算法分析与设计实验报告76421

合集下载

算法设计与分析的实验报告

算法设计与分析的实验报告

实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

二、实验内容1、①设a[0:n-1]是已排好序的数组。

请写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。

当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

②写出三分搜索法的程序。

三、实验要求(1)用分治法求解上面两个问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1、已知a[0:n-1]是一个已排好序的数组,可以采用折半查找(二分查找)算法。

如果搜索元素在数组中,则直接返回下表即可;否则比较搜索元素x与通过二分查找所得最终元素的大小,注意边界条件,从而计算出小于x的最大元素的位置i和大于x的最小元素位置j。

2、将n个元素分成大致相同的三部分,取在数组a的左三分之一部分中继续搜索x。

如果x>a[2(n-1)/3],则只需在数组a的右三分之一部分中继续搜索x。

上述两种情况不成立时,则在数组中间的三分之一部分中继续搜索x。

五、实验结果分析二分搜索法:三分搜索法:时间复杂性:二分搜索每次把搜索区域砍掉一半,很明显时间复杂度为O(log n)。

(n代表集合中元素的个数)三分搜索法:O(3log3n)空间复杂度:O(1)。

六、实验体会本次试验解决了二分查找和三分查找的问题,加深了对分治法的理解,收获很大,同时我也理解到学习算法是一个渐进的过程,算法可能一开始不是很好理解,但是只要多看几遍,只看是不够的还要动手分析一下,这样才能学好算法。

七、附录:(源代码)二分搜索法:#include<iostream.h>#include<stdio.h>int binarySearch(int a[],int x,int n){int left=0;int right=n-1;int i,j;while(left<=right){int middle=(left+right)/2;if(x==a[middle]){i=j=middle;return 1;}if(x>a[middle])left=middle+1;else right=middle-1;}i=right;j=left;return 0;}int main(){ int a[10]={0,1,2,3,4,5,6,7,8,9};int n=10;int x=9;if(binarySearch(a,x,n))cout<<"找到"<<endl;elsecout<<"找不到"<<endl;return 0;}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

算法设计与分析实验报告三篇

算法设计与分析实验报告三篇

算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。

2、掌握算法渐近复杂性的数学表述。

3、掌握用C++语言描述算法的方法。

4.实现具体的编程与上机实验,验证算法的时间复杂性函数。

二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。

书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。

例如,第6 页用数字6 表示,而不是06 或006 等。

数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。

编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。

把这些结果统计起来即可。

四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }}五.程序调试中的问题调试过程,页码出现报错。

算法课设实验报告(3篇)

算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。

为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。

二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。

1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。

(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。

- 对每种算法进行时间复杂度和空间复杂度的分析。

- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。

(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。

- 编写三种排序算法的代码。

- 分析代码的时间复杂度和空间复杂度。

- 编写测试程序,生成随机测试数据,测试三种算法的性能。

- 比较三种算法的运行时间和内存占用。

2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。

(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。

- 分析贪心算法的正确性,并证明其最优性。

(3)实验步骤:- 分析活动选择问题的贪心策略。

- 编写贪心算法的代码。

- 分析贪心算法的正确性,并证明其最优性。

- 编写测试程序,验证贪心算法的正确性。

3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。

(2)实验内容:- 实现一个动态规划算法问题,如背包问题。

- 分析动态规划算法的正确性,并证明其最优性。

(3)实验步骤:- 分析背包问题的动态规划策略。

- 编写动态规划算法的代码。

- 分析动态规划算法的正确性,并证明其最优性。

- 编写测试程序,验证动态规划算法的正确性。

三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。

算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。

本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。

二、算法分析算法分析是评估算法性能的过程。

在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。

常用的算法分析方法包括时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度衡量了算法执行所需的时间。

通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。

2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。

通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。

三、算法设计算法设计是构思和实现算法的过程。

好的算法设计能够提高算法的效率和可靠性。

常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。

1. 贪心算法贪心算法是一种简单而高效的算法设计方法。

它通过每一步选择局部最优解,最终得到全局最优解。

贪心算法的时间复杂度通常较低,但不能保证得到最优解。

2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。

它通过保存子问题的解,避免重复计算,提高算法的效率。

动态规划适用于具有重叠子问题和最优子结构的问题。

3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告算法设计与分析实验报告引言:算法设计与分析是计算机科学中的重要课程,它旨在培养学生解决实际问题的能力。

本次实验旨在通过设计和分析不同类型的算法,加深对算法的理解,并探索其在实际应用中的效果。

一、实验背景算法是解决问题的步骤和方法的描述,是计算机程序的核心。

在本次实验中,我们将重点研究几种经典的算法,包括贪心算法、动态规划算法和分治算法。

通过对这些算法的设计和分析,我们可以更好地理解它们的原理和应用场景。

二、贪心算法贪心算法是一种基于局部最优选择的算法,它每一步都选择当前状态下的最优解,最终得到全局最优解。

在实验中,我们以背包问题为例,通过贪心算法求解背包能够装下的最大价值物品。

我们首先将物品按照单位重量的价值从大到小排序,然后依次将能够装入背包的物品放入,直到背包无法再装下物品为止。

三、动态规划算法动态规划算法是一种通过将问题分解为子问题,并记录子问题的解来求解整体问题的算法。

在实验中,我们以斐波那契数列为例,通过动态规划算法计算斐波那契数列的第n项。

我们定义一个数组来保存已经计算过的斐波那契数列的值,然后通过递推公式将前两项的值相加得到后一项的值,最终得到第n项的值。

四、分治算法分治算法是一种将问题分解为更小的子问题,并通过递归求解子问题的算法。

在实验中,我们以归并排序为例,通过分治算法对一个无序数组进行排序。

我们首先将数组分成两个子数组,然后对子数组进行递归排序,最后将两个有序的子数组合并成一个有序的数组。

五、实验结果与分析通过对以上三种算法的设计和分析,我们得到了以下实验结果。

在贪心算法中,我们发现该算法能够在有限的时间内得到一个近似最优解,但并不能保证一定得到全局最优解。

在动态规划算法中,我们发现该算法能够通过记忆化搜索的方式得到准确的结果,但在问题规模较大时,其时间复杂度较高。

在分治算法中,我们发现该算法能够将问题分解为更小的子问题,并通过递归求解子问题,最终得到整体问题的解。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

《算法设计与分析》课程实验报告

《算法设计与分析》课程实验报告

《算法设计与分析》课程实验报告实验序号:实验项目名称:随机化算法一、实验题目1.N后问题问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后,任何两个皇后不放在同一行同一列,同一斜线上,问有多少种放法。

2.主元素问题问题描述:设A是含有n个元素的数组,如果元素x在A中出现的次数大于n/2,则称x是A的主元素。

给出一个算法,判断A中是否存在主元素。

二、实验目的(1)通过N后问题的实现,体会拉斯维加斯随机算法的随机特点:运行次数随机但有界,找到的解一定为正确解。

但某次运行可能找不到解。

(2)通过实现主元素的不同算法,了解蒙特卡罗算法的随机特性:对于偏真的蒙特卡罗算法,找到为真的解一定是正确解;但非真的解以高概率给出解的正确率------即算法找到的非真解以小概率出现错误。

同时体会确定性算法与随机化算法的差异及各自的优缺点。

(3)通过跳跃表的实现,体会算法设计的运用的广泛性,算法设计的思想及技巧不拘泥独立问题的解决,而在任何需要计算机解决的问题中,都能通过算法设计的技巧(无论是确定性还是随机化算法)来灵巧地解决问题。

此实验表明,通过算法设计技巧与数据组织的有机结合,能够设计出高效的数据结构。

三、实验要求(1)N后问题分别以纯拉斯维加斯算法及拉斯维加斯算法+回溯法混合实现。

要求对同一组测试数据,完成如下任务a.输出纯拉斯维加斯算法找到解的运行次数及运行时间。

b.输出混合算法的stopVegas值及运行时间c.比较a、b的结果并分析N后问题的适用情况。

(2)主元素问题,要求对同一组测试数据,完成如下任务:a.若元素可以比较大小,请实现O(n )的确定性算法,并输出其运行时间。

b.(选做题)若元素不可以比较大小,只能比较相同否,请实现O(n) 确性算法,并输出其运行时间。

c.实现蒙特卡罗算法,并输出其运行次数及时间。

d.比较确定性算法与蒙特卡罗算法的性能,分析每种方法的优缺点。

(3)参照教材实现跳跃表(有序)及基本操作:插入一个结点,删除一个结点。

算法设计与分析实验报告

算法设计与分析实验报告

华北电力大学实验报告||实验名称算法设计与分析综合实验课程名称算法设计与分析设计实验||专业班级:学生姓名:学号:成绩:指导教师:实验日期:,&g[i][j].U);}}g[0][0].s=0;fclose(opf);}CGridRoad::~CGridRoad(){for(int i=0;i<n;i++){delete []g[i]; }delete []g;}void CGridRoad::Calculate(){for(int j=0;j<n;j++){for(int i=0;i<m;i++){if(i==0&&j>0){g[j][i].s=g[j-1][i].s+g[j-1][i].U;g[j][i].f=DOWN; } }void main(){int *a=new int[1000000];int *b=new int[1000000];for(int i=0;i<1000000;i++){srand((unsigned)time(0));a[i]=rand();b[i]=a[i];}clock_t start,finish;double duration;//开始 start=clock(); MergeSort(a,1000000); finish=clock(); //结束 duration =(double)(finish -start)/CLOCKS_PER_SEC; cout << "算法时间:" << duration << "s" << endl; //开始 start=clock(); std::sort(b,b+1000000); finish=clock(); //结束 duration=(double)(finish-start)/CLOCKS_PER_SEC; cout << "sort 函数时间:" << duration << "s" << endl;}{Point t=();();fprintf(inf,"(%d,%d) ",,;}fclose(inf);}贪心算法—Huffman树及Huffman编码一、设计要求:一个记录字符及出现频率的文件如下所示:7a,45b,13c,12d,16e,89f,34g,20试编写一个读取此种格式文件类CHuffman, 内部机制采用优先队列,用于建立Huffman树及进行Huffman编码输出,其用法可以如下所示:CHuffman hm("");();();();=ch1;(100,',');(ch,4);t[i].f=atoi(ch);}for (int i=0;i<n;i++){cout<<t[i].c<<" "<<t[i].f<<endl;}for(int i=0;i<n;i++){t[i].idx=i;六、实验心得:算法附件:class CQueen{public:CQueen(); x[k-1]时,判断x[k] 能否放置void BackTrack(int t);w[n]价值v[1] v[2] …v[n]具体要求:1.将背包问题进行类的封装;2.能对任意给定的n种物品的重量、价值及背包限重,输出以上表格( 或纵向输出);3.输出背包问题的解;本题要求采用STL库中的排序算法数据进行排序。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告实验一分治策略排序一、实验目的1)以排序问题为例,掌握分治法的基本设计策略;2)熟练掌握合并排序算法的实现;3)熟练掌握快速排序算法的实现;4) 理解常见的算法经验分析方法。

二、算法思路1. 合并排序算法思想:分而治之(divide - conquer);每个递归过程涉及三个步骤第一, 分解: 把待排序的 n 个元素的序列分解成两个子序列, 每个子序列包括 n/2 个元素.第二, 治理: 对每个子序列分别调用归并排序MergeSort, 进行递归操作第三, 合并: 合并两个排好序的子序列,生成排序结果.最坏时间复杂度最好时间复杂度空间复杂度2.快速排序算法思想:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。

一躺快速排序的算法是:1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;5)、重复第3、4步,直到I=J;三、实验内容:1. 准备实验数据要求:编写一个函数data-generate,生成2000个在区间[1,10000]上的随机整数,并将这些数输出到外部文件data.txt中。

这些数作为本算法实验的输入数据。

2. 实现合并排序算法要求:实现mergesort算法。

输入:待排数据文件data.txt;输出:有序数据文件resultsMS.txt(注:建议将此排好序的数据作为实验二的算法输入);程序运行时间TimeMS。

算法分析与设计课程实验报告

算法分析与设计课程实验报告

算法分析与设计课程实验报告班级: 131213学号: 13121XXX姓名: XXX指导老师:邓凡目录算法分析与设计课程实验报告 (1)实验一排序 (1)1. 课本练习2.3-7 (1)2. 实现优先队列 (2)3.快速排序 (2)4. 第k大元素 (3)实验二动态规划 (4)1. 矩阵链乘 (4)2. 最长公共子序列 (5)3. 最长公共子串 (7)4. 最大和 (9)5. 最短路径 (10)实验三贪心策略 (11)1. 背包问题 (11)2. 任务调度 (14)3. 单源点最短路径 (15)4. 任意两点间最短路径 (16)实验四回溯法 (18)1. 0-1背包问题 (18)2. 8-Queen问题 (21)实验一排序1.课本练习2.3-7(1)问题描述描述一个运行时间为 (nlgn)的算法,给定n个整数的集合S和另一个整数x,该算法能确定S中是否存在两个其和刚好是x的元素。

(2)问题分析该问题首先要进行排序,然后用二分查找法判断S中是否存在两个其和刚好是x的元素,因为时间复杂度为(nlgn),所以可以采用归并排序。

(3)算法分析归并排序的思想是将n个元素分成各含n/2个元素的子序列,然后对两个子序列递归地进行排序,最后合并两个已排序的子序列得到排序结果。

二分查找的思想是对于集合中的每一个数字,用二分法找到x-S[i]的位置,若存在且不为其本身,则输出S中存在有两个和等于x的元素;否则,不存在。

(4)实验结果2.实现优先队列(1)问题描述实现优先队列,维护一组元素构成的集合S。

(2)问题分析优先队列是基于堆排序的。

首先将集合S中的元素进行堆排序。

当进行操作时,要不断维护集合S的有序性,即要不断地调整堆。

(3)算法分析本程序中主要的函数有INSERT():需要调用INCREASE_KEY()来维护堆,其时间复杂度为O(lgn),函数MAXIMUM()仅需要返回S[1],时间复杂度为 (1),函数EXTRACT_MAX()需要调用堆排序中的MAX_HEAPIFY,时间复杂度为O(lgn),函数INCREASE_KEY()更新结点到根结点的路径长度为O(lgn),时间复杂度为O(lgn)。

算法分析与设计实验报告

算法分析与设计实验报告

实验报告班级:学号:姓名:总成绩:课程名称:算法分析与设计实训实验项目:1、分治法实验2、动态规划法实验3、贪心法实验4、回溯法实验5、分枝限界法实验计算机学院工业中心202 实验室二〇一〇年 6 月 21 日项目序号 1 项目名称分治法实验成绩小标题找最大值和最小值1、方法思想分治法是把规模大的问题,分割成n个形式相同规模一定或不可再分的子问题,递归地解决每个子问题,再把子问题的结果汇总,合并得到原问题的解。

分治法在每一层递归上由三个步骤组成:(1) 划分(divide):将原问题分解为若干规模较小、相互独立、与原问题形式相同的子问题。

(2) 解决(conquer):若子问题规模较小,则直接求解;否则递归求解各子问题。

(3) 合并(combine):将各子问题的解合并为原问题的解。

2、问题描述我们将分治策略用于此问题,每次将问题分成大致相等的两部分,分别在这两部分中找出最大值与最小值,再将这两个子问题的解组合成原问题的解,就可得到该问题的分治算法。

3、算法描述REC-MAXMIN(i,j,fmax,fmin)1 if i=j2 then fmax ← fmin ← A[i]3 if i=(j-1)4 then if A[i]>A[j]5 then fmax← A[i]6 fmin←A[j]else fmax ←A[j]8 fmin←A[i]9 else mid ←[(i+j)/2]10 REC-MAXMIN(i,mid,gmax,gmin)11 REC-MAXMIN(mid+1,j,hmax,hmin)12 fmax← max{gmax,hmax}13 fmin←min{gmin,hmin}4、程序清单#include<iostream.h>void FZFa(int i,int j,int &max,int &min,int a[]){if(i= =j){max=a[i];min=a[j];}else if(i= =(j-1)){if(a[i]>a[j]){max=a[i];min=a[j];}else{max=a[j];min=a[i];}}else{int midd=(i+j)/2;int max1=0,min1=0,max2=0,min2=0;FZFa(i,midd,max1,min1,a);FZFa(midd+1,j,max2,min2,a);if(max1>max2)max=max1;elsemax=max2;if(min1<min2)min=min1;elsemin=min2;}}int main(){int t[]={2,4};int max,min;FZFa(0,1,max,min,t);cout<<"最大值:"<<max<<endl;cout<<"最小值:"<<min<<endl;return 0;}5、实验结果(可用文字描述和贴图等方式表现实验结果)项目序号 2 项目名称动态规划法实验成绩小标题最长公共子序列1、方法思想动态规划算法与分治法类似,其基本思想也是将待求解问题分成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告1. 引言算法是计算机科学中的核心概念之一,它为解决问题提供了一种清晰、有效的方法。

本实验报告旨在通过分析与设计一个特定算法的实验过程,来加深对算法的理解和应用。

2. 实验背景在现代社会中,算法的应用无处不在。

无论是搜索引擎的排序算法,还是社交媒体的推荐算法,都离不开算法的支持。

因此,学习算法的分析与设计,对于计算机科学相关领域的学生来说具有重要的意义。

3. 实验目的本实验的主要目的是通过分析与设计一个特定算法,加深对算法的理解和应用。

通过实际操作,学生将能够熟悉算法的设计过程,并能够分析算法的效率和复杂性。

4. 实验步骤4.1 确定算法目标在开始实验之前,我们需要明确算法的目标。

在本实验中,我们将设计一个排序算法,用于对一组数字进行排序。

4.2 了解算法原理在设计算法之前,我们需要对目标算法的原理进行深入了解。

在本实验中,我们将选择经典的冒泡排序算法作为实现对象。

冒泡排序算法的基本思想是通过比较相邻的元素,并根据需要交换位置,使得每一轮循环都能使最大(或最小)的元素“冒泡”到数组的末尾。

通过多次迭代,最终实现整个数组的排序。

4.3 实现算法在了解算法原理后,我们将根据算法的步骤逐步实现。

具体步骤如下:1.遍历待排序数组,从第一个元素开始。

2.比较当前元素与下一个元素的大小。

3.如果当前元素大于下一个元素,则交换它们的位置。

4.继续比较下一个元素,直到遍历完整个数组。

5.重复上述步骤,直到没有需要交换的元素。

4.4 测试算法在实现算法之后,我们需要对其进行测试,以验证其正确性和效率。

我们可以准备一组随机的数字作为输入,并对算法进行测试。

通过比较输入和输出结果,我们可以判断算法是否正确。

同时,我们还可以通过计算算法的时间复杂性和空间复杂性来评估其效率。

在本实验中,我们将使用时间复杂性分析来评估算法的效率。

4.5 分析与总结通过测试和分析,我们将得出算法的执行时间和空间复杂性。

算法设计与分析实验报告

算法设计与分析实验报告

实验课程名称:算法设计与分析这里的数据包括1到100的所有数字,55在这个序列中。

2.当没找到所要寻找的数字时,输出该数据并不存在于数据库中:0并不存在于这个序列中。

一、时间复杂性分析:1.最好情况下:这里的最好情况,即为第一次查找就找到了要找的数据,故时间复杂性为O (1)。

2.最坏情况下:这里的最坏情况意味着要将所有数据都找一遍最后才能找到要查找的数据,随着数据库的增大,查找次数会随之增长,故其时间复杂度为O (n )。

3.平均情况下:这种情况考虑了数据时等概率的分布于数据库中。

ASL=-101-121111=2=(1*2+2*2+...+*2)log (+1)-1nkj k i i i j p c j k n nn==≈∑∑折半查找的时间复杂性为O (2log n )。

二、空间复杂度分析:这里查找的过程中并不需要额外的空间,只需要存放数据的空间,故空间复杂度为O (n ),n 为数组的大小。

三、算法功能:其功能主要是用来查找数据,若对它进行一下拓展,可以由自主确定数据库,并可对他进行操作;这里的数据也可以不只是包括整数。

实验二结果:1.当数组的容量不大于0时,显示错误:2.当输入数据错误时,显示错误:3.当输入正确时的显示结果:一、时间复杂性分析:1.最好情况下:T (n )≤2 T (n /2)+n ≤2(2T (n /4)+n /2)+n =4T (n /4)+2n ≤4(2T (n /8)+n /4)+2n =8T (n /8)+3n … … …≤nT (1)+n log 2n =O (n log 2n ) 因此,时间复杂度为O (n log 2n )。

2.最坏情况下:待排序记录序列正序或逆序,每次划分只得到一个比上一次划分少一个记录的子序列(另一个子序列为空)。

此时,必须经过n -1次递归调用才能把所有记录定位,而且第i 趟划分需要经过n -i 次关键码的比较才能找到第i 个记录的基准位置,因此,总的比较次数为: 因此,时间复杂度为O (n 2)。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告班级:学号:姓名:实验一算法实现一一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对分治法、贪心算法的理解。

二、实验内容:掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。

三、实验题1. 【伪造硬币问题】给你一个装有n个硬币的袋子。

n个硬币中有一个是伪造的。

你的任务是找出这个伪造的硬币。

为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。

试用分治法的思想写出解决问题的算法,并计算其时间复杂度。

(1)源程序:#include<iostream.h>#include<stdlib.h>#include<time.h>int findTheCoin(int q[],int a,int b);int quantity(int q[],int a,int b);void main(){time_t ts;srand((unsigned) time(&ts));const int Max=70;int n,k;while(true){cout << "请输入硬币的个数"<< endl;cin >> n;int q[Max];int i;for( i=1;i<=n;i++){q[i]=2;}k=rand()%n;if(k==0)k=n;q[k]=1;cout<<"随机产生的硬币排列顺序"<<endl;for(i=1;i<=n;i++){cout<<q[i]<<" ";if(i%5==0)cout<<endl;}cout<<endl;int p=findTheCoin(q,1,n);cout<<"伪造硬币的位置:"<<p<<endl;cout<<"======================="<<endl;}}int quantity(int q[],int a,int b){int total=0;int i;for( i=a;i<=b;i++)total+=q[i];return total;}int findTheCoin(int q[],int a,int b){if(a==b)return a;int n=b-a+1;int c=n%3;int m=a+n/3-1;int d;switch(c){case 0:if (quantity(q,a,m)==quantity(q,m+1,m+n/3)){d=findTheCoin(q,m+n/3+1,m+2*(n/3));return d;}else if (quantity(q,a,m)==quantity(q,m+n/3+1,m+2*(n/3))){d=findTheCoin(q,m+1,m+n/3);return d;}else{d=findTheCoin(q,a,m);return d;}//break;case 1:if( (quantity(q,a,m)==quantity(q,m+1,m+n/3)) && (quantity(q,m+n/3+1,m+2*(n/3))==quantity(q,m+1,m+n/3)) )return m+2*(n/3)+1;else{if (quantity(q,a,m)==quantity(q,m+1,m+n/3)){d=findTheCoin(q,m+n/3+1,m+2*(n/3));return d;}else if (quantity(q,a,m)==quantity(q,m+n/3+1,m+2*(n/3))){d=findTheCoin(q,m+1,m+n/3);return d;}else{d=findTheCoin(q,a,m);return d;}}//break;case 2:if(q[m+2*(n/3)+1]==q[m+2*(n/3)+2]){if (quantity(q,a,m)==quantity(q,m+1,m+n/3)){d=findTheCoin(q,m+n/3+1,m+2*(n/3));return d;}else if (quantity(q,a,m)==quantity(q,m+n/3+1,m+2*(n/3))){d=findTheCoin(q,m+1,m+n/3);return d;}else{d=findTheCoin(q,a,m);return d;}}else{if(q[m+2*(n/3)+2]==q[1])return m+2*(n/3)+1;//cout<<"伪造硬币的号码是"<<3*m+1<<endl;elsereturn m+2*(n/3)+2;//cout<<"伪造硬币的号码是"<<3*m+2<<endl;}}//return true;}(2)运行结果2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告1. 引言本实验报告旨在介绍算法设计与分析的相关内容。

首先,我们将介绍算法设计的基本原则和步骤。

然后,我们将详细讨论算法分析的方法和技巧。

最后,我们将通过一个实例来演示算法设计与分析的过程。

2. 算法设计算法设计是解决问题的关键步骤之一。

它涉及确定问题的输入和输出,以及找到解决方案的具体步骤。

以下是算法设计的一般步骤:2.1 理解问题首先,我们需要全面理解给定问题的要求和约束。

这包括确定输入和输出的格式,以及问题的具体要求。

2.2 制定算法思路在理解问题后,我们需要制定解决问题的算法思路。

这涉及确定解决问题的高层次策略和步骤。

通常,我们使用流程图、伪代码等工具来表示算法思路。

2.3 编写算法代码在制定算法思路后,我们可以根据思路编写实际的算法代码。

这可能涉及选择适当的数据结构和算法,以及编写相应的代码来实现解决方案。

2.4 调试和测试编写算法代码后,我们需要进行调试和测试,以确保算法的正确性和可靠性。

这包括检查代码中可能存在的错误,并使用不同的测试样例来验证算法的正确性。

3. 算法分析算法分析是评估算法性能的过程。

它涉及确定算法的时间复杂度和空间复杂度,以及评估算法在不同输入情况下的执行效率。

3.1 时间复杂度时间复杂度是衡量算法执行时间随输入规模增长的速度。

常见的时间复杂度包括常数时间复杂度 O(1)、线性时间复杂度 O(n)、对数时间复杂度 O(log n)、平方时间复杂度 O(n^2) 等。

通过分析算法中的循环、递归等关键部分,可以确定算法的时间复杂度。

3.2 空间复杂度空间复杂度是衡量算法所需空间随输入规模增长的速度。

它通常用于评估算法对内存的使用情况。

常见的空间复杂度包括常数空间复杂度 O(1)、线性空间复杂度 O(n)、对数空间复杂度 O(log n) 等。

通过分析算法中的变量、数组、递归栈等关键部分,可以确定算法的空间复杂度。

3.3 执行效率评估除了时间复杂度和空间复杂度外,我们还可以通过实验和测试来评估算法的执行效率。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告⼀.实验⽬的1掌握回溯法解题的基本思想以及算法设计⽅法;2.掌握动态规则法和分⽀限界法的基本思想和算法设计⽅法;3掌握深度优先遍历法的基本思想及运⽤;4.进⼀步的对N皇后问题,⼦集和数问题,0-1背包问题做深⼊的了解。

⼆.实验内容1.实现求n 皇后问题和⼦集和数问题的回溯算法。

2.⽤动态规划的⽅法实现0/1背包问题。

3.⽤分⽀限界法实现0/1背包问题。

4.⽤深度优化的⽅法遍历⼀个图,并判断图中是否有回路存在,如果有,请输出回路。

三.实验设计1. N 皇后问题:我是采取了尊循 top-down design 的顺序来设计整个算法和程序。

采⽤ OOP 的思想,先假设存在⼀个 · 表⽰棋盘格局的类 queens ,则定义回溯函数 solve_from(queens configuration),configuration 表⽰当前棋盘格局,算法不断扩展棋盘的当前格局(找到下⼀个⾮冲突位置),当找到⼀个解决⽅案时打印该⽅案。

该递归函数采⽤回溯法求出所有解。

main 函数调⽤ solve_from 时传递的实参是⼀个空棋盘。

对于模拟棋盘的 queens 类,我们可以定义三个数据成员: 1.size :棋盘的边长,即⼤⼩ .2. count :已放置的互不冲突的皇后数 3.array[][]:布尔矩阵,true 表⽰当前格有皇后这⾥需要稍加思考以便稍后可以简化程序:因为每⾏只能放⼀个皇后,从上到下,从左到右放,那么 count 个皇后占⽤的⾏为 0——count -1。

所以count 还表⽰下⼀个皇后应该添加在哪⼀⾏。

这样,和 remove 操作的⼊⼝参数就只需要提供列号就⾏了, add 降低了耦合度:)下⾯是程序运⾏结果:2.⼦集和数问题:本设计利⽤⼤⼩固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表⽰是否包含了权数W (i ).⽣成图中任⼀结点的⼉⼦是很容易的。

算法设计与分析学习报告(优秀范文5篇)

算法设计与分析学习报告(优秀范文5篇)

算法设计与分析学习报告(优秀范文5篇)第一篇:算法设计与分析学习报告算法课程学习报告持续13周的高级算法设计与分析课程结束了。

选修了这门课程的同学们即将迎来最后的考试。

回顾这半年以来关于这么课程的学习情况,我体会最深的是:不论是从深度还是从广度上,现在所习的算法比曾经学习的算法难度增加了很多。

但是邓教授极富经验的教学和详细的课件,为我的学习提供了很大的方便。

可是毕竟我以前的底子不够厚,基础不够劳,在听课中会出现跟不上教师思路的现象。

我也积极的采取措施,争取处理好这种情况。

总体说来,上完算法课,我还是学到了很多东西的。

下面我就对所学的内容进行梳理归纳,总结一下我在学习中的体会和研究心得。

算法课程的开课阶段,邓教授为我们简单介绍了算法,课堂上可能用到的参考资料,以及一些著名的算法方面的书籍,为我的学习提供潜在的工具。

我购买了一本教材——《算法导论》。

这本书够厚,够详细。

但是我一直没有机会仔细的研读。

我想有一天希望能够好好读一下。

在介绍算法的课堂上,我还了解了算法相关的一些基本概念,算法的重要性,还有算法的历史。

我印象最深的就是一个叫图灵的外国人。

对计算机科学与技术这个领域做出了图书贡献。

我个人认为,堪比爱因斯塔发现相对论的贡献。

都揭示了某个领域的本质。

开辟的一个领域的发展。

对于整个人类来说,他们这类人都是功不可没的。

已经不能简单的用伟人来形容他们。

但是人类社会需要这样的人,社会需要一些人的推动才能进步。

说到这里,我不禁要想,算法到底有什么用,也许答案是简单的,为了方便写程序实现系统功能。

这只是表面的用途。

我觉得最本质的作用是为了社会进步。

辩证唯物主义自然观中有关于科学技术的详细定义。

之所以产生科学技术是为了发挥人的主观能动性去改造自然。

学习和研究算法正是为了让人在一定的限度内改造自然。

我不是在扯,而是在写算法报告和背自然辩证法资料的时候产生的心得体会,不知道算不算邓教授要求的心得。

介绍完算法历史以后,就进入的真正的算法设计与分析的学习。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告1. 引言本实验旨在设计和分析一个算法,解决特定的问题。

通过对算法的设计、实现和性能分析,可以对算法的优劣进行评估和比较。

本报告将按照以下步骤进行展开:1.问题描述2.算法设计3.算法实现4.性能分析5.结果讨论和总结2. 问题描述在本实验中,我们面临的问题是如何在一个给定的无序数组中寻找一个特定元素的位置。

具体而言,给定一个包含n个元素的数组A和一个目标元素target,我们的目标是找到target在数组A中的位置,如果target不存在于数组中,则返回-1。

3. 算法设计为了解决上述问题,我们设计了一个简单的线性搜索算法。

该算法的思想是从数组的第一个元素开始,逐个比较数组中的元素与目标元素的值,直到找到匹配的元素或搜索到最后一个元素。

算法的伪代码如下:function linear_search(A, target):for i from 0 to len(A)-1:if A[i] == target:return ireturn -14. 算法实现我们使用Python编程语言实现了上述线性搜索算法。

以下是算法的实现代码:def linear_search(A, target):for i in range(len(A)):if A[i] == target:return ireturn-15. 性能分析为了评估我们的算法的性能,我们进行了一系列实验。

我们使用不同大小的数组和不同目标元素进行测试,并记录了每次搜索的时间。

实验结果显示,线性搜索算法的时间复杂度为O(n),其中n是数组的大小。

这是因为在最坏的情况下,我们需要遍历整个数组才能找到目标元素。

6. 结果讨论和总结通过对算法的设计、实现和性能分析,我们可以得出以下结论:1.线性搜索算法是一种简单但有效的算法,适用于小规模的数据集。

2.线性搜索算法的时间复杂度为O(n),在处理大规模数据时可能效率较低。

3.在实际应用中,我们可以根据具体的问题和数据特征选择合适的搜索算法,以提高搜索效率。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。

本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。

二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。

给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。

三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。

1. 暴力法暴力法是一种朴素的解决方法。

它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。

然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。

2. 动态规划法动态规划法是一种高效的解决方法。

它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。

对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。

通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。

最后,我们返回dp数组中的最大值即为所求的最大子序列和。

该算法的时间复杂度为O(n),效率较高。

四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。

1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。

为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。

2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。

同时,我们还对两种算法的运行时间进行了比较。

结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。

五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。

我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档