巩固练习直线与双曲线的位置关系文基础

合集下载

直线与双曲线的位置关系(强化训练)

直线与双曲线的位置关系(强化训练)

∙直线与双曲线的位置关系(强化训练)直线与双曲线的位置关系(代数方法)一个交点情况 直线交左右两支情况 直线交?支情况(2个交点)代数方法⎩⎨⎧=∆0相切:相交:与渐近线平行⎩⎨⎧>∆≠00二次项系数⎪⎪⎩⎪⎪⎨⎧>+>⋅>∆≠002121x x x x 二次项系数 1、根据直线3+=kx y 与双曲线1422=-y x 的位置关系,讨论其交点的个数并写出相应的k 的范围或者取值?(9分)并写出只有一个交点时候的直线方程。

(4分)变式1、若直线1+=kx y 与双曲线21y x +=的有两个不同交点;求参数k 的取值范围?(代数方法与几何画图(数形结合)方法任意选一)(7分)变式2、若直线)2(-=x k y 与双曲线21y x +=的有两个不同交点;求参数k的取值范围?(代数方法与几何画图(数形结合)方法任意选一,需说明理由)(7分)变式3、过点P 的直线与双曲线116922=-y x 只有一个交点的,这样的直线有多少条?(画图说明)(15分)(1)、)1,1(P (2)、)43(,P (3)、)0,3(P (4)、)0,4(P (5)、)00(,P练习1、双曲线122=-y x 的左焦点为F ,P 为左支下半支上任意一点,(不是顶点),则直线PF 的斜率的变化范围是多少?(10分)练习2、过原点与双曲线1-3422=-y x 交于两点的直线斜率的取值范围是多少?(7分)练习4、(2009年高考)已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是多少?(7分)练习5、(2009年高考变式)已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有2个交点,则此直线斜率的取值范围是多少?(7分)2、已知点)2,1(D 在双曲线C :)0,0(,12222>>=-b a by a x 上,且双曲线的一条渐近线的方程为03=+y x(1)、求双曲线C 的标准方程,(5分)(2)、若过点)1,0(,且斜率为k 的直线l 与双曲线C 有两个不同交点,求实数k 的取值范围?(5分)(3)、若过点)1,0(,且斜率为k 的直线l 与双曲线C 的右支有两个不同交点,求实数k 的取值范围?(5分)(4)、若过点)1,0(,且斜率为k 的直线l 与双曲线C 的同一支上有两个不同交点,求实数k 的取值范围?(5分)(5)、设(2)中的直线l 与双曲线C 交于A,B 两个不同交点,若以线段AB 为直径的圆经过坐标原点,求实数k 的值?(7分)。

高中数学-直线与双曲线的位置关系练习

高中数学-直线与双曲线的位置关系练习

高中数学-直线与双曲线的位置关系练习基础达标(水平一 )1.已知直线l过点(,0),且与双曲线x2-y2=2仅有一个公共点,则这样的直线有().A.1条B.2条C.3条D.4条【解析】点(,0)即为双曲线的右顶点,过该点的直线有2条与双曲线渐近线平行且与双曲线仅有一个公共点,另过该点且与x轴垂直的直线也与双曲线只有一个公共点,故这样的直线只有3条.【答案】C2.已知双曲线C:-=1的一条渐近线方程为2x+3y=0,F1、F2分别是双曲线C的左、右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|等于().A.4B.6C.8D.10【解析】依题意,有=,所以a=3,因为|PF1|=2,所以点P在双曲线的左支上,所以|PF2|-|PF1|=2a,解得|PF2|=8,故选C.【答案】C3.已知点P(3,-4)是双曲线-=1(a>0,b>0)渐近线上的一点,E,F是左、右两个焦点,若·=0,则双曲线的方程为().A.-=1B.-=1C.-=1D.-=1【解析】由题意知,点E(-c,0),F(c,0),则·=(3+c,-4)·(3-c,-4)=9-c2+16=0,所以c2=25.可排除A,B选项.又D选项中双曲线的渐近线方程为y=±x,点P不在渐近线上,排除D选项,故C正确.【答案】C4.若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是().A.B.C.D.【解析】由得(1-k2)x2-4kx-10=0.由题意得解得-<k<-1.【答案】D5.过双曲线-=1(a>0)右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点.则双曲线离心率的取值范围为.【解析】由题意可知从而4<<9,所以e=∈(,).【答案】(,)6.已知F为双曲线-=1(a>0,b>0)的左焦点,定点A为双曲线虚轴的一个端点,过F,A两点的直线与双曲线的一条渐近线在y轴右侧的交点为B,若=3,则此双曲线的离心率为.【解析】因为F为双曲线-=1(a>0,b>0)的左焦点,定点A为双曲线虚轴的一个端点, 所以可设点F(-c,0),A(0,b),B(x B,y B),直线AF:y=x+b.由题意知,直线AF与渐近线y=x相交.联立两直线消去x,得y B=.由=3,得y B=4b,所以=4b,解得离心率e=.【答案】7.从双曲线x2-y2=1上一点Q作直线x+y=2的垂线,垂足为N,求线段QN的中点P的轨迹方程.【解析】设点P(x,y),Q(x0,y0),则点N(2x-x0,2y-y0),代入x+y=2,得2x-x0+2y-y0=2. ①因为PQ垂直于直线x+y=2,所以=1,即x-y-x0+y0=0. ②由①②得x0=x+y-1,y0=x+y-1.由点Q(x0,y0)在双曲线x2-y2=1上,代入双曲线方程,得点P的轨迹方程为2x2-2y2-2x+2y=1.拓展提升(水平二)8.已知双曲线-=1(a>0,b>0),若存在过右焦点F的直线与双曲线交于A,B两点,且=3,则该双曲线离心率的最小值为().A.B.C.2 D.2【解析】因为过右焦点的直线与双曲线C相交于A,B两点,且=3,所以直线与双曲线相交只能交于左、右两支,即A在左支,B在右支.设点A(x1,y1),B(x2,y2),右焦点F(c,0),因为=3,所以c-x1=3(c-x2),即3x2-x1=2c.因为x1≤-a,x2≥a,所以-x1≥a,3x2≥3a,所以3x2-x1≥4a,即2c≥4a,≥2,即e≥2,故选C.【答案】C9.已知双曲线-=1上存在两点P,Q关于直线y=x+b对称,且PQ的中点M在直线2x+y-2=0上,则实数b的值为().A.-10B.-8C.-2D.2【解析】因为点P,Q关于直线y=x+b对称,所以线段PQ的垂直平分线的方程为y=x+b,所以直线PQ的斜率为-1.设直线PQ的方程为y=-x+m,令点P(x P,y P),Q(x Q,y Q),M(x M,y M),由得x2+4mx-2m2-6=0,所以x P+x Q=-4m,所以x M=-2m,所以点M(-2m,3m).又因为PQ的中点M在直线2x+y-2=0上,所以-4m+3m-2=0,解得m=-2,由PQ的中点M也在直线y=x+b上,得b=5m,所以b=-10,故选A.【答案】A10.连接双曲线-=1和-=1(其中a>0,b>0)的四个顶点的四边形的面积为S1,连接四个焦点的四边形的面积为S2,则当的值最大时,双曲线-=1的离心率为.【解析】由题意可知S1=×2a×2b=2ab,S2=×2c×2c=2c2,∴===≤,当且仅当=,即a2=b2=c2-a2时等号成立,此时双曲线-=1的离心率为e==.【答案】11.直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A,B.(1)求实数k的取值范围.(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.【解析】(1)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0. ①依题意,直线l与双曲线C的右支交于不同两点,故解得-2<k<-.(2)设A,B两点的坐标分别为(x1,y1),(x2,y2),则由①式得②假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0).则由FA⊥FB,得(x1-c)(x2-c)+y1y2=0,即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0.整理得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0. ③把②式及c=代入③式,化简得5k2+2k-6=0,解得k=-或k=(舍去).可知当k=-时使得以线段AB为直径的圆经过双曲线C的右焦点F.。

考点94 直线与双曲线的位置关系

考点94  直线与双曲线的位置关系

.考点94 直线与双曲线的位置关系78.(2020·新课标Ⅱ文理8)设O 为坐标原点,直线a x =与双曲线()2222:10,0x y C a b a b-=>>的两条渐近线分别交于,D EODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32【答案】B【思路导引】∵()2222:10,0x y C a b a b-=>>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE ∆的面积为8,可得ab值,根据2c =结合均值不等式,即可求得答案.【解析】∵2222:1(0,0)x y C a b a b -=>>,∴双曲线的渐近线方程是b y x a=±,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点,不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b , 联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =, ∴ODE ∆面积为:1282ODE S a b ab =⨯==△. 双曲线2222:1(0,0)x y C a b a b-=>>,∴其焦距为28c ===,当且仅当a b ==取等号,∴C 的焦距的最小值:8,故选B .79.(2020·浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA|–|PB|=2,且P 为函数y=图像上的点,则|OP|=( ) A.2B.5CD【答案】D【解析】∵||||24PA PB -=<,∴点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 80.(2019天津文理)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( ) ABC .2D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-,双曲线的渐近线方程为by x a=±,则有(1,),(1,)b b A B a a ---,∴2b AB a =,24b a =,2b a =,∴c e a ===,故选D . 【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.81.【2018高考全国2理5】双曲线22221(0,0)x y a b a b-=>>)A.y = B.y = C.2y x =±D.y x = 【答案】A【解析】试题分析:根据离心率得,a c 关系,进而得,a b 关系,再根据双曲线方程求渐近线方程,得结果.试题解析:22222212,c b c a b e e a a a a-==∴==-=∴=.∵渐近线方程为,by x a=±∴渐近线方程为y =,故选A . 【名师点睛】已知双曲线方程222210,0x y a b a b -=>>求渐近线方程:22220x y by x a b a-=⇒=±.【考点】双曲线的简单几何性质(离心率、渐近线方程)82.【2018高考全国3理11】设12F F ,是双曲线()2222100x y C a b a b-=>>:,的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP =,则C 的离心率为( )AB .2CD【答案】C【解析】试题分析:由双曲线性质得到2PF b =,PO a =,然后在2Rt POF △和在12Rt PF F △中利用余弦定理可得.试题解析:由题可知22,PF b OF c ==,PO a ∴=.在2Rt POF △中,222cos P O PF b F OF c ∠==,22221212212||||||cos P O 2||||PF F F PF bF PF F F c ∠+-=∴=,22,3bc a c=∴=,e ∴=C .【名师点睛】本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.83.(2018天津文理)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A【解析】设双曲线的右焦点坐标为(,0)(0)F c c >,则A B x x c ==,由22221c y a b -=可得2b y a =±,不妨设2(,)b A c a,2(),b B c a -,双曲线的一条渐近线方程为0bx ay -=,据此可得21d ==2bc b c -,222bc b d c +==,则12226bc d d b c +===,则3b =,29b =,双曲线的离心率2c e a ====,据此可得23a =,则双曲线的方程为22139x y -=,故选A . 84.(2014天津文)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221520x y B .221205x y C .2233125100x y D .2233110025x y【答案】A 【解析】 依题意得22225ba cc a b ,∴25a,220b,双曲线的方程为221520x y .85.(2013重庆文理)设双曲线的中心为点,若有且只有一对相较于点、所成的角为的直线和,使,其中、和、分别是这对直线与双曲线的交点,则该双曲线的离心率的取值范围是 A . B . C . D . 【答案】A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满足3b a <≤,∴21()33b a <≤,241()43ba <+≤2<,又双曲线的离心率为c e a ==2e <≤. 86.(2020·新课标Ⅱ)设双曲线C :22221x y a b-= (a>0,b>0)的一条渐近线为x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,∵其一条渐近线为y =,C O O 06011A B 22A B 1122A B A B =1A 1B 2A 2BC 2]2))+∞)+∞∴2b a =,2213c b e a a==+=. 87.(2020·北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1).()3,0 (2)【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x ±=,∴,双曲线C=.88.(2020·江苏)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____. 【答案】32【解析】双曲线22215x y a -=,故5b =.由于双曲线的一条渐近线方程为52y x =,即522b a a =⇒=,∴22453c a b =+=+=,∴双曲线的离心率为32c a =. 89.【2019年高考全国Ⅰ理】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120F B F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB的斜率为tan 60b a =︒=2c e a ====.90.【2019江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x+y=0的距离的最小值是 ▲ . 【答案】4【解析】当直线x+y=0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x+y=0的距离最小.由2411y x '=-=-,得)x x ==,y =Q , 则切点Q 到直线x+y=04=.91.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(,1010P ,则Q,1(F,2F ,∴四边形12F PF Q的面积S == 92.(2015江苏理)在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c的最大值为 .【解析】设(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线= -+=与渐近线010x y-=x y。

高中数学选修双曲线的简单性质(基础)知识点巩固练习

高中数学选修双曲线的简单性质(基础)知识点巩固练习

目录双曲线的简单性质 (1)【学习目标】 (1)【要点梳理】 (1)【典型例题】 (5)【巩固练习】 (13)双曲线的简单性质编稿:武小煊审稿:柏兴增【学习目标】1.知识与技能理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念.2.过程与方法锻炼学生观察分析抽象概括的逻辑思维能力和运用数形结合思想解决实际问题的能力.3.情感态度与价值观通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对双曲线对称美的感受,激发学生对美好事物的追求.【要点梳理】【高清课堂:双曲线的性质356749 知识要点二】要点一:双曲线的简单几何性质双曲线22221x ya b-=(a>0,b>0)的简单几何性质范围221x a≥,即22x a ≥ ∴x a ≥,或x a ≤-.双曲线上所有的点都在两条平行直线x = -a 和x = a 的两侧,是无限延伸的.因此双曲线上点的横坐标满足∴x a ≥,或x a ≤-.对称性对于双曲线标准方程22221x y a b -=(a >0,b >0),把x 换成-x ,或把y 换成-y ,或把x 、y 同时换成-x 、-y ,方程都不变,所以双曲线22221x y a b -=(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心.顶点①双曲线与它的对称轴的交点称为双曲线的顶点.②双曲线22221x y a b -=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点.③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,- b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴.实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b .a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长.①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆. ②双曲线的焦点总在实轴上.③实轴和虚轴等长的双曲线称为等轴双曲线. 离心率①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c ce a a==. ②因为c >a >0,所以双曲线的离心率1ce a=>. 由c 2= a 2+b 2,可得22222()11b c a c e a a a -==-=-,所以b a 决定双曲线的开口大小,b a越大,e 也越大,双曲线开口就越开阔.所以离心率可以用来表示双曲线开口的大小程度.③等轴双曲线a b=,所以离心率2e=.渐近线经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是by xa=±.我们把直线by xa=±叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交.22||b bMN x a xa a=--2222bx a xaabx x a=--=→+-【高清课堂:双曲线的性质356749知识要点一、3】要点二:双曲线两个标准方程几何性质的比较标准方程22221x ya b-=(0,0)a b>>22221y xa b-=(0,0)a b>>图形性质焦点1(,0)F c-,2(,0)F c1(0,)F c-,2(0,)F c要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x 2、y 2的系数,如果x 2项的系数是正的,那么焦点在x 轴上;如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上. 要点三:双曲线的渐近线(1)已知双曲线方程求渐近线方程:若双曲线方程为22221x y a b -=,则其渐近线方程为22220x y a b -=⇒0x y a b ±=⇒b y x a =±已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程. (2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为0mx ny ±=,则可设双曲线方程为2222m x n y λ-=,根据已知条件,求出λ即可.(3)与双曲线22221x y a b-=有公共渐近线的双曲线与双曲线22221x y a b -=有公共渐近线的双曲线方程可设为2222(0)x y a bλλ-=≠(0λ>,焦点在x 轴上,0λ<,焦点在y 轴上)(4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为y x =±,因此等轴双曲线可设为22(0)x y λλ-=≠. 要点四:双曲线中a ,b ,c 的几何意义及有关线段的几何特征双曲线标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c >b >0,c >a >0,且c 2=a 2+b 2.双曲线22221x y a b-=(0,0)a b >>,如图:(1)实轴长12||2A A a =,虚轴长2b ,焦距12||2F F c =;(2)离心率:21211222121122||||||||11||||||||PF PF A F A F c b e e PM PM A K A K a a======+>; (3)顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+;(4)12PF F ∆中结合定义122PF PF a -=与余弦定理,将有关线段1PF 、2PF 、12F F 和角结合起来; (5)与焦点三角形12PF F ∆有关的计算问题时,常考虑到用双曲线的定义及余弦定理(或勾股定理)、三角形面积公式121211sin 2PF F S PF PF F PF ∆=⋅∠相结合的方法进行计算与解题,将有关线段1PF 、2PF 、12F F ,有关角12F PF ∠结合起来,建立12PF PF -、12PF PF ⋅之间的关系.要点五:直线与双曲线的位置关系 直线与双曲线的位置关系将直线的方程y kx m =+与双曲线的方程22221x y a b-=(0,0)a b >>联立成方程组,消元转化为关于x或y 的一元二次方程,其判别式为Δ.222222222()20b a k x a mkx a m a b ----=.若2220,b a k -=即bk a =±,直线与双曲线渐近线平行,直线与双曲线相交于一点(实质上是直线与渐近线平行时的两种情况,相交但不相切).若2220,b a k -≠即b k a≠±, ①Δ>0⇔直线和双曲线相交⇔直线和双曲线相交,有两个交点; ②Δ=0⇔直线和双曲线相切⇔直线和双曲线相切,有一个公共点; ③Δ<0⇔直线和双曲线相离⇔直线和双曲线相离,无公共点. 直线与双曲线的相交弦设直线y kx m =+交双曲线22221x y a b-=(0,0)a b >>于点111222(,),(,)P x y P x y 两点,则弦长12||PP12|x x -同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -=;12||y y -双曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在双曲线22221x y a b-=(0,0)a b >>中,以00(,)P x y 为中点的弦所在直线的斜率2020b x k a y =-;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.【典型例题】类型一:双曲线的简单几何性质【高清课堂:双曲线的性质 356749例1】例1.求双曲线22169144x y -=的实轴长和虚轴长、顶点坐标、焦点坐标、渐近线方程与离心率.【思路点拨】本题的关键是将双曲线化为标准方程22221x y a b -=(0,0)a b >>.【解析】双曲线的方程可化为:221916y x -=,由此可知实半轴长3a =,虚半轴长4b =,∴5c ==∴实轴长26a =,虚轴长28b =,顶点坐标(0,3),(0,3)-,焦点坐标(0,5),(0,5)-,离心率53e =,渐近线方程34y x =±.【总结升华】在几何性质的讨论中要注意a 和2a ,b 和2b 的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示.举一反三:【变式1】双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .14-B .-4C .4D .14【答案】A【变式2】已知双曲线8kx 2-ky 2=2的一个焦点为3(0,)2-,则k 的值等于( )A .-2B .1C .-1D .32-【答案】C类型二:双曲线的渐近线例2.已知双曲线方程,求渐近线方程.(1)221916x y -=;(2)221916x y -=-.【解析】(1)双曲线221916x y -=-的渐近线方程为:220916x y -=,即43y x =±.(2)双曲线221916x y -=的渐近线方程为:220916x y -=,即43y x =±.【总结升华】不同形式双曲线的渐进线方程为:(1)双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a =±;(2)双曲线22221y x a b -=的渐近线方程为b x y a =±,即ay x b=±;(3)若双曲线的方程为2222x y m n λ-=(00m n λ>>、,,焦点在x 轴上,0λ<,焦点在y 轴上),则其渐近线方程为22220x y m n -=⇒0x y m n ±=⇒ny x m=±.举一反三:【变式1】求下列双曲线方程的渐近线方程:(1)2211636x y -=;(2)2228x y -=; (3)22272y x -=.【答案】(1)32y x =±;(2)y x =;(3)y = 【变式2】中心在坐标原点,离心率为53的圆锥曲线的焦点在y 轴上,则它的渐近线方程为( )A .54y x =±B .45y x =±C .43y x =±D .34y x =±【答案】D例3. 根据下列条件,求双曲线方程.(1) 与双曲线221916x y -=有共同的渐近线,且过点(3,-;(2)一渐近线方程为320x y +=,且双曲线过点M .【思路点拨】求双曲线的方程,应先定型,再定量.本题中“定型”是顺利解题的关键:(1)与双曲线有221916x y -=有公共渐进线的双曲线方程可设为()220916x y λλ-=≠;(2)320023x y x y +=⇔±=,以023x y±=为渐进线的双曲线方程可设为2249x y λ-=()0λ≠.【解析】 (1)解法一:当焦点在x 轴上时,设双曲线的方程为22221x y a b -=由题意,得2243(3)1b a a ⎧=⎪⎪⎨-⎪=⎪⎩,解得294a =,24b = 所以双曲线的方程为224194x y -=.当焦点在y 轴上时,设双曲线的方程为22221y x a b-=由题意,得2243(3)1a b b ⎧=⎪⎪--=,解得24a =-,294b =-(舍去) 综上所得,双曲线的方程为224194x y -=解法二:设所求双曲线方程为22916x y λ-=(0λ≠),将点(3,-代入得14λ=,所以双曲线方程为2219164x y -=即224194x y -=(2)依题意知双曲线两渐近线的方程是023x y±=.故设双曲线方程为2249x y λ-=,∵点M 在双曲线上, ∴284λ=,解得4λ=,∴所求双曲线方程为2211636x y -=.【总结升华】求双曲线的方程,关键是求a 、b ,在解题过程中应熟悉各元素(a 、b 、c 、e 及准线)之间的关系,并注意方程思想的应用.若已知双曲线的渐近线方程0ax by ±=,可设双曲线方程为2222a x b y λ-=(0λ≠).举一反三:【变式1】中心在原点,一个焦点在(0,3),一条渐近线为23y x =的双曲线方程是( ) A .225513654x y -= B .225513654x y -+= C .22131318136x y -= D .22131318136x y -+=【答案】D【变式2】过点(2,-2)且与双曲线2212x y -=有公共渐近线的双曲线是 ( )A . 22124y x -=B . 22142x y -=C . 22142y x -=D . 22124x y -=【答案】A【变式3】设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1 【答案】C【变式4】双曲线22221x y a b -=与2222(0)x y a b λλ-=≠有相同的( )A .实轴B .焦点C .渐近线D .以上都不对 【答案】C类型三:求双曲线的离心率或离心率的取值范围例4. 已知12,F F 是双曲线22221(0)x y a b a b -=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,求双曲线的离心率.【解析】∵12||2F F c =,2ABF ∆是正三角形,∴12||2tan30AF c ==,224||2tan30cos30c AF c ===,∴21||||2AF AF a -===,∴3ce a== 【总结升华】双曲线的离心率是双曲线几何性质的一个重要参数,求双曲线离心率的关键是由条件寻求a 、c 满足的关系式,从而求出c e a=举一反三:【高清课堂:双曲线的性质 356749例2】 【变式1】(1) 已知双曲线22221(0,0)x y a b a b-=>>的离心率23e =,过点A (0,-b )和B (a ,0)的直线与原点间的距3,求双曲线的方程. (2) 求过点(-1,3),且和双曲线22149x y -=有共同渐近线的双曲线方程.【答案】(1)2213x y -=; (2)2241273y x -=【变式2】 等轴双曲线的离心率为_________2【变式3】已知a 、b 、c 分别为双曲线的实半轴长、虚半轴长、半焦距,且方程ax 2+bx +c =0无实根,则双曲线离心率的取值范围是( )A .1<e 5-2B .1< e <2C .1< e <3D .1< e <25【答案】D类型五:双曲线的焦点三角形例5.已知双曲线实轴长6,过左焦点1F 的弦交左半支于A 、B 两点,且||8AB =,设右焦点2F ,求2ABF ∆的周长.【思路点拨】将2ABF ∆的周长分拆成2211|||||||AF BF AF BF ,,,的和,利用双曲线的定义及条件||8AB =可求得周长.【解析】由双曲线的定义有: 21||||6AF AF -=,21||||6BF BF -=,∴2211(||||)(||||)12AF BF AF BF +-+=. 即22(||||)||12AF BF AB +-= ∴22||||12||20AF BF AB +=+=.故2ABF ∆的周长22||||||28L AF BF AB =++=.【总结升华】双曲线的焦点三角形中涉及了双曲线的特征几何量,在双曲线的焦点三角形中,经常运用正弦定理、余弦定理、双曲线定义来解题,解题过程中,常对定义式两边平方探求关系.举一反三:【变式1】已知双曲线的方程22221x y a b -=,点A 、B 在双曲线的右支上,且线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m【答案】B【变式2】已知12F F 、是双曲线221916x y -=的两个焦点,P 在双曲线上且满足12||||32PF PF ⋅=,则12F PF ∠=______【答案】90类型六:直线和双曲线的位置关系例6. 已知双曲线x 2-y 2=4,直线l :y =k (x -1),讨论直线与双曲线公共点个数.【思路点拨】直线与曲线恰有一个交点,即由直线方程与曲线方程联立的方程组只有一组解.【解析】联立方程组⎩⎨⎧=--=4)1(22y x x k y 消去y ,并依x 项整理得:(1-k 2)·x 2+2k 2x -k 2-4=0 ①(1)当1-k 2=0即k =±1时,方程①可化为2x =5,x =25,方程组只有一组解,故直线与双曲线只有一个公共点(实质上是直线与渐近线平行时的两种情况,相交但不相切).(2)当1-k 2≠0时,即k ≠±1,此时有Δ=4·(4-3k 2)若4-3k 2>0(k 2≠1),则k ∈⎪⎪⎭⎫ ⎝⎛⋃-⋃⎪⎪⎭⎫ ⎝⎛--332,1)1,1(1,332,方程组有两解,故直线与双曲线有两交点. (3)若4-3k 2=0(k 2≠1),则k =±332,方程组有解,故直线与双曲线有一个公共点(相切的情况). (4)若4-3k 2<0且k 2≠1则k ∈⎪⎪⎭⎫ ⎝⎛+∞⋃⎪⎪⎭⎫ ⎝⎛-∞-,332432,,方程组无解,故直线与双曲线无交点. 综上所述,当k =±1或k =±332时,直线与双曲线有一个公共点; 当k ∈⎪⎪⎭⎫ ⎝⎛⋃-⋃⎪⎪⎭⎫ ⎝⎛--332,1)1,1(1,332时,直线与双曲线有两个公共点; 当k ∈⎪⎪⎭⎫ ⎝⎛+∞⋃⎪⎪⎭⎫ ⎝⎛-∞-,332332,时,直线与双曲线无公共点. 【总结升华】本题通过方程组解的个数来判断直线与双曲线交点的个数,具体操作时,运用了重要的数学方法——分类讨论,而且是“双向讨论”,既要讨论首项系数1——k 2是否为0,又要讨论Δ的三种情况,为理清讨论的思路,可画“树枝图”如图:举一反三:【变式1】过原点的直线l 与双曲线3422y x -=-1交于两点,则直线l 的斜率取值范围是 ( ) A .⎥⎥⎦⎤ ⎝⎛-23,23 B .⎪⎪⎭⎫ ⎝⎛+∞⋃⎪⎪⎭⎫ ⎝⎛-∞-,2323, C .⎥⎥⎦⎤⎢⎢⎣⎡-23,33 D .⎪⎪⎭⎫⎢⎢⎣⎡+∞⋃⎥⎥⎦⎤ ⎝⎛-∞-,2323, 【答案】B【变式2】直线y =x +3与曲线-x 1x ·|x |+91y 2=1的交点个数是 ( ) A .0 B .1 C .2 D .3【答案】D例7.(1)求直线1y x =+被双曲线2214y x -=截得的弦长; (2)求过定点(0,1)的直线被双曲线2214y x -=截得的弦中点轨迹方程. 【思路点拨】(1)题为直线与双曲线的弦长问题,可以考虑弦长公式,结合韦达定理进行求解.(2)题涉及到直线被双曲线截得弦的中点问题,可采用点差法或中点坐标公式,运算会更为简便.【解析】由22141y x y x ⎧-=⎪⎨⎪=+⎩得224(1)40x x -+-=得23250x x --=(*) 设方程(*)的解为12,x x ,则有121225,33x x x x +==- 得, 212121242082|2()422933d x x x x x x =-=+-=+=. (2)方法一:若该直线的斜率不存在时与双曲线无交点,则设直线的方程为1y kx =+,它被双曲线截得的弦为AB 对应的中点为(,)P x y ,由22114y kx y x =+⎧⎪⎨-=⎪⎩得22(4)250k x kx ---=(*) 设方程(*)的解为12,x x ,则22420(4)0k k ∆=+->∴21680,||k k << 且12122225,44k x x x x k k +==---, ∴121212221114(),()()124224k x x x y y y x x k k =+==+=++=--, 22444k x k y k ⎧=⎪⎪-⎨⎪=⎪-⎩得2240(4x y y y -+=<-或0)y >.方法二:设弦的两个端点坐标为1122(,),(,)A x y B x y ,弦中点为(,)P x y ,则221122224444x y x y ⎧-=⎪⎨-=⎪⎩得:121212124()()()()x x x x y y y y +-=+-, ∴121212124()y y x x x x y y +-=+-, 即41y x x y =-, 即2240x y y -+=(图象的一部分)【总结升华】(1)弦长公式1212||||AB x x y y =-=-; (2)注意上例中有关中点弦问题的两种处理方法.举一反三: 【变式】垂直于直线230x y +-=的直线l 被双曲线221205x y -=l 的方程 【答案】210y x =±【巩固练习】一、选择题1.焦点为(0,±6)且与双曲线2212x y -=有相同渐近线的双曲线方程是( )A.2211224x y -= B.2211224y x -= C.2212412y x -= D.2212412x y -= 2.双曲线2222ay b x -=1的两条渐近线互相垂直,那么该双曲线的离心率是( ) A. 2 B.3 C.2 D.23 3.双曲线与椭圆2211664x y +=有相同的焦点,它的一条渐近线方程为y x =-,则双曲线的离心率为( ) A.2296x y -= B. 22160y x -= C. 2280x y -= D. 2224y x -= 4.过双曲线2222by a x -=1的右焦点F 2作垂直于实轴的弦PQ ,F 1是左焦点,若∠PF 1Q=90︒,则双曲线的离心率是( ) A.2 B.1+2C.2+2D.35. 已知双曲线22221x y a b-=(a >0,b >0)的焦点到渐近线的距离是其顶点到渐近线距离的3倍,则双曲线的渐近线方程为( )A .y =xB .y =±xC .y =±4x D .y =±3x 6.与双曲线16922y x -=1有共同的渐近线,且经过点(-3,23)的双曲线的一个焦点到一条渐近线的距离是( ).A.8B.4C.2D.1二、填空题7.已知双曲线C :22221x y a b-=(a >0,b >0)的实轴长为2,离心率为2,则双曲线C 的焦点坐标是________. 8.椭圆22214x y a+=与双曲线2221x y a -=焦点相同,则a =________.9.双曲线以椭圆221925x y +=的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________. 10.过点P (3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线l 共有________条.三、解答题11.设双曲线2222by a x -=1(0<a<b )的半焦距为c ,直线l 过(a,0),(0,b)两点.已知原点到直线l 的距离为43c ,求双曲线的离心率.12. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B ;求双曲线C 的离心率e 的取值范围:13.已知双曲线22221x y a b-=(a >0,b >0)过点(14,5)A ,且点A 到双曲线的两条渐近线的距离的积为43,求此双曲线方程. 14.已知双曲线2214x y -=的两个焦点分别为12F F 、,点P 在双曲线上且满足1290F PF ∠=,求12F PF ∆的面积.15.如下图,已知F 1,F 2是双曲线22221x y a b-=(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,求双曲线的离心率.【答案与解析】1.【答案】: B【解析】: 与双曲线2212x y -=有共同渐近线的双曲线方程可设为222x y λ-=(λ≠0), 又因为双曲线的焦点在y 轴上,∴方程可写为2212x λλλ-=--. 又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为2211224y x -=. 2.【答案】C 【解析】双曲线的渐近线方程为a y x b=± ∵渐近线互相垂直,且关于坐标轴对称,∴1a b =,得a=b. 双曲线离心率222c a b e a +===. 3.【答案】 D【解析】 设双曲线方程为22(0)y x λλ-=≠∵焦点(0,43),±∴0,λ>又22(43)λ=,24λ=4. 【答案】B 【解析】因为|PF 2|=|F 2F 1|, P 点满足2222b y a c -=1,∴22b y c a a=-, ∴222b c c a a=-,即 2ac=b 2=c 2-a 2, ∴12e e =-,故e=1+2. 5. 【答案】 B【解析】如图,分别过双曲线的右顶点A ,右焦点F 作它的渐近线的垂线,B 、C 分别为垂足,则△OBA ∽△OCF , ∴13OA AB OF FC ==, ∴13a c =,∴22b a = 故渐近线方程为:22y x =±.6. 【答案】C【解析】设所求方程为22916x y k -=,代入(-3,23)得14k =, 52c =, ∵双曲线221916x y -=的渐近线为43y x =±, ∴焦点5(,0)2到渐近线43y x =±的距离d=2. 7. 【答案】(±2,0)【解析】由题意得:a =1,e =c a =2,所以c =2,又由标准方程可得焦点在x 轴上,所以焦点坐标为(±2,0).8.【答案】2【解析】; 由题意得4-a 2=a 2+1,∴2a 2=3,a=29.【答案】 221253944y x -= 【解析】 椭圆221925x y +=中,a =5,b =3,c 2=16, 焦点为(0,±4),离心率45c e a ==, ∴双曲线的离心率e 1=2e =85, ∴111485c a a ==,∴a 1=52, ∴22211125164b c a =-=-=394, ∴双曲线的方程为221253944y x -=. 10. 【答案】3【解析】已知双曲线方程为22194y x -=,故P (3,0)为双曲线的右顶点,所以过P 点且与双曲线只有一个公共点的直线共有三条(一条切线和两条与渐近线平行的直线).11.【解析】 由已知,l 的方程为ay+bx-ab=0,原点到l4c =,又c 2=a 2+b 2,∴24ab =,两边平方,得16a 2(c 2-a 2)=3c 4. 两边同除以a 4并整理得3e 4-16e 2+16=0,∴e 2=4或243e =. ∵ 0<a<b, 1b a>,221b a >,得22222212a b b e a a +==+>, ∴e 2=4,故e=2.12.【解析】由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0.242210.0 1.48(1)0.a a a a a a ⎧-≠⎪<≠⎨+->⎪⎩所以解得双曲线的离心率01,2(2,).2e a a e e e =<<≠∴>≠+∞即离心率的取值范围为13.【解析】双曲线22221x y a b-=的两渐近线的方程为bx ±ay =0. 点A 到两渐近线的距离分别为1d =2d =已知d 1d 2=43,故2222|145|43b a a b -=+ (ⅰ) 又A 在双曲线上,则14b 2-5a 2=a 2b 2(ⅱ)(ⅱ)代入(ⅰ),得3a 2b 2=4a 2+4b 2(ⅲ)联立(ⅱ)、(ⅲ)解得b 2=2,a 2=4.故所求双曲线方程为22142x y -=. 14. 【解析】解法一: 由双曲线的方程知a=2, b=1, ∴5c =. 因此12||225F F c ==.由于双曲线是对称图形,如图所示, 设P 点坐标为(x,142-x ), 由已知F 1P ⊥F 2P ,∴111F P F P k k ⋅=-, 即221144155x x x x --⋅=-+-, 得2245x =,∴1221211||12512425F PF x S F F ∆=⋅⋅-=⨯⨯= 解法二:∵(|PF 1|-|PF 2|)2=4a 2=16,又由勾股定理得|PF 1|2+|PF 1|2=(2c)2=20, ∴|PF 1||PF 2|=21[|PF 1|2+|PF 2|2-(|PF 1|-|PF 2|)2]=21(20-16)=2, ∴121F PF S ∆=.15.【解析】设MF 1的中点为P ,在Rt △PMF 2中,|PF 2|=|MF 2|·sin60°=2c ·32=3c .又由双曲线的定义得|PF 2|-|PF 1|=2a ,所以312a c -=,3131c e a ===+-.。

直线与双曲线的位置关系(分层练习)

直线与双曲线的位置关系(分层练习)

直线与双曲线的位置关系(分层练习)[基础训练]1.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1作圆x 2+y 2=a 2的切线交双曲线的右支于点P ,且切点为T ,已知O 为坐标原点,M 为线段PF 1的中点(点M 在切点T 的右侧),若△OTM 的周长为4a ,则双曲线的渐近线方程为( )A .y =±34x B .y =±43x C .y =±35xD .y =±53x答案:B 解析: 设双曲线的右焦点为F 2,连接PF 2,由题意得|OM |=12|PF 2|, 因为△OTM 的周长为4a ,所以|TM |+|OM |+a =4a ,即|TM |+12|PF 2|=3a , 所以|TM |+12(|PF 1|-2a )=3a , 即|TM |+12|PF 1|=4a .因为M 为线段PF 1的中点,所以|PT |=4a , 又|TF 1|=c 2-a 2=b ,所以|PF 1|=4a +b ,则|PF 2|=2a +b , 所以|OM |=a +12b ,|TM |=2a -12b .在Rt △OTM 中,由勾股定理得⎝ ⎛⎭⎪⎫a +12b 2=⎝ ⎛⎭⎪⎫2a -12b 2+a 2,化简可得b a =43,所以双曲线的渐近线方程为y =±43x .故选B.2.[2020山东青岛一模]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :x +2y +5=0,且双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 220-y 25=1B .x 25-y 220=1C.3x 225-3y 2100=1 D .3x 2100-3y 225=1答案:A 解析:双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :x +2y +5=0,且双曲线的一个焦点在直线l 上,l 与x 轴交于(-5,0),∴⎩⎨⎧-b a=-12,c =5,又a 2+b 2=c 2,∴a =25,b =5, ∴双曲线的方程为x 220-y 25=1. 故选A.3.[2019全国卷Ⅲ]已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为( )A.32 B .52 C.72 D .92答案:B 解析:如图,记双曲线的右焦点为F ,设左焦点为F ′,连接PF ′,PF ,由题意得F (3,0),F ′(-3,0),∵|OP |=|OF |=12|FF ′|=3,∴∠F ′PF =90°, 设|PF ′|=m ,|PF |=n ,则⎩⎪⎨⎪⎧m -n =4,m 2+n 2=36,故mn =m 2+n 2-(m -n )22=10. ∴S △OPF =12S △PF ′F =14mn =52,故选B.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 作圆x 2+y 2=a 2的切线FM (切点为M ),交y 轴于点P .若M 为线段FP 的中点,则双曲线的离心率是( )A.2 B .3 C .2D .5答案:A 解析:因为OM ⊥PF ,且|FM |=|PM |, 所以|OP |=|OF |,∠OFP =45°,|OM |=|OF |·sin 45°, 即a =c ·22,所以e =ca =2, 故选A.5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =θ,且θ∈⎣⎢⎡⎭⎪⎫π3,π2,则该双曲线的离心率的取值范围为( )A .(1,3+1]B .⎣⎢⎡⎭⎪⎫3+12,+∞ C.⎣⎢⎡⎭⎪⎫3+12,2 D .[2,+∞)答案:A 解析:设其左焦点为F 1,连接AF 1,BF 1,易得∠F 1AF =π2,∠ABF =∠AF 1F =θ∈⎣⎢⎡⎭⎪⎫π3,π2,∴|AF 1|=2c cos θ,|AF |=2c sin θ, ∴2a =2c |cos θ-sin θ|, ∴e =12sin ⎝ ⎛⎭⎪⎫θ-π4∈(1,3+1].6.[2020湖北武汉调研]过点P (4,2)作一直线,该直线与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .43答案:D 解析:解法一:由题意可知,点P 的位置如图所示,且直线AB的斜率存在.设直线AB 的斜率为k ,则直线AB 的方程为y -2=k (x -4),即y =k (x -4)+2.由⎩⎨⎧y =k (x -4)+2,x 22-y 2=1消去y ,得(1-2k 2)x 2+(16k 2-8k )x -32k 2+32k -10=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-16k 2+8k 1-2k 2,x 1x 2=-32k 2+32k -101-2k 2.因为P (4,2)为AB 的中点,所以-16k 2+8k1-2k 2=8,解得k =1,满足Δ>0, 所以x 1+x 2=8,x 1x 2=10, 于是|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+12·82-4×10=4 3. 故选D.解法二:由题意可知,点P 的位置如解法一中图所示,且直线AB 的斜率存在.设直线AB 的斜率为k ,则直线AB 的方程为y -2=k (x -4),即y =k (x -4)+2.设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则⎩⎪⎨⎪⎧x 21-2y 21-2=0,x 22-2y 22-2=0,整理可得(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2). 因为P (4,2)为AB 的中点, 所以x 1+x 2=8,y 1+y 2=4, 所以k =y 1-y 2x 1-x 2=x 1+x 22(y 1+y 2)=1,所以直线AB 的方程为y =x -2.由⎩⎨⎧y =x -2,x 22-y 2=1消去y ,得x 2-8x +10=0,所以x 1x 2=10,于是|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+12·82-4×10=4 3.7.[2020福建六校联考]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,左顶点为A ,以F 为圆心,F A 为半径的圆交C 的右支于P ,Q 两点,△APQ 的一个内角为60°.则双曲线C 的离心率为________.答案:43 解析:由于双曲线和圆都关于x 轴对称, 又△APQ 的一个内角为60°,所以△APQ 为正三角形,则∠PFx =60°, 所以x P =c +(a +c )cos 60°=3c +a2,y p =(a +c )sin 60°=3(c +a )2,即P ⎝ ⎛⎭⎪⎫3c +a 2,3(c +a )2, 代入双曲线方程x 2a 2-y 2b 2=1,整理得3e 2-e -4=0, 解得e =43.8.[2020山西太原联考]已知双曲线C :x 2a 2-y 2b 2=1的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,再反向延长交另一条渐近线于N ,若2MF→=FN →,则双曲线C 的离心率e =________. 答案:233 解析:解法一:如图所示.渐近线OM 的方程为bx +ay =0,右焦点为F (c,0),因此,|FM |=|bc |a 2+b2=b .过点F 作FP ⊥ON ,垂足为P , 则|FP |=|FM |=b .又因为2MF→=FN →,所以|FN →|=2b , 在Rt △FPN 中,sin ∠FNP =|PF ||FN |=b 2b =12, 所以∠FNP =π6,故在Rt △OMN 中,∠MON =π3,所以∠FON =π6,所以b a =33,即a =3b , 所以c =a 2+b 2=2b , 所以双曲线C 的离心率e =233. 解法二:由2MF →=FN →知,|MF ||FN |=12. 由渐近线的对称性知,∠NOF =∠MOF , 即OF 为∠NOM 的角平分线, 则cos ∠NOM =|OM ||ON |=|MF ||FN |=12, 所以∠NOM =π3,∠NOF =∠MOF =π6. 因为双曲线C 的渐近线方程为y =±ba x , 所以b a =tan π6=33, 所以e =ca =1+⎝ ⎛⎭⎪⎫b a 2=233. 所以双曲线C 的离心率e =c a =2b 3b=233.9.[2020山东泰安模拟]过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A ,B ,若F 1A →=AB →,则双曲线的渐近线方程为________.答案:3x ±y =0 解析:设F 1(-c,0),A (x A ,y A ),B (x B ,y B ).由⎩⎨⎧ y =x +c ,y =-ba x ,解得x =-ac a +b ,则x A =-aca +b.由⎩⎨⎧y =x +c ,y =b a x ,解得x =ac b -a ,则x B =ac b -a. 由F 1A →=AB →可得-ac a +b +c =ac b -a +ac a +b , 整理得b =3a .所以双曲线的渐近线方程为3x ±y =0.10.[2020云南昆明一中月考]已知双曲线C 的中心为坐标原点,点F (2,0)是双曲线C 的一个焦点,过点F 作渐近线的垂线l ,垂足为M ,直线l 交y 轴于点E .若|FM |=3|ME |,则双曲线C 的方程为________.答案:x 2-y 23=1 解析:由题意设双曲线C 的方程为x 2a 2-y2b 2=1(a >0,b >0).由点到直线的距离公式得|FM |=b , 由|FM |=3|ME |及勾股定理可得 |OE |=⎝ ⎛⎭⎪⎫4b 32-4. 又∵FE 与渐近线垂直,∴⎝ ⎛⎭⎪⎫4b 32-42=a b .结合a 2=4-b 2,得b 2=3,a 2=1, ∴双曲线C 的方程为x 2-y 23=1.[强化训练]1.[2020山东济南模拟]已知F 1,F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形F 1NF 2M 的周长为p ,面积为S ,且满足32S =p 2,则该双曲线的渐近线方程为( )A .y =±12x B .y =±22x C .y =±32x D .y =±233x答案:B 解析:由题意,知|MF 1|-|MF 2|=2a ,①|MF 1|+|MF 2|=p2.②联立①②,解得|MF 1|=a +p 4,|MF 2|=p4-a . 因为F 1F 2为直径,所以四边形F 1NF 2M 为矩形,则S =|MF 1|·|MF 2|=⎝ ⎛⎭⎪⎫p 42-a 2,又32S =p 2,所以p 232=p216-a 2,解得p 2=32a 2.由|MF 1|2+|MF 2|2=|F 1F 2|2,得2a 2+p 28=4c 2,所以3a 2=2c 2,所以a 2=2b 2,即b a =±22, 所以该双曲线的渐近线方程为y =±22x . 故选B.2.[2019天津卷]已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A.2 B .3 C .2D .5答案:D 解析:由题意可知抛物线的焦点F 的坐标为(1,0),准线方程为x =-1,又知双曲线的渐近线方程为y =±ba x ,∵|AB |=4|OF |=4,不妨设A 在B 上方, ∴A (-1,2),又点A 在直线y =-ba x 上, ∴2=-b a ·(-1),∴ba =2, ∴双曲线的离心率e =1+b 2a 2=1+4= 5.故选D.3.[2020河北五个一联盟联考]设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与双曲线C 在第二象限的交点为P ,|OP |=|OF |,其中O 为原点,则双曲线C 的离心率为 ( )A .5B . 5 C.53D .54答案:A 解析:∵直线4x -3y +20=0过双曲线C 的左焦点, 令y =0,得x =-5,即F (-5,0),∴c =5. 又知点O 到直线4x -3y +20=0的距离d =205=4. 设PF 的中点为M ,右焦点为F 0,连接OM ,则OM ⊥PF ,且|OM |=4,∴|PF |=6, 连接PF 0,∵M 为PF 的中点,O 为FF 0的中点, ∴OM ∥PF 0且|OM |=12|PF 0|, 则|PF 0|=2|OM |=8,由双曲线的定义可知|PF 0|-|PF |=2a , 即2a =8-6=2,∴a =1.∴双曲线C 的离心率e =c a =51=5. 故选A.4.[2020湖南长沙模拟]已知F 1,F 2分别是双曲线C :y 2-x 2=1的上、下焦点,P 是其一条渐近线上的一点,且以F 1F 2为直径的圆经过点P ,则△PF 1F 2的面积为( )A.22 B .1 C.2D .2答案:C 解析:设P (x 0,y 0),不妨设点P 在双曲线C 的渐近线x -y =0上,因此可得x 0-y 0=0.由题意知,F 1(0,2),F 2(0,-2),所以|F 1F 2|=22,以F 1F 2为直径的圆的方程为x 2+y 2=2,又以F 1F 2为直径的圆经过点P ,所以x 20+y 20=2.由⎩⎪⎨⎪⎧x 0-y 0=0,x 20+y 20=2,得|x 0|=1,于是S △PF 1F 2=12|F 1F 2|·|x 0|=12×22×1= 2.故选C.5.[2019山西太原二模]已知点F 1,F 2分别是椭圆C 1和双曲线C 2的公共焦点,e 1,e 2分别是C 1和C 2的离心率,点P 为C 1和C 2的一个公共点,且∠F 1PF 2=2π3,若e 2∈(2,7),则e 1的取值范围是( )A.⎝ ⎛⎭⎪⎫55,23 B .⎝ ⎛⎭⎪⎫23,255 C.⎝ ⎛⎭⎪⎫55,73D .⎝ ⎛⎭⎪⎫73,255 答案:D 解析:设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,它们的半焦距为c .不妨设点P 为椭圆与双曲线在第一象限内的交点,F 1,F 2分别为左、右焦点,则由椭圆和双曲线的定义知,⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,解得⎩⎪⎨⎪⎧|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.在△F 1PF 2中,由余弦定理,得(2c )2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos 2π3,整理得4c 2=3a 21+a 22,即a 22=4c 2-3a 21.所以1a 22=14c 2-3a 21,c 2a 22=c 24c 2-3a 21=c 2a 214×c 2a 21-3,即e 22=e 214e 21-3. 又e 2∈(2,7),所以4<e 214e 21-3<7,结合0<e 1<1, 解得73<e 1<255.故选D.6.[2020陕西质量检测]已知等腰三角形ABC 的底边端点A ,B 在双曲线x 26-y 23=1的右支上,顶点C 在x 轴上,且AB 不垂直于x 轴,则顶点C 的横坐标t 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫362,+∞ 解析:设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 0> 6.由题意,得⎩⎪⎨⎪⎧ x 216-y 213=1,x 226-y 223=1,两式相减并整理,得(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2),所以k AB =y 1-y 2x 1-x 2=12·x 1+x 2y 1+y 2=x 02y 0. 又k MC =y 0x 0-t,由题意易知AB ⊥MC , 所以k MC ·k AB =y 0x 0-t ×x 02y 0=-1, 即x 0+2(x 0-t )=0,解得t =3x 02,又x 0>6,所以t >362.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,交另一条渐近线于点N ,若7FM→=3FN →,则双曲线的渐近线方程为________.答案:y =±102x 解析:不妨设点M 在第一象限,则直线OM 的方程为y =ba x ,直线ON 的方程为y =-ba x ,又7FM →=3FN →,所以|FM →||FN →|=37.如图,过点M ,N 分别向x 轴作垂线交x 轴于点S ,T ,则|MS ||NT |=|FM →||FN →|=37.由题易知点F (c,0)到直线OM 的距离为|MF |=bca 2+b 2=b ,则|OM |=|OF |2-|MF |2=a ,因为|OM |·|MF |=|OF |·|MS |,所以|MS |=abc .直线NF 的方程为y -0=-a b (x -c ),即y =-a b x +acb ,与直线ON 的方程联立,得⎩⎪⎨⎪⎧ y =-ba x ,y =-a b x +acb ,解得⎩⎨⎧ x N =a 2c a 2-b 2,y N =abcb 2-a 2,|NT |=y N =abc b 2-a 2, 所以|MS ||NT |=ab c abc b 2-a 2=37,则b 2-a 2c 2=37,7b 2-7a 2=3(a 2+b 2),化简得4b 2=10a 2,即b 2a 2=104,所以b a =102,故双曲线的渐近线方程为y =±102x .8.双曲线C 的中心在原点,右焦点为F ⎝ ⎛⎭⎪⎫233,0,渐近线方程为y =±3x . (1)求双曲线C 的方程;(2)设直线l :y =kx +1与双曲线C 交于A ,B 两点,当k 为何值时,以线段AB 为直径的圆过原点?解:(1)设双曲线C 的方程是x 2a 2-y 2b 2=1(a >0,b >0),则由题意得⎩⎨⎧a 2+b 2=233,b a =3,解得⎩⎨⎧ a =33,b =1,故双曲线C 的方程是3x 2-y 2=1.(2)联立⎩⎪⎨⎪⎧y =kx +1,3x 2-y 2=1,得(3-k 2)x 2-2kx -2=0, 由Δ>0且3-k 2≠0,得-6<k <6且k ≠± 3.设A (x 1,y 1),B (x 2,y 2),因为以线段AB 为直径的圆过原点,所以OA ⊥OB ,所以x 1x 2+y 1y 2=0,又x 1+x 2=-2k k 2-3,x 1x 2=2k 2-3, 所以y 1y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=1,2所以k2-3+1=0,解得k=±1.。

直线和双曲线关系 直线与双曲线位置关系及交点个数

直线和双曲线关系 直线与双曲线位置关系及交点个数

直线与双曲线位置关系及交点个数
Y
相交:两个交点
O X
相切:一个交点 相离: 0个交点
Y
相交:一个交点
O
X
例1:如果直线y=kx-1与双曲线x2-y2=4仅有一个公共点, 求k的取值范围.
分析:只有一个公共点,即方程组仅有一组实数解.
变式:
⑴ 如果直线y=kx-1与双曲线x2-y2=4有两个公共 点,求k的取值范围.
练习:求下列直线与双曲线的交点坐标.
x2 y2 14 2 (1)2x-y-10 0, 1 (6,2),( , ) 20 5 3 3 x2 y2 25 (2)4x-3y-16 0, 1 ( , 3) 25 16 4 (3)x-y 1 0, x 2 y 2 3 (2, 1)
⑵ 如果直线y=kx-1与双曲线x2-y2=4没有公共点, 求k的取值范围.
归纳直线与双曲线位置关系:
有两个公共点△>0
相交 直线与双曲线 有一个公共点,
直线与渐近线平行
相切 有一个公共点,△=0 相离
⑶如果直线y=kx-1与双曲线x2-y2=4的右支有两 个公共点,求k的取值范围. ⑷如果直线y=kx-1与双曲线x2-y2=4的右支只有
一个公共点,求k的取值范围.
随堂练习
x y 过点 0,3的直线与双曲线 1 4 3 只有一个公共点,求直线L的方程.
2
2
试讨论过定点且与双曲线只有一个交点的 直线的 条数问题?
例2.已知双曲线方程为
3x y 3,
2 2
(1)求以定点(2,1)为中点的弦所在的直线 方程及弦长; (2)是否存在直线l,使N(1,1 )为l 被双 曲线所截弦的中点,若存在,求出直线l 的 方程,若不存在,请说明理由. 不存在

专题讲解 直线与双曲线的位置关系(学生) - 副本

专题讲解  直线与双曲线的位置关系(学生) - 副本

专题讲解 直线与双曲线的位置关系基础卷一.选择题:1.设直线y =kx 与双曲线4x 2―y 2=16相交,则实数k 的取值范围是(A )―2<k <2 (B )―1<k <1 (C )0<k <2 (D )―2<k <02.“直线与双曲线有唯一交点”是“直线与双曲线相切”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )不充分不必要条件3.直线y =x ―1被双曲线2x 2―y 2=3所截得的弦的中点坐标是(A )(1, 2) (B )(―2, ―1) (C )(―1, ―2) (D )(2, 1)4.等轴双曲线中心在原点,焦点在x 轴上,与直线y =21x 交于A , B 两点,若|AB 则其方程为 (A )x 2―y 2=6 (B )x 2―y 2=9 (C )x 2―y 2=16(D )x 2―y 2=25 5.直线l 过点(5, 0),与双曲线2214y x -=只有一个公共点,则满足条件的l 有 (A )1条 (B )2条 (C )4条 (D )无数条6.若直线y =kx +1与曲线x 有两个不同的交点,则k 的取值范围是(A )―2<k <2 (B )―2<k <―1 (C )1<k <2 (D )k <―2或k >2二.填空题:7.过点A (3, ―1)且被A 点平分的双曲线2214x y -=的弦所在的直线方程是 .8.直线y =mx ―1与双曲线22149x y -=有两个交点,则m 的取值范围是 . 9.过双曲线16x 2―9y 2=144的右焦点作倾斜角为3π的弦AB ,则|AB |等于 . 10.设双曲线12222=-by a x (a >0, b >0)的半焦距是c ,直线l 过两点(a , 0), (0, b ),已知原点到直线l 的距离为413c ,则双曲线的离心率为 .提高卷一.选择题: 1.直线y =kx ―1与双曲线22149x y -=有且只有一个交点,则k 的取值范围是内部学习资料2 (A )k =±2110 (B )k =±23 (C )k =±2110或k =±23 (D )k ∈∅ 2.过双曲线x 2―y 2=4的焦点且平行于虚轴的弦长是(A )1 (B )2 (C )3 (D )43.直线y =31(x ―27)与双曲线2219x y -=的交点 个数是 (A )0个 (B )1个 (C )2个 (D )4个4.斜率为2的直线l 被双曲线22154x y -=截得的弦长为25,则直线l 的方程是 (A )y =2x(B )y =2x(C )y =2x(D )y =2x5.经过双曲线12222=-by a x (a >0, b >0)上任一点M ,作平行于实轴的直线,与渐近线交于P , Q 两点,则|MP |·|MQ |为定值,其值等于(A )a 2 (B )b 2 (C )c 2 (D )ab6.若直线y =m 与双曲线221925x y -=的两交点为P , Q ,且OP ⊥OQ (O 为坐标原点),则m 的值为(A )±45 (B )±54 (C )±154 (D )±415二.填空题:7.已知双曲线x 2―my 2=1 (m >0)的右顶点为A ,而B , C 是双曲线右支上两点,若△ABC为正三角形,则m 的取值范围是 .8.过点(0, 1)作直线l 与双曲线4x 2―ay 2=1相交于P , Q 两点,且∠POQ =2π(O 为坐标原点),则a 的取值范围是 .9.已知直线y =kx +1与双曲线x 2―2y 2=1只有一个公共点,则公共点的坐标是 .10.过双曲线12222=-by a x (a >0, b >0)的右焦点F 作渐近线y =b x a 的垂线,垂足为M ,与双曲线左、右两支分别交于A , B 两点,则双曲线的离心率的取值范围是 .三.解答题:11.已知双曲线的方程2212y x -=,试问是否存在被点(1, 1)所平分的弦?如果存在,求出所在直线;如果不存在,说明理由。

双曲线知识点总结及练习题

双曲线知识点总结及练习题

双曲线知识点总结及练习题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))。

这两个定点叫双曲线的焦点。

要注意两点:(1)距离之差的绝对值。

(2)2a <|F 1F 2|。

当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在。

2、第二定义:动点到一定点F 的距离与它到一条定直线l (准线2ca )的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。

这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程(222a c b -=,其中|1F 2F |=2c )焦点在x 轴上:12222=-b y a x (a >0,b >0)焦点在y 轴上:12222=-bx a y (a >0,b >0)(1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上。

a 不一定大于b 。

判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上(2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (3)双曲线方程也可设为:221(0)x y mn m n-=> 三、双曲线的性质四、双曲线的参数方程:sec tan x a y b θθ=⋅⎛ =⋅⎝ 椭圆为cos sin x a y b θθ=⋅⎛=⋅⎝五、 弦长公式[提醒]解决直线与椭圆的位置关系问题时常利用数形结合法、根与系数的关系、整体代入、设而不求的思想方法。

直线与双曲线的位置关系知识点

直线与双曲线的位置关系知识点

直线与双曲线的位置关系知识点左右直线与双曲线的位置关系是高中几何教学中的一道重要考题,它涉及到直线、双曲线、圆、椭圆等曲线几何的知识,并且能包含诸多的数学思想。

做这道题的关键是要掌握直线与曲线的基本定义以及推导方法,因此先从基础知识开始系统讲解。

首先是直线:它是两个不同的实点A和B之间满足“所有点均等距”条件的线段组成的空间数学称之为直线。

它的特性有两个,一是它平行两旁,二是其距离从一点到另一点是唯一一条。

其次是双曲线:它是由圆周上等距离构成的一种曲线。

双曲线的几何特点有:它的位置关系与圆相似,两端的曲率反向,它的几何特性与圆形的弧有相似处,且两端的曲率是正负交替的。

那么接下来就是考虑直线与双曲线的具体位置关系了。

从图形上描述,可以得出:双曲线穿透直线,直线为双曲线曲线面上的一贯线,两条双曲线交于一点时,直线也必定经过这一点,但是直线与双曲线的位置关系,尤其是是否会相切,则需要数学思考和推导。

从直线与双曲线的极坐标方程看,可以发现双曲线的当两个参数均相等时,即双曲线的曲线面上有一条与直线相切的切线,可以知道,双曲线与直线存在相切关系。

再来讨论双曲线当双曲线和直线平行时,两条双曲线也可能相切,因两条双曲线的拐点均等距离,因此当双曲线具有同一条拐点与另一条平行线上的拐点的特点时,就可以说双曲线与平行线相切。

最后要讲的是双曲线与圆的位置关系,文中提到双曲线的几何特点有,两端的曲率反向,因此双曲线和圆也可能存在相切关系。

当两端曲率正反交替时,双曲线就会切圆,而且双曲线的曲率正反交替程度越大,形成的轮廓就会越像一个圆。

所以,双曲线与圆也会存在一定的关系,当双曲线的拐点恰好在圆边上,则双曲线与圆就会相切。

总结起来,直线与双曲线的位置关系有以下几类:双曲线穿透直线,直线为双曲线曲线面上的一贯线;双曲线与直线相切,并且当直线与双曲线平行时,双曲线也可能相切;双曲线与圆也会存在一定的关系,当双曲线的拐点恰好出现在圆边上时,双曲线与圆就可能相切。

双曲线知识点总结例题

双曲线知识点总结例题

(二)双曲线知识点及巩固复习1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2)若|PF1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e=范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|=|PF2|=(F1,F2分别为双曲线的左右两焦点,P为椭圆上的一点)焦点在y轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e=范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|=|PF2|=(F1,F2分别为双曲线的下上两焦点,P为椭圆上的一点)1.等轴双曲线:特点①实轴与虚轴长相等②渐近线互相垂直③离心率为2.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为(0<k<c2,c为半焦距)(2)共渐近线的双曲线的方程为例题在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清是指整条双曲线,还是双曲线的哪一支考点1、双曲线定义例1、已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程【例2】若椭圆与双曲线有相同的焦点F1,F2,P是两条曲线的一个交点,则|PF1|·|PF2|的值是()A. B. C. D.【例3】已知双曲线与点M(5,3),F为右焦点,若双曲线上有一点P,使最小,则P点的坐标为考点2、求双曲线的方程求双曲线标准方程的方法1.定义法,根据题目的条件,若满足定义,求出相应a、b、c即可求得方程.2.待定系数法(2)待定系数法求双曲线方程的常用方法①与双曲线-=1有共同渐近线的双曲线方程可表示为-=t(t≠0);②若双曲线的渐近线方程是y=±x,则双曲线的方程可表示为-=t(t≠0);③与双曲线-=1共焦点的方程可表示为-=1(-b2<k<a2);④过两个已知点的双曲线的标准方程可表示为+=1(mn<0);⑤与椭圆+=1(a>b>0)有共同焦点的双曲线方程可表示为+=1(b2<λ<a2).例4、求下列条件下的双曲线的标准方程.(1)与双曲线-=1有共同的渐近线,且过点(-3,2);(2)与双曲线-=1有公共焦点,且过点(3,2).1.在双曲线的标准方程中,若x2的系数是正的,那么焦点在x轴上;如果y2的系数是正的,那么焦点在y轴上,且对于双曲线,a不一定大于b.2.若不能确定双曲线的焦点在哪条坐标轴上,可设双曲线方程为:mx2+ny2=1(mn<0),以避免分类讨论.考点3、双曲线的几何性质双曲线的几何性质与代数中的方程、平面几何的知识联系密切,解题时要深刻理解确定双曲线的形状、大小的几个主要特征量,如a、b、c、e的几何意义及它们的相互关系,充分利用双曲线的渐近线方程,简化解题过程例5、(12分)双曲线C:-=1(a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使·=0,求此双曲线离心率的取值范围.例6、【活学活用】3.(2012北京期末检测)若双曲线-=1(a>0,b>0)的两个焦点分别为F1、F2,P为双曲线上一点,且|PF1|=3|PF2|,则该双曲线的离心率e的取值范围是________.【例7】直线过双曲线的右焦点,斜率k=2.若与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是()A.e>B.1<e<C.1<e<D.e>【例8】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B. C.D.【评注】解题中发现△PF1F2是直角三角形,是事前不曾想到的吧?可是,这一美妙的结果不是每个考生都能临场发现的.将最美的结果隐藏在解题过程之中以鉴别考生的思维能力,这正是命题人的高明之处.渐近线——双曲线与直线相约天涯对于二次曲线,渐近线为双曲线所独有.双曲线的许多特性围绕着渐近线而展开.双曲线的左、右两支都无限接近其渐近线而又不能与其相交,这一特有的几何性质不仅很好地界定了双曲线的范围.由于处理直线问题比处理曲线问题容易得多,所以这一性质被广泛应用于有关解题之中.【例9】过点(1,3)且渐近线为的双曲线方程是【评注】在双曲线中,令即为其渐近线.根据这一点,可以简洁地设待求双曲线为,而无须考虑其实、虚轴的位置.共轭双曲线——虚、实易位的孪生弟兄将双曲线的实、虚轴互易,所得双曲线方程为:.这两个双曲线就是互相共轭的双曲线.它们有相同的焦距而焦点的位置不同;它们又有共同的渐近线而为渐近线所界定的范围不一样;它们的许多奇妙性质在解题中都有广泛的应用.【例10】两共轭双曲线的离心率分别为,证明:=1.设而不求——与借舟弃舟同理减少解析几何计算量的有效方法之一便是设而不求.请看下例:【例11】双曲线的一弦中点为(2,1),则此弦所在的直线方程为()A. B. C. D.“设而不求”具体含义是:在解题中我们希望得到某种结果而必须经过某个步骤,只要有可能,可以用虚设代替而不必真地去求它.但是,“设而不求”的手段应当慎用.不问条件是否成熟就滥用,也会出漏子.请看:【例12】在双曲线上,是否存在被点M(1,1)平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.如果不问情由地利用“设而不求”的手段,会有如下解法:练习1.(2011安徽高考)双曲线2x2-y2=8的实轴长是()A.2B.2C.4D.42.(2011山东高考)已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.-=1B.-=1C.-=1D.-=13.(2012嘉兴测试)如图,P是双曲线-y2=1右支(在第一象限内)上的任意一点,A1,A2分别是左、右顶点,O是坐标原点,直线P A1,PO,P A2的斜率分别为k1,k2,k3,则斜率之积k1k2k3的取值范围是()A.(0,1)B.(0,)C.(0,)D.(0,)4.(金榜预测)在平面直角坐标系xOy中,已知△ABC的顶点A(-5,0)和C(5,0),顶点B在双曲线-=1上,则为()A.B.C.D.5.P为双曲线-=1的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.96.(2012南宁模拟)已知点F1,F2分别是双曲线的两个焦点,P为该曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为()A.+1B.+1C.2D.27.方程+=1表示双曲线.那么m的取值范围是________.8.(2012大连测试)在双曲线4x2-y2=1的两条渐近线上分别取点A和B,使得|OA|·|OB|=15,其中O为双曲线的中心,则AB中点的轨迹方程是________.9.双曲线-=1(a>0,b>0)的离心率是2,则的最小值是________.10(2012肇庆模拟)已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是x-2y=0.(1)求双曲线C的方程;(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.11.(文用)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).(1)求双曲线C的方程;(2)若直线:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点M、N,且线段MN的垂直平分线过点A(0,-1),求实数m的取值范围.12已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6)(1)求双曲线方程(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问是否存在直线l,使G平分线段MN,证明你的结论13.已知双曲线,问过点A(1,1)能否作直线,使与双曲线交于P、Q两点,并且A为线段PQ 的中点?若存在,求出直线的方程,若不存在,说明理由。

直线与双曲线的位置关系

直线与双曲线的位置关系
| AB |= 1 + 2 · (1 +2 )2 − 41 2
2 2
2
3
12 2 +8
16( 2 +1)
2
2
= 1+ ·
− 2 = 1+ · 2 2
2
−2
−2
( −2)
4( 2 +1)
2

=4,解得 k =± .
2
2
| −2|
当2- k 2≠0时, x
考点三
例3
综上可知过 P 0,2 且与双曲线2 x 2- y 2=1有且只有一个公共点的直线
有4条.
考点二
例2
弦长问题
如图,过双曲线2 x 2- y 2=6的左焦点 F 1,作倾斜角为30°的直线交双
曲线于 A , B 两点,则| AB |=
16 3
5
.
设 A 点坐标为( x 1, y 1), B 点坐标为( x 2, y 2).
B. x +2 y -1=0
AB |=4,则下列不满足条件的直线 l 为(
B )
设 A ( x 1, y 1), B ( x 2, y 2),
当直线 l 的斜率不存在时,其方程为 x = 3 ,
由ቐ
= 3,
2

2
2
得 y =±2,
= 1,
∴| AB |=| y 1- y 2|=4满足题意.
2 + 2
2


3
6
2
所以 e =
=1+ 2 = ,即 e = .
2


2
2
4.
2

(2024·浙江金华模拟)过点 P (1,1)作直线 l 与双曲线 x 2- =λ交于

直线与双曲线的位置关系

直线与双曲线的位置关系

直线与双曲线的位置关系株洲市四中高二数学组 罗叶青一、复习引入直线与椭圆的位置关系:相离,相切,相交.判定方法:运用数形结合和方程的思想,通过△判断位置关系二、直线与双曲线的位置关系问1:直线与双曲线有怎样的位置关系?(生答三种: 相离,相切,相交)问2:如何判定各种关系?(生答:联立方程组,得到关于x 的一元二次方程.根据△判断解的个数.)问3:联立以后是否一定得到关于x 的一元二次方程呢?例1 :判定直线和双曲线的位置关系(1)(2)多媒体演示小结1: 判定位置关系的方法是代数法,即联立方程组,消元,得到关于 x 的方程, ①当直线与渐近线平行时,即此时二次项系数为0,直线与双曲线相交于一点;②不平行时,二次项系数不为0,得到一元二次方程,判断实数解的个数:例2 已知直线 和双曲线 , 当k 为何值时,直线和双曲线只有一个交点?(多媒体演示)变题:将直线方程改为kx y =, ,结论如何?(多媒体演示) 小结2与双曲线有一个公共点的直线条数 :①过中心的直线系中不存在;②过渐近线上某点(原点除外)的直线系中有2条;1:,)0(:2222=-+±=by a x c m m x a b y l >14:,3:22=-+=y x c x y l 14:,121:22=-+=y x c x y l )2(2:-=-x k y l 4:22=-y x c )2(-=x k y③过双曲线上某点的直线系中有3条. 练习 求经过点( ),且与双曲线 仅有一个公共点的直线方程.备用例3:过双曲线1422=-y x 的右焦点作倾斜角为︒30的直线,交双曲线于A 、B 两点,求|AB|课堂小结:本节课主要研究了直线和双曲线的位置关系.主要解决位置关系的判定和定点直线系的交点问题, 都可以用代数法解决.它的一般步骤如下:课堂练习:1.判断直线和双曲线的位置关系(1) (2)2.当k 为何值时,直线和双曲线, ①没有交点 ②交于一点 ③交于两点作业:学案P39页5,6,72,2114:22=-y x c 1169:,3:22=-=y x c x l 1169:,134:22=-+=y x c x y l 2:+=kx y l ()04:22>x y x c =-。

直线与双曲线位置关系典例精析

直线与双曲线位置关系典例精析

直线和双曲线的位置关系一、要点精讲1.直线和双曲线的位置关系有三种:相交、相切、相离.2.弦长公式:设直线b kx y +=交双曲线于()111,y x P ,()222,y x P ,则()21221222121411x x x x k kx x P P -+⋅+=+-=,或()()04111121221222121≠-+⋅+=+-=k y y y y kk y y P P .二、基础自测 1.经过点⎪⎭⎫⎝⎛2,21P 且与双曲线1422=-y x 仅有一个公共点的直线有( ) (A) 4条 (B) 3条 (C) 2条 (D) 1条 2.直线y= kx 与双曲线16422=-y x 不可能( )(A )相交 (B )只有一个交点 (C )相离 (D )有两个公共点3.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线191622=-x y 的通径长是(A)49 (B) 29(C) 9 (D) 10 4.若一直线l 平行于双曲线的一条渐近线,则l 与双曲线的公共点个数为 . 解:与双曲线渐近线平行的直线与双曲线有且只有一个公共点,应注意直线与双曲线不是相切 5.经过双曲线822=-y x 的右焦点且斜率为2的直线被双曲线截得的线段的长是 .6.直线l 在双曲线12322=-y x 上截得的弦长为4,且l 的斜率为2,求直线l 的方程. 三、典例精析题型一:直线与双曲线的位置关系1. 如果直线1-=kx y 与双曲线422=-y x 没有公共点,求k 的取值范围.有两个公共点呢?解,所以△=2()40b a -=, 所以2b a =,2c e a ====,故选D.2.(2010·安徽)若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是 ( )A.33⎛- ⎝⎭B.0,3⎛ ⎝⎭C.3⎛⎫- ⎪ ⎪⎝⎭D.,13⎛⎫-- ⎪ ⎪⎝⎭ 解:由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0,∴()()222121210164110000k k k x x x x ⎧-≠⎪∆=--⨯->⎪⎨+>⎪⎪>⎩,解得-153<k <-1.3、过点P 与双曲线221725x y -=有且只有一个公共点的直线有几条,分别求出它们的方程。

直线与双曲线的位置关系(专题拓展)

直线与双曲线的位置关系(专题拓展)

直线与双曲线
(1)没有公共点; (1)k< 5或k> 5 ;
(2)有两个公共点;
2
(2)
5 <k<
2
5;
2
2
且k 1
(3)只有一个公共点;
(3)k=±1,或k= ± 5 ;
2
(4)交于异支两点; (4)-1<k<1 ;
(5)与左支交于两点. - 5 k 1 2
一、交点——交点个数
1.过点P(1,1)与双曲线 x2 y2 1
②相切一点: ③相 离:
△=0 △<0
特别注意直线与双曲线的位置关系中:
一解不一定相切,相交不一定两解,两解不一定同支
直线与圆锥曲线相交常考点
一、交点——交点个数 二、弦长——弦长公式 三、弦的中点的问题——点差法
一、交点——交点个数
例.已知直线y=kx-1与双曲线x2-y2=4,试讨论实数k的取值范围,使
直线与双曲线的
位置关系 专题复习
复习: 椭圆与直线的位置关系及判断方法
相离
相切
相交
判断方法
(1)联立方程组
(2)消去一个未知数
(3) ∆<0
∆=0
∆>0
1) 位置关系种类
Y
O
X
种类:相离、相切、相交(0个交点,1个交点,1个交点或2个交点)
2)位置关系与交点个数
Y
相切:1个交点
相离:0个交点
O
(2)设直线l与y轴的交点为P,且
PA
5 12
PB,
求a的值。
所以17 12
x2
2a2 1 a2
.
5 12
x
2 2
2a2 1 a2
.

2018.12.17直线与双曲线的位置关系

2018.12.17直线与双曲线的位置关系

P
结论:当点P在其中一条渐近线上(中心除外) 时,一条是切线,一条是与另一条渐近线平行。
P
结论:当点P在双曲线的中心时,不可能作出一条 直线与双曲线只有一个公共点。
P
结论:当点P在双曲线上时,能作3条直线与双曲 线只有一个公共点。
P
结论:当点P在含焦点区域内时,两条是分别与 两条渐近线平行。
x y 1只有 一个 1.过点P(1,1)与双曲线 9 16 Y 4 交点的直线 共有_______ 条. ( 1, 1)

2
2
变题:将点P(1,1)改为
O
X
1.A(3,4)
2.B(3,0)
3.C(4,0)
4.D(0,0).答案又是怎样的? 1.两条;2.三条;3.两条;4.零条.
P
结论:当点P在含焦点区域外的黄色和绿色区域时, 能作4条直线与双曲线只有一个公共点。
方法1:(方程讨论法) 列方程组, 消元, 化为一元二次方 程,运用韦达定理. 方法2:(点差法) 设而不求, 两式相减, 中点坐标公式. -----注意检验. 方法3:(几何图形法) 适用只定性不定量 (1)若点在开口内, 则中点弦存在. (2)若点在开口外, 则中点弦不一 定存在,必须检验.
4 2 -5 5 10 -2 -4
2 2

3
的弦AB。求2F2 AB的周长
F2 AB的周长 AB AF2 BF2 AB 2a AF1 2a BF1 4a 2 AB 4 8 12
经过双曲线x y 1的左焦点F1作倾斜角为
2 2

2
的弦AB。求F2 AB的周长
只有一个公共点
没有公共点
y = kx + m 2 消去y,得 : (b2-a2k2)x2-2kma2x+a2(m2+b2)=0 x y2 2 - 2 =1 a b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】
一、选择题
1.双曲线2233x y -=的渐近线方程是( )
A .3y x =±
B .1
3y x =± C .y = D .y x = 2.椭圆22214x y m +=与双曲线22
212
x y m -=有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在
3.已知双曲线方程为22
1205
x y -=,那么它的半焦距是( )
A .5
B .2.5 C. D. 4.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )
A .-14
B .-4
C .4 D. 14
5. 已知双曲线的两个焦点为F 1(0)、F 20),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A. 22123x y -= B. 22132x y -= C. 2
214x y -= D .2
2
14y x -= 6. 已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )
A .16
B .18
C .21
D .26
二、填空题 7.已知双曲线22
1124
x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________.
8.过点P (3,0)的直线l 与双曲线4x 2-9y
2=36只有一个公共点,则这样的直线l 共有________条.
9.已知双曲线22
221x y a b
-= (a >0,b >0)的左、右焦点分别是F 1,F 2,点P 在双曲线右支上,且|PF 1|=4|PF 2|,则此双曲线离心率e 的最大值为________.
10.设一个圆的圆心在双曲线22
1916
y x -=的上支上,且恰好经过双曲线的上顶点和上焦点,则原点O 到该圆圆心的距离是________.
三、解答题
11.已知双曲线的中心在原点,焦点为F 1
,F 2(0,),且离心率2e =,求双曲线
的标准方程及其渐近线. 12.设双曲线C :1:)0(1222
=+>=-y x l a y a
x 与直线相交于两个不同的点A 、B ;求双曲线C 的离心率e 的取值范围:
13.设双曲线22
22b
y a x -=1(0<a<b )的半焦距为c ,直线l 过(a,0),(0,b)两点.已知原点到直线l 的距离为4
3c ,求双曲线的离心率. 14.两共轭双曲线的离心率分别为21,e e ,证明:
221211e e +=1. 15. 如图所示,已知F 1,F 2为双曲线22
221x y a b
-= (a >0,b >0)的两个焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°,求双曲线的渐近线方程.
【答案与解析】1.【答案】:C
【解析】:将双曲线化为
2
21
3
y
x-=,以0代替1,得
2
20
3
y
x-=,即22
3
y x
=;
即y=,故选C
2.【答案】: A
【解析】:验证法:当m=±1时,m2=1,
对椭圆来说,a2=4,b2=1,c2=3.
对双曲线来说,a2=1,b2=2,c2=3,
故当m=±1时,它们有相同的焦点.
直接法:显然双曲线焦点在x轴上,故4-m2=m2+2. ∴m2=1,即m=±1.
3.【答案】: A
【解析】:∵a2=20,b2=5,∴c2=25,∴c=5.
4. 【答案】: A
【解析】:双曲线mx2+y2=1的方程可化为:
y2-
2
1
x
m
-
=1,
∴a2=1,b2=-1
m
,由2b=4a,
∴4,∴m=-1 4 .
5. 【答案】: C
【解析】:∵c|PF1|2+|PF2|2=|F1F2|2=4c2,∴(|PF1|-|PF2|)2+2|PF1|·|PF2|=4c2,
∴4a2=4c2-4=16,∴a2=4,b2=1.
6.【答案】: D
【解析】:|AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8,
∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,
∴|AF 2|+|BF 2|=16+5=21,
∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.
7.【答案】:⎡⎢⎣⎦
【解析】:由题意知F (4,0),双曲线的两条渐近线方程为y =x ,当过点F 的直线与渐近线平行时,
满足与右支只有一个交点,画出图形,通过图形可知该直线斜率的取值范围是⎡⎢⎣
⎦. 8.【答案】:3
【解析】:已知双曲线方程为22
194
y x -=,故P (3,0)为双曲线的右顶点,所以过P 点且与双曲线只有一个公共点的直线共有三条(一条切线和两条与渐近线平行的直线).
9. 【答案】:
53
【解析】:由|PF 1|-|PF 2|=2a 及|PF 1|=4|PF 2|得: |PF 2|=23
a ,又|PF 2≥c -a , 所以23a ≥c -a ,c ≤53
a , ∴e =
c a ≤53,即e 的最大值为53. 10.【答案】:163
【解析】:由已知得双曲线的上顶点为A (0,3),上焦点为F (0,5),设圆心为P (x 0,y 0),则y 0=
352+=
4.代入双曲线方程得2016194x -=,所以207169
x ⨯=,故|PO |163=.
11. 解析: 由条件知焦点在y
轴上,c =
c a
=
2,2a b ==;所以双曲线的方程为22
1,44
y x -=渐近线方程为y x =± 12.解析:由C 与t 相交于两个不同的点,故知方程组
⎪⎩
⎪⎨⎧=+=-.1,1222
y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0.
242210.0 1.48(1)0.a a a a a a ⎧-≠⎪<≠⎨+->⎪⎩所以解得
双曲线的离心率
01,(2,).e a a e e e =<<≠∴
≠+∞即离心率的取值范围为
13.【解析】
:由已知,l 的方程为ay+bx-ab=0,
原点到l
4c =, 又c 2=a 2+b 2, ∴24ab =,两边平方,得16a 2(c 2-a 2)=3c 4.
两边同除以a 4并整理得3e 4-16e 2+16=0,∴e 2=4或243
e =. ∵ 0<a<b, 1b a
>,221b a >,得22222212a b b e a a +==+>, ∴e 2
=4,故e=2. 14.解析:证明:双曲线22
221x y a b
-=的离心率22221122c c a b e e a a a +=⇒==;
双曲线
22
22
1
x y
b a
-=的离心率
222
2
2222
c c a b
e e
b b b
+
=⇒==.

22
222222
12
11
1
a b
e e a b a b
+=+=
++
.
15.【解析】:∵在Rt△F1F2P中,∠PF1F2=30°,∴|PF1|=2|PF2|.
由双曲线的定义知|PF1|-|PF2|=2a,
∴|PF2|=2a.
∴|F1F2|
=PF2|,即2c=
,∴c2=3a2.
又∵c2=a2+b2,∴2a2=b2.∴b
a
.
故所求双曲线的渐近线方程为y=
x.。

相关文档
最新文档