八年级数学(下册)定义公式汇总

合集下载

2023年部编版八年级下册数学必背公式(完整版)

2023年部编版八年级下册数学必背公式(完整版)

2023年部编版八年级下册数学必背公式(完整版)结论公式1. 相同数的乘积:- 相同数相乘,底数不变,指数相加:a^m * a^n = a^(m+n)- 多个相同数相乘,底数不变,指数相加:a^m * a^n * a^p = a^(m+n+p)2. 幂的乘法:- 幂的乘法,底数不变,指数相乘:(a^m)^n = a^(m * n)3. 幂的除法:- 幂的除法,底数不变,指数相除:(a^m) / (a^n) = a^(m - n)4. 幂的负指数:- 幂的负指数,底数不变,指数变为负数取倒数:a^(-n) = 1 / a^n5. 幂的零次方:- 幂的零次方等于1:a^0 = 16. 乘方的分配律:- 两个数相乘后再取乘方,等于各自取乘方再相乘:(a * b)^n = a^n * b^n几何公式1. 长方形的面积公式:- 长方形的面积等于长乘以宽:面积 = 长 * 宽2. 三角形的面积公式:- 三角形的面积等于底乘以高再除以2:面积 = (底 * 高) / 23. 圆的面积公式:- 圆的面积等于半径的平方乘以π:面积 = π * 半径^24. 梯形的面积公式:- 梯形的面积等于上底加下底的和乘以高再除以2:面积 = (上底 + 下底) * 高 / 2线性方程1. 一元一次方程:- 一元一次方程的一般形式:ax + b = 0- 求解一元一次方程:x = -b / a2. 一次函数:- 一次函数的一般形式:y = kx + b- 斜率:k = (y2 - y1) / (x2 - x1)- 平行直线的斜率相等:k1 = k2- 垂直直线的斜率乘积为-1:k1 * k2 = -1这些是2023年部编版八年级下册数学必背的重要公式,掌握这些公式能够帮助你更好地理解和解决数学问题。

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结Jenny was compiled in January 2021八年级下册数学概念、定义、公式归纳1.2.3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。

分子和分母没有公因式的分式叫做最简分式。

4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。

通分一般要找各分式的最简公分母。

()5.6.7.8.9.10.11.12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。

勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

13.题设、结论正好相反的两个命题称为互逆命题。

其中一个叫原命题,另一个叫逆命题。

14.平行四边形的性质:①对边平行且相等②对角相等,邻角互补③对角线互相平分15.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形。

②两组对边分别相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。

④一组对边平行且相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

16.矩形的性质:①两组对边平行且相等。

②四个角都是直角。

③对角线互相平分且相等17.矩形的判定方法:①一个角是直角的平行四边形是矩形。

②对角线相等的平行四边形是矩形。

③三个角都是直角的四边形是矩形。

18.菱形的性质:①四条边都相等②对角相等,邻角互补③对角线互相垂直平分,且每一条对角线平分一组对角19.菱形的判定方法:①一组邻边相等的平行四边形是菱形。

②对角线互相垂直的平行四边形是菱形。

③四边相等的四边形是菱形。

20.正方形的性质:①四条边都相等,对边平行②四个角都是直角③对角线相等且互相垂直平分,且每一条对角线平分一组对角21.正方形的判定方法:①一组邻边相等的矩形是正方形。

八年级下学期数学知识点总结

八年级下学期数学知识点总结

八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。

平移不会改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

(完整版)八年级数学公式大全

(完整版)八年级数学公式大全

(完整版)八年级数学公式大全八年级数学公式大全一、代数公式1.1 二次方程公式二次方程公式的一般形式为:$ax^2+bx+c=0$,其中$a\neq0$。

求解二次方程公式的根的公式为:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$1.2 因式分解公式因式分解公式有以下几种形式:* $a^2-b^2=(a+b)(a-b)$* $a^3-b^3=(a-b)(a^2+ab+b^2)$* $a^3+b^3=(a+b)(a^2-ab+b^2)$* $a^2+2ab+b^2=(a+b)^2$* $a^2-2ab+b^2=(a-b)^2$二、几何公式2.1 三角形公式三角形的面积可以用以下公式计算:* 面积$S=\frac{1}{2}bh$,其中$h$为底边垂直高* 面积$S=\frac{1}{2}ab\sin C$,其中$a$、$b$为边长,$C$为夹角三角形的周长可以用以下公式计算:* 周长$C=a+b+c$,其中$a$、$b$、$c$为边长2.2 矩形公式矩形的面积可以用以下公式计算:* 面积$S=ab$,其中$a$、$b$为边长矩形的周长可以用以下公式计算:* 周长$C=2(a+b)$,其中$a$、$b$为边长三、概率公式3.1 概率公式* 事件的概率$P=\frac{\text{有利结果数}}{\text{总结果数}}$3.2 独立事件概率公式* 独立事件的概率$P(A\cap B)=P(A)\times P(B)$,其中$A$、$B$为独立事件四、数据统计公式4.1 平均数公式* 平均数$X=\frac{\text{总数}}{\text{个数}}$4.2 中位数公式求中位数的步骤:1. 将数据从小到大排列2. 如果数据个数为奇数,中位数为中间的数;如果数据个数为偶数,中位数为中间两个数的平均值五、三角函数公式5.1 正弦公式在任意三角形中,有以下正弦公式:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$5.2 余弦公式在任意三角形中,有以下余弦公式:$a^2=b^2+c^2-2bc\cos A$5.3 正切公式在直角三角形中,有以下正切公式:$\tan A=\frac{\text{对边}}{\text{邻边}}$以上是八年级数学公式的部分内容,希望对你的学习有所帮助!。

八年级下册数学公式

八年级下册数学公式

八年级下册数学公式1、直角三角形斜边上的中线等于斜边上的一半。

2、定理:四边形的内角和等于360°。

3、四边形的外角和等于360°。

4、多边形内角和定理:n边形的内角的和等于(n-2)×180°。

5、多边形外角和定理:任意多边的外角和等于360°。

6、平行四边形性质定理1:平行四边形的对角相等。

7、平行四边形性质定理2:平行四边形的对边相等。

8、推论:夹在两条平行线间的平行线段相等。

9、平行四边形性质定理3:平行四边形的对角线互相平分。

10、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形。

11、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。

12、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。

13、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形。

14、矩形性质定理1:矩形的四个角都是直角。

15、矩形性质定理2:矩形的对角线相等。

16、矩形判定定理1:有三个角是直角的四边形是矩形。

17、矩形判定定理2:对角线相等的平行四边形是矩形。

18、菱形性质定理1:菱形的四条边都相等。

19、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

20、菱形面积=对角线乘积的一半,即S=(对角线的乘积)÷2。

21、菱形判定定理1:四边都相等的四边形是菱形。

22、菱形判定定理2:对角线互相垂直的平行四边形是菱形。

23、正方形性质定理1:正方形的四个角都是直角,四条边都相等。

24、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

25、定理1:关于中心对称的两个图形是全等的。

26、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

27、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

28、等腰梯形性质定理:等腰梯形在同一底上的两个角相等。

数学定义定理公式大全

数学定义定理公式大全

数学定义、定理、公式大全1. 数学定义1.1 数集•有限集:指元素个数有限的集合,记作A={a₁,a₂,…,an}。

•无限集:指元素个数无限的集合,记作A={a₁,a₂,…,an,…}。

•空集:不含任何元素的集合,记作∅或{}。

•子集:若集合A中的每个元素都是集合B中的元素,则称A为B的子集,记作A⊆B。

1.2 常用数系•自然数:正整数,记作N={1,2,3,4,…}。

•整数:正整数、负整数和0的集合,记作Z={…, -2,-1,0,1,2,…}。

•有理数:可以写成两个整数的比的数,记作Q。

•实数:包含有理数和无理数的数,记作R。

1.3 函数•函数:指定了集合A到集合B的一种关联规则,记作f:A→B。

•定义域:函数f中所有可能输入的集合,记作D(f)或Dom(f)。

•值域:函数f中所有可能输出的集合,记作R(f)或Ran(f)。

•逆函数:对于函数f:A→B,如果任意b∈B,都有唯一的a∈A,使得f(a)=b,则函数g:B→A称为f的逆函数,记作g=f⁻¹。

2. 数学定理2.1 代数定理•因式分解定理:每个整数都可以唯一地表示为素数的乘积。

•二次根定理:若在实数域上,对于方程ax²+bx+c=0,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。

2.2 几何定理•勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。

•正弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:a/sinA=b/sinB=c/sinC。

•余弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:c²=a²+b²-2abcosC。

2.3 微积分定理•基本定理:若函数f在区间[a,b]上连续,并且F是f的任意一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。

最全面的初中数学概念定义公式大全

最全面的初中数学概念定义公式大全

初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0〔原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。

完整版)八年级数学公式及概念

完整版)八年级数学公式及概念

完整版)八年级数学公式及概念八年级数学公式及概念第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。

2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。

3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。

第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8/3等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60°等。

二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零)。

从数轴上看,互为相反数的两个数所对应的点关于原点对称。

如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数。

若|a|=a,则a≥0;若|a|=-a,则a≤0.3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1.零没有倒数。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算。

三、平方根、算数平方根和立方根21、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。

初二数学下册全部知识点

初二数学下册全部知识点

数学八年级下册全册知识点汇总(北师大版)第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

部编版初中数学八年级下册必背几何公式汇总

部编版初中数学八年级下册必背几何公式汇总

部编版初中数学八年级下册必背几何公式汇总1. 三角形相关公式1.1 周长和面积公式- 三角形的周长公式为:周长 = 边长1 + 边长2 + 边长3。

- 三角形的面积公式为:面积 = (底边长 ×高)/ 2。

1.2 直角三角形相关公式- 直角三角形的斜边长度公式为:斜边长度 = 根号下(直角边1的平方 + 直角边2的平方)。

- 直角三角形的勾股定理公式为:直角边1的平方 + 直角边2的平方 = 斜边长度的平方。

2. 四边形相关公式2.1 矩形相关公式- 矩形的周长公式为:周长 = (长 + 宽)× 2。

- 矩形的面积公式为:面积 = 长 ×宽。

2.2 正方形相关公式- 正方形的周长公式为:周长 = 边长 × 4。

- 正方形的面积公式为:面积 = 边长 ×边长。

2.3 平行四边形相关公式- 平行四边形的周长公式为:周长 = (边长1 + 边长2)× 2。

- 平行四边形的面积公式为:面积 = 底边长 ×高。

3. 圆相关公式3.1 圆的周长和面积公式- 圆的周长公式为:周长= 2 × π × 半径。

- 圆的面积公式为:面积= π × 半径的平方。

3.2 扇形和弧长公式- 扇形的面积公式为:面积 = 1/2 ×扇形的圆心角度数× π × 半径的平方。

- 弧长的公式为:弧长 = 扇形的圆心角度数/360 × 2 × π × 半径。

以上是部编版初中数学八年级下册必背的几何公式汇总,希望对你有所帮助!。

八年级下数学知识点归纳大全

八年级下数学知识点归纳大全

八年级下数学知识点归纳大全一、分式1. 分式的概念- 分式就像是分数的“升级版”。

如果A、B表示两个整式,A÷B就可以写成(A)/(B)的形式,这里B要是含有字母的整式,而且B不能等于0哦,这样的式子就是分式啦。

比如说(x)/(x + 1)就是分式,而(3)/(5)是分数不是分式,因为分母没有字母。

2. 分式的基本性质- 分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

这就好比给分式“化妆”,只要按照规则来,它的“本质”不会变。

例如(a)/(b)=(ac)/(bc)(c≠0)。

3. 分式的运算- 分式的乘除:分式相乘,分子乘分子,分母乘分母;分式相除,就把除式的分子分母颠倒位置后再相乘。

就像一群小分式在玩乘法和除法的游戏,按照规则就能算出结果。

- 分式的加减:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,要先通分,把它们变成同分母分式,然后再按照同分母分式加减的方法计算。

这就好比把不同的小伙伴拉到同一个“队伍”里,然后再进行计算。

二、反比例函数1. 反比例函数的概念- 一般地,如果两个变量x、y之间的关系可以表示成y=(k)/(x)(k为常数,k≠0)的形式,那么y是x的反比例函数。

想象一下,x和y就像两个调皮的小孩,它们的乘积是个固定的数(k),但是x越大,y就越小,就像跷跷板一样。

2. 反比例函数的图象和性质- 反比例函数的图象是双曲线。

当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内,y随x的增大而减小;当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y随x的增大而增大。

可以把图象想象成两个弯弯的“手臂”,k的正负决定了这两个“手臂”在哪个象限跳舞。

3. 反比例函数的应用- 在实际生活中,比如压力一定时,压强和受力面积的关系就可以用反比例函数来表示。

这就像我们在雪地里走路,脚面积越大,压强越小,就不容易陷进去,这里压强和受力面积就是反比例关系。

八年级下册数学人教版公式

八年级下册数学人教版公式

八年级下册数学人教版公式
1.平方差公式:(a+b)(a-b)=a²-b²。

2.完全平方公式:(a+b)²=a²+2ab+b²或(a-b)²=a²-2ab+b²。

3.添括号法则:添括号时,如果括号前面是正号,括到括号里的
各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。

4.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不
变,指数相减。

5.单项式相除,把系数与同底数幂分别相除作为商的因式,对于
只在被除式里含有的字母,则连同它的指数作为商的一个因式。

6.多项式除以单项式,先把这个多项式的每一项除以这个单项式,
再把所得的商相加。

7.把一个多项式化成几个整式的积的形式,这种变形叫做把这个
多项式因式分解,也叫把这个多项式分解因式。

请注意,这些公式仅适用于人教版八年级下册的数学教材。

具体应用方法请参考教材或咨询数学教师。

八年级数学定理定义总结大全

八年级数学定理定义总结大全

八年级数学定理定义总结大全一、三角形相关1. 三角形内角和定理- 三角形的内角和就像一个固定的小秘密,不管啥样的三角形,它的三个内角加起来永远等于180°。

就像三个小伙伴凑在一起,不管他们怎么打闹,他们的力量总和是固定的呢。

2. 等腰三角形的性质- 等腰三角形可有意思啦。

它就像一个对称的小房子,两条边(腰)是一样长的。

等腰三角形的两个底角也相等,就像住在这个小房子两边房间里的小伙伴,他们的地位是平等的呢。

而且等腰三角形底边上的高、中线和顶角平分线三线合一,这就像是一把神奇的钥匙,能同时打开三扇不同功能的门。

3. 等边三角形的性质- 等边三角形那可是三角形里的超级明星。

它的三条边都相等,就像三个一模一样的小战士。

它的三个内角也都相等,而且每个角都是60°,就像三个小伙伴都有着同样阳光开朗的性格。

4. 三角形全等的判定定理(SSS、SAS、ASA、AAS、HL)- SSS(边边边):如果两个三角形的三条边都对应相等,那就像两个用同样的三根小木棍搭成的小架子,肯定是完全一样的,这两个三角形就全等啦。

- SAS(边角边):有两条边和它们的夹角都对应相等的两个三角形全等。

可以想象成有两个三角形,它们有两条边就像两只手臂,手臂的长度一样,而且手臂之间的夹角也一样,那这两个三角形就是全等的,就像两个做着同样动作的小人。

- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

就好比两个三角形里有两个角是一样的,而且这两个角中间夹着的边也一样长,那这两个三角形就像一对双胞胎,完全一样。

- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

这就像两个三角形,有两个角相同,然后剩下的一条边(不是两角的夹边哦)也相等,那它们也是全等的。

- HL(斜边、直角边):这个是专门对付直角三角形的。

如果两个直角三角形的斜边和一条直角边对应相等,那这两个直角三角形就全等啦。

就像两个直角三角形,它们的斜边是一样长的,而且有一条直角边也一样长,那它们肯定是全等的。

八年级下册数学公式

八年级下册数学公式

1 过两点有且只有一条直线3 同角或等角的补角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平。

8 如果两条直线都和第三条直线平行,这两条直线也互相平。

9 同位角相等,两直线平。

10 内错角相等,两直线平。

11 同旁内角互补,两直线平。

12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的。

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b 的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册定义公式汇总第十六章 二次根式1、一般地,把形如a ((a ≥0)的式子叫做二次根式,“”称为二次根号。

(一个正数有两个平方根;在实数范围内,负数没有平方根。

) 2、二次根式的性质:(a )2=a (a ≥0),==a a 23、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.4、二次根式的乘法法则:a ×b =ab (a ≥0,b ≥0)二次根式的乘法法则逆用:ab =a ×b (a ≥0,b ≥0) 5、二次根式的除法法则:ba =ba(a ≥0,b >0) 二次根式的除法法规逆用:b a =ba(a ≥0,b >0) 6、最简二次根式:必须同时满足下列条件 ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; ③分母中不含根a (a >0)a -(a <0)0 (a =0);式。

7、二次根式加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

10、同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

11、有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.第十七章 勾股定理1、勾股定理 (命题1)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边 在⊿ABC 中,∠C=90 º,则c=22b a ,a=22b -c ,b=22a -c )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题2、勾股定理的逆定理 (直角三角形的判定) (命题2)如果三角形的三边长a 、b 、c ,满足a 2+b 2=c 2那么这个三角形是直角三角形要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若a2+b2=c2,则△ABC是以∠C为直角的直角三角形(若c2> a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2﹤a2+b2,则△ABC为锐角三角形)。

(定理中a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+ c2= b2,那么以a,b,c为三边的三角形也是直角三角形,但是b为斜边)3、命题2与命题1的题设、结论正好相反,这两个命题叫做互为逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

4、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

5、常见的勾股定理三边的组合:3 4 5 5 12 13 6 8 107 24 25 8 15 17 9 12 15第十八章平行四边形四边形知识点:一、关系结构图:二、知识点讲解:1、平行四边形的性质(重点):ABCD 是平行四边形⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(2、平行四边形的判定(难点):.3、 矩形的性质:因为ABCD 是矩形⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴.4、矩形的判定:(1)有一个角是直角的平行四边形;(2)有三个角是直角的四边形; (3)对角线相等的平行四边形;(4)对角线相等且互相平分的四边形.5、菱形的性质:因为ABCD 是菱形⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(6. 菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四条边都相等(一组邻边等)平行四边形(321 四边形ABCD 是菱形.7、正方形的性质:ABCD 是正方形⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所(8. 正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD 是正方形.9、两条平行线之间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。

10、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

11、三角形的中线: 三角形的一边中点与这边所对顶点的连线叫做三角形的中线。

12、三角形的中位线定理:三角形的中位线平行行三角形的第三边,并且等于第三边的一半。

第十九章 一次函数函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,y 是因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的点一定在函数图像上)一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.运用:求解析式中的参数、求函数解释式7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);函数表达式为y=3X第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(一)一次函数1、一次函数的定义一般地,形如y kx b=+(k,b是常数(其中k与b的形式较为灵活,但只要抓住函数基本形式,准确找到k与b,根据题意求的常数的取值范围),且0k≠)的函数,叫做一次函数,其中x是自变量。

当0b=时,一次函数y kx=,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b=+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b=,0k≠时,y kx=仍是一次函数.⑶当0b=,0k=时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx (k不为零) ①k不为零②x 指数为1 ③b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x 的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)Y=kx +b 其中 b 实际就是函数图象与坐标轴Y 轴的交点即当x=0时。

(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb ,0) (3)走向:⇔⎩⎨⎧>>0b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限(4)增减性: k>0,y 随x 的增大而增大();k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:4、一次函数y=kx +b 的图象的画法.在实际做题中只需要俩点就可以确定函数图像,一般我们令X=0求出Y 的值,再令Y=0求出X 的值.如图y=kx+b 解析:(两点确定一条直线,这两点我们 般确定在坐标轴上,因为X 轴上所有坐标点的纵坐标为0即(x,0)Y 横坐标为0即(0,y )这样作图既快又准确 (-b/k , 0 )5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质(正比例函数是一次函数的特例,即,正比例函数是一次函数b=0的情况,所以可以说正比例函数是一次函数而一次函数未必是正比例函数))6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式; (2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.第二十章 数据的分析一、数据的代表 1、算术平均数:把一组数据的总和除以这组数据的个数所得的商. 公式:nx x x n+⋅⋅⋅++21使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数.2、加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则nnn w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。

相关文档
最新文档