数),所以
z = z2 = z3 = 1; 试证明 z1 , z2 , z3 是一 11.设 z1 , z2 , z3 三点适合条件 z1 + z2 + z3 = 0 及 1
个内接于单位圆
z =1 的正三角形的顶点。
∴ z1 = − z2 − z3 ; z2 = − z3 − z1; z3 = − z1 − z2 ; 证明: z1 + z2 + z3 = 0;
∂v ∂u = e x cos y − y sin ye x + x cos ye x = e x ( x cos y − y sin y ) + e x cos y ∂ y ∂x ; ∂u ∂v = −e x ( x sin y + sin y + y cos y ) = e x ( y cos y + x sin y + sin y ) ∂y ; ∂x ∂u ∂v ∂u ∂v = ; =− ∂x 。 满足 ∂x ∂y ∂y x, y ) 可微且满足 C − R 条件,故函数在 z 平面上解析。 即函数在 z 平面上 (