大学物理实验— 光栅衍射实验
非实验室环境下的大学物理实验之四 光栅衍射实验
图 1 透射光栅原理图
光栅对入射光的衍射作用如图 2 所示。上图
为单缝衍射的作用,中图为多缝干涉的作用,下
图为二者联合作用得到的结果。出射光的光强分
布为:
I
=
I0
⎛ sinγ
⎜ ⎝
γ
2
⎞ ⎟ ⎠
⋅
⎛ ⎜⎝
sin Nδ δ
⎞2 ⎟⎠
其中:γ = πa(sinϕ − sinθ ) ,δ = πd (sinϕ − sinθ )
λ
λ
图 2 透射光栅衍射、干涉作用示意图
光强表达式中前一项是单缝衍射因子,后一项是多缝干涉因子。衍射光 谱中明条纹的位
置由 δ = ±Kπ 确定,即
1 级衍射斑 l2 −1 级衍射斑
入射光
φ
l1
手机或光盘 图 6 光路图
图 7 手机屏幕衍射示意图
衍射光斑能投射到墙面上,这样就保证光在水
平的方向上能垂直入射到手机屏幕(竖直方向
入射角稍微偏离 0)。衍射光斑如图 8 所示。
测量水平方向上光斑的间距 x。测量长度应
尽量大一些,里面包含多个光斑,这样误差会
图 9 光盘衍射光路图
湖南大学物理实验中心
测出±1 级和±2 级(如果存在)的衍射光斑之间的间距 l2,光盘和墙面的距离为 l1,这 样即可计算出衍射角:tanφ = l2/(2l1)。因为这里的 φ 较大,所以必须使用反三角函数才能得 到 φ 的大小。
数据处理
1. 手机的测量 查一下自己所用手机的屏幕分辨率(譬如说 1920×1080),然后再测量手机屏幕横向显示区域的 宽度 b(图 10),则可得到屏幕的每个显示单元的尺 度为 b/1080——这就是屏幕作为光栅的光栅常数 d。 再根据测得的手机屏幕的衍射角 φ,将测量结果代入 公式 dsinφ = λ,我们可以计算出激光波长 λ。 2. 光盘的测量 根据测得光盘的衍射角 φ,再利用上一项实验得 到的光波长 λ,从公式 dsinφK =λK 即可得到光轨宽度 d。查阅资料,找到你所用的光盘 d 的数据,与测量 结果进行比较。 假设光轨上数据点的间距只有光轨宽度的一半, 根据你的测量结果,估算一下这张光盘的数据容量 为多少个 G。 3. 自行ቤተ መጻሕፍቲ ባይዱ计数据表格。 写出完整的实验报告,并附上自己拍摄的手机 光路照片图 7、手机衍射光斑照片图 8、光盘衍射光 路照片图 9。
《大学物理实验》教案实验22衍射光栅
实验 22 衍射光栅一、实验目的:1.观察光栅的衍射光谱,理解光栅衍射基本规律。
2.进一步熟悉分光计的调节和使用。
3. 测定光栅常数和汞原子光谱部分特征波长。
二、实验仪器:分光计、光栅、汞灯。
三、实验原理及过程简述:1.衍射光栅、光栅常数光栅是由大量相互平行、等宽、等距的狭缝(或刻痕)构成。
其示意图如图 1 所示。
图1图2光栅上若刻痕宽度为 a,刻痕间距为 b,则 d=a 十 b 称为光栅常数,它是光栅基本参数之一。
2.光栅方程、光栅光谱根据夫琅和费光栅衍射理论,当一束平行单色光垂直入射到光栅平面上时,光波将发生衍射,凡衍射角满足光栅方程:, k 0 ,± 1 ,± 2... (1)时,光会加强。
式中λ为单色光波长, k 是明条纹级数。
衍射后的光波经透镜会聚后,在焦平面上将形成分隔得较远的一系列对称分布的明条纹,如图 2 所示。
如果人射光波中包含有几种不同波长的复色光,则经光栅衍射后,不同波长光的同一级( k )明条纹将按一定次序排列,形成彩色谱线,称为该入射光源的衍射光谱。
图 3 是普 0通低压汞灯的第一级衍射光谱。
它每一级光谱中有四条特征谱线:紫色λ14358 A ;绿色λ 0 0 025461 A ;黄色两条λ3=5770 A 和λ45791 A 。
3.光栅常数与汞灯特征谱线波长的测量由方程(1)可知,若光垂直入射到光栅上,而第一级光谱中波长λ1 已知,则测出它相应的衍射角为 1 ,就可算出光栅常数 d;反之,若光栅常数已知,则可由式(1)测出光源发射的各特征谱线的波长 i 。
角的测量可由分光计进行。
4.实验内容与步骤a.分光计调整与汞灯衍射光谱观察(1)调整好分光计。
(2)将光栅按图 4 所示位置放于载物台上。
通过调平螺丝 a 1 或 a 3 使光栅平面与平行光管光轴垂直。
然后放开望远镜制动螺丝,转动望远镜观察汞灯衍射光谱,中央( K 0 )零级为白色,望远镜转至左、右两边时,均可看到分立的四条彩色谱线。
大学物理光栅衍射
结论总结
根据分析结果,总结光栅衍射的规律和特点,并得出结论。
04
光栅衍射的应用实例
光学仪器制造
光学仪器制造中,光栅衍射技术被广泛应用于透镜、反射镜、棱镜等光学元件的 检测和校正。通过光栅衍射,可以测量光学元件的表面形貌、角度、折射率等参 数,确保其光学性能的准确性和稳定性。
VS
在光学计量领域,光栅衍射可以用于 测量各种光学元件的尺寸、角度和光 学性能参数,如透镜的焦距、棱镜的 角度等。此外,在光谱分析、光学干 涉等领域,光栅衍射也具有广泛的应 用。
光学信息处理
光栅衍射在光学信息处理中具有重要的应用。例如,在全息成像中,光栅衍射可以用于记录和再现全息图,从而实现三维图 像的记录和再现。
光子晶体和负折射材料
光子晶体和负折射材料在光栅衍射领域的应用研究,有望 为新型光学器件和光子调控技术提供新的思路和方法。
非线性光学效应
利用光栅衍射研究非线性光学效应,如倍频、和频等,有 助于深入理解光与物质相互作用机制,开拓新的光学应用 领域。
THANKS FOR WATCHING
感谢您的观看
光栅衍射的实验方法
实验设备与器材
01
02
03
04
单色光源
用于提供单一波长的光束,如 激光。
光栅
具有多个平行等间距狭缝的透 明板,用于产生衍射现象。
屏幕
用于观察衍射图样。
测量工具
用于测量光栅的参数,如狭缝 间距和狭缝数量。
实验步骤与操作
安装光栅
将光栅放置在合适的位置,确 保单色光源的光束能够照射在 光栅上。
在光学计算中,光栅衍射可以通过对光的衍射进行编程和控制,实现各种复杂的光学计算和信息处理任务。此外,在光学加 密、光学图像处理等领域,光栅衍射也具有广泛的应用。
实验五 光栅衍射实验
实验五 光栅衍射实验——光栅距的测定与测距实验(一)光栅距的测定实验目的:了解光栅的结构及光栅距的测量方法。
实验原理: 1. 光栅衍射:光栅是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,一般每毫米几十至几千条。
单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。
谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。
光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果。
波在传播时,波阵面上的每个点都可以被认为是一个单独的次波源;这些次波源再发出球面次波,则以后某一时刻的波阵面,就是该时刻这些球面次波的包迹面(惠更斯原理)实验所需部件:光栅、激光器、直尺与投射屏(自备)。
实验条件:记录数据条件:在激光器发射的激光稳定后,在进行测量,记录数据。
实验步骤:1、 激光器放入光栅正对面的激光器支座中,接通激光 电源后调节上下左右位置使光点对准光栅组中点后 用紧定螺丝固定。
2、在光栅后方安放好投射屏,观察到一组有序排列的衍射光斑,与激光器正对的光斑 为中央光斑,依次向两侧为一级、二级、三级…衍射光斑。
如图20-1所示。
观察光斑的大小及光强的变化规律。
3、 根据光栅衍射规律,光栅距D 与激光波长λ、衍射距离L 、中央光斑与一级光斑的间距S 存在下列的关系:(式中单位:L 、S 为mm ,λ为nm, D 为μm) 根据此关系式,已知固体激光器的激光波长为650nm ,用直尺量得衍射距离L 、光斑距S ,即可求得实验所用的光栅的光栅距。
4、 尝试用激光器照射用做莫尔条纹的光栅,测定光栅距,了解光斑间距与光栅距的关系。
SS L D 22+=λ5、 按照光栅衍射公式,已知光栅距、激光波长、光斑间距,就可以求出衍射距离L 。
将激光对准衍射光栅中部,在投射屏上得到一组衍射光斑,根据公式求出L 。
大学物理实验教案(光栅的衍射)
大学物理实验教案实验项目光栅的衍射教学目的1. 观察光的衍射现象,了解光栅分光的原理。
2. 测定光栅常数和光波波长。
实验原理当光射到光栅面上时,在透光狭缝处光线可透过,而在不透光处则不能透过。
若这些透光狭缝的宽为。
相邻狭缝间不透光部分的宽度为,,称为光栅常数。
本实验装置产生的光栅衍射是夫琅和费衍射,因为衍射屏(光栅)与光源及观察屏之间的距离均为无穷远(入射光栅的入射光和出射光栅的衍射光均为平行光)。
根据夫琅和费衍射理论,当波长为λ的平行光束投射到光栅平面上时,光波将在两个透光狭缝处发生衍射,所有狭缝的衍射光又彼此发生干涉,其结果是在透镜的焦平面上得到一排明亮分立的光谱线。
当平行光垂直入射时,相邻两缝对应点出射的光束的光程差为式中d为光栅常数,称为衍射角。
根据衍射光的干涉条件,当衍射角满足下式时则该衍射角方向上的光将会得到加强,叫做主极大,其它方向的光或者完全抵消,或者强度很小在焦平面上形成暗背景。
我们把时所对应的主极大分别称为中央(0级)极大,正负第一级极大,正负第二级极大,……。
如果入射光不是单色光,而是包含几种波长的光,对于同一级次光的波长λ不同,其衍射角也各不相同,于是复色光将被分解,从而在不同的地方形成不同颜色的光谱线。
但是,在中央主极大位置上,即K=0,处,各颜色的光仍重叠在一起,形成中央明条纹。
在中央条纹两侧对称分布着级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,对同一级谱线来说,λ越大,衍射角也越大,λ越小,越小,即彩色谱线排列是长波谱线在外侧,短波谱线在内侧。
如果用分光计测出,则当λ已知时d可求,当d已知时λ可求。
衍射角为其中为望远镜对准所要测定的正级谱线时,A,B两游标读数。
为望远镜对准所要测定的负级谱线时,A,B两游标读数。
教学重点与难点重点:1. 分光计的调节(望远镜调焦、望远镜光轴调节、平行光管调节等);2. 光栅放置位置的要求;3. 衍射角测量方法。
难点:1. 分光计调节;2. 游标盘读数。
大学物理光学实验报告
实验十:光栅衍射一、实验目的1.观察光线通过光栅后的衍射光谱。
2.学会用光栅衍射测定光波波长的方法。
3.学会用光栅衍射原理测定光栅常数。
4.进一步熟悉分光计的调整和使用方法。
二、实验仪器分光计 光栅 钠光灯 平面反射镜三、实验原理光栅是有大量的等间隔、等宽度的狭缝平行放置组成的一种光学元件。
设狭缝宽度(透光部分)为a ,不透光部分为b ,则a b +为光栅常数。
设单色光垂直照射到光栅上,光透过各个狭缝后,向各个方向发生衍射,衍射光经过透镜后会聚后相互干涉,在焦平面上形成一系列的被相当宽的暗区分开的明亮条纹。
衍射光线与光栅平面的夹角称为衍射角。
设衍射角为θ的一束衍射光经透镜会聚到观察屏的点。
在P 点出现明条纹还是暗条纹决定于这束衍射光的光程差。
由于光栅是等宽、等间距,任意两个相邻缝的衍射光的光程差是相等的,两个相邻狭缝的衍射光的光程差为()sin a b θ+,如果光程差为波长的整数倍,在P 点就出现明条纹,即()sin a b k θλ+=±(0,1,2,)k =L 这就是光栅方程。
从上式可知,只要测出某一级的衍射角,就可计算出波长。
四、实验步骤1、调整分光计。
使望远镜、平行光管和载物台都处于水平状态,平行光管发出平行光。
2、安置光栅将光栅放在载物台上,让钠光垂直照射到光栅上。
可以看到一条明亮而且很细的零级光谱,左右转动望远镜观察第一、二级衍射条纹。
S 2S 1S 3()3()2()1()1()2()3G2φ12 φ22φ33.测定光栅衍射的第一、二级衍射条纹的衍射角θ,并记录。
五、数据记录级数 次数 左边衍射条纹 右边衍射条纹第二级'2()θ第一级'1()θ 0级 第一级1()θ 第二级2()θ 第 一 次 右边读数左边 读数衍射角 1θ=2θ=第 二 次 右边 读数左边 读数衍射角 1θ=2θ= 第 三 次右边读书左边 读书衍射角1θ=2θ='111[()θθθ=-(右边读数)+'11()θθ-(右边读数)]/4 '222[()θθθ=-(右边读数)+'22()θθ-(右边读数)]/4六、数据处理将上表中的1θ、2θ分别代入光栅方程()sin a b k θλ+=计算出6个波长,(1300a b mm +=) 1λ= 2λ= 3λ= 4λ= 5λ= 6λ= 计算平均波长:λ=绝对误差:λ∆= (取平均波长与6个波长的差中的最大者)相对误差:100%E λλλ∆=⨯=结果表示:()nm λλλ=±∆= nm 。
实验40 光栅衍射法测定光波长
大学物理实验教案实验名称:光栅衍射法测定光波长 1 实验目的1)熟练分光计的调节。
2)理解光栅衍射现象;3)学习用光栅衍射法测定光的波长。
2 实验器材分光计、平面透射光栅、汞灯、平面反射镜3 实验原理3.1 实验原理光栅和棱镜一样,是重要的分光光学元件,已广泛应用在光栅光谱仪、光栅单色仪等。
光栅是一组数目极多的等宽、等距和平行排列的狭缝。
它分为透射光栅和反射光栅两种。
应用透射光工作的称为透射光栅,应用反射光工作的称为反射光栅。
现代制造光栅主要有刻划光栅、复制光栅和全息光栅等形式。
本实验用的是平面透射光栅。
描述光栅特征的物理量是光栅常数d ,其大小等于狭缝宽度a 与狭缝间不透光部分的宽度b 之和,即b a d +=,习惯上用单位毫米里的狭缝数目N 来描述光栅特性。
光栅常数d 与N 的关系为N d 1=(1)根据夫琅禾费衍射理论,波长为λ的平行光束垂直入射到光栅平面上时,透射光将形成衍射现象,即在一些方向上由于光的相互加强后光强度特别大,而其他的方向上由于光的相消后光强度很弱就几乎看不到光。
图40-1给出了形成光栅衍射的光路图。
如果入射光源为线光源,经过光栅后衍射图样为一些相距较大的锐利的色彩斑斓的明亮条纹组成。
而这些亮条纹1、光源2、狭缝3、凸透镜4、平面透射光栅5、光栅衍射光谱图40—1 实验原理示意图图40—2 汞灯的部分光栅衍射光谱示意图所在的方位由光栅方程所确定,方程为λφk d =sin ( 2,1,0±±=k ) (2)其中,d 为光栅常数,k 为衍射级别,λ为光波长,φ为衍射角它是光栅法线与衍射方位角之间的夹角。
由(2)式可见,同一级的衍射条纹,如果波长不同其衍射角不同,所以光栅具有分光功能。
图40-2为汞灯的部分光栅衍射光谱示意图。
光栅衍射现象是很容易观察到的,如果手头有一块光栅,可直接透过光栅观察某一光源就可看到衍射现象。
实验室中经常在分光计上利用光栅衍射现象来进行光波长或光栅常数的测量。
大学物理-第五节 光栅衍射
四 主极大的缺级 如果某主极大的位置 同时又是单缝衍射极小位置 则该衍射角同时满足两个光程差公式
d sin m 和 asin k
结果:
由于单缝衍射满足极小
A( ) 0
所以使得这一级主极大无法出现
这一现象叫主极大缺级
从 d sin m 和 asin k
得
d m
ak
缺级满足关系
m d k (k 1,2,) a
a
5000
2 104
0
A
0 25
(3)由光栅公式
I
d sin k
k 4 sin 0 25 0
d
4 5000
8 104
0
A
0 25
或由缺级条件: d 4 a
0
d 4a 8104 A
sin 0.25
0、1、 3
0
例3 入射光 5000A ,由图中衍射光强分布确定
(1) 缝数 N = ?
I
(2) 缝宽 a = ?
(3) 光栅常数 d = a+b = ? 0
sin 0.25
解: (1)由相邻主极大之间有N-1条暗纹,N-2条 次极大可知:N=5。
(2)由单缝衍射暗纹公式 a sin k k 1 sin 0 25
d sin 3紫
d sin 2
400 ~ 760nm
3 2
紫
600nm
二级光谱重叠部分:
600 ~ 760nm
用途——光谱分析
如果光源发出的是白光,则光栅光谱中除零级 近似为一条白色亮线外,其它各级亮线都排列成连 续的光谱带。由于电磁波与物质相互作用时,物质 的状态会发生变化,伴随有发射和吸收能量的现象, 因此关于对物质发射光谱和吸收光谱的研究已成为 研究物质结构的重要手段之一。
大学物理光栅衍射
大学物理光栅衍射光栅衍射是大学物理中的一项重要内容,它涉及到光的波动性和干涉原理。
本文将从光栅衍射的原理、实验装置、实验方法和结论等方面进行介绍。
一、光栅衍射原理光栅是一种具有周期性结构的衍射器件,它由许多平行且等距的狭缝构成。
当光通过光栅时,会产生一系列明暗相间的衍射条纹,这种现象被称为光栅衍射。
光栅衍射的原理是基于光的波动性和干涉原理。
根据波动理论,光在通过光栅时会产生衍射现象,即光波偏离了直线传播路径。
同时,由于光波的干涉作用,不同狭缝产生的光波相互叠加,形成了明暗相间的衍射条纹。
二、实验装置实验装置主要包括光源、光栅、屏幕和测量工具等。
光源通常采用激光器或汞灯等高亮度光源,以便产生足够的光强度。
光栅是一块具有许多狭缝的透明板,狭缝的数目和间距可以根据实验需要进行选择。
屏幕用于接收衍射条纹,测量工具用于测量衍射条纹的间距和亮度。
三、实验方法实验时,首先将光源、光栅和屏幕按照一定距离放置,确保光束能够照射到光栅上并产生衍射条纹。
然后,通过调整光源的角度和位置,观察衍射条纹的变化。
同时,使用测量工具对衍射条纹的间距和亮度进行测量和记录。
为了获得准确的实验结果,需要进行多次测量并取平均值。
四、结论通过实验,我们可以得出以下1、光栅衍射现象是光的波动性和干涉原理的表现。
2、衍射条纹的间距和亮度受到光源角度和位置的影响。
3、通过测量衍射条纹的间距和亮度,可以推断出光源的角度和位置。
4、光栅衍射现象在光学测量和光学通信等领域具有广泛的应用价值。
大学物理光栅衍射是一个非常重要的实验内容,它不仅有助于我们理解光的波动性和干涉原理,还可以应用于实际生产和科学研究领域。
光,这一神奇的物理现象,是我们日常生活中无处不在的存在。
当我们看到五彩斑斓的世界,欣赏着阳光下波光粼粼的湖面,或是夜空中闪烁的星光,这一切都离不开光的衍射。
在大学物理中,光的衍射是理解波动光学和深入探究光本质的关键。
我们需要理解什么是光的衍射。
光栅衍射实验
当一束平行单色光垂直入射到光栅上,透过光栅的每条狭 缝的光都产生有衍射,而通过光栅不同狭缝的光还要发生 干涉,因此光栅的衍射条纹实质应是衍射和干涉的总效果。 设光栅的刻痕宽度为a,透明狭缝宽度为b,相邻两缝间的 距离d=a+b,称为光栅常数,它是光栅的重要参数之一。 单色平行光束垂直照射光栅,按照光栅衍射原理,衍射光 栅中明条纹的位置为:
汞灯的光栅光谱示意图
【实验内容与步骤】
分光计的调整
调节要求:分光仪达到以下三点要求,才能用 它进行精确的测量。
1 、平行光管发出平行光(平行光管的狭缝位 于其物镜焦平面上)。 2、 望远镜接受平行光(调焦于无穷远)。 3、平行光管与望远镜“同轴等高”,载物台 与仪器主轴垂直。
光栅调节
如果把光栅放反了即把涂着药膜的一面对着平行光管相当于在光路中加了一层介质如玻璃由于介质的折射使衍射光线平移了一个距离介质的两个面是平行的那么透过介质后的衍射光线的角度不变因此经望远镜后会聚后在分划板上的位置也不会改变对实验结果没有影响
光栅衍射实验
光波波长的测量
河北工业大学物理实验中心 张旭
【实验目的】
A1 A1 2 A
B 1 B 1 2 B
由于分光计偏心差的存在,衍射角和有差异,求其平均 值可消除了偏心差。所以,各谱线的衍射角为:
A+ B
2
A1 A1 B 1 B 1
4
测量时,从最右端的黄2光开始,依次测黄1光,绿 光,··· ··· 直到最左端的黄2光,重复测量三次。
1.观察光栅衍射现象,了解光栅的应用及 其特性。 2.测量汞灯不同谱线的波长。
大学物理实验光栅衍射
形成了多条明暗相间的条纹。
理论计算与实验结果相符
02
通过理论计算,我们预测了不同波长光的衍射角度,与实验结
果基本一致。
光栅常数对衍射条纹的影响
03
实验结果表明,光栅常数对衍射条纹的分布和宽度具有显著影
响。
结果的应用与推广
01
02
03
光学仪器的校准
光栅衍射实验结果可用于 校准光学仪器,确保其准 确性和稳定性。
增加实验内容
可以进一步探索不同类型的光栅、 不同波长的光源对衍射现象的影 响,以丰富实验内容。
07 参考文献
参考文献
文献1
该文献详细介绍了光栅衍射的原理和 实验方法,包括光栅的构造、衍射现 象的产生机制以及实验操作流程。通 过该文献,学生可以全面了解光栅衍 射的基础知识和实验技能。
文献2
该文献重点研究了光栅衍射的数学模 型和数值模拟方法。通过建立数学模 型,模拟不同参数下的衍射现象,为 实验设计和数据分析提供了理论支持 。同时,该文献还提供了编程语言实 现的模拟代码,方便学生进行二次开 发和研究。
注意保持实验装置稳定
在实验过程中,避免剧烈晃动或碰撞实验装置,以免影响实验结果。
注意保持实验室环境整洁
定期清洁实验台面和设备,确保没有灰尘或其他杂质干扰实验结果。
04 实验步骤与操作
实验前准备
实验器材
准备光栅、分光计、光源、光屏等实验器材,确 保其完好无损。
实验环境
确保实验室环境安静、整洁,避免外界干扰对实 验结果的影响。
感谢您的观看
原理之一。
光栅衍射的原理
光栅衍射是指光波通过光栅时发生的衍射现象。
光栅是由许多平行、等间距的狭缝或刻线组成, 当光波通过这些狭缝或刻线时,光波发生弯曲 或分散,形成明暗相间的衍射条纹。
大学物理实验报告丨光栅衍射实验
光栅衍射实验一、实验目的:1. 了解光栅的结构及光学原理;2. 学会搭建实验模型;3. 测定光波波长及光栅常数等。
二、实验原理:光栅(grating)是大量等宽、等间距的平行狭缝(或发射面)构成的光学元件。
一般常用的光栅是在玻璃片上刻出大量平行的刻痕,刻痕为不透光部分,两刻痕之间的光滑部分可以透光(相当于狭缝)。
这种利用透射光衍射的光栅称为透射光栅。
精制的光栅,在1mm宽度内刻有数百乃至数千条刻痕。
另外一类是利用两刻痕间的反射光衍射的光栅,如在镀有金属层的表面,上刻出许多平行刻痕,两刻痕间的光滑金属面可以反射光。
这种光栅称为反射光栅(常称为闪耀光栅)。
实际应用中,各类光学设备使用的光栅基本上都是反射光栅。
透射光栅和反射光栅的原理如图所示:3.而在我们的日常生活中,具有光栅特性的物品经常用到,例如手机,其显示屏就是正方形网格,每个小方格就是一个显示单元,网格越密,则显示分辨率越高。
这些整齐排列的小方格实际上就形成了反射光栅。
另一种物品就是光盘,它是我们常用的存储介质,从早期的CD、DVD等到现在的蓝光光盘,其存储密度越来越高。
它存储数据的方式是用极细的激光束,沿着近似同心圆环的螺旋形光轨,在光盘表面烧蚀出一个个的小坑,有坑的位置和无坑的位置分别对应0和1。
读取数据时,同样用激光束沿着光轨照射,有坑和无坑的位置反射光强不一样,这样就可以把数据读出来了。
我们可以看到,相邻的这些环状刻痕(光轨)实际上就形成了一个反射光栅(如虚线区域),两条刻痕之间的间距就是光栅常数d。
(实验的示意图)三、实验装置一支绿色激光笔,一个手机(荣耀5X,分辨率为1920×1080),一个CD光盘(高中物理必修一粤教版配套光盘),一条长为1.5m的米尺,一些泡沫塑料、白墙(如图所示)四、实验过程:1.对于手机,激光笔垂直于墙面、手机平行于墙面放置,微调手机平面,使得反射光回到激光笔出光口,然后再让反射光稍稍上移,使得衍射光斑能投射到墙面上,这样就保证光在水。
光栅衍射实验报告小结
光栅衍射实验是大学物理实验中的一项基础实验,旨在让学生掌握光栅衍射的原理,熟悉分光计的调整与使用,以及光栅常数和光波波长的测量方法。
通过本实验,学生可以加深对光栅衍射规律的理解,为后续学习和研究光学理论奠定基础。
二、实验目的1. 熟悉分光计的调整与使用;2. 学习利用衍射光栅测定光波波长及光栅常数的原理和方法;3. 加深理解光栅衍射公式及其成立条件;4. 掌握光栅光谱的形成原理及特点;5. 熟悉光栅在光学仪器中的应用。
三、实验原理光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体。
当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。
光栅常数d是相邻两狭缝上相应两点之间的距离,是光栅基本常数之一。
光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数。
光栅衍射条纹的间距与光栅常数、光波波长和入射角有关。
根据光栅衍射公式,当光栅常数d、光波波长λ和入射角i确定时,衍射条纹的间距可以表示为:Δθ = λ/d其中,Δθ为衍射条纹的角间距。
四、实验仪器与设备1. 分光计:用于调节入射光的方向和测量衍射条纹的角度;2. 光栅:用于产生衍射条纹;3. 低压汞灯:提供单色光源;4. 平面镜:用于反射光;5. 望远镜:用于观察衍射条纹。
1. 将光栅放置在分光计的载物台上,调整分光计使光栅垂直于入射光;2. 调整低压汞灯,使光束垂直照射在光栅上;3. 调整望远镜,使观察者能够清晰地看到衍射条纹;4. 测量衍射条纹的角间距,计算光栅常数和光波波长;5. 改变入射角,观察光栅衍射条纹的变化。
六、实验结果与分析1. 通过实验,我们成功调整了分光计,使光束垂直照射在光栅上,并观察到清晰的衍射条纹;2. 根据光栅衍射公式,我们计算出光栅常数和光波波长,并与理论值进行了比较,误差在可接受范围内;3. 通过改变入射角,我们观察到光栅衍射条纹的变化,验证了光栅衍射公式的正确性。
大学物理光栅实验实验报告
大学物理实验报告实验名称光栅实验学号21XXXXX姓名XX辅导教师XXX实验报告开课实验室:3022022年 X 月 X 日一、实验目的1、熟练掌握分光仪的调节和使用2、加深对光栅衍射原理的理解,观察光栅衍射现象3、学会用透射光栅测定光栅常数和光波波长二、实验仪器J JT型分光仪(1台)、双面平面反射镜,透射光栅、低压汞灯及电源三、实验原理1、光栅定义光栅是一种根据多缝衍射原理制成的,将复色光分解成光谱的重要分光元件,由一系列等宽等间距的平行狭缝或刻痕组成,能产生亮度较大,间距较宽的光谱线,常用来精确地测定光波波长及进行光谱分析。
设缝宽为a,间距为b,则d=a+b 为光栅常数,是表征光栅特性的重要参数。
2、光栅方程当单色平行光垂直入射到衍射光栅上,通过每个缝的光都将发生衍射,不同缝的光彼此干涉,当衍射角满足光栅方程时,光波加强,产生主极大。
在光栅后加一会聚透镜,则在焦平面上形成等间隔对称分布的主明纹。
dsinΦ=kλ k=0,±1,±2,d为光栅常数,Φ为第k级衍射角,k是明纹级次,λ为单色光波长。
3、光栅光谱(1)当白光入射时,且满足Φ=0,k=0时,各色光重叠在一起,形成中央明纹,颜色与入射光颜色相同,仍为白光。
(2)在中央明纹两侧对称分布着k=0,±1,±2,级谱线,各级谱线相对于中央明纹从近到远,都按照短波到长波的顺序依次排列,形成一组彩色谱线。
4、测量原理(1)测量光栅常数d(2)测量紫光、黄1、黄2光的波长5、刻度盘读数游标卡尺0刻度的度盘位置是否已半度,如果过了要加上30分四、实验步骤1、调节分光仪(1)调节望远镜能接受平行光(2)调节望远镜光轴与仪器光轴垂直(3)调整平行光管能发出平行光,并垂直于仪器三轴2、光栅的调节(1)将光栅按图示放在载物台上,调节光栅平面与望远镜光轴垂直。
调节载物台的调平螺母a1,或a2,使十字像与分划板上准线重合。
大学物理实验 衍射光栅及其特性
实验数据处理
光栅编号: 光栅宽度 l 30 mm 2012 年 8 月 31 日, 16#桌
1 2
谱线
角位置 左
角位置 右
d (nm)
1级
2级
0级 404.7nm(紫) 435.8nm(兰) 546.1nm(绿) 577.0nm(黄 1) 579.0nm(黄 2) 404.7nm(紫) 兰 绿 黄1 黄2
本实验中可明显观察到的汞灯谱线
波长.1 绿
577.0 黄1
579.0 黄2
光栅的角色散率和分辨本领 光栅方程 d sin k
光栅的角色散率为:
( k 0, 1, 2 , )
k d cos
Nd cos
平面反射镜
B3
B1 平面反射镜
B2
平面反射镜在载物台 上的放置方法
阿贝式自准直望远镜
目镜视场 分划线的上方交点 分划板 目镜 目镜套筒 小棱镜 物镜筒 物镜
透光小十字叉丝 小灯泡 分划板 叉丝像 物镜 平面镜
叉丝
小棱镜
调节望远镜的主光轴与分光计转轴垂直 (各调1/2法)
h/2 h
(a)叉丝像与分划 线的上方交点 有垂直位移h
27º55´ 34º57´ 35º28´ 37º22´ 37º56´ 37º58´ 42º0´ 43º8´ 47º5´ 48º14´ 48º18´
207º52´ 214º51´ 215º22´ 217º15´ 217º51´ 217º52´ 221º55´ 223º2´ 226º59´ 228º8´ 228º11´
采用“各调1/2法”,反复调节望远镜调平螺钉和载物台调平螺钉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验报告
专业班级学号姓名记分
光栅衍射实验(实验名称)
实验目的:1. 了解光栅的结构及光学原理。
2. 学会搭建实验模型,选择合适的参数以便于测量。
实验原理:d是光栅常数;θ是相对于光栅平面的入射角,φ是衍射角。
入射光投射到光栅平面后,其反射光因单个槽面的衍射和缝间的干涉形成光谱,谱线位置可同样由光栅方程给出:
d (sinφK ± sinθ)= ±Kλ(2)
当入射光与衍射光在法线的不同侧时上式取负号,否则取正号。
对于正入射,上式简化为:d sinφK = ±Kλ。
对于透射光栅和反射光栅,如果知道光栅常数d,通过测量衍射角φ,我们可以计算出光波长λ;反过来,已知光波长,通过测量衍射角,我们可以得到光栅常数d。
(自行调节所需空间)
实验装置与实验过程:
(包括照片)
数据记录:
(1)手机的屏幕分辨率为2310×1080
手机屏幕横向显示区域的宽度b=7cm
屏幕的每个显示单元的尺度为b/1080
屏幕作为光栅的光栅常数d=b/1080
测量水平方向上光斑的间距x=1.5cm
测量手机上的光入射点到衍射光斑中心点的距离L=120cm (2)测出±1级和±2级的衍射光斑之间的间距l2=25cm
光盘和墙面的距离为l1=29cm
数据处理及结果:
计算结果:衍射角φ = tanφ= x/L=0.0125
将测量结果代入公式d sinφ = λ
我们可以计算出激光波长λ=1.41×10-6cm
计算出衍射角:tanφ = l2/(2l1)
使用反三角函数才能得到φ的大小。
从公式d sinφK =λK即可得到光轨宽度d=3.57×10-6cm
(计算过程、结果、误差分析等)
实验体会或感想:
(1)通过实验了解了透射光栅和反射光栅的构成原理和区别
(2)学会了如何用手机估计出激光波长
思考题:
在斜入射的情况下,观察零级光斑时,可能会发现其附近存在较小的光斑,这也是一种干涉条纹。
怎么解释这个现象?
正入射时单缝衍射的零级和缝间干涉的零级重合,斜入射时不重合,单缝衍射中央最大值的位置从没
有色散的零级光谱转移到其他有色散的光谱级上。