老外电子制作实例大全

合集下载

50个典型应用电路实例详解(电子制作)

50个典型应用电路实例详解(电子制作)

电路1 简单电感量测量装置在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。

该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。

一、电路工作原理电路原理如图1(a)所示。

图1 简单电感测量装置电路图该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。

BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。

测量被测电感L X时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。

电路谐振频率:f0 = 1/2πLxC所以L X = 1/4π2 f02C式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。

为此需要对电位器VR1刻度与变容二极管的对应值作出校准。

为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。

如图6—7(b)所示,该标准线圈电感量为0.44μH。

校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。

附表给出了实测取样对应关系。

附表二、元器件选择集成电路IC可选择Motoroia公司的VCO(压控振荡器)芯片。

VR1选择多圈高精度电位器。

其它元器件按电路图所示选择即可。

三、制作与调试方法制作时,需在多圈电位器轴上自制一个刻度盘,并带上指针。

外国牛人自制风力发电机1.5KW

外国牛人自制风力发电机1.5KW

外国牛人自制风力发电机1.5KW
转载自互联网
自制风力发电机
一.框架:
焊接好的机架!
加装追风尾冀
给机架上防锈色之后
二.发电机:
(1)转子磁体:
上图为转子模板,利用空隙放磁铁,在这个机上放置16块磁铁,该磁铁磁力非常之大,7.6*3.8*2CM
线圈大小应该和磁场位置相合,所以所示为线圈的定子模,线圈按此大小制作!
加工好的转子磁铁!
(2)定子线圈:
这些是用作做线圈的绕线模!
这是用此绕线模做出的单线圈!
定子线圈模板
放置的12只线圈
按照需要连接好连线,用胶带固定好!
用聚酯树脂粘好
加工好的成品定子线圈
装上螺丝,在装的时候防止螺丝被周围的磁铁吸引住!
调整轴承间隙,以转动无间隙,不卡!
装上转子,调整间隙,保持旋转间隙最小,不碰到!
三.叶片:
风叶采用松木3M*30CM*8CM的松木
用木工机械加工
四,安装:
直至目前为止,工程完成差不多了。

在16km/每小时,它的功率约400瓦以及20km/每小时,它的功率为1.5千瓦 .整个整项工程历时3周。

幼儿园电子制作案例分享

幼儿园电子制作案例分享

幼儿园电子制作案例分享主题:幼儿园电子制作案例分享要求:提供一种适合幼儿园的电子制作案例,介绍制作过程及成果展示。

幼儿园电子制作案例分享: 制作可爱的电子宠物制作过程材料准备:1. Arduino开发板 x12. OLED显示屏(0.96寸)x13. 舵机 x24. 3.7V锂电池 x15. Jumper wires x206. 3D打印外壳步骤:1. 按照电子魔法书中的指示,将Arduino开发板和OLED显示屏通过jumper wires连接。

2. 接下来将两个舵机与Arduino开发板连接,并将它们放入3D打印的外壳内。

3. 程序使用了Adafruit_SSD1306的库来控制OLED显示屏的输出。

这将在屏幕上显示仪表盘。

4. 在仪表盘上新增一个虚拟按键,使它能够控制你的电子宠物。

5. 将锂电池与Arduino连接以便供电。

6. 连接好所有线缆之后,将拼装完成的电子宠物放入外壳内。

7. 程序使用了Adafruit_PWMServoDriver库来控制舵机。

因此,要确保正确安装,并将舵机连接到板子。

8. 至此,一款可爱的电子宠物就完成了。

成果展示我们在幼儿园内成功制作了以上电子宠物,并让幼儿亲手拼装完成。

它们的应用程序在屏幕上呈现出一个可以打电话的宠物,非常喜欢与孩子交谈。

幼儿码代码也是非常有趣的经历,因为在设计和搭建这个小玩意儿时,他们学习了计算机的一些基础概念,如代码、逻辑和信号处理等。

我们的老师们衷心地相信,在这样一个素材丰富的编程环境中,孩子们将成为自学型的程序员,创造出更多的有趣、聪明和可行的智能设备。

结论制作可爱的电子宠物是一项简单的任务,但它能够吸引孩子们的兴趣,使他们爱上编程。

同时,这也是在幼儿园内倡导STEM教育和创新思维的例证。

希望我的经验分享能为其他教育者带来帮助,激励他们在幼儿中心内倡导科技教育。

外国牛人教你一步步快速打造首台机器人

外国牛人教你一步步快速打造首台机器人

外国牛人教你一步步快速打造首台机器人。

一个热压缩管(5mm左右)
有时候你需要将两条电线焊接在一起,例如Sharp的红外测距器件,买回来的时候只有一条直线插在插头上。

你怎么办呢?就是将上面速提到的杜邦线切成两段,然后将他们焊在一起。

但在此之前,你需要切一小段热压缩管去遮住不绝缘的那一部分。

之后利用打火机,你可以迅速加热这个热压宿管,然后压缩到适合线的大小,这比用胶带明智多了。

上面提到的所有材料都包含在LMR包里面。

你还需要以下材料:
电池
三个AA不可充电电池或者四个AA充电电池。

这个机器人需要5V电压供电。

主要是因为Sharp的那块芯片在5V的时候的工作状态是最佳的,这也是我们这样设计的原因。

马达和伺服电机需要更高的电压,微控制器在6V的情况下还能正常工作,但保持简易是这里的核心关键,因此我们给这机器人提供的是尽可能接近5V的电压,不能太高或者太低,既然这是我们的首个机器人。

因此我们要确保不会烧焦任何东西。

这会你应该知道一个电池提供1.5V电压。

然而,我相信你不知道可充电电池提供的是1.2V的电压吧!
无论你是否知道这些,三个1.5V的普通电池就是4.5V。

如果我们用4 个1.5V电池,我们可以得到6V,对额定电压为5V的Sharp的芯片来说这是。

英科学家推家庭趣味实验

英科学家推家庭趣味实验

英科学家推家庭趣味实验:自己制作潜水艇 2007年03月30日 11:40 新浪科技制造魔力实验用品:一个空饮料罐、一块聚苯乙烯塑料布。

将聚苯乙烯塑料布在头发上摩擦一分钟,再用这块布朝着空饮料罐挥动,罐子便会乖乖的向你靠来。

这是由于电子(原子组成部分,带负电荷)在做怪。

当摩擦时,电子可以被转移到接触的物体上。

聚苯乙烯塑料布就是通过“窃取”电子的办法才具有魔力的。

由于同性相吸,异性相斥,带正电荷质子不能移动,但带负电荷的电子却是可以移动的,所以当用带负电荷的塑料布朝着罐子挥动时,罐子上靠近塑料布一边的电子就会被排斥到另一边,使其一边带正电,一边带负电,正电一端正好被带负电的塑料布吸引,所以我们就会看到空饮料罐会向塑料布靠近了。

感觉并不可靠实验用品:水、冰块若干、三个大碗或洗脸盆。

第一只碗中倒冷水并放置几块冰,第二只碗中倒温水,第三只碗中倒热水(但不要太烫)。

一只手放进冷水,一只手放进热水,一分钟后,两只手都放进温水里。

这时,虽然两只手放在一碗水里,温度是一样的,但感觉却全然不同。

热水里拿出来的手觉得冷,冷水里拿出的手觉得暖和或热。

环境相同,为什么会有不同的感觉呢?这是因为我们的感觉是相对的,不像客观温度那么精确,利用这种感觉,可以测量环境的变化,这一测量的过程也叫做适应,这也可以解释为什么屎壳郎不知道自己臭。

不是大脑的错实验用品:旋转椅、助手。

坐在旋转椅上,弯下头直到一只耳朵被肩膀遮住,伸出腿,让一个朋友帮你旋转大约30秒,然后试着站起来走路,你将会前后方向摇摇晃晃。

但是如果保持头垂直做这个实验,你将会左右方向摇摇晃晃。

为什么会这样头晕眼花呢?原来内耳中包含着一些负责监控平衡的半圆型导管,当你坐在椅子上旋转时,导管中的液体会嗖嗖作响,当你停止旋转后,内耳中的平衡监控器还会认为你在旋转,并向大脑传递信息——你还在旋转,即使大脑认为你停止了运动。

这样,大脑认识与内耳平衡监控器的感觉发生冲突,晕头转向也就在所难免了。

实用电子小制作39例 (1)共3页word资料

实用电子小制作39例 (1)共3页word资料

实用电子小制作39例电路1:简易声控闪光灯的制作电路2:音乐门铃的制作电路3:多功能报警器的制作电路4::节拍器的制作电路5:汽车转向灯电路的制作电路6:声光控路灯的制作电路7:红外遥控器检测仪的制作电路8:枕边LED方便灯的制作电路9:触摸记忆开关的制作电路10:声控闪光多谐振荡器电路的制作电路11:爱心花样流水灯电路12:555多谐振荡器的制作电路13:光控报警器的制作电路14:助听器的制作电路15:信箱提醒器的制作电路16:宝宝尿床提醒器的制作电路17:炉膛熄火报警器电路18:电子助记器的制作电路19:光控路灯的设计与制作电路20:用LM317可调稳压电源的制作电路21:具有固定输出电压的稳压电源电路的制作电路22:流动彩灯电路的制作 电路23:互补管振荡器的制作 电路24:模拟“知了”电路的制作: 电路25:多谐振荡器的制作 电路26:防空报警器的制作 电路27:TDA2822助听器的制作 电路28:简易测光仪电路的制作 电路29:简易光控电路的制作 电路30:LED 小夜灯的制作 电路31:电子鸟的制作 电路32:LED 循环灯的制作电路33:迎宾器的制作电路34:简易水塔水位报警器的制作RP电路35:555水位控制电路的制作电路36:电容器充放电实验电路37:LED电平指示电路的制作电路38:电位器调光电路电路39:有源小音箱的制作希望以上资料对你有所帮助,附励志名言3条:1、上帝说:你要什么便取什么,但是要付出相当的代价。

2、目标的坚定是性格中最必要的力量源泉之一,也是成功的利器之一。

没有它,天才会在矛盾无定的迷径中徒劳无功。

3、当你无法从一楼蹦到三楼时,不要忘记走楼梯。

要记住伟大的成功往往不是一蹴而就的,必须学会分解你的目标,逐步实施。

爬墙的简单机器人

爬墙的简单机器人

教你用电子元器件DIY一个可以爬墙的简单机器人想挣脱地心引力的束缚?想练习跑酷在垂直的墙壁上疾走?——不要用崇拜的目光注视我,虽然我就是飞檐走壁,仁者无敌的可爱玲珑Wallbots!当然我也不介意你称呼我的艺名:【蜘蛛侠】墙面上爬来爬去的是神马?!莫要惊慌,既不是壁虎也不是变异蜘蛛,它们是可爱的Wallbots——能在垂直表面进行穿越的机器人。

想知道怎么制作?嗯哼,往下看吧~小W可以在任何含金属墙面上移动,包括电梯,白板,冰箱、金属门。

小W还配备了几个光传感器,通过它们可以进行简单的交互。

3种模式可供选择,通过光传感器进行转换:红色走得快,趋近障碍物(例如人的手或者小W的兄弟姐妹们);绿色走得慢,远离障碍;黄色走得最慢,检测到物体时完全停止。

1 工具和材料● 一些不易弯曲的硬线● 绝缘胶布● 线● 硬板纸● 胶棒● 热胶枪● 剪刀● 剪钳(绞线的那个)○ 2.2K欧姆电阻*4○ 10K欧姆电阻○ 100欧姆电阻○ Arduino Mini(单片机) ○ 伺服电机*2○ 磁铁片*6○ 1个RGB LED灯○ 1个轻型的电池2 使伺服电机连续运转之入门篇● 把固定它的壳子打开,对每个伺服机做简单修改就能得到我们需要的连续转动,先撬开壳子。

● 把妨碍转动的壳子剪掉,这样电位计就能一直获得连续信号。

● 这个黑色的部分是用来让它转了180度后停止的,看见没?两个黑色塑料小片儿。

● 取下齿轮● 把黑色壳子上的线剪下(下一个大步会告诉你怎么处理它们)。

● 把挡着连续转动的小塑料片儿剪掉。

3 使伺服电机连续转动之进阶篇● 现在,电位计已被成功调戏~(≧▽≦)/~,她一直采集连续信号。

● 从黑壳子上剪出红色,绿色和黄色的线(这个应当在上一步就做好了)。

● 绿色的线和黄色线之间焊个2.2K的电阻● 在红色和黄色的线之间也焊个2.2K的电阻4 反向设置● 在相同模拟信号下,伺服机的转向一般是相同的。

他们对称安装在小W上,但是要让一个反向怎么办?在硬件和软件上都可以解决(我用硬件做的,因为我是代码懒人,摔!)。

废旧电子重生记:DIY制作+变废为宝设计实例

废旧电子重生记:DIY制作+变废为宝设计实例

废旧电子重生记:DIY制作+变废为宝设计实例我是一名DIY爱好者,喜欢DIY制作加上一些奇思妙想把废旧的电子产品变成让人拍手称奇的创意制作,这些变废为宝的经历给我的生活添加了别样的乐趣,不知是不是兴趣所致,每每看到电子网站有相关的改造案例,总会收藏相关网站页面待日后慢慢研究一番。

今天整理了几个比较经典的DIY改造,有相关废旧产品不妨研究研究。

废弃的路由器改造的WIFI机器人,附视频,源代码,制作过程这款WIFI机器人的灵感来自于一个废弃的路由器,说白了,就是给再土气不过的无线路由换个“头脑”,装上“手脚”,给它换个系统,即通俗所说的“刷机”,完成以上任务,这个会蓝光呼吸、会偷拍的机器人就改造成功了,改造过程简单,功能超强大。

/diagram/4234_4237/110796.html费电鼠标G52大改造,“变身”节能感应鼠标无线鼠标的电池不经用,几天就要更好,不知道大家有没有同感。

这不就又人把费电的鼠标改造成了节能感应鼠标,使用了一个感应开关TTP223,待机功耗比大部分无线鼠标都要低。

但是感应出了问题,手离开鼠标之后,再次使用会有1秒左右的延迟,有强迫症的改造技术宅可以一起帮忙找找更好的解决方法。

/diagram/4234_4242/200745.html废旧笔记本电池也能闪闪发光,变身大容量移动电源毫无压力!(附制作全过程)笔记本电池用久了,或者笔记本电脑使用久了,最终报废了,你会怎么处理呢?相信很多朋友会将其做废铁卖掉,其实废弃的笔记本浑身都是宝,如何把笔记本电池改造成大容量移动电源。

正好手头有个坏了的笔记本,喜欢瞎折腾的我怎么能错过这个机会,后面请大家关注我在cndzz论坛的最新成果展示。

/diagram/4234_4236/200576.html旧笔记本变无线数字像框DIY电子相框是用旧笔记本电脑改装,用无线连接局域网内文件服务器同步相片簿,并实现随机放映的幻灯片效果。

此作品的几个特色:1,当电子相框开启后,安装在系统中的LINUX启动后开启照片幻灯显示效果2,电子相框连接到支持TCP/IP协议的无线网络并通过DHCP协议获得IP地址3,假如IP地址更换,电子相框会自动发一封EMAIL通知作者新的IP地址4,利用SSH服务器作为控制端电脑与电子相框间的基本交互方式5,电子相框每天定时与家里存放照片的文件服务器同步相片辑6,电子相框被设置为每天晚上定时关闭,并在早上开启/diagram/4234_4242/199926.html基于旧手机的GSM远程报警器制作,包括电路图,源代码旧手机、stc89c52单片机打造的GSM远程报警器,当有人进入一定区域内,装置能自动拨打指定号码进行呼叫,当区域内的人持续不离开时,装置能连续呼叫3次,每次2分钟。

令人拍案叫绝的简易三极管电子制作合集(图文)

令人拍案叫绝的简易三极管电子制作合集(图文)

令人拍案叫绝的简易三极管电子制作合集(图文)1,花盘湿度警告器,功能:插入探针,接通电源,当盆土干裂时,警报响起首先,我们需要一个9015三极管,s和c都无所谓,因为9015是pnp型0.4w三极管此为实物将管脚弯折为左图所示准备一个1kk的电阻将电阻与三极管中间的脚焊接,如左图所示将电阻另一端,如图焊接在三极管的另外一只脚左图为俯视图此时,我们花盆测试器的“中央处理器”就基本完成了,不过,光有核心部分还不够,我们怎么才能通过处理器知道花盆是否干裂呢?这就需要给“处理器”表达花盘状态的警报器,这个警报器,你可以用led也可以用各种奇怪的东西代替,不过我推荐用pc机箱的喇叭,如左图所示,为实物图将喇叭的2个脚中的一脚焊在三极管上,如左图,为卧视图此为俯视图,各位焊对了吗?如果你焊对了,那现在你的花盆测湿器就基本完成了。

现在,喇叭的另一脚如图,为+极,连接三极管,靠下的那一个电阻脚为-极,而接探针的地方则是图中两处输入的地方。

他们分别是:三极管中间的脚和喇叭接+的脚。

值得注意的是,探针与处理器连接的地方,没有+-极,连接探针时不需要注意极性最后,测试你的作品:将连接处理器输入点的两个探针插入土壤,如果这时候土壤干燥,而你的三极管和电阻是好的,那么你的警报器应该会发出刺耳的蜂鸣,这时候,你再给土壤浇水,那你的警报器应该就会马上停止鸣叫了。

2.单管自激要求:在接通电源后无外界帮助,自动产生1~4万夫特直流高压一个自带散热器或已装好散热器的npn 2n3055开关触发三极管左图为俯视图,图中有亮点,可忽视!27欧的电阻和24欧的电阻,功率尽量大将27欧电阻一脚焊在三极管右边的脚上。

如图,将27 欧没焊东西的一脚与24欧电阻串联在27欧电阻与三极管的连接处焊接黑色导线一根。

并在24欧电阻空闲的脚上焊接红色导线一根这两根将作为输入电源再在这个位置焊接黑色导线一根在三极管外壳或散热器上焊接反馈输出导线,如图,一定要焊牢!不然影响起振拉弧!再在两个电阻相连处,如图,焊接一根黄线,同样作为信号反馈注:在制作过程中,两个电阻的连接处,始终没有与相邻的三极管右脚连接接下来,整理一下导线,如图焊接在电脑高压包上,基本上电脑高压包连接单管自激的方法都大相径庭,不必我赘述,如果你用彩电高压包,那么请参照回忆发的帖(晒晒我的单管自激)略微改造即可如果你一步步按照我的方法来做那么,现在,当你接通电源时,单管自激便会发出工作时的高频声音并产生几万伏的高压了。

外国牛人造超声波避障自我充电智能机器人(图文)

外国牛人造超声波避障自我充电智能机器人(图文)

外国牛人造超声波避障自我充电智能机器人(图文)电子发烧友网讯:Fijibot是一个自制的,自我充电的photovore机器人,我用了一个1.5L的Fiji水瓶、Arduino Uno 开发板、从Radio Shack得到的6V太阳能开发板和其他零件、从Adafruit得到的Arduino Proto Shield 原型扩展板和其他杂七杂八的东西,还有从RC car 得到的车轮和操舵装置。

#p#透过电池板对其电池就行充电#e#我决定使用Fiji的水瓶来做我这个机器人的主体骨架是因为Fiji Water是一间很有环境保护意识的公司,同时Fijibot 透过电池板对其电池就行充电。

再者,我认为这个圆口平盘矩形的形状加上可以看通透的特性会让这个机器人看起来很#p#一个很棒的微控制器#e#我用Arduino Ubo开发板来造这个机器人是因为对这个小工程来说,它是一个很棒的微控制器。

利用C语言进行编程让我感到很轻松。

同时,我当地的Radio Shack有很多Arduino 开发板和扩展板以供选择。

#p#开发板上的传感器伺服电机等器件#e#在Fiji水瓶的狭窄空间里面进行布置的事情,我希望我可以轻易地将Arduino开发板上如传感器、伺服电机等所有器件轻易的连接上。

所以我从Adafruit购买了一个Proto Shield原型开发板、插针分离引脚和6“的接口跳线。

我把这些插针接到proto shield上,同时用跳线接上需要连接的地方。

#p#寻找阳光的智能机器人#e#Fijibot的主要任务就是去寻找“食物”,它的“食物”就试试寻找阳光,通过背上的太阳能板为自己充电。

我用了四个装在LED座的左右前上的光敏电阻去帮助它去寻找房间里最猛阳光的位置。

主程序比较这四个电阻的数值,将其指向光线最猛烈的地方。

一旦它找到了最适合的地点。

,它会停下来,享受阳光大餐。

#p#利用超声波来避免碰上任何物体#e#在寻找阳光充电的时候,Fijibot通过Ping传感器利用超声波来避免碰上任何物体。

电子趣味小制作范文

电子趣味小制作范文

电子趣味小制作范文材料:1.555时钟芯片x12.电容:1μFx1,10μFx13.电阻:10kΩx1,100kΩx14.LED灯x15.9V电池x16.连接线x若干制作步骤:1.将555芯片放置在面包板上,确保引脚正常对齐。

2.在芯片上方插入10μF电容,正极插入VCC引脚,负极插入GND引脚。

3.在芯片下方插入1μF电容,正极插入控制引脚(第5引脚),负极插入GND引脚。

4.在芯片的第3引脚和第6引脚之间插入100kΩ电阻。

5.在芯片的第6引脚和第7引脚之间插入10kΩ电阻,并将LED的正极连接到第7引脚处。

6.将LED的负极连接到GND引脚。

7.连接9V电池,正极接触VCC引脚,负极接触GND引脚。

原理:这个电子装置制作的是一个脉冲发生器。

555时钟芯片是一个广泛使用的集成电路,可以用于产生各种类型的信号。

在这个制作中,555芯片运作在双稳态触发器模式下,产生高电平和低电平之间的方波信号。

在电路中,10μF电容通过第5引脚(控制引脚)和GND引脚起到充/放电控制的作用。

当电容充电时,电压逐渐上升,直到达到芯片中内置的比较器的阈值。

此时,输出电平由低变为高。

当电容放电时,电压逐渐降低,直到达到比较器的低阈值。

此时,输出电平由高变为低。

这个过程不断重复,从而产生方波信号。

通过改变10μF电容和100kΩ电阻的数值,可以调整方波信号的频率。

可以通过LED来观察到方波信号的变化,LED会随着方波的周期不断闪烁。

注意事项:1.在制作电子装置时,需要小心连接线的插入位置,确保引脚正确连接。

2.555芯片是静电敏感的器件,在处理时应该避免直接触摸芯片引脚,以免造成损坏。

3.使用9V电池时,需注意正负极的连接方向,避免短路或反接。

4.由于电路中使用了LED灯,当LED接触到第7引脚时,要确保正极连接到第7引脚,负极接地。

总结:通过这个简单的电子趣味小制作,我们可以学习到555时钟芯片的基本工作原理,并利用它来制作一个脉冲发生器。

Arduino创意设计大全(二)

Arduino创意设计大全(二)

方案版权归爱特梅尔所有,不得转载,违者将追究法律责任Arduino 创意设计大全(二)Atmel 最新的创意设计大全,先后奉上上百个创意设计,、基于AVR的频率合成器、投影趣味激光圈作品、IOS无线烧录、基于ATmega2560的四轴飞行器、基于Arduino的全自动垃圾桶、基于Arduino的仿生机器人、智能灭火机器人、基于Arduino的智能敲门系统、Arduino小帮手搬运机等等创意DIY的设计制作全解析。

12、基于AVR的频率合成器频率合成器是利用一个或多个标准信号,通过各种技术途径产生大量离散频率信号的设备。

频率合成器广泛地应用于仪器仪表、遥控遥测通信、雷达、电子对抗、导航以及广播电视等各个领域。

尤其是在短波跳频通信中,信号在较宽的频带上不断变化,并且要求在很小的频率间隔内快速地切换频率和相位,因此频率锁定的速度和间隔大小都是非常重要的因素。

在微波领域,频率合成器作用是给微波扫频信号提供一定分辨力的频率参考信号,并对微波信号输出频率进行逐点锁定,以得到高准确度和稳定度的扫频输出信号。

在通信领域,频率合成器输出的信号将是有用信号的载体,是决定通信质量的关键因素。

3、投影趣味激光圈作品Håkon A. Hjortland 等人参照<科学杂志>文章<使用激光和旋转的镜子创造一个投影机>,并制作实现haakoh avr.这个投影机原理是:利用激光照射在16块旋转的镜子,光电对管检测镜子旋转的时间,等分512时间小片段,每片段时间控制激光不同亮灭,既产生具有32*16像素的投影效果.该装置特点是用一片镜子,但通过PWM控制激光的忽明忽暗,达到了另一与众不同的效果.4、IOS无线烧录国内首个完成通过IOS系统对Arduino Uno进行无线烧录。

5、基于ATmega2560的四轴飞行器为方便以后扩充更多外设,选择的Arduino MEGA2560 的板子,传感器选择的GY-86 模块,包括MPU6050 陀螺仪与加速度计、HMC5883 磁力计、MS5611 高精度气压计。

老外自制的中频感应加热装置

老外自制的中频感应加热装置

DIY中频加热炉IntroductionInduction heating is a non-contact heating process. It uses highfrequency electricity to heat mat erials that are electricallyconductive. Since it is non-contact, the heating process does notcont aminate the material being heated. It is also very efficient sincethe heat is actually generated inside the workpiece. This can becontrasted with other heating methods where heat is generated in aflame or heating element, which is then applied to the workpiece. Forthese reasons Induction He ating lends itself to some uniqueapplications in industry.How does Induction Heating work ?A source of high frequency electricity is used to drive a largealternating current through a coil. This coil is known as the workcoil. See the picture opposite.The passage of current through this coil generates a very intenseand rapidly changing magnetic fi eld in the space within the work coil.The workpiece to be heated is placed within this intense al ternatingmagnetic field.Depending on the nature of the workpiece material, a number of things happen...The alternating magnetic field induces a current flow in theconductive workpiece. The arrangement of the work coil and theworkpiece can be thought of as an electrical transformer. The work coili s like the primary where electrical energy is fed in, and theworkpiece is like a single turn seco ndary that is short-circuited. Thiscauses tremendous currents to flow through the workpiece. Thes e areknown as eddy currents.In addition to this, the high frequency used in induction heatingapplications gives rise to a phe nomenon called skin effect. This skineffect forces the alternating current to flow in a thin laye r towardsthe surface of the workpiece. The skin effect increases the effectiveresistance of the m etal to the passage of the large current. Thereforeit greatly increases the heating effect caused by the current inducedin the workpiece.(Although the heating due to eddy currents is desirable inthis application, it is interesting to note that transformermanufacturers go to great lengths to avoid this phenomenon in theirtransform ers. Laminated transformer cores, powdered iron cores andferrites are all used to prevent eddy cu rrents from flowing insidetransformer cores. Inside a transformer the passage of eddy currents is highly undesirable because it causes heating of the magnetic core andrepresents power that is was ted.)And for Ferrous metals ?For ferrous metals like iron and some types of steel, there is anadditional heating mechanism tha t takes place at the same time as theeddy currents mentioned above. The intense alternating magne tic fieldinside the work coil repeatedly magnetises and de-magnetises the ironcrystals. This rapi d flipping of the magnetic domains causesconsiderable friction and heating inside the material. H eating due tothis mechanism is known as Hysteresis loss, and is greatest formaterials that have a large area inside their B-H curve. This can be alarge contributing factor to the heat generated during inductionheating, but only takes place inside ferrous materials. For this reasonferrous ma terials lend themselves more easily to heating by inductionthan non-ferrous materials.It is interesting to note that steel looses its magnetic materialswhen heated above approximately 700°C. This temperature is known as theCurie temperature. This means that above 700°C there ca n be no heatingof the material due to hysteresis losses. Any further heating of thematerial must be due to induced eddy currents alone. This makes heatingsteel above 700°C more of a challenge f or the induction heatingsystems. The fact that copper and Aluminium are both non-magnetic andvery good electrical conductors, can also make these materials achallenge to heat efficiently. (We wi ll see that the best course ofaction for these materials is to up the frequency to exaggerate los sesdue to the skin effect.)What is Induction Heating used for ?Induction heating can be used for any application where we want toheat an electrically conductive material in a clean, efficient andcontrolled manner.One of the most common applications is for sealing the anti-tamperseals that are stuck to the top of medicine and drinks bottles. A foilseal coated with "hot-melt glue" is inserted into the plas tic cap andscrewed onto the top of each bottle during manufacture. These foilseals are then rapid ly heated as the bottles pass under an inductionheater on the production line. The heat generated melts the glue andseals the foil onto the top of the bottle. When the cap is removed, thefoil re mains providing an airtight seal and preventing any tampering orcontamination of the bottle's con tents until the customer pierces thefoil.Another common application is "getter firing" to removecontamination from evacuated tubes such as TV picture tubes, vacuumtubes, and various gas discharge lamps. A ring of conductive materialcal led a "getter" is placed inside the evacuated glass vessel. Sinceinduction heating is a non-conta ct process it can be used to heat thegetter that is already sealed inside a vessel. An induction work coilis located close to the getter on the outside of the vacuum tube andthe AC source is tur ned on. Within seconds of starting the inductionheater, the getter is heated white hot, and chemi cals in its coatingreact with any gasses in the vacuum. The result is that the getterabsorbs any last remaining traces of gas inside the vacuum tube andincreases the purity of the vacuum.Yet another common application for induction heating is a processcalled Zone purification used in the semiconductor manufacturingindustry. This is a process in which silicon is purified by means of amoving zone of molten material. An Internet Search is sure to turn upmore details on this pr ocess that I know little about.Other applications include melting, welding and brazing or metals.Induction cooking hobs and ricecookers. Metal hardening of ammunition,gear teeth, saw blades and drive shafts, etc are also com monapplications because the induction process heats the surface of themetal very rapidly. Therefo re it can be used for surface hardening, andhardening of localised areas of metallic parts by "ou trunning" thethermal conduction of heat deeper into the part or to surroundingareas. The non cont act nature of induction heating also means that itcan be used to sterilise metal instruments by h eating them to hightemperatures whilst they are already sealed inside a known sterileenvironment in order to kill germs.What is required for Induction Heating ?In theory only 3 things are essential to implement induction heating:1. A source of High Frequency electrical power,2. A work coil to generate the alternating magnetic field,3.An electrically conductive workpiece to be heated,Having said this, practical induction heating systems are usually alittle more complex. For examp le, a matching network is often requiredbetween the High Frequency source and the work coil in or der to getgood power transfer. Water cooling systems are also common in highpower induction heate rs to remove waste heat from the work coil and itsmatching network. Finally some control electron ics is usually employedto control the intensity of the heating action, ensure consistentresults, and to protect the system from adverse operating conditions.However, the basic principle of opera tion of any induction heaterremains the same as described earlier.Practical implementationIn practice the work coil is usually incorporated into a resonanttank circuit. This has a number of advantages. Firstly, it makes eitherthe current or the voltage become sinusoidal. This minimis es losses inthe inverter by allowing it to benefit from eitherzero-voltage-switching or zero-curr ent-switching depending on the exactarrangement chosen. The sinusoidal waveform at the work coil alsorepresents a more pure signal and causes less Radio FrequencyInterference to nearby equipment. We will see that there are a numberof resonant schemes that the designer of an induction heater can choosefor the work coil:Series resonant tank circuitThe work coil is made to resonate at the intended operatingfrequency by means of a capacitor plac ed in series with it. This causesthe current through the work coil to be sinusoidal. The seriesre sonance also magnifies the voltage across the work coil, far higherthan the output voltage of the inverter alone. The inverter sees asinusoidal load current but it must carry the full current th at flowsin the work coil. For this reason the work coil often consists of manyturns of wire with only a few amps or tens of amps flowing.This arrangement is commonly used in things like rice cookers wherethe power level is low, and th e inverter is located next to the objectto be heated. The main drawbacks of the series resonant a rrangement arethat the inverter must carry the same current that flows in the workcoil. In additi on to this the series resonant action can become verypronounced if there is no workpiece presentto damp the circuit. Thisis not a problem in applications like rice cookers where the workpieceis always the same cooking vessel, and its properties are well known atthe time of design.The tank capacitor is typically rated for a high voltage because ofthe resonant voltage rise expe rienced in the series tuned resonantcircuit.Parallel resonant tank circuitThe work coil is made to resonate at the intended operatingfrequency by means of a capacitor plac ed in parallel with it. Thiscauses the current through the work coil to be sinusoidal. The parall elresonance also magnifies the current through the work coil, far higherthan the current capabili ty of the inverter alone. The inverter sees asinusoidal load current. However, in this case it on ly has to carry thepart of the load current that actually does real work. The inverterdoes not ha ve to carry the full circulating current in the work coil.This means that the work coil can be pl aced at a location remote fromthe inverter without incurring massive losses in the feed wires.It also means that work coils using this technique often consist offew turns of a thick copper co nductor but with large currents of manytens or hundreds of amps flowing. (This is necessary to ge t therequired Ampere turns to do the induction heating.) Water cooling iscommon for all but the s mallest of systems. This is needed to removeexcess heat generated by the passage of the large hig h frequencycurrent through the work coil and its associated tank capacitor.In the parallel resonant tank circuit the work coil can be thoughtof as an inductive load with a "power factor correction" capacitorinstalled across it. The PFC capacitor provides reactive curre nt flowequal and opposite to the inductive current drawn by the work coil.Therefore the only curr ent flow from the inverter is a small amountrequired to overcome losses in the "PFC" capacitor an d the work coil.There is always some loss in this tank circuit due to dielectric lossin the capac itor and skin effect causing resistive losses in the workcoil. Therefore a small current is alway s drawn from the inverter. Whena lossy workpiece is inserted into the work coil, this damps thepa rallel resonant circuit by introducing a further loss into thesystem. Therefore the current drawn by the parallel resonant tankcircuit increases when a workpiece is entered into the coil.Impedance matchingOr simply "Matching". This refers to the electronics that sitsbetween the source of high frequenc y power and the work coil we areusing for heating. In order to heat a solid piece of metal viaind uction heating we need to cause a TREMENDOUS current to flowin the surface of the metal. However this can be contrasted with theinverter that generates the high frequency power. The invertergene rally works better (and the design is somewhat easier) if itoperates at fairly high voltage but a low current. This allows commonswitch mode MOSFETs to be used. The comparatively low currents al somake the inverter less sensitive to layout and stray inductance. It isthe job of the matching n etwork and the work coil to transform the highvoltage/low current from the inverter to the low vo ltage/high currentrequired to heat the workpiece efficiently.We can think of the tank circuit incorporating the work coil (Lw) and its capacitor (Cw) as a parallel resonant circuit.This has a resistance (R) due to the lossy workpiece coupled intothe work coil due to the magneti c coupling between the two conductors.See the schematic opposite.In practice the resistance of the work coil, the resistance of thetank capacitor, and the resista nce of the workpiece all introduce aloss into the tank circuit and damp the resonance. Therefore it isuseful to combine all of these losses into a single "loss resistance."In the case of a paral lel resonant circuit this loss resistance appearsdirectly across the tank circuit. This resistanc e represents the onlycomponent that can consume power, and therefore we can think of thisloss res istance as the load that we are trying to drive power into asefficiently as possible.When driven at resonance the current drawn by the tank capacitor andthe work coil are equal and o pposite in phase and therefore cancel eachother out as far as the source of power is concerned. T his meansthat the only load presented to the power source at the resonantfrequency is the loss re sistance across the tank circuit.(Notethat, when driven either side of the resonant frequency, t here is anadditional "out-of-phase" component to the current caused by incompletecancellation of the work coil current and the tank cap current. Thisreactive current increases the total magnitud e of the current beingdrawn from the source but does not contribute to any useful heating inthe w orkpiece.)The job of the matching network is simply to transform thisrelatively large loss resistance acros s the tank circuit down to alower value that better suits the inverter attempting to drive it.The re are many different ways to achieve this impedance transformationincluding tapping the work coil, using a ferrite transformer, acapacitive divider in place of the tank capacitor, or a matching circuit such as an L-match network.In the case of an L-match network it can transform the relativelyhigh load resistance of the tank circuit down to something around 10ohms which better suits the inverter. This figure allows the inverterto run from several hundred volts whilst keeping currents down to areasonable level so th at standard switch-mode MOSFETs can be used toperform the switching operation.The L-match network consists of components Lm and Cm shown opposite.The L-match network also has another highly desirable property. TheL-match network provides a pro gressively rising inductive reactance toall frequencies higher than the resonant frequency of the tank circuit.This is very important when the work coil is to be fed from an inverterthat generat es a squarewave voltage output. Here is an explanation ofwhy this is so…The squarewave voltage generated by most half-bridge and full-bridgecircuits is rich in high freq uency harmonics as well as the wantedfundamental frequency. Direct connection of such a voltage s ource to aparallel resonant circuit would cause excessive currents to flow at theharmonics of the drive frequency! This is because the tank capacitor inthe parallel resonant circuit presents a p rogressively lower capacitivereactance to increasing frequencies. This is potentially very damagi ngto a voltage-source inverter. It results in large current spikes at theswitching transitions as the inverter tries to rapidly charge anddischarge the tank capacitor on rising and falling edges of thesquarewave. The inclusion of the L-match network between the inverterand the tank circuit negates this problem. Now the output of theinverter sees the inductive reactance of Lm in the mat ching networkfirst, and all harmonics see a gradually rising inductive impedance.In summary, the inclusion of an L-match network between the inverter and the parallel resonant ta nk circuit achieves two things.1.Impedance matching so that the required amount of power can be supplied from the inverter to the workpiece,2.Presentation of a rising inductive reactance to high frequency harmonics to keep the inverter safe and happy.Looking at the previous schematic above we can see that thecapacitor in the matching network (Cm) and the tank capacitor (Cw) areboth in parallel. In practice both of these functions are usuallyaccomplished by a single capacitor. Most of its capacitance can bethought of as being in parallel resonance with the work coil, with asmall amount providing the impedance matching action with the matchinginductor (Lm.) Combing these two capacitances into one leads us toarrive at the LCLR model for the work coil arrangement, which iscommonly used in industry.The LCLR work coilThis arrangement incorporates the work coil into a parallel resonantcircuit and uses the L-match network between the tank circuit and theinverter. The matching network is used to make the tank circuit appearas a more suitable load to the inverter, and its derivation isdiscussed in the section above.The LCLR work coil has a number of desirable properties:1. A huge current flows in the work coil, but the inverter only has tosupply a low current. The large circulating current is confined to thework coil and its parallel capacitor, which are usually located closeto each other.2.Only low current flows along the transmission line from the inverter to the tank circuit, so this can use lighter duty cable.3.Any stray inductance of the transmission line becomes part of the matching network inductance (Lm.)4.The inverter sees a sinusoidal load current so it can benefit fromZCS or ZVS to reduce its switching losses and therefore run cooler.5.The series matching inductor can be altered to cater for different loads placed inside thework coil.6.The tank circuit can be fed via several matching inductors frommany inverters to reach power levels above those achievable with asingle inverter. The matching inductors provide inherent sharing of theload current between the inverters and also make the system tolerant tosome mismatching in the switching instants of the paralleled inverters.Another advantage of the LCLR work coil arrangement is that it doesnot require a high-frequency transformer to provide the impedancematching function. Ferrite transformers capable of handling severalkilowatts are large, heavy and quite expensive. In addition to this,the transformer must be cooled to remove excess heat generated by thehigh currents flowing in its conductor. The incorporation of theL-match network into the LCLR work coil arrangement removes thenecessity of a transformer to match the inverter to the work coil,saving cost and simplifying the design.However, the designer should appreciate that a 1:1 isolatingtransformer may still be required between the inverter and the input tothe LCLR work coil arrangement if electrical isolation is necessaryfrom the mains supply. It depends whether isolation is important, andwhether the PSU in the induction heater already provides sufficientelectrical isolation to meet these requirements.Complete schematicThe complete schematic showing the inverter driving its LCLR work coil arrangement is shown belo w.Note that this schematic DOES NOT SHOW the MOSFET gate-drive and control electronics! Please dont ask for further information.The inverter is a simple half-bridge consisting of two MTW14N50MOSFETs made my On-semiconductor (formerly Motorola.) It is fed from asmoothed DC supply with decoupling capacitor across the rails tosupport the AC current demands of the inverter. However, it should berealised that the quality and regulation of the power supply forinduction heating applications is not critical. Full-wave rectified(un-smoothed) mains can work equally as well as smoothed and regulatedDC when it comes to heating metal. And there are many arguments forkeeping the size of the DC bus capacitor down to a minimum. Inparticular it improves the power factor of current drawn from the mainsupply, and it also minimises stored energy in case of fault conditionswithin the inverter.The DC blocking capacitor is merely to block the DC output from thehalf-bridge inverter from causing current flow through the work coil.It is sized sufficiently large that it does not take part in theimpedance matching, and does not adversely effect the operation of theLCLR work coil arrangement.Fault toleranceThe LCLR work coil arrangement is very well behaved under a variety of possible fault conditions.1.Open circuit work coil.2.Short circuit work coil, (or tank capacitor.)3.Shorted turn in work coil.4.Open circuit tank capacitor.All of these failures result in an increase in the impedance beingpresented to the inverter and therefore a corresponding drop in thecurrent drawn from the inverter. The author has personally used ascrewdriver to short-circuit between turns of a work coil carryingseveral hundred amps. Despite sparks flying at the location of theapplied short-circuit, the load on the inverter is reduced and thesystem survives this treatment with ease.The worst thing that can happen is that the tank circuit becomesdetuned such that its natural resonant frequency is just above theoperating frequency of the inverter. Since the drive frequency is stillclose to resonance there is still significant current flow out of theinverter. But the power factor is reduced due to the detuning, and thecurrent begins to lead the voltage. This situation is undesirablebecause the load current seen by the inverter changes direction beforethe applied voltage changes sign. The outcome of this is that currentis force-commutated between free-wheel diodes and the opposing MOSFETevery time the MOSFET is turned on. This causes a forced reverserecovery of the free-wheel diodes whilst they are carrying significantforward current. This results in a large current surge through both thediode and the opposing MOSFET that is turning on.Whilst not a problem for special fast recovery rectifiers, thisforced recovery can cause problems if the MOSFETs intrinsic body diodesare used to provide the free-wheel diode function. However, it should be realised that proper control of the inverter operating frequency should ensure that it tracks the resonant frequency of the tankcircuit. Therefore the leading power factor condition should ideally not arise, and should certainly not persist for any length of time. The resonant frequency should be tracked up to its limit, then the system shut-down if it has wandered outside of an acceptable range. Power control methodsIt is often desirable to control the amount of power processed by an induction heater. This determines the rate at which heat energy is transferred to the workpiece. The power setting of this type of induction heater can be controlled in a number of different ways:1. Varying the DC link voltage.The power processed by the inverter can be decreased by reducing the supply voltage to the inverter. This can be done by running theinverter from a variable voltage DC supply such as a controlledrectifier using thyristors to vary the DC supply voltage derived from the mains supply. The impedance presented to the inverter is largely constant with varying power level, so the power throughput of the inverter is roughly proportional to the square of the supply voltage. Varying the DC link voltage allows full control of the power from 0% to 100%.2. Varying the duty ratio of the devices in the inverter.The power processed by the inverter can be decreased by reducing theon-time of the switches in the inverter. Power is only sourced to the work coil in the time that the devices are switched on. The load current is left to freewheel through the devices body diodes during the deadtime when both devices are turned off. Varying the duty ratio of the switches allows full control of the power from 0% to 100%. The only significant drawback is forced reverse recovery of the free-wheel diodes that can occur when the duty ratio is reduced.3. Varying the operating frequency of the inverter.The power supplied by the inverter to the work coil can be reducedby detuning the inverter from the natural resonant frequency of the tank circuit incorporating the work coil. As the operating frequency of the inverter is moved away from the resonant frquency of the tank circuit, there is less resonant rise in the tank circuit, and the current in the work coil diminishes. Therefore less circulating current is induced in the workpiece.In order to control the power the inverter is normally detuned onthe high frequency side of the tank circuits natural resonance. This causes the inductive reactance of the matching circuit to become dominant as the frequency increases. Therefore the current drawn from the inverter by the matching network starts to lag in phase and diminish in amplitude. Both of these factors contribute to a reduction in real power throughput. In addition to this the lagging power factor ensures that the devices in the inverter still turn on with zero voltage across them.This method of controlling power level by detuning is very simplesince most induction heaters already have control over the operating frequency of the inverter in order to cater for different workpieces and work coils. The downside is that it only provides a limited range of control, as there is a limit to how fast power semiconductors can be made to switch. This is particularly true in high power applications where the devices may be running close to maximum switching speeds anyway.4. Varying the value of the inductor in the matching network.The power supplied by the inverter to the work coil can be varied by altering the value of the matching network components. The L-match network between the inverter and the tank circuit technically consists of an inductive and a capacitive part. But the capacitive part is in parallel with the work coil's own tank capacitor, and in practice these are usually one and the same part. Therefore the only part of the matching network that is available to make adjustable is the inductor.The matching network is responsible for transforming the load of the workcoil to a suitable load impedance to be driven by the inverter. Altering the inductance of the matching inductor adjusts the value to which the load impedance is translated. In general, decreasing the inductance of the matching inductor causes the work coil impedance to be transformed down to a lower impedance. This lower load impedance being presented to the inverter causes more power to be sourced from the inverter. Conversely, increasing the inductance of the matching inductor causes a higher load impedance to be presented to the inverter. This lighter load results in a lower power flow.The degree of power control achieveable by altering the matching inductor is fairly small. There is a also a shift in the resonant frequency of the overall system. This is the price to pay for combining the L-match capacitance and tank capacitance into one unit. The L-matchnetwork essentially borrows some of the capacitance from the tank capacitor to perform the matching operation, thus leaving the tank circuit to resonate at a higher frequency. For this reason the matching inductor is usually fixed or adjusted in coarse steps to suit the intended workpiece to be heated, rather than provide the user with a fully adjustable power setting.Heating pictures。

课外电器小制作(3)

课外电器小制作(3)

简单的无线话筒简易触摸开关笔者在实验中,偶然发现单向可控硅(MCR100-8)控制极在不需要加正向电压的情况下,只要用手触摸一下,就会导通,因此,笔者设计了一种简单的触摸开关,电路如下图所示。

触摸一下金属片开,SCR1导通,负载得电工作。

触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J 放电,维持继电器吸合约4秒钟,故电路动作较为准确。

如果将负载换为继电器,即可控制大电流工作的负载。

有兴趣的朋友,不妨一试。

助听电路图电路图自制简易助听器本助听器可用耳机或扬声器进行放音。

听觉不灵敏者或老年性耳聋者使用可提高听觉;青少年学习外语时对着话筒小声默读,声音经放大后再用耳机聆听,这样既可增强记忆力,又可矫正自己的发音电路简单,适合业余爱好者自制。

电路见图。

驻极体话筒BM作传声器用,声音信号由话筒转换成电信号,再经隔直电容C1送给三极管VT作前置放大,放大后的音频信号由电容器C2耦合加到电位器RP上,然后送入功放集成电路IC1的输入端⑦脚,由IC1进行功率放大,经功率放大后的音频信号从①、③脚输出,使耳机或扬声器发声。

调试时只要调整R3,使VT的Ic=0.1~0.2mA即可。

调试完毕,将耳机插好,音量开大,对着话筒讲话,若音质不好,可改变C3,C3通常在0.1μF~10μF之间选取。

助听器电路图几款无线话筒电路编者按:本文较详尽地介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。

主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。

单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。

电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。

工作电流为60--80mA。

但以上三极管难以购到,且价格较高,假货较多。

用Arduino控制的拉线木偶——创客电子制作入门制作方案及趣味软硬件DIY项目

用Arduino控制的拉线木偶——创客电子制作入门制作方案及趣味软硬件DIY项目

匹诺曹成人记—用Arduino控制的拉线木偶——创客电子制作入门制作方案及趣味软硬件DIY项目一个偶然的机会,笔者淘到了一款匹诺曹的拉线木偶。

想着电影里那些技师只通过简单的几根线就能实现如动画一般的舞蹈动作,但因我手法比较笨拙,怎么练习也没能让它翩翩起舞,索性搁置了大半年。

一晃到了年底。

我给自己也定了一个小目标:把匹诺曹变成机器人,让它能够翩翩起舞。

1.1 失败的DEMO这款匹诺曹木偶一共有5根拉绳:脑袋一根,手部两根,脚部两根。

上方是一个十字架连接着四肢和头部的拉绳。

我计划让它头部不动,用4个舵机分别控制四肢来实现匹诺曹的舞蹈动作。

我们暂且用A、B、C、D、O分别表示左手、右手、左脚、右脚和头部的连接定义(见图1.1),其中A、B、C、D也对应着4个舵机的序号。

图1.1 木偶的结构我从家里随便找了个硬纸盒,先做了舵机支架平台,上面开了对应4个舵机支架的固定孔(见图1.2)。

图1.2 用硬纸盒制作舵机支架平台然后把舵机固定在支架平台上面,ServoA和ServoB在两侧,ServoC和ServoD在中间(见图1.3)。

把曲别针掰直了,做成4个舵机延长臂(见图1.4)。

图1.3 把舵机固定在支架平台上图1.4 用曲别针制作4个舵机延长臂图1.5 失败的Demo为什么说是失败的Demo呢?因为这“货”做完之后不是左右乱晃,就是这样趴在地上不起来(见图1.5)。

总结了一下,它大概有以下几点设计缺陷。

(1)不能使用弹性线。

本以为弹性线可以增加木偶动作的戏剧性,实际上由于自重影响,简直就是灾难,不但舵机的动作被缓冲抵消了,慢慢地,木偶还趴在了地上。

(2)舵机延长臂是临时用曲别针做的,容易变形,且延长臂太短,导致动作不明显。

(3)身体没有固定,头部只有一根线,导致头部不稳定,晃动严重。

(4)拉线固定在脚部不合理(只能做出跪在地上的效果,完全无法正常行走)。

(5)布线不合理,导致动作不协调,且容易出现缠绕、绊线,导致木偶失控。

曲别针打火机DIY应急电烙铁

曲别针打火机DIY应急电烙铁

曲别针打火机DIY应急电烙铁
不是经常做电子焊接的朋友一般很少在家里常备买一把电烙铁吧,如果偶尔需要焊接电线,你能及时地借到吗?这个关于曲别针的另类用法,为你展示了一种通过物品改造将打火机变成自制电烙铁的生活小创意。

以后偶尔要用来焊接点什么小东西,就不要落下面子去敲邻居家门拉。

你只需要准备这些材料:曲别针、普通打火机、醋酸胶布、剪刀、钳子。

跟着下面的打火机改造方法,和51费宝学一学如何利用曲别针将打火机变成你的应急DIY电烙铁吧。

1、用钳子将曲别针拉直后,这样子对折,用钳子将折口钳紧。

2、再扭曲成51费宝网图片下面这个形状。

3、用胶布将上面步骤的曲别针弯形针绑紧在打火机侧面,注意要调整为针头位置让它刚好能位于点火火焰的针上方。

4、你的DIY电烙铁就完成了,使用前,将打火机点火,让火焰充分灼烧针头。

等曲别针头红热之后,就可以用来焊接锡线了。

没想到小小的曲别针不仅仅只能用来夹文件吧,这个简单的高大上用法,大家学会了吗?继续了解更多有关利用物品改造进行的DIY 小发明,我们欢迎喜欢手工制作的生活达人继续留意五一费宝网手艺
活频道的更多精彩内容分享。

04 电子圣诞树

04 电子圣诞树

电子圣诞树难易度:★仅仅使用了很少的几个元件,就做成了这样一个新颖的迷你的电子圣诞树。

它会闪光,因为使用电池供电,所以放在任何地方都很安全。

制作一件圣诞饰物也会非常的与众不同。

一个迷你的LED圣诞树就是一个很好的例子。

这个会闪光的小饰物是你在任何商店所买不到的,自己动手做一个!(一)电路图电路原理图如电路图所示,整个圣诞树仅有一个集成电路、两个电阻、一个电容、和11个发光二极管组成。

也许你注意到了,我们没有使用灯泡,而是用的发光二极管,主要因为LED的寿命长,且耗电量非常小。

LED的另外一个优点是可以用电池来供电,从而无需使用危险的220V交流电。

一节9V的层叠电池可以供圣诞树连续使用48小时,当然这还取决于电池的品质。

IC的型号为4060,它是一个带片内振荡缓冲器的14级二进制串行计数器。

振荡器的配置既可采用阻容(RC)电路,也可采用晶体振荡电路。

芯片上还包括能把所有输出端置入零态而使振荡器不能工作的复位功能。

时钟脉冲的负跃迁可将计数器推进到下一个状态。

输入线路中的施密特(Schmitt)触发作用允许很慢的输入升、降时间。

振荡频率由R1、C1和R2决定,大约是 2Hz。

计数器的输出Q3-Q9和Q11-Q13根据振荡频率交替触发。

发光二极管被连接成一个伪随机的图案,造成一种滚动的效果。

如果你仔细看,你会注意到同一时间总会有三个LED同时亮起。

然而发现这一点,需要你的眼睛反应非常快。

装配PCB电路板被设计成圣诞树的形状。

如果你想自己做的印板,请参照印板图。

电路板的组装应该不成问题。

4060最好使用插座。

(二)元件列表电阻:R1 10KR2 10K电容:C1 1nF(102)LED: D1-D12 红色IC1 4060杂件:16脚插座、电池扣、9V电池、印板制版图:。

美雕刻家用五百万伏电压捕捉迷人闪电图案,名人故事

美雕刻家用五百万伏电压捕捉迷人闪电图案,名人故事

精心整理
美雕刻家用五百万伏电压捕捉迷人闪电图案,名人故事
,希克曼用一台500万伏粒子加速器对着亚克力塑料板轰出的“利希滕贝格图案”作品。

希克曼采用相同手法制作出的阴阳符号电荷“逃离”在亚克力塑料板上形成的小闪电风暴,留下了一个蝴蝶形状的化石图案希克曼利用相同手法制出的橡树图案 据《每日邮报》报道,有谁会想到,这个迷人的雕刻品竟然是艺术家用一台500万伏的粒子加速器对着亚克力塑料板轰出的完美图案,看上去就像是闪电结冰一样, ‘激 暴”。

光。

这一现象以德国物理学家格奥尔格?克里斯托夫?利希滕贝格的名字命名,他早在1777年就记录下这个过程。

“捕捉闪电”系列雕刻品在网上有售,价格在17英镑至299英镑之间。

精心整理
---来源网络,仅供分享学习2/2。

原来德国人这样设计电池仓!

原来德国人这样设计电池仓!

原来德国人这样设计电池仓!来源:清风一飒的博客用过装电池的电器的同学们都知道,直流电池是有正负极的,所以我们在安装电池的时候,总是要仔细看一下电器的指示,然后对应电池的正负极安装,我们都已经习惯这样了,家里的遥控器啊,剃须刀啊,儿童玩具啊,电子钟表等等。

普通家用遥控器的电池需要一正一反安装,而有弹簧的一头连接的应该是电池的负极。

但我们经常会遇到的问题就是,很容易会把安装的正负极会搞反,这样用电器不会坏,但我们还得再麻烦一遍重新安装,把电池抠出来的时候又分不清哪边是凸起来的电池正极,一不小心就会往和弹簧连接的一头抠,因为这样我还试过把苹果鼠标的弹簧片拔了出来。

这样的情况已经司空见惯,我们一般情况下,会对自己说,搞错了,下次要注意了。

但我们有没有想过,为什么不是电器的错,为什么不是设计这个东西的人的错呢?康佳的电视遥控器也是一正一反的安装电池的电池仓,一头是固定死的触点,一头是弹簧片触点,安装电池的时候,一个正着安装,一个反着安装。

因为使用电池的设备一般是3v而电池是1.5V所以要串联起来。

这时你就要确定,哪一个是正着安装,另外一个就应该是反着安装了。

错了,就用不了的。

我跟大家一样,一直都觉得,这再正常不过了,直到我拿到我手上的Deboch移动电源的时候,我在安装电池的时候,还像以往一样,再找正负标识,准备正、反安装,这时才发现,德国人是不这样的,人家是统一正负极的,正是同一个方向,负也是同一方向,而且固定的触点是负极,有弹簧片的那个触点是正极。

我们都知道,这对于一个产品来说,这个实现起来无比的容易,一条连线就行了,可我们没有这样做,反而人家德国人做了。

德国原装Deboch移动电源及其电池这样,我们就不需要再反复告诉自己甚至家人,安装电池的时候要注意看电池两端的正负号,然后看清楚电池的哪一头是正,哪一头是负,然后再对应着安装。

而现在不需要了,我们只需要告诉他们,电池的凸头,对着弹簧片安装就可以了。

因为不会有反着安装的情况了,永远都是凸起的一头,对着弹簧片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AVR单片机信号发生器
设计一个4通道A / D (模数转换器)转换器与pic12c671
Ser-Key 10-Key Serial Keypad Encoder
2线接口的液晶显示器用pic16cf84
PIC16F84的串行输入/输出-膨胀picbasic
摄像头远程控制系统的使用基本邮票
多芯片编程器
本文来自: 电子工程师之家
Alarms and security related schematics
Proximity alarm
Electronic lock
Electronic door codelock (PIC16F84)
几个Atmel公司的AVR编程器集成电路
12c508智能锁
基本杜绝基于高度表
接口EEPROM中的一个基本邮票
自制基本杜绝工程
接口该max186八通道ADC向bsii
该接口的ADC器MAX187向bsii测量电压
射频远程控制的基础上的基本邮票
80c31步进马达控制器
I2C LCD接口
afsk 1200个调制解调器基于pic16c620
皮孔-隐蔽电台发射机控制器
PIC16F84的声发生器及源代码
PIC16F84的声发生器
PIC16F84的声发生器 (6-Bit)
AVR单片机的灯塔,超级的keyer
AVR单片机的频率计数器
AVR单片机数字电压表
谈知情同意-基于s p0256
夏普gp2d02接口,以PIC单片机
夏普gp2d05接口,以PIC单片机夏普gp2d05接口,以PIC单片机
串行到并行转换器采用AT89C2051的
AT89C2051的串行coms以LED驱动器
PIC16F877的编程器和开发系统
DS1820的仲裁者v2.00示意图
AT89C2051的实时控制器
pic12c508夜间轻保护
AT89C2051的夜间照明器
Atmel公司的8051闪光基于微控制器编程器
AT89C2051的数字温度计和时钟
4通道定时器使用Atmel 89c4051和max7219显示驱动
PIC16F84的连续解码器(PDF)
建立一个PIC的控制DDS的vfo , 0至6兆赫
PIC的控制DDS的vfo , 0至6兆赫
基本杜绝雷电活动的监测
平行的AVR编程器
PIC16F84的线以下机器人
pic16c505红外/无线遥控器控制
自动门开与pic12c508
RS485的一样多点总线半双工串行协议
50兆赫频率计数器,电压表及驻波比/压水堆指标
摩托罗拉公司的68 K单板电脑(Single Board电脑)
8051的单板电脑( Single Board电脑)
简单rs232c平变换器使用晶体管
摩托罗拉68hc11评估板
C - 52 evb机器人控制器
主时钟控制器采用AT89C2051的
at89c2051/4051易于下载
微处理器的RS - 232复位
微处理器的RS - 232复位
AT90S8515的实验板
多芯片程序员PIC微控制器
缓冲PIC的芯片接口
2位数柜用pic12f629芯片
多芯片程序员微晶片PIC微控制器
多用途缓冲PIC单片机开发系统
scanmate音频记录激活
PIC的真空荧光显示器接口
电脑红外接收器的基础上与PIC16F84
录制和播放快1位声音就PIC单片机
at89c2051/4051scanning 7段显示器和键盘
at89c2051/4051驾驶斑点主导
at89c2051/4051stepper电机接口
at89c2051/4051connecting哑终端
8051的开发系统电路板
长周期看门狗定时器
PIC的网络服务器示意图
产生视频信号的实时使用与PIC16F84
PIC ICD
转速表措施非常低频率(PIC16F872)
智能卡编程器
木星卡编程器
补习局pic16f84a微控制器
PIC的项目# 1 -R S232至I 2C接口
电流解耦I2C总线
程序员与PIC16F84 , 12c50x和EEPROM 24cxx
双pic16c84原型局
图形液晶显示器接口
接口1 4x4键盘,一bs2使用74922编码器芯片
FSK调制解调器与pic16c84
谈Yoda的项目 (PIC16C84)
PIC16F84/PIC16F87x-In-System-Programmer
微晶片PIC的icsp实施
101在键盘上的ASCII解码器使用68hc705j1a单片机
液晶显示器的串行终端
propellor时钟(与PIC16F84 )
1 scenix ( PIC )的程序员
MMC和pic16f876电路图
8088最大方式西南贝尔
ez80单板电脑示意图( Z80的)
PIC的演示板
pic12c509健身房计时器
PIC的液晶显示器和键盘驱动程序
pic12c508相控制器2千瓦加热器
PIC16F84的可控硅/ IGBT的亮度相控制器
PIC16F84的脉搏监测与日期/时间输出(ZIP)
程序员为68hc705c8微控制器
27c801的EPROM编程器项目
Proximity detector for humans / living creatures using eddy current detecmitter for PIR Sensors
PIR motion detector
Simple alarm system
at89c51/52/55易于下载
PIC16F84的程序员
PIC16F84的缩影实时控制器
孤立的RS232为与PIC16F84
PIC16F84的调试终端
minilogger V1.0标准
类比记录器基于t89c51rd2
Atmel公司89c系列闪存微控制器编程器
Atmel的89 C2051的原型局
串行基于PIC16F84的编程器适用于Windows 95/98 / NT/2000/ME/XP
PIXpand
PIC16F877的,以IDE接口
90s2313的AVR机器人董事会
pocsag编码器/解码器
Rotating 旋转链轮发生器(与PIC16F84
最小pic18委员会( PDF格式)
Home security project
5 Zone alarm circuit
Miniature loop alarm
Novel Buzzer
Gate alarm circuit
Modular Burglar Alarm
Motorcycle alarm
Personal silent alarm system
Active IR motion detector
Frost alarm
Ultrasonic radar alarm
Refrigerator door alarm
Emergency Light & Alarm
Electronic combination lock
液晶pic16c54示意图
68hc11基于策略解码器
加速度监测使用adxl202和AVR
40 +兆赫5位数字频率计数器与AVR 2313
接口的DRAM ,以AT90S8515的
温度监控器/控制器: AVR单片机2313 / ds1621
PIC单片机到ISA总线接口
微晶片事先知情同意的ICD (在线调试器)
ZiLOG的Z80的自动调温嵌入式网页伺服器
picxie 2 -8 x8动画为首的招牌(与P IC16F84) p icxie2 - 8x 8动画为首的招牌(PIC16F84)
10个秘诀接口,以pic16c508
接口的pic16c508
主导5x7显示器采用PIC单片机
模拟到数字(局)转换笔记
程序员与PIC16F84 , 12c50x和EEPROM 24cxx
策略编码器-数字部分
PIC的程序员串口
全功能PS / 2鼠标的基础上,与PIC16F84
PIC的18程序员( pic18f458 , pic18f452 , pic18c252 , pic16c745 , pic18f6620 , pic18f6720 )
PIC-Programmer 2
连接pic12c5088至93aa46串行的EPROM
kd7lmo微灯塔 (PIC18F252)
GPS的液晶显示器项目
PIC16F84 LED 驱动
PIC单片机主导的项目
PS / 2键盘按键侧录程序基于Atmel的89 C2051的
电子测距仪基于摩托罗拉68hc908qy4
微控制器接口5千瓦微波炉
采用I2C串行EEPROM的一个基本的邮票二日
PIC16F84的基础摩尔斯电码阅读器
AVR-Based为基础的串口红外接收器
接口压电元素,以一个微控制器
维多利亚TAFE的程序员(基于AT89C2051 )
jdm程序员
PIC单片机编程器
语音识别用hm2007
Ultrasonic remote control & alarm system
相关文档
最新文档