用比例知识解决问题
六年级数学 用比例解决问题
03
解:设王大爷家上个月用水x吨, 19.2:x=12.8:8 x=19.2×8÷12.8 x=12 答:王大爷家上个月用水12吨。
04
2.一批书如果每包20本,要捆18 包。如果每包30本,要捆多少包?
因为书的总数一定,所以包数和每包的本数成反 比例.也就是说,每包的本数和包数的乘积相等。
解:设要捆x包, 30x=20×18 x=360÷30 x=12 答:要捆12包。
用比例 解决问题
Template
WINTER
01
02
1.张大妈上个月用了8吨水,水费12.8元, 李奶奶家用了10吨水,李奶奶家上个月 的水费是多少钱?
因为每吨水的价钱一定,所以水费和用水的吨数成正比 例,也就是说,两家的水费和用水吨数的的比值相等。
解:设李奶奶家上个月的水费是x元, 12.8:8=x:10 王大爷家上个月的 8x=12.8×10 水费是19.2元,他 x=128÷8 们家上个月用了多 x=16 少吨水? 答:李奶奶家上个月的水费是16元。
05
1.500千克的海水中含盐25千克, 6800吨的海水含盐几吨?
2.服装厂2天加工西装120套, 照这样计算,加工540套西装 需要多少天?
谢谢观赏Biblioteka
用比例尺解决实际问题
1.一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
2.甲乙两地实际距离是500米,画在一张图纸上的距离为1厘米,这幅图纸的比例尺是。
3.甲乙两地相距1600千米,画在比例尺是1 :5000000的地图上,应画多少厘米?4.在一幅比例尺是1 :3000000的地图上,甲乙两地的距离是7.5厘米,甲乙两地的实际距离是多少千米?5.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?6.某建筑工地挖一个长方形的地基,把它画在比例尺是1 :100000的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?7.从井冈山到韶山的实际距离是475千米,在一幅1 :2500000的地图上应画多少厘米?8.学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?9.在比例尺是1:200000的地图上,量得两地距离是30厘米,这两地的实际距离是多少千米?10.南京到上海约320千米,画在1:4000000的地图上,两地间的图上距离是多少厘米?11.在一一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?12.在一幅比例尺是1:4500000的地图上,量得甲地到乙地的距离是20厘米,甲地到乙地的实际距离是多少千米?13.地图的比例尺是,北京到天津某地的距离画在该地图上是4.8厘米,求两地的实际距离多少?14.兰州到乌鲁木齐的铁路线大约长1900km。
在比例尺是1:40000000的地图上,它的长是多少? 15. 在一幅比例尺是80000001的地图,量得甲、乙两城之间的路长12.5cm。
一辆汽车以平均每小时80km的速度从甲城开往乙城,需多少个小时才能到达?16.在一幅比例尺是1:5000的平面图上,量得一段公两个修路队,路长16.8厘米。
把修筑这段公路任务按3:5分配给甲、乙两个修路,这两个队各要修多少米?17.在比例尺是1/5000的地图上,量得一所学校的平面图长6厘米,宽4厘米。
用比例解决问题教案(优秀21篇)
用比例解决问题教案(优秀21篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!用比例解决问题教案(优秀21篇)教学工作计划包括教学目标的设定、教学内容的选择和组织、教学方法的运用以及教学评价的实施等方面。
用比例解决实际问题
用比例解决实际问题比例是数学中的一个重要概念,它可以用来解决各种实际问题。
比例的应用广泛,包括经济、财务、商业等领域。
本文将通过几个实际问题的例子,来说明如何用比例解决实际问题。
例一:货币兑换问题小明在出国旅游时,需要将他的人民币兑换成目的地的货币。
假设1美元兑换成6.5人民币,1欧元兑换成7.8人民币,小明想知道他手中的1000人民币可以兑换成多少美元和欧元。
解决这个问题需要用到比例。
我们可以建立以下比例关系:1美元 / 6.5人民币 = x美元 / 1000人民币1欧元 / 7.8人民币 = y欧元 / 1000人民币通过交叉乘法得到:x = (1美元 / 6.5人民币) * 1000人民币y = (1欧元 / 7.8人民币) * 1000人民币计算得:x ≈ 153.85美元,y ≈ 128.21欧元因此,小明手中的1000人民币可以兑换成约153.85美元和128.21欧元。
例二:图形的放缩问题某张地图的比例尺为1:50000,现在需要将这张地图上的一段道路放大到真实尺寸进行测量。
已知实际测量的道路长度为5千米,求放大后的道路长度。
解决这个问题同样需要用到比例。
我们可以建立以下比例关系:1厘米 / 50000厘米 = x千米 / 5千米通过交叉乘法得到:x = (1厘米 / 50000厘米) * 5千米计算得:x ≈ 0.0001千米因此,放大后的道路长度为0.0001千米。
例三:物品的混合问题某商店在制作某种特殊颜色的颜料时,需要将一种红色颜料和一种黄色颜料按照2:3的比例混合在一起。
如果需要制作5升这种特殊颜料,分别需要多少升红色颜料和黄色颜料?解决这个问题同样需要用到比例。
我们可以建立以下比例关系:2 /3 = x / 5通过交叉乘法得到:x = (2 / 3) * 5计算得:x ≈ 3.33升因此,需要3.33升红色颜料和1.67升黄色颜料来制作5升特殊颜料。
通过以上几个实际问题的例子,我们可以看到比例在解决实际问题中的重要性。
六年级数学下册用比例解决问题
用比例解决问题班级姓名1、在比例尺是1:30000000的地图上量得甲乙两面地相距12厘米,一架飞机从早上的8:30以每小时800千米的速度从甲地飞往乙地。
到达乙地的时间是几时几分?2、甲乙两地相距300千米,在比例尺是的地图上应画多少厘米?如果画在比例尺是1:6000000的地图上应画多少厘米?3、在比例尺是1:4000的图纸上量得一个圆形运动场的直径是8厘米,这个圆形运动场的实际面积是多少平方米?4、在比例尺是1:2000的图纸上量得一块长方形菜地的周长是25厘米,且长与宽的比是3:2,这块长方形菜地的实际面积是多少平方米?5、一个篮球场的长是28米,宽是15米。
请选择一个合适的比例尺画出这个篮球场的平面图?6、一辆汽车5小时行驶140千米,照这样的速度,从甲地到乙地行了8小时,甲乙两地相距多少千米?(用比例解)7、用一批纸装订同样的练习本,每本40页,可装订90本,现在要装订100本,每本多少页?(用比例解)8、一个自来水龙头3天要浪费600升水,照这样计算六月份要浪费多少升水?(用比例解)9、一本书3天看了51,照这样计算剩下的还要多少天看完?(用比例解)10、一辆汽车从甲地到乙地去时每小行40千米,10小时到达,返回时,速度提高41,可节约几小时?(用比例解)11、给教室铺方砖,用面积是4平方分米的方砖需要200块,若改用面积是5平方分米的方砖需要多少块?(用比例解)0 40 80km12、给教室铺方砖,用边长是4分米的方砖需要200块,若改用面积是8平方分米的方砖需要多少块?(用比例解)13、给教室铺方砖,用边长是4分米的方砖需要200块,若改用边长是5分米的方砖需要多少块?(用比例解)14、一件商品原价80元,现打七五折出售,原来买12件商品的钱,现在可以买多少件?(用比例解)15、两个圆柱体积相等,一个圆柱的底面积是30平方米,高6米,另一个圆柱的底面积是45平方米,它的高是多少米?(用比例解)16、一段木料锯成3段要12分钟,照这样,锯成8段要多少分钟?(用比例解)17、一个服装店的所有服装都打同样的折扣销售①、李阿姨买了一件上衣,原价250元,现价150元,李阿姨还想买一条裤子,原价180元,现价多少钱?(用比例解)②、张伯伯有一笔钱,如果买现价90元一件的衬衫,正好买4件,如果想买原价200元一件的夹克衫,能买多少件?(用比例解)18、一个长方形长8厘米,宽6厘米,按3:1放大后,它的面积是多少平方厘米?19、在一幅比例尺是1:2000000的地图上,量得甲乙两地的距离是厘米,如果画在比例尺是1:5000000的地图上,应画多少厘米?20、希望小学装修多媒体教室。
运用比例知识解决实际问题专项训练题
用比例知识解决下面问题:
1、用边长40厘米的方砖给教室铺地,需要432块,如果用边长60厘米的方
砖铺地,需要多少块方砖?
2、一辆客车3小时行135千米,照这样计算,如果行315千米,需要多少小
时?
3、一种农药,用药液和水按1:1500配制而成。
如果只有3千克的药液,应
加水多少千克?
4、运一批药品,每箱装36瓶,需要40只箱子,如果每箱装24瓶,需要多少
只箱子?
5、一块长方形地长120米,宽90米。
把它画在比例尺是1:1000的图纸
上,长和宽各应画多少厘米?
6、在一幅比例尺是1:350000的地图上,量得甲乙两地的距离是12厘米,
甲乙两地的实际距离是多少千米?
7、小王用24元买了6本笔记本,张明也想买几本,可是他妈妈只给他16元,
他最多可以买到多少本笔记本?
8、一个工厂要生产1120台电脑,头10天生产了350台,照这样的进度,
剩下的还需要多少天才能完成任务?
9、六年(1)班的学生做早操,排成四路纵队,每路纵队有12人,如果要安排
每路纵队8人,要分成几路纵队?
10、一个车间,每台机床占地10平方米,可以放36台。
如果每台机床占地8平方米,可以放多少台机床?
11、、修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?
1。
用正比例知识解决问题
用正比例知识解决问题1.一辆汽车3小时行驶180千米,照这样计算,行驶300千米需要几小时?2.用同样的方砖铺地,铺30平方米,需要1230块。
铺80平方米,要用多少块方砖?3.若把一根木料锯成4段要6分钟,那么锯成6段需要几分钟?4.小明测量电线杆的高度,他量得电线杆在平地上的影长为5.4米,同时把2米长的竹杆直立在地上,量得影长1.8米。
电线杆高多少米?5.一辆汽车从甲地开往乙地,3小时行了210千米,照这样计算,再行4小时就能达到乙地。
甲乙两地相距多少千米?6.用150千克芝麻可以榨出芝麻油57千克,照这样计算,要榨出1140千克芝麻油要芝麻多少千克?2吨芝麻榨出芝麻油多少吨?7.一个晒盐场用500千克海水可以晒15千克盐;照这样计算,用100吨海水可以晒多少吨盐?8.用100千克黄豆可磨出400千克豆腐,照这样算,加工1000千克豆腐,需要多少千克黄豆?9.房间长4.8米,宽3.6米,用一种正方形瓷砖铺地,需要768块,在长6米,宽4.8米的房间用同样的瓷砖铺地需要多少块?10.湖北武汉的黄鹤楼高约51米,在深圳锦绣中华微缩景区中,按景物高度与原景物高度的比1:15建造。
它在景区中高多少米?答案提示1.解:设行驶300千米需要x小时。
180 : 3 = 300 :xX = 5答:行驶300千米需要5小时。
2.解:设要用x块方砖。
1230 :30= x :80X = 3280答:要用3280块方砖。
3.解:设锯成6段需要x分钟。
6:(4-1)=x:(6-1)X = 10答:锯成6段需要10分钟。
4.解:设电线杆高x米。
X:5.4 = 2: 1.8X= 6答:电线杆高6米。
5.解:设甲乙两地相距x千米。
210 : 3 = x: (3+4)X= 490答:甲乙两地相距490千米。
6.(1)解:设要炸出1140千克芝麻油要芝麻x千克。
57 : 150=1140:xX = 3000答:要炸出1140千克芝麻油要芝麻3000千克。
比例的应用问题解决
比例的应用问题解决在数学中,比例是一种重要的概念,它在日常生活和各个领域中都有广泛的应用。
比例的应用可以帮助我们解决各种实际问题,例如物体的伸缩、金融投资、生产计划等。
本文将通过几个实例来介绍比例的应用,并提供解决问题的方法。
一、物体的伸缩问题比例可以帮助我们解决物体伸缩相关的问题。
例如,我们想要将一张长方形的图纸按照比例缩小或放大打印。
假设原始图纸的长为a,宽为b,我们想要将其缩小到原来的1/2。
根据比例的性质,我们可以得到以下方程组:a/x = b/y = 1/2其中,x为缩小后的长度,y为缩小后的宽度。
通过解方程组,我们可以得到x=a/2,y=b/2。
这样,我们就可以按照比例将原始图纸进行缩小打印。
二、金融投资问题比例在金融投资中也有重要的应用。
例如,我们想要计算某个投资产品的收益率。
假设我们投资的初始金额为P,投资期限为t年,最终收益为S。
根据比例的概念,我们可以得到以下方程:(P+S)/P = 1+r其中,r为收益率。
通过解方程,我们可以得到r=(S/P)/t。
这样,我们就可以根据比例计算出投资产品的收益率,帮助我们做出更明智的投资决策。
三、生产计划问题比例在生产计划中的应用也非常常见。
例如,一个工厂生产某种产品,每天生产a个。
如果要在b天内完成生产计划,我们可以使用比例来计算每天的生产数量。
根据比例的性质,我们可以得到以下方程:a/b = x/1其中,x为每天的生产数量。
通过解方程,我们可以得到x=a/b。
这样,我们就可以根据比例计算出每天的生产数量,确保生产计划按时完成。
综上所述,比例在解决实际问题中具有重要的应用。
通过应用比例,我们可以解决物体伸缩、金融投资、生产计划等各种问题。
在实际应用中,我们可以根据具体情况建立比例模型,并通过解方程的方法求解。
比例的应用可以帮助我们更好地理解和解决各种实际问题,提高问题解决能力。
用比例知识解决问题
用比例知识解决问题
1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?
2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?
3、一间教室,用边长0.4米的方砖铺地,需要275块,如果用边长0.5米的方砖铺地,需要多少块方砖?
4、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?
5、我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?
6、食堂有一批煤,计划每天烧105千克可以烧30天。
改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?
7、跃进机床厂原计划30天制造机床200台,结果做20天就只差40台没有做,照这样计算,可以提前几天完成任务?
8、工程队修一条水渠,原计划每天修360米,30天修完。
修10天后,每天多修40米,
再修多少天就能完成任务?
9、配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
10、修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?
11、把一根木条锯成3段需要6分钟,如果锯成6段,需要多少分钟?。
《用比例解决问题》说课稿(通用10篇)
《用比例解决问题》说课稿(通用10篇)《用比例解决问题》说课稿篇1教学目标:1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
教学重点:用比例知识解答比较容易的归一、归总应用题。
教学难点:正确分析题中的比例关系,列出方程。
教学过程:一、复习铺垫,引入新课。
(课件出示)1、判断下面每题中的两种量成什么比例?(1)速度一定,路程和时间.(2)路程一定,速度和时间.(3)单价一定,总价和数量.(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.(5)全校学生做操,每行站的人数和站的行数.2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。
(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。
(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。
3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?(1)学生自己解答,然后交流解答方法。
(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。
板书课题:用比例解决问题二、探究新知。
1、教学例5(1)学生再次读题,理解题意。
思考和讨论下面的问题:①问题中有哪三种量?哪一种量一定?哪两种量是变化的?②它们成什么比例关系?你是根据什么判断的?③根据这样的比例关系,你能列出等式吗?(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。
用比例解决问题
1.一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用边长是4分米的方砖,需用多少块?(用比例解)2. 某打字员一份稿件,原计划每分钟打240个字,25分钟完成任务,由于某种原因须提前5分钟完成任务,实际每分钟打字多少个?(用比例解)3. 拖拉机厂今年前3个月生产大型拖拉机850台。
照这样计算,全年产量可以达到多少台?(用比例解答)4. 配制一种药水,药粉和水的比是1:18, 3千克的药粉可配制出多少千克的药水?(用比例解)5.甲、乙两个工程队原来人数相等,因工作需要,从甲队调10人到乙队,这时乙队与甲队的人数比为7∶6。
甲队现在有多少人?6、六年级图书角有图书200本,其中新书占80﹪,又运进一批新书后,新书的总本书与现有图书本数的比是5∶6。
求后来运来的新图书是多少本?7. 用同样的砖铺地,铺18平方米要用618块砖。
如果铺24平方米,要用多少块砖?(用比例解)8.一对互相咬合的齿轮,大齿轮有35个齿,每分钟转100转;小齿轮有20个齿,每分钟转多少转? (用比例解)9. 一堆煤,原计划每天烧12吨,可以烧45天;实际每天比计划节约25%,实际烧了多少天?(用比例解)10. 时钟6时敲6下5秒敲完12时敲12下几秒敲完? (用比例解)11. 一段木料锯成5段用了8分钟,那锯8段用了多少分钟?(用比例解)12.把一个圆柱切成两个半圆柱,切面是个正方形,已知每个半圆柱的体积是25.12立方厘米,求每个半圆柱的表面积是多少?13.有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,容器内放着一些石子,石子的体积为196/3∏立方厘米,在容器内倒满水后,再把石子全部拿出来,求此时容器内水面的高度。
14.一个底面半径为5厘米,高为28厘米的圆柱形水桶装满水,另一个圆锥形空水桶,它的上口周长56.52厘米。
现把圆柱形水桶的水往圆锥形水桶里倒,当圆锥形水桶装满水时,圆柱形水桶的水还剩13厘米高的水。
用比例解决问题
用比例解决问题在生活中,我们经常会碰到各种各样的问题和难题。
有些问题需要我们用比例进行解决。
本文将从实际例子出发,介绍如何运用比例来解决问题。
第一种情况:比例乘法小王在超市购买了一袋苹果,他发现商家在标价的时候少贴了一个数字,书写成了3.9元/kg,而不是正确的价格3.98元/kg。
这时,小王突然想,如果按照3.98元/kg的价格,他需要支付多少钱呢?这个问题就可以通过比例来计算。
假设小王买了x kg的苹果,那么他需要支付的钱数y元可以表示成:3.98/x × x = y。
因此, y= 3.98x元。
同理,在解决商品打折问题时,也可以应用比例乘法。
例如,一家商铺宣传说“所有商品8折”,若商品最初的价格为P元,那么在打折后的售价为p元,它们之间的比例为0.8:1,也可以写成0.8/1 = p/P。
假设打折后的售价为p元,那么原价P可以表示为:P= p/0.8元。
第二种情况:比例除法小李在银行取出了100元钞票。
他需要将这100元换成1元硬币、5角硬币和1角硬币。
现在的问题是,他需要多少个1元硬币、5角硬币和1角硬币呢?在这种情况下,我们可以使用比例除法来计算。
设1元硬币的个数为x,5角硬币的个数为y,1角硬币的个数为z,则有:x+y+z= 100(单位:元)1元硬币和5角硬币和1角硬币之间的比例为1:0.5:0.1,那么,同样用比例除法可以推导出:1元硬币的个数为x个,则5角硬币的个数为0.5x个,1角硬币个数为0.1x个,则有:1x + 0.5x + 0.1x =100x = (100/(1+0.5+0.1)= 60 (个)因此,需要60个1元硬币,30个5角硬币和10个1角硬币。
第三种情况:比例的基准变化小明和小红比赛谁可以先吃两斤牛肉干。
小明以每分钟吃0.1公斤的速度吃完,而小红以每分钟吃0.15公斤的速度吃完。
在某一时间点,小明和小红一起吃了4/5斤的牛肉干(即小明吃了a公斤,小红吃了b公斤,且a+b=4/5),请问他们两人吃牛肉干用时谁更快?假设小明和小红A、B两人的吃肉干的速度成比例分别为0.1:1和0.15:1,他们吃两斤肉干用的时间分别是x、y分钟。
用比例解决问题知识点总结
用比例解决问题知识点总结一、知识点总结。
1. 比例的意义。
- 表示两个比相等的式子叫做比例。
例如:2:3 = 4:6,因为2×6 = 3×4 = 12。
2. 比例的基本性质。
- 在比例里,两个外项的积等于两个内项的积。
如果a:b = c:d,那么ad = bc。
例如在3:4 = 9:12中,3×12 = 4×9 = 36。
3. 解比例。
- 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
- 例如:解比例x:2 = 3:4,根据比例的基本性质4x = 2×3,4x = 6,解得x=(6)/(4)=(3)/(2)。
4. 正比例关系。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
- 例如:汽车行驶的速度一定,行驶的路程和时间成正比例关系。
因为(路程)/(时间)=速度(一定)。
5. 正比例关系的图像。
- 正比例关系的图像是一条经过原点的直线。
6. 反比例关系。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
- 例如:长方形的面积一定,长和宽成反比例关系。
因为长×宽 = 面积(一定)。
二、20题带解析。
(一)比例的意义和基本性质相关题目。
1. 判断12:15和8:10是否能组成比例。
- 解析:根据比例的意义,判断两个比是否相等。
12:15=(12)/(15)=(4)/(5),8:10=(8)/(10)=(4)/(5),因为(12)/(15)=(8)/(10),所以12:15和8:10能组成比例。
2. 在比例3:5 = 6:x中,求x的值。
- 解析:根据比例的基本性质,两个外项的积等于两个内项的积。
比例的解决问题集锦
1、一间教室长8m,宽是6m,把它画在比例尺是错误!未找到引用源。
的图纸上,长和宽
分别画多少厘米?
2、一个长方形操场长120m,宽80m,画在比例尺是,1-1000.的图纸上,图上这个长方形操
场的面积是多少平方厘米?
3、一台推土机4小时推土196立方米,找这样的速度,推土539立方米,需要多少小时?(用
比例解)
4、有一杯盐水,盐和水的比是1:10,如果再放入2克盐,新盐水重35克,新盐水中有水
多少克?(用比例解)
5、装修一间房子,用边长3dm的正方形铺地,要240块,如果改用边长2dn的正方形方
砖,要用多少块?(用比例解)
6、修一条公路,计划每天修400米,实际每天比计划多修25%,实际用了20天完成,计
划用多少天完成?
7、小亮读一本200页的故事书,前四天读了80%,照这样计算,读完这本书一共用多少天?
(用比例解)
8、某台机器上有两个互相咬合的齿轮,主齿轮有80个齿,每分钟转100周,从动轮有50个齿,从动轮每分钟比主动轮多转多少周?。
用比例解决问题
用比例解决问题姓名:1、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)2、同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?(用比例方法解)3、飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4小时的路程,汽车要行多少小时?(用比例方法解)4、修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可修完?(用比例方法解)5、一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)6、一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)7、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)8、小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?9.两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米?10、一种铁丝长30米,重量是7 千克,现有这种铁丝950千克,长多少米?11、用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?12、工人师傅制造一批器零件,每个零件所用的时间由原来的8分钟减少到2.5分钟,过去每天生产这种零件60个,现在每天能生产多少个?13.一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?14.一篮苹果,如果8个人来分,每人正好分6个,如果12个人来分,每个人可以分几个?15.一间房子需要铺砖,用面积是9平方分米的方砖,需要96块,如果用面积是6平方分米的方砖,需要多少块?16.用一批纸装成同样大小的练习本,如果每本18页,可以装订200本,如果每本16页,可以装订多少本?17.装修一间客厅,用边长5分米的方砖铺地,需要80块,用边长4分米的方砖铺地,需要多少块?18.六一儿童节那天开始,亮亮前7天看了210页,照这样的速度,亮亮这个月一共可以看多少页?19.修一条公路,总长12千米,开工前3天修了1.5千米,照这样计算,修完这条路还需要多少天?20.一间房子需要铺砖,用面积是16平方分米的方砖,需要50块,如果用边长是5分米的方砖来铺,需要多少块?。
用比例知识解决问题
用比例知识解决问题
1、在一个直角三角形中,两个锐角比是4:5,这两个角分别是多少度?
2、在一个三角形中,直角与其中一个锐角比是5:3,另一个锐角是多少度?
3、一个三角形三个锐角的比是1:2:3,这个三角形中最大一个角是多少度?这是个什么样的三角形?
4、加工一批零件,如果每小时加工38个,30小时可以完成,如果每小时加工50个,几小时可以加工完?
5、一辆汽车3小时行驶了180千米,照这样的速度,行驶2160千米需要多少小时?
6、修一段公路,长12千米,开工3天修了1.5千米,照这样计算,修完这条公路还要多少天?
7、一个修路队要修一段公路,前8天修了440米,照这样的速度,又用了12天修完这段公路,这条公路有多长?
8、食堂运来一批煤,计划每天烧180千克,可以烧25天,实际每天少烧30千克,实际可以烧多少天?
9、一间教室如果用边长4分米的方砖需用360块,如果改用边长3分米的方砖,则需多少块方砖?
10、用同一种方砖铺地,铺3平方米用27块,照这样计算,如果铺5平方米需用多少块方砖?
11、一块长方形地,周长是60米,长和宽比为3:2,这块地的面积是多少平方米?
12、用一根长48分米的铁丝做一个长方体的框架,长、宽、高的比为3:2:1,这个长方体的体积是多少立方米。
13、5千克花生可以榨出2.1千克花生油,照这样计算,要想榨出31.5千克油需多少千克花生?
14、3只喜鹊一年吃掉3.6万只虫,可保护19.8公顷森林,照这样计算,12只喜鹊一年可以保护多少公顷森林?
7,后来小明的体重增加了5kg,而妈15、小明的体重原来是妈妈的
12
妈的体重不变,小明与妈妈体重之比为2:3,妈妈体重是多少kg?。
用比例解决问题
用比例知识解决问题
1、修一条长12千米的公路,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?
2、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?
3、亮亮家造了新房,准备用边长是0.4米的正方形地砖装饰客厅地面,这样需要180块,装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?
4、兰州到乌鲁木齐的铁路长约1900千米,在比例尺是1:40000000的地图上,它的长是多少?
5、甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
6、运一批黄沙,计划用7辆车运,每天可运84吨,由于工程任务紧迫,实际运送时,同样的车增加了12辆,现在每天可运多少吨?
7、一个筑路队铺一段铁路,原计划每天铺3.2千米,15天铺完;实际每天比原计划多铺25%,多少天可铺完这段铁路?
8、工人装一批电线杆,计划每天装12根,30天可以装
完。
实际每天多装6根,几天能完成任务?
9、农具厂生产一批农具,原计划每天生产120件,28天可以完成。
实际每天少生产了
20件,实际几天才能完成?
10、制造一个零件,甲需6分钟,乙需5分钟,丙需4.5分钟。
现在有1590个零件的任务,分配给他们3人,且要求在相同时间内完成,每人应该分配到多少个零件的任务?
11、客车从甲地行驶到乙地需要6小时,货车每小时行驶36千米。
现在客、货两车分别从甲、乙两地同时相向而行,相遇时客车与货车所行路程的比是5﹕3。
求甲、乙两地相距多少千米?。
用比例解决实际问题
用比例解决实际问题1、我们家上月用了8吨水,水费是28元。
(1)小明家用了10吨水,水费是多少元?(2)小李家的水费是42元,用水多少吨?2、一个办公楼平均每天照明用电100千瓦时。
改用节能灯以后,平均每天只用25千瓦时。
(1)原来5天用的用电量现在可以用几天?(2)现在30天用的用电量原来能用几天?3、一辆汽车3小时行驶了180km,照这样的速度,5小时可以行驶多少千米?4、从A地到B地,一辆汽车每小时行驶60km,需要4小时,若每小时行驶80千米,需要几小时到达?5、一辆汽车从甲地开往乙地,前2.5小时行了300千米,照这样的速度,共用了5小时到达乙地。
甲乙两地相距多少千米?6、北京到长沙的铁路大约是1600km。
一列由北京开往长沙的高铁,9:00出发,11:30到达郑州。
北京到郑州的铁路长大约是700km,照这样的速度,从北京到长沙,6小时能到吗?7、王叔叔开车从甲地到乙地一共用了4小时,每小时行驶50km,原路返回每小时行驶40km,返回时用了多长时间?8、乘火车去奶奶家需要用16小时,火车平均每小时行驶105千米,现在火车提速了,8小时就能到,提速后火车平均每小时行驶多少千米?9、一个旗杆,旁边竹竿高2.5米,影长2米,旗杆影长6.4米,求旗杆的高度。
10、小兰身高1.5米,她的影长是2.4米,如果同一时间,同一地点测得一棵树的影子长4米,这棵树多高?11、用边长6分米的方砖铺一间教室,需要200块,如果用边长8分米的方砖铺,需要多少块?12、小东家的客厅是正方形的,用边长0.6米的方砖铺地,正好需要100块,如果改用0.5米的方砖铺地,需要多少块?13、一辆汽车从甲地开往乙地,每小时行50千米,6小时可以达到乙地,如果每小时行60千米,可以提前几小时到达?14、修一条长6000米的路,修了20天后,还剩4800米,照这样计算,剩下的路要修多少天?15、小明家到图书馆的路程为1200米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用比例知识解决问题
教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;发展学生综合运用知识解决简单实际问题的能力。
教学重点:掌握用正比例的方法解答应用题
教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、创设情境:
同学们,通过上节课的学习,我们已经学会了用正比例知识解决啤酒装箱的实际问题,这节课我们继续研究运用新知识来解决啤酒运输中的数学问题。
[设计意图]继续上节课的话题,加强情境的延展性,有助于学生对感兴趣的话题的深入探究。
二、探究新知
1.出示信息窗,请学生收集数学信息并提出问题:“改用载重10吨的汽车运,需要多少辆?”
谈话:请你用反比例知识列方程解答。
学生独立完成。
汇报结果:
解:设需要x辆。
10x=8×15
10x=120
x=12
答:需要12辆。
2.讨论:你是怎么想的?
(啤酒总量一定,汽车的载重量和辆数成反比例,找出一定的量就可以根据反比例的知识列出方程。
)
练习:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
3.比较正、反比例解法,归纳意义,总结方法。
谈话:想一想,应用比例知识解答应用题,是怎样想怎样做的?
同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。
(正确判断成什么比例,正比例比值相等,反比例乘积相等)
三、巩固练习
1.只列式不计算。
(用比例知识)
①食堂买3桶油用780元,照这样计算,买8桶油要用多少元?
②同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
2.巩固练习。
①先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完
成,,?
(2)王师傅4小时生产了200个零件,照这样计算?
3.自主练习
(1)第2题:找出两种成反比例的量,列方程解决问题,学生自主完成,集体订正。
(2)第5、7、8题:用反比例知识解决问题,学生独立完成。
4. 拓展练习:
小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”
小明需要你的帮助,你会怎样编题?
四、课堂总结
通过学习,你能说说解比例应用题的一般步骤是什么?(学生自己用语言叙述)。