《圆的标准方程》PPT课件

合集下载

圆的标准方程完整ppt课件

圆的标准方程完整ppt课件
解决与圆有关的切线问题
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。

必修2《圆的标准方程》1(人教版)PPT课件

必修2《圆的标准方程》1(人教版)PPT课件

极坐标方程与标准方程的关系
通过极坐标与直角坐标的转换公式 $x = rcostheta, y = rsintheta$, 可以将极坐标方程转换为标准方程。
标准方程 $x^2 + y^2 + Dx + Ey + F = 0$ 可以通过配方转换为极坐标方 程。
极坐标方程的应用
描述圆的形状和大小。 解决与圆相关的几何问题,如求圆的面积、周长等。
圆的几何意义
01
02
03
04
圆是中心对称图形,对称中心 是圆心。
圆也是轴对称图形,任何经过 圆心的直线都是它的对称轴。
圆的周长与直径的比值是一个 常数,这个常数叫做圆周率π

圆的面积与半径的平方成正比 ,比例系数是π。
2023
PART 02
圆的标准方程
REPORTING
标准方程的形式
圆的标准方程为: $(x - a)^{2} + (y b)^{2} = r^{2}$
切线的定义
与圆有且仅有一个公共点 的直线。
切线的性质
切线与半径垂直,且切点 到圆心的距离等于半径长 。
切线的判定方法
若直线与圆有公共点,且 过该点的半径与直线垂直 ,则该直线为圆的切线。
2023
PART 06
圆的综合应用
REPORTING
圆与直线的位置关系
相离
直线与圆没有交点,即圆心到直 线的距离大于圆的半径。
$(x - a)^{2} + (y - b)^{2} = r^{2}$
标准方程的应用
用于判断点与圆的位置关系 用于求解与圆有关的轨迹问题
用于求解圆的切线方程 用于解决与圆相关的最值问题
2023

圆方程ppt课件ppt课件

圆方程ppt课件ppt课件

03
圆的方程的应用
解析几何中的应用
确定点与圆的位置关系
通过圆的方程,可以判断一个点是否在圆上、 圆内或圆外。
求解圆的切线方程
利用圆的方程,可以求出过某一点的圆的切线 方程。
求解圆心和半径
根据圆的方程,可以求出圆心的坐标和半径的长度。
几何图形中的应用
判断两圆的位置关系
通过比较两个圆的方程,可以判断两圆是相交、相切还是相 离。
03
frac{E}{2})$ 和半径 $frac{sqrt{D^2 + E^2 - 4F}}{2}$。
圆的参数方程
圆的参数方程为 $x = a + rcostheta$,$y = b + rsintheta$,其中 $(a, b)$ 是圆 心坐标,$r$ 是半径,$theta$ 是 参数。
该方程通过参数 $theta$ 描述了 圆上任意一点的坐标。
$(x - h)^{2} + (y - k)^{2} = r^{2}$ ,其中$(h, k)$是圆心坐标,$r$是半 径。
不在同一直线上的三个点可以确定一 个圆,且该圆只经过这三个点。
圆的基本性质
1 2
圆的对称性
圆关于其直径对称,也关于经过其圆心的任何直 线对称。
圆的直径与半径的关系
直径是半径的两倍,半径是直径的一半。
该方程描述了一个以 $(h, k)$ 为圆心,$r$ 为
半径的圆。
当 $r = 0$ 时,方程描 述的是一个点 $(h, k)$。
圆的一般方程
01
圆的一般方程为 $x^2 + y^2 + Dx + Ey + F = 0$。
02
该方程可以表示任意一个圆,其中 $D, E, F$ 是常数。

选择必修 第二章 2.4.1 圆的标准方程 课件(共26张PPT)

选择必修 第二章   2.4.1  圆的标准方程  课件(共26张PPT)
究位置关系、距离
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?

平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.

《圆的标准方程》课件

《圆的标准方程》课件
《圆的标准方程》PPT课 件
欢迎来到《圆的标准方程》PPT课件!在这个课件中,我们将介绍圆的基本概 念、标准方程的一般形式以及圆心和半径的含义。让我们开始探索圆的奥秘 吧!
什么是圆的标准方程
圆的标准方程是描述圆形的方程式。它使用平面直角坐标系中的变量来表示 圆的位置和半径。了解圆的标准方程可以帮助我们解决各种与圆相关的数学 问题。
多边形
圆可以与多边形的外接圆或内切 圆相交或相切。
圆的重要性及应用领域
1 数学基础
圆是几何学的基本概念之一,对于数学的发展起到了重要的推动作用。
2 物理学
圆的运动和旋转是物理学中许多现象的基础,如行星的轨道和自转。
3 计算机科学
圆的标准方程在计算机图形学中用于绘制圆形的图像和动画。
圆的标准方程与其他方程型的比较
圆的标准方程在物理学中的应用
物理学中的许多现象可以用圆的标准方程进行建模和描述。例如,行星的轨道可以用圆形或椭圆 形来表示,而物体的旋转运动也可以用圆的方程来描述。
圆的标准方程在工程 中用于设计圆形物体 的尺寸和位置。
通过圆的标准方程解决方程组
圆的标准方程可以与其他方程组合使用,解决多元方程组中与圆有关的问题。例如,我们可以通 过圆的标准方程和直线方程的系统来求解直线和圆的交点。
圆和其他图形的关系
1
三角形
2
圆可以与三角形的外接圆或内切
圆有关。
3
矩形
圆可以与矩形相切或包围,形成 有趣的图案。
步骤2
将圆心的坐标(h, k)代入圆的标准方程的x 和y的变量位置。
步骤4
整理方程,得到圆的标准方程。
圆的一般方程和标准方程之间 的关系
圆的一般方程和标准方程都可以用来表示圆形,但它们的形式不同。一般方 程是多项式形式,而标准方程是平方项的和。通过变换,可以将一般方程转 化为标准方程,反之亦然。

圆的标准方程ppt课件完整版x-2024鲜版

圆的标准方程ppt课件完整版x-2024鲜版

2024/3/28
25
两圆相离条件(内含和外离)
内含
两圆圆心之间的距离小于两圆半径之差。
外离
两圆圆心之间的距离大于两圆半径之和。
2024/3/28
26
判断方法总结及示例
要点一
判断方法
首先根据两圆圆心距和半径和、半径差的大小关系,确定 两圆的位置关系类型(相交、相切、相离),然后根据具 体类型进一步判断是相交、内切、外切、内含还是外离。
04
2024/3/28
05
4. 从中可以看出,圆心坐标 为 $(2, -3)$,半径 $r = 1$

12
03
圆的图像与性质分析
2024/3/28
13
圆心位置对图像影响
圆心决定圆的位置
在平面直角坐标系中,圆心的坐标决定了圆在平面上的位置。
圆心与圆上任一点的距离等于半径
根据圆的定义,圆心到圆上任意一点的距离都等于半径,因此圆心的位置会影响圆的整体形状和大小 。
$(x - a)^{2}$ 和 $(y - b)^{2}$ 分别表示 点 $(x, y)$ 到圆心 $(a, b)$ 的水平和垂 直距离的平方。
2024/3/28
$r$ 表示圆的半径, 即从圆心到圆上任一 点的距离。
10
从一般方程到标准方程的转换
一般方程形式为
$x^{2} + y^{2} + Dx + Ey + F = 0$
当两个质点发生碰撞时,可以通过它们的运动轨迹(即两个圆的 方程)来求解碰撞点的坐标。
分析物体的受力情况
在某些物理问题中,可以通过分析物体运动轨迹的形状(如圆形 或椭圆形)来推断物体所受的力。
31

圆的标准方程PPT课件

圆的标准方程PPT课件
点M(x, y)在圆上,由前面讨论可知,点M的坐 标适合方程。
反之,若点M(x, y)的坐标适合方程,这就说明 点M与圆心的距离是 r ,即点M在圆心为A (a, b), 半径为r 的圆上。
(x a) 2 (y b) 2 r2
把这个方程称为圆心为A(a, b),半径长为r 的圆的 方程,把它叫做圆的标准方程(standard equation of circle)。
(3 a)2 (4 b)2 r2
(-2
a)2
(5 b)2
r2
(-3 a)2 (-6 b)2 r2
解此方程组,得:
a
15 28
,
b
19 28
,
r 2
22345 . 784
所以,ABC的外接圆的方程
(x 15 )2 (y 19 )2 22345
28
28 784
例三
已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心 C在直线上l:x-y+1=0,求圆心为C的圆的标准方程。
y
M11
点到圆心的距离AM > 半径 r ,则点在圆内。 点到圆心的距离AM< 半径 r ,则点在圆外。
例二
ABC的三个顶点的坐标分别A(3,4), B(-2,5), C(-3, -6),求它的外接圆的方程。
分析:不在同一条直线上的三个点可以确定一个 圆,三角形有唯一的外接圆。
解:设所求圆的方程为 (x a) 2 (y b) 2 r2, 点A,B,C都在圆上,故都满足圆的方程,于是有
难点
➢圆的标准方程的应用。
思考
在平面直角坐标系中,如何确定一个圆呢? y
O
x
Ar M
当圆心位置与半径大小确定后,圆就唯一确定 了.因此一个圆最基本要素是圆心和半径。

圆的标准方程ppt课件

圆的标准方程ppt课件
_____5______.
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .

圆的标准方程ppt课件

圆的标准方程ppt课件

通过配方,可以将其 转化为标准形式,进 而确定圆心和半径。
一般形式下圆的方程 为 $x^2+y^2+Dx+Ey +F=0$,其中 $D^2+E^2-4F>0$。
拓展延伸
与直线方程联立,可以求解交点。
极坐标形式下圆的方程及其求解 方法
极坐标形式下圆的方程为 $rho=a(1+costheta)$或 $rho=a(1+sintheta)$,其中
圆的面积
S = πr²。
弧长与扇形面积计算
ห้องสมุดไป่ตู้弧长公式
l = θ/360° × 2πr,其中θ 为圆心角的度数。
扇形面积公式
S = θ/360° × πr²,其中θ 为圆心角的度数。
弓形面积计算
弓形面积 = 扇形面积 - 三 角形面积,其中三角形面 积可通过底和高计算得出。
02 圆的标准方程及其推导
数学建模竞赛
在数学建模竞赛中,圆的方程常常作为数学模型的基础,用于解决 各种实际问题,如城市规划、交通流量分析等。
06 总结回顾与拓展延伸
总结回顾本次课程重点内容
01
圆的标准方程的定义和形式
02
圆心和半径的确定方法
03
圆的方程与直线方程联立求解交点
04
圆的方程在实际问题中的应用
拓展延伸
一般形式下圆的方程 及其求解方法
圆的要素
圆心、半径。
03
圆的表示方法
一般用圆心和半径表示,如圆O(r)。
圆心、半径与直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。

圆的标准方程ppt课件

圆的标准方程ppt课件
2
2
r r 0
2
叫做以(ɑ,b)为圆心, r为半径的 圆的标准方程。
如果圆的方程为: 若圆心为( 0,0)时,此方程变为:
x y r
2 2
2
r 0
此圆的圆心在原点(0,0),
半径为r。
例题讲解一 1、求圆心为(2,-1),半径为3的圆 的方程。
解:以圆的标准方程有: 2、求圆心为(2,-3),且过原点的圆 2 2 2 C的方程。 所求圆的方程为: x 2 y 1 3 解:因为圆C过原点,故圆C的半径
r 2 3 13
2 2
因此,所求圆C的方程为: 2 2 x 2 y 3 13
例题讲解一
3、已知圆的标准方程
求圆的圆心坐标和半径。
x 5
2
y 1 15
2
解:根据圆的标准方程,
ɑ=-5,b=1,r2=15.所以所求
圆的圆心坐标为(-5,1),半 径r为 15
学习目标:
1、掌握圆的标准方程;
4
2、能根据圆心、半径写 出圆的标准方程; 3、会根据圆的标准方程, 求出圆的圆心坐标和半 径。
l
2
A
-5
5
m
-2
C
B
-4
-6
让我们一起来欣赏如 下几幅风景画,我们能 发现什么几何图形?
复习:圆的定义?
圆是在平面内到某个定点的 距离等于定长的点的轨迹, 其中定点是圆心,定长叫做 圆的半径。

r (4 7) 2 (3 1) 2 25
所以,所求圆的标准方程为(x+7) 2 +
(y+1) 2 = 25

2.4.1圆的标准方程课件共23张PPT

2.4.1圆的标准方程课件共23张PPT
上、圆内,还是圆外.
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r

圆标准方程课件

圆标准方程课件

4
如何应用标准方程解决相关问题。
介绍圆的一般方程的概念和求解方法,以及 一般方程与标准方程之间的转化。
圆与直线的交点
圆与直线的位置关系
讨论圆与直线的位置关系,包 括相离、相切和相交,并给出 对应的几何判断条件。
交点的求解
详细讲解如何求解圆与直线的 交点坐标,包括代数方法和几 何方法。
切线方程
介绍如何求解圆的切线方程, 包括水平方向切线和垂直方向 切线。
圆标准方程ppt课件
本PPT课件旨在深入讲解圆的标准方程知识,包括圆的基本概念、标准方程求 解、与直线的交点等内容。通过典型例题分析,帮助学生巩固所学知识。
圆的基本概念
定义、特征、性质
介绍圆的定义、特征和性质,包括圆心、半径、弧长、圆周角等基本概念。
周长和面积公式
探讨圆的周长和面积的计算公式,以及如何应用这些公式进行计算。
切线和法线
讨论圆的切线和法线的定义与性质,以及如何求解切线和法线的方程。
圆的标准方程
1ห้องสมุดไป่ตู้
圆心坐标的求解
详细介绍如何根据已知条件求解圆的圆心坐
半径的求解
2
标,包括几何方法和代数方法。
讲解如何根据已知条件求解圆的半径,包括
几何方法和代数方法。
3
标准方程的概念和解法
探究圆的标准方程的含义和求解方法,以及
一般方程
圆的参数方程
1
参数方程的概念和求解
解释参数方程的含义,讲解如何建立圆的参数方程,并应用参数方程进行计算。
2
参数方程的推导和应用
详细推导圆的参数方程的公式,包括极坐标方程的应用。
典型例题分析与解答
1 综合应用各种知识点
针对典型例题,通过综合应用圆的基本概念、标准方程等知识点,进行分析与解答。

圆的标准方程 课件(48张)

圆的标准方程 课件(48张)

()
(2)方程(x-a)2+(y-b)2=m2 一定表示圆.
()
(3)圆(x+2)2+(y+3)2=9 的圆心坐标是(2,3),半径是 9.
()
[答案] (1)√ (2)× (3)×
[提示] (1)正确.确定圆的几何要素就是圆心和半径. (2)错误.当 m=0 时,不表示圆. (3)错误.圆(x+2)2+(y+3)2=9 的圆心为(-2,-3),半径为 3.
类型 2 待定系数法求圆的标准方程
【例 2】 (对接教材人教 B 版 P99 例 2)求下列各圆的标准方程. (1)圆心在 y=0 上且过两点 A(1,4),B(3,2); (2)圆心在直线 x-2y-3=0 上,且过点 A(2,-3),B(-2,-5).
[解] (1)设圆心坐标为(a,b),半径为 r, 则所求圆的方程为(x-a)2+(y-b)2=r2. ∵圆心在 y=0 上,故 b=0, ∴圆的方程为(x-a)2+y2=r2. 又∵该圆过 A(1,4),B(3,2)两点,
1234 5
回顾本节知识,自我完成以下问题: 1.方程(x-a)2+(y-b)2=m 一定表示圆吗? [提示] 不一定.当 m>0 时,表示圆心为 C(a,b),半径为 m的 圆; 当 m=0 时,表示一个点 C(a,b); 当 m<0 时,不表示任何图形.
1234 5
3.圆心为点 P(-2,3),并且与 x 轴相切的圆的方程是( ) A.(x+2)2+(y-3)2=4 B.(x-2)2+(y+3)2=4 C.(x+2)2+(y-3)2=9 D.(x-2)2+(y+3)2=9 C [因为圆心 P(-2,3)到 x 轴的距离为 3,且圆与 x 轴相切, 所以圆的半径为 3,则该圆的标准方程为(x+2)2+(y-3)2=9.]

圆的标准方程公开课PPT

圆的标准方程公开课PPT
圆的扩展知识
圆的参数方程
参数方程定义
圆的参数方程是另一种 表示圆的方式,通常使 用三角函数来表示圆上 的点。
参数方程形式
圆的参数方程一般形式

(x=a+r*cosθ,
y=b+r*sinθ),其中
(a,b) 是圆心的坐标,r
是半径,θ 是参数。
应用场景
参数方程在解决与圆相 关的问题时非常有用, 特别是在涉及极坐标或 三角函数的问题中。
圆的极坐标方程
极坐标定义
01
极坐标是一种描述点在平面上的位置的方式,通过距离和角度
来表示。
极坐标方程
02
圆的极坐标方程是 ρ=a,其中 ρ 是点到原点的距离,a 是半径。
应用场景
03
在解析几何和物理学中,极坐标方程经常用于描述和研究圆和
其他曲线。
圆的离心率和焦点
1 2
离心率的定义
离心率是描述一个椭圆或圆偏离中心的程度的量。 对于圆来说,离心率等于0。
不在同一直线上的三个点可以确定一 个圆,且该圆通过这三个点。
圆的定义
圆的方程
圆的标准方程为$(x-a)^2+(yb)^2=r^2$,其中$(a,b)$为圆心, $r$为半径。
圆是平面内到定点距离等于定长的所 有点的集合。
圆的对称性
圆关于原点对称
圆心在原点的圆关于原点对称,即如果$(x,y)$在圆上,则$(-x,y)$也在圆上。
交通工具
汽车、火车和飞机的轮胎 都是圆形的,因为圆可以 保证车辆平稳行驶,减少 摩擦和阻力。
餐具和厨具
碗、盘子、杯子等日常用 品通常设计成圆形,因为 圆角可以防止划伤,并且 方便清洗和堆叠。
建筑和装饰

高二数学《圆的标准方程》PPT课件

高二数学《圆的标准方程》PPT课件
2 2 2 2 2
(1)(x-5) +(y-2) =3
(2)(x+1) +(y+2) =8
练一练: (x - a) 2 (y - b) 2 r 2
2、写出下列圆的方程:
(1) 圆心在原点,半径是3。
(2) 圆心在点C(2,-3),半径是5
判断M1(5,-7),M2(-
5 ,-1)是否在这个圆上。
例1、求以C(1,3)为圆心,并且和直线 3x-4y-7=0相切的圆的方程。 y 解: | 3 1 4 3 7 | 16
r 3 (4)
2 2

5
C O
M
x
所求的圆的方程是 256 2 2 ( x 1) ( y 3) 25
例2:已知圆经过两点P1(4,9)和P2(6,3) ,
想一想:初中学习圆的定义如何? 圆上任一点到定点的距离等于定长的点的集合 (轨迹)叫做圆,定点就是圆心,定长就是半径.
议一议:确定圆需要哪些条件?
一个圆的圆心位置和半径一旦给定,这个圆就 被确定下来了.
试一试。
y
r
C
M
O
x
求:圆心是C(a,b),半径是r的圆的方程
应用
实际问题


作业:
习题4.1 1 、2、4题 补充:赵州桥的跨度是37.4m,圆拱高 约为7.2m,求这座圆拱桥的拱圆的方 程.
2 2
或( x 14) 2 ( y 9) 2 100
例3:ΔABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它外接圆的方程。
例4:已知圆经过两点A(1,1)和B(2,-2) ,
且圆心在直线l:x-y+1=0上,求此圆的方程。

圆的方程ppt课件

圆的方程ppt课件
圆的方程
圆的标准方 程
一、知识梳理 1. 圆的方程
标准方程
走进教材
(x—a)²+(y—b)²=r²(r>0)
圆心 半径为r
一般方程
x²+y²+Dx+Ey+F=0
条 件 :D²+E²—4F>0 圆心:
半径:
2.点与圆的位置关系 点M(x₀,y₀) 与圆(x—a)²+(y-b)²=r²的位置关系. (1)若M(x₀,yo) 在圆外,则(x₀—a)²+(y₀—b)²> r². (2)若M(x₀,yo) 在圆上,则(x₀—a)²+(yo—b)²= r². (3)若M(xo,yo)在圆内,则(x₀—a)²+(y₀—b)²<
解得k=±√3
所 的最大值为 √3
图1
(2)y-x 可看作是直线y=x+b 在y轴上的截距,当直线y=x+b 与圆相切时,
纵截距b取得最大值或最小值,此时
解得b=-2±√6
所以y-x 的最大值-2+ √6,最小值-2- √6
(3)x²+y² 表示圆上的一点与原点距离的平方,由平面几何知识知, 在原点与圆心连线与圆的两个交点处取得最大值和最小值 又圆心与原点的距离为(2-0)²+(0-0)²=2
答案:C
求圆的方程的两种方法 (1)直接法
根据圆的几何性质,直接求出圆心坐标和半径,进而得方程。 (2)待定系数法
①若已知条件与圆(a,b) 和半径r 有关,则设圆的标准方程,依据已知条件列出 关于a,b,r 的方程组,从而求得圆的方程。 ②已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出 关于D,E,F 的程组,得圆的方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何建立圆的方程?
-
6
思考1:确定一个圆最基本的要素是什么?
-
7
思考2:圆可以看成是平面上的一条曲线,在 平面几何中,圆是怎样定义的?如何用集合 语言描述以点C为圆心,r为半径的圆?
M={P||PC|=r}.
rP C
平面上到一个定点的距离等于定长的点的 轨迹叫做圆.
-
8
思考3:方程 (x a)2 ( y b)2 ,r2 (x a)2 ( y b)2 r2,(x a)2 ( y b)2 m 是圆方程吗?
-
13
例3. 已知圆心为C的圆经过点A(1,1)和
B(2,-2),且圆心C 在直线l:x-y+1=0上,
求圆的标准方程.
y A(1,1)
O C
x B(2,-2)
l : x y 1 0
-
14
1.已知A(0,-5),B(0,-1),则以线 段AB为直径的圆的方程是什么?
2.求圆心为 C(3, -5),并且与直线 x-7y+2=0相切的圆的方程
-
15
1.圆的标准方程的结构特点.
2.求圆的标准方程的方法: ①代入法; ②待定系数法.
-
16
课后作业: 完成课本111页练习第1,3两题
-
17
-
18
-
9
思考4:方程 y 4 (x 1)2 与y 4 (x 1)2 表示的曲线分别是什么?
-
10
例1 求圆心为C(2,-3),且经过坐标 原点的圆的方程。
-
11
例2 如图,已知隧道的截面是半径为4米 的半圆,车辆只能在道路中心线一侧行驶 ,一辆宽为2.7米,高为3米的货车能不能 驶入这个隧道?
-
12
解:以某一截面半圆的圆心为
y
坐标原点,半圆的直径AB所在
的直线为x轴,建立直角坐标系
(如右图).
A
0 2.7 B
x
那么半圆的方程为 x2 y2 16( y 0),
将x=2.7代入,得 y 16 2.72<3.8.71 即在离中心线2.7米处,隧道的高度低于货车的 高度.因此,货车不能驶入这个隧道.
2.2.1 圆的标准方程
教学目标: (1)掌握圆的标准方程,能根据圆心、半径写出圆的标准 方程. (2)会用待定系数法求圆的标准方程
-
1
生活中,我们经常接触一些圆 形,下面我们就一起来认识一 下!
-
2
-
3
过观 察这几幅图片,大家能从数学的角度 说说为什么吗?
相关文档
最新文档