地铁工程施工中监测点的布设以及监测方法

合集下载

地铁深基坑工程:监测点的布设

地铁深基坑工程:监测点的布设

监测点的布设原则>CONTENTS01基坑监测点布设的基本规定应能反映监测对象的实际状态及其变化趋势布置在内力及变形关键特征点上代表性及重点监护部位,应适当加密02基坑监测点的布设原则沿基坑周边布置,周边中部、阳角处应布置监测点。

监测点水平间距不宜大于20m,每边监测点数目不宜少于3个。

水平和竖向位移监测点宜为共用点,监测点宜设置在围护墙顶或基坑坡顶上。

监测孔应布置在基坑平面挠曲计算值最大处,一般宜布置在基坑周边的中部、阳角处及有代表性的部位。

监测点水平间距宜为20-50m,每边监测点数量不应少于1个。

应布置在受力、变形较大且有代表性的部位。

监测点数量和水平间距视具体情况而定。

竖直方向监测点宜布置在支撑处和相邻两层支撑的中间部位,竖向间距宜为2m-4m。

应根据支护结构计算结果,设置在支撑内力较大或整个支撑系统中起控制作用的杆件上。

每层支撑的内力监测点不应少于3个,各层支撑的监测点位置在竖向上宜保持一致应选择在受力较大且有代表性的位置,基坑每边中部、阳角处和地质条件复杂的区段宜布置监测点。

每层锚杆的内力监测点数量应为该层锚杆总数的1%-3%,并不应少于3根。

各层监测点位置在竖向上宜保持一致。

每根杆体上的测试点宜设置在锚头附近和受力有代表性的位置。

监测点应布置在受力、土质条件变化较大或其他有代表性的部位;平面布置上基坑每边不宜少于2个监测点,竖向布置上监测点间距宜为2m-5m,下部宜加密;当按土层分布情况布设时,每层应至少布设1个测点,且宜布置在各层土的中部。

宜布置在基坑中部、多根支撑交汇处、地质条件复杂处的立柱上。

监测点不应少于立柱总根数的5%,逆作法施工的基坑不应少于10%,且不应少于3根。

立柱的内力监测点宜布置在受力较大的立柱上,位置宜设在立柱上,位置宜设在坑底以上各层立柱下部的1/3部位。

地下水位监测点应布置在基坑内;当采用深井降水时,监测点应布置在降水井点降水区降水能力弱的部位,宜布置在基坑中央和两相邻降水井的中间部位;当采用轻型井点、喷射井点降水时,水位监测点宜布置在基坑中央和周边拐角处,监测点数量应视具体情况确定;监测应布置在内力及变形关键特征点上围护墙水平竖向位移、深层水平位移、围护墙内力思考题基坑围护墙顶水平和竖向位移布置原则?谢谢观看>。

城市轨道交通地铁项目施工监测方案

城市轨道交通地铁项目施工监测方案

城市轨道交通地铁项目施工监测方案1.1 测点布置1.1.1 测点布置原则1、按监测方案在现场布设测点,当实际地形不允许时,可在靠近设计测点位置设置测点,以能达到监测目地为原则。

2、为验证设计参数而设的测点布置在设计最不利位置和断面,为指导施工而设的测点布置在相同状况下最先施工部位,其目的是为了及时反馈信息,以修改设计和指导施工。

3、地表变形测点的位置既要考虑反映对象的变形特征,又要便于采用仪器进行观测,还要有利于测点的保护。

4、深埋测点(结构变形测点等)不能影响和妨碍结构的正常受力,不能削弱结构的刚度和强度。

5、各类监测测点的布置在时间和空间上有机结合,力求同一监测部位能同时反映不同的物理变化量,以便找出其内在的联系和变化规律。

6、测点的埋设应提前一定的时间,并及早进行初始状态的量测。

7、测点在施工过程中一旦破坏,尽快在原来位置或尽量靠近原来位置补设测点,以保证该测点观测数据的连续性。

1.1.2车站测点布置车站测点布设情况如下表9-4所示表9-4 测点布设表1.1.3区间测点布置(1)地面沉降(隆起)监测点:—般地沿隧道中线方向每隔5m布设一个测点,每隔定距离布设一个监测横断面,见表9-5。

表9-5 地面沉降监测横断面间距表注:B代表隧道的外径横断面方向测点间隔,一般为5〜8m在一个监测断面内设9个测点,地表测点顶突出地面5mm以内。

地面沉降测量应在盾构机开挖面附近,每天进行及每周进行后期观测直到沉降稳定。

(2)地面建筑物及临近建筑物沉降、倾斜和水平位移:在每栋建筑物四角各设置一个观测点,以测量其位移、倾斜,沉降点的数量不少于4点,规模较大的建筑物根据需要增加测点数量。

地面和建筑物沉降监测断面沿隧道纵向每30m设一断面地面或建筑物沉醫标志地面或罐於物沉障标£不少穴个5t(J0 分泾沅降仪沉障孔测斜仪 测斜仪测黏扎K 斜孔时称中心纯图 9-20 主断面监测点布置图(单位:mm拱顶下沉测点匚-1收敛测线A'f ■*! j匚!!u 11L ;]图9-21 洞内常规监测点布置图11隧道中心找/ 'V图9-22 纵断面监测点布置图地面或建筑物沉降监测标志\1测斜孔[拱顶下沉监测点[ 1隧道结构 | || If 1 1 1收敛测线A| 1隧底隆起监测点 1 rri 1 隧道结构M 1II1 L 1 1f 20〜30m (特殊地段加密)f 20〜30m (特殊地段加密)丫图9-23 单线隧道掘进地面沉降监测点布置示意图 (3) 土体水平位移及分层沉降:在典型断面布置测斜 仪进行测量,见图9-24。

广州某地铁深基坑施工监测技术

广州某地铁深基坑施工监测技术

广州地铁盾构始发井深基坑施工监测技术[内容]:广州市轨道交通三号线北延段施工9标北端风井施工监测,对基坑围护结构连续墙水平位移、土体侧向变形、支撑轴力、地下水位、周边建筑物沉降监测。

为施工提供连续可靠的预警信息,指导工程安全合理的进行。

[摘要]:监测点位布置方法1.工程概况广州市轨道交通三号线北延段施工9标北端风井为9标盾构始发井(兼做8标盾构吊岀井),设计里程为YDK-21+652.0~YDK-21+701.8;长度为49.8米,宽度25.5米,深度22.234~23.544米;此井是地下三层框架结构,采用明挖顺做法施工。

井身采用地下连续墙+内支撑的联合支护方式,地下连续墙兼做止水。

此风井的地质概况从上往下依次为人工填土层、洪积粉细砂层、洪积中粗砂层、洪积砾砂层、洪积土层、洪积淤泥质土层、残疾土层、碎屑岩岩石全风化带、岩石强风化带、岩石中等风化带和岩石微风化带。

风井地下水位埋藏较浅,稳定水位埋深为-2.15—8.50m,标高为 3.61—17.53m,地下水位的变化与地下水的赋存、补给及排泄关系密切,每年5—10月为两类,大气降雨充沛,水位会明显上升,而在冬季因降水减少,地下水位随之下降,年变化幅度为2.5—3.0m。

根据基坑功能,结合地质及周边环境,依据广东省和广州地区建筑基坑支护的有关技术规范和规定,此基坑变形控制保护等级为一级,结构重要性系数取1.1,地面最大沉降量和围护结构最大水平位移均不得大于±30mm。

2.施工监测目的2.1通过实施现代化的施工监测技术,为施工提供可靠连续的监测信息资料,以科学的数据、严谨的分析来指导预防工程破坏事故和环境事故的发生,从而达到指导现场施工及保障工程施工安全的目的,实现节约建设成本及加快施工进度的要求,真正做到信息化施工。

2.2为了实施对施工过程的动态控制,掌握地层与围护结构体系的状态,及施工对既有建(构)筑物的影响,必须进行现场监控量测。

基坑工程的相关技术人员根据现场监测结果准确了解和推断基坑开挖所引起的各种影响程度、变化规律和发展趋势,并及时在设计和施工上采取相应的防治措施。

地铁施工监测方案

地铁施工监测方案

地铁施工监测方案1. 简介地铁施工监测方案是指在地铁建设过程中,为了确保地铁施工过程的安全和顺利进行,对施工现场进行监测和控制的方案。

该方案旨在通过应用先进的地铁施工监测技术,对地铁施工现场的各项参数进行实时监测,提前发现潜在的问题,及时采取相应的措施,以减少施工风险,确保施工质量,保障地铁运营的安全。

2. 监测内容和方法地铁施工监测包括以下内容:2.1 基坑监测基坑监测是对地铁施工过程中的基坑进行实时监测,主要包括以下方面的内容:•地下水位监测:通过设置水位监测设备,实时监测基坑周围地下水位的变化情况,预防水位过高导致基坑坍塌等问题。

•土壤位移监测:通过设置位移监测仪器,实时监测基坑周围土壤的位移情况,及时发现土壤松动、下沉等问题。

•施工权重监测:通过设置权重监测仪器,监测地铁施工对基坑周围建筑物的力学影响,保证施工过程对周围环境的安全。

2.2 隧道监测隧道监测是对地铁隧道施工过程中的各项参数进行实时监测,主要包括以下方面的内容:•隧道位移监测:通过设置位移监测仪器,实时监测隧道的位移情况,及时发现隧道变形、沉降等问题。

•隧道应力监测:通过设置应力监测仪器,监测隧道结构的应力分布情况,及时发现应力集中和超出设计范围的情况。

•隧道温度监测:通过设置温度监测仪器,监测隧道内外温度的变化情况,及时发现温度异常,预防温度变化导致的隧道结构问题。

2.3 工程振动监测工程振动监测是对地铁施工过程中的振动参数进行实时监测,主要包括以下方面的内容:•施工振动监测:通过设置振动监测仪器,实时监测地铁施工对周围建筑物的振动情况,预防施工振动造成的建筑物损坏。

•列车振动监测:通过设置振动监测仪器,监测地铁列车在运营过程中产生的振动情况,及时发现并解决列车振动过大的问题,确保列车运营的安全和乘客的舒适度。

3. 监测数据处理和分析为了有效利用监测数据,提前发现和解决问题,监测数据将进行处理和分析。

具体步骤如下:1.数据采集:监测设备定期采集监测数据,包括基坑监测数据、隧道监测数据和工程振动监测数据。

测点布置方法

测点布置方法

一、XX地铁车站深基坑施工风险管理研究3.3测点布置的方法和数据处理要求3.3.1测点布置方法(1)建筑物倾斜及沉降监测在深基坑监测过程中,应依据建筑物的结构、形状、桩形、地质条件等因素综合考虑周边建筑物沉降观测点的布置方案,各监测点应最能容易的反映建筑物沉降变化的趋势。

一般情况下,建筑物差异沉降观察点应布设在差异沉降量较大的位置、建筑的四个角处、沉降裂缝的两侧以及地质条件有明显不同的区段。

保证观测点能准确反映建筑物的倾斜及不均匀沉降情况,埋设时注意观测点与建筑物的联结要牢靠。

根据监测点设计图来确定沉降观测点的位置。

固定的观测路线需在沉降观测点与工作点之间建立,并在架设仪器站点与转点处做好标记桩,以保证各次观测均沿统一路线。

用冲击钻在建筑物的基础或墙上钻孔,然后放入长200~300mm,Φ20~30mm的半圆头弯曲钢筋,四周用水泥砂浆填实。

测点的埋设高度应方便观测,对测点应采取保护措施,避免在施工过程中受到破坏。

测点的布设如图3-1所示。

对于建筑物倾斜监测,在需要监测的楼底部和顶部设置倾斜监测标志点。

底部和顶部标志点要求在同一铅垂线上。

观测时,精密经纬仪安置在离建筑物大于其高度的距离外测,出上部标志的高度H以及水平位移的投影值a,则倾斜度I为:I=a/H。

图3-1建筑物沉降观测点布设示意图(2)沉降及倾斜观测依照规范规定出发,事先设计图纸规定布设测点和分析结果,水准基准点宜均匀埋设,数量不应少于3点,埋设方法如图3-2所示。

图3-2沉降观测测点布设示意图(3)桩体变形及基坑外土体水平位移观测桩体变形观测:将测斜管绑扎在灌注桩钢筋笼内,钢筋笼深度与管深一致管体与桩体钢筋笼迎土面钢筋绑扎牢,每间距2米绑扎一次;测斜管内有一对槽必须垂直于基坑边线;下管之前,注意封好测斜管端管口盖子,并用胶带缠绕密封接头部位;待钢筋笼吊装完毕后,立即向测斜管内注入清水,防止泥浆浸入管中,同时做好测点保护。

仪器如图3-3所示。

地铁工程施工监测方案

地铁工程施工监测方案

地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。

1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。

负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。

同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。

2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。

将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。

将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。

测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。

3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。

监测方法是在地表埋设测点,用水准仪进行下沉的量测。

根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。

(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。

(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策: 当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。

地铁施工监测规范

地铁施工监测规范

地铁施工监测规范篇一:地铁工程监控量测技术规程地铁工程监控量测技术规程第一章定义、术语1.1 定义1.1 监控量测地铁工程施工中对围岩、地表、支护结构及周边环境的动态进行的经常性观察和量测工作。

1.2 施工监控量测土建承包商按施工合同有关要求在满足监测技术规程的要求下,自行组织对地铁工程实施的监控量测工作。

1.3 第三方监控量测由业主通过招标或委托形式引入的有关资质的单位对其签订的承包合同范围实施的监控量测工作。

1.2 术语2.1 地铁在城市中修建的快速、大运量、用电力牵引并位于隧道内或地铁转到地面和高架桥上的轨道交通。

2.2 应测项目保证地铁周边环境和围岩的稳定以及施工安全应进行的日常监测项目。

2.3 选测项目相对于应测项目而言,为了设计和施工的特殊需要,由设计文件规定的在局部地段进行的检测项目。

2.4 浅埋暗挖法在浅埋软质地层的隧道中,基于喷锚技术而发展的一种矿山工法。

2.5 盾构法使用盾构机械进行开挖并采用管片作为衬砌而修建隧道的施工方法。

2.6 明挖法由地面开挖的基坑中修筑地铁构筑物的方法。

2.7 隧道周边收敛位移隧道周边任意两点间距离的变化。

2.8 水平位移监测测定变形体沿水平方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。

2.9 垂直位移监测测试那个变形体沿垂直方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。

2.10 拱顶沉降隧道拱顶内壁的绝对沉降(量)。

2.11 地表沉降地铁工程施工中地层的(应力)扰动区延伸至地表而引起的沉降。

2.12 隧道围岩隧道周围一定范围内对洞身产生影响的岩土体。

2.13 围岩压力开挖隧道时围岩变形或松散等原因而作用而支护、衬砌上的压力。

2.14 初期支护隧道开挖后即行施作的支护结构。

2.15 二次衬砌初期支护完成后施作的衬砌。

2.16 衬砌沿着隧道洞身周边修建的永久性支护结构。

2.17 管片是一种在工厂制作的圆弧形板肋状并由钢筋混凝土、钢、铸铁或其它材料制作的预制构件。

监测点布设及监测方法

监测点布设及监测方法

监测点布设及监测方法1深层水平位移1.1 测孔布置根据设计图纸要求,在基坑支护桩钢筋笼内绑扎测斜导管11根,具体位置见基坑支护监测平面布置图,测斜管绑扎长度根据该处支护桩长度决定,约18.5m。

测斜管高出自然地面20cm,设置保护井,并悬挂明显警示标志,避免施工时破坏测斜管。

1.2 监测方法1)测斜仪的构造和工作原理测斜仪横截面一般为圆形,上下各有两对滚动轮,上下轮距500mm。

其工作原理是利用重力摆锤始终保持铅直方向的性质,测得仪器中轴线与摆锤垂直线的倾角。

倾角度变化可由电信号转换而得,从而可以知道被测构筑物的位移变化值。

在摆锤上端固定一个弹簧铜片,簧片上端固定,下端靠着摆线;当测斜仪倾斜时,摆线在摆锤的重力作用下保持铅直,压迫簧片下端,使得簧片发生弯曲,由粘贴在簧片上的电阻应变片输出电信号,测得簧片的弯曲变形,即可知道测斜仪的倾角,并推算出测斜管(亦即土体或构筑物)不同深度的位移。

2)埋设测斜管一般用PVC材料制成管长分为2m和4m两种规格,管段之间由外包接头管连接,管内对称分布有四条十字型凹槽,管径一般使用有60mm、70mm、90mm等。

绑扎埋设:将组装好的测斜管绑扎固定在桩墙钢筋笼上,随钢筋笼一起下到孔槽内,并将其浇筑在混凝土中,浇筑前应封好管底盖,并在测斜管内注满清水,防止测斜管在浇筑混凝土时浮起,并可防止水泥浆渗入管内。

钻孔埋设:先在已浇筑好的桩墙混凝土中钻孔,孔径略大于测斜管的外径,然后将测斜管封好底盖逐节组装逐节放入钻孔内,并同时在测斜管内注满清水,直接放到预定的标高为止。

随后在测斜管与钻孔之间空隙内回填水泥沙浆固定测斜管。

埋设过程注意事项:测斜管连接时必须将上下管节的导槽严格对准,避免导槽不畅通。

管底端装好底盖,每个接头和底盖处都必须密封好。

埋设就位时必须使测斜管的一对凹槽与欲测量的位移方向一致(通常为与基坑边缘相垂直的方向)。

埋设好测斜管后要及时做好保护工作,孔口周围砌砖保护,顶部装好盖管口砌砖保护地面80测斜专用管管外回填水泥浆基坑底平面于大基准点施工详图图土体测斜管埋设示意图图灌注桩测斜管埋设示意图∑-+=∆-∆+=∆ni ij n j n l X X X 00000)sin (sin )(θθ3)测试方法测斜管应在开挖前的3~5天内测试三次.待判明测斜管已处于稳定状态后,取其平均值作为初始值,开始正式测试工作。

地铁车站施工测量及监测作业指导

地铁车站施工测量及监测作业指导
通常采用精密导线网形式,但是要尽量以GPS网控制点作为起算边 和附合边。
按照精密导线的要求进行控制导线复测,具体要求如下: ① 导线点上只有两个方向时,其水平角观测应采用左、右角观测,左、
右角平均值之和与360°的较差小于4″。 ② 前后视边长相差较大,观测需调焦时,宜采用同一方向正倒镜同时观
测法,此时一个测回中不同方向可以不考虑2C较差的限差。 ③ 测距时应读取温度和气压,测前、测后各读取一次,取平均值作为测
821
中铁三局集团有限公司
2.5、围护结构侵限情况测量及钢支撑标高控制
尽管在围护结构施工时,考虑了一定的外放,但实际施工中,由于围 护桩垂直度控制不好,或者是地层及施工过程控制方面的问题造成了塌 孔,就会导致围护结构侵入结构限界。
因此,在基坑开挖过程中需要随开挖进行围护结构侵限情况的测量, 根据量测结果及时进行侵限部位的凿除处理,从而节约施工工期。
控制点在板混凝土浇筑时埋设好,待混凝土凝固后要及时进行控制 点的坐标测量。 根据实际情况,如果透过钢支撑可以与导墙上点通 视,且俯仰角在±30°以内,可以使用全站仪直接按照导线测量方式测量 并计算坐标。否则,就需要采用联系测量方式进行,具体可以采用一井 定向或者两井定向,根据现场具体情况实施。
高程引测直接采用挂钢尺联系测量方法测定,要求动钢尺2次,井 上井下各完成3个测回,最终成果取均值。
823
中铁三局集团有限公司
2.6、井下控制点的设置及测量
车站一般都是分段进行施工的,为了保证井下结构施工,在底板以 及每一层中板浇筑时要注意提前埋设井下控制点。一般情况下井下控制 点沿左右线的线路中心线埋设,间距在50~100m,一个车站内站台层井 下控制点不少于6个(左右线各3个),左右线之间相邻断面之间的点能 通视最好。

测点布置方法

测点布置方法

一、XX地铁车站深基坑施工风险管理研究测点布置的方法和数据处理要求3.3.1测点布置方法(1)建筑物倾斜及沉降监测在深基坑监测过程中,应依据建筑物的结构、形状、桩形、地质条件等因素综合考虑周边建筑物沉降观测点的布置方案,各监测点应最能容易的反映建筑物沉降变化的趋势。

一般情况下,建筑物差异沉降观察点应布设在差异沉降量较大的位置、建筑的四个角处、沉降裂缝的两侧以及地质条件有明显不同的区段。

保证观测点能准确反映建筑物的倾斜及不均匀沉降情况,埋设时注意观测点与建筑物的联结要牢靠。

根据监测点设计图来确定沉降观测点的位置。

固定的观测路线需在沉降观测点与工作点之间建立,并在架设仪器站点与转点处做好标记桩,以保证各次观测均沿统一路线。

用冲击钻在建筑物的基础或墙上钻孔,然后放入长200~300mm,Φ20~30mm的半圆头弯曲钢筋,四周用水泥砂浆填实。

测点的埋设高度应方便观测,对测点应采取保护措施,避免在施工过程中受到破坏。

测点的布设如图3-1所示。

对于建筑物倾斜监测,在需要监测的楼底部和顶部设置倾斜监测标志点。

底部和顶部标志点要求在同一铅垂线上。

观测时,精密经纬仪安置在离建筑物大于其高度的距离外测,出上部标志的高度H以及水平位移的投影值a,则倾斜度I为:I=a/H。

图3-1建筑物沉降观测点布设示意图(2)沉降及倾斜观测依照规范规定出发,事先设计图纸规定布设测点和分析结果,水准基准点宜均匀埋设,数量不应少于3点,埋设方法如图3-2所示。

图3-2沉降观测测点布设示意图(3)桩体变形及基坑外土体水平位移观测桩体变形观测:将测斜管绑扎在灌注桩钢筋笼内,钢筋笼深度与管深一致管体与桩体钢筋笼迎土面钢筋绑扎牢,每间距2米绑扎一次;测斜管内有一对槽必须垂直于基坑边线;下管之前,注意封好测斜管端管口盖子,并用胶带缠绕密封接头部位;待钢筋笼吊装完毕后,立即向测斜管内注入清水,防止泥浆浸入管中,同时做好测点保护。

仪器如图3-3所示。

(完整版)地铁施工监测方案

(完整版)地铁施工监测方案

施工监测方案编制:审核:审定:目录1工程概况 (1)1.1工程概况 (1)1.1.2 监测范围、内容 (3)1.2工程地质条件 (3)1.2.1地质条件 (3)1.2.2地下水 (3)2编制依据及原则 (4)2.1编制依据 (4)2.2编制原则 (4)2.2.1 系统性原则 (4)2.2.2 可靠性原则 (4)2.2.3 与设计图纸相结合原则 (4)2.2.4 关键部位优先、兼顾全局的原则 (5)2.2.5 与施工相结合的原则 (5)2.2.6 经济合理性原则 (5)3监测的目的及意义 (6)4监测的实施方法 (7)4.1监测基准点的布设 (7)4.1.1、设计交桩情况 (8)4.1.2、监测基点的布设 (7)4.1.3、监测控制工作基点测量要求 (8)4.1.4、工作基点的复核测量 (14)4.2地表及周边建筑物沉降 (12)4.2.1 监测目的 (12)4.2.2 监测仪器 (12)4.2.3 监测实施方法 (12)4.3桩顶位移 (14)4.3.1 监测目的 (14)4.3.2测点埋设 (14)4.3.2 监测仪器 (14)4.3.3 监测实施 (14)4.4钻孔桩位移 (15)4.4.1 监测目的 (15)4.4.2 监测仪器 (15)4.4.3 监测实施 (16)4.5钢支撑轴力 (17)4.5.1 监测目的 (17)4.5.2 监测仪器 (17)4.5.3 监测实施 (18)4.6地下管线沉降监测 (19)4.6.1 管线测点埋设原则 (19)4.6.2 管线埋设方式 (20)4.7水位监测 (21)4.7.1 监测目的 (21)4.7.2 监测仪器 (21)4.7.3 监测实施 (21)5北一路站附属结构监测的风险源及应对措施 (22)5.1风险源统计 (22)5.2针对风险源的监测措施 (22)6现场巡视工作要求 (23)6.1现场巡视工作范围 (23)6.2现场巡视内容 (23)6.2.1施工工况 (23)6.2.2北二路站附属结构支护状况 (24)6.2.3周边环境 (24)6.2.5监测设施 (24)6.3现场巡视频率 (24)6.4现场巡视工作实施方法 (25)7监测点位初始值的采集、报审程序及监测工作程序 (25)7.1监测点埋设后报审程序 (25)7.2初始值的采集及报审程序 (25)7.3监测工作程序 (26)8监测预警分级及监测频率 (26)8.1预警等级划分 (26)8.2监测项目预警值及控制值 (27)8.3风险预警管理程序 (27)8.4预警应急处置措施 (28)8.5北一路站附属结构工程监测项目及频率 (28)9 监测资料的收集整理和信息反馈 (29)9.1、监控监测数据的分析与预测 (29)9.1.1监测成果整理 (29)9.1.2内业数据处理 (30)9.1.3监测资料的收集整理 (30)9.2监测信息反馈 (31)9.3监测管理体系及质量保证措施 (32)10 监测成果分析及成果要求 (33)10.1监测成果分析 (33)10.2监测要求 (33)10.3监测上报的内容 (33)10.3.1现场监测资料的要求 (33)10.3.2日报资料内容 (35)10.3.3阶段性报告资料内容 (36)10.3.4总结报告资料内容 (34)11 监测组织机构、人员及仪器设备 (34)12 监测工作安全、环境保护保障措施 (35)12.1人员的保护措施 (35)12.2仪器的保护措施 (36)12.3监测点的保护 (36)12.4环境安全保护保障措施 (36)13 应急预案 (37)14 监测停测标准 (37)1工程概况1.1工程概况车站环境:车站位于兴华北街与北二路交叉路口南侧,沿兴华北街南北向布置。

地铁建设工程监控量测管理办法

地铁建设工程监控量测管理办法

地铁建设工程监控量测管理办法第三章监控量测管理职责第十条施工单位职责(一)按照合同要求,委托具有相应资质的专业队伍承担施工监测工作。

(二)编制施工监测方案,履行审批手续,并严格按照方案执行。

(三)及时准确发布预警信息,提出消警申请。

(四)对施工现场及周边环境风险进行巡视检查。

(五)出现预警时,及时响应、处置,具备消警条件后实施消警。

第四章监测工作的一般性要求第十一条监测方案应当根据勘察报告、设计文件、周边环境调查报告、风险评估报告及工程实际情况编制。

第十二条第三方监测方案和施工监测方案应按本办法第十章的相关规定,履行审批手续。

第十三条当工程设计或施工有重大变更时,施工、第三方监测单位应及时调整监测方案,并重新履行审批手续。

第十四条从地连墙施工开始,第三方监测和施工单位就应当严格按照审批的监测方案、有关技术标准及监测管理要求开展工作,保证监测数据真实、连续、准确、完整。

第十五条第三方监测须与施工监测同点位、同时段监测。

为便于管理,施工监测和第三方监测的监测项目编号应按照周边环境监测点号编制原则(附件一)、明(盖)挖法车站基坑监测点号编制原则(附件二)、盾构法区间隧道监测点号编制原则(附件三)统一。

第十六条监测过程中发现工程安全状况异常时应当按《1地铁建设工程安全风险预警、响应、消警管理办法》和《1地铁集团安全风险应急管理制度》的相关要求发布预警信息、上报险情。

第十七条当出现工程事故、险情、预警或监测数据出现异常时,第三方监测单位和施工单位应采取加密监测点、加大监测频率等措施。

当险情解除或变形趋于稳定时,经监理单位和监控分中心同意后可以停止加密监测工作。

第十八条第三方监测和施工单位应当及时整理、分析施工监测数据和巡视信息,作出分析评价,编制监测报告,反馈建设、设计、监理、第三方监测及施工单位。

第十九条监测成果不得涂改和撕毁,严禁伪造。

第二十条同时满足以下条件的,经监理单位和监控分中心同意可以停止监测工作。

天津地铁施工监测方案

天津地铁施工监测方案

第一节、投入本监测项目使用的仪器设备表由于本工程为天津市滨海新区首条地铁B1线开工建设的首座车站,工程意义重大,而且工程地质和水文地质情况相当复杂,环境和基坑保护工作的责任相当重大,因此我单位拟投入最好的仪器设备用于本项目的监测工作:平面位移测量选用测量机器人—TCA2003全站仪,水准测量选用电子水准仪DINI12,深部水平位移测量(测斜)选用进口的美国新科测斜仪。

这些仪器的测量精度和稳定性在同类型仪器中处于顶尖水平。

同时在确保安全的前提下,本着经济合理的原则,在基坑监测中埋设的传感器选择国内信誉好、质量有保障、有长期合作关系的生产厂商。

主要的仪器设备见下表,并保证所使用的仪器均在其鉴定有效期内:11 打印机HP 2300元 4 输出设备12 电子手薄PDA SONY 2400元 4 现场记录13 对讲机GP88S MORTOROLA 2800元8 现场通讯主要仪器的图件及性能如下:美国天宝DINI电子水准仪,世界上精度最高的电子水准仪,每公里往返测中误差0.3mm,测量时间3秒,补偿器±15′自动补偿范围,补偿精度0.2″保证了大风天气、高架、桥面颤动恶劣条件下准确无误的作业。

瑞士Leica公司生产的TCA2003全自动全站仪测量机器人,高精度仪器的典范,能自动对中,自动记录观测数据,测角精度指标±0.5″,测距精度指标为1mm+1ppm。

美国新科公司生产测斜仪,Digitilt DataMate Ⅱ读数仪,配Digitilt inclinometer系列探头,能自动记录观测数据。

系统总量程为±53°,系统精度±0.01mm/500mm,灵敏度±10弧秒(±0.05mm/m)。

国内公司生产的CJY-80沉降仪,分辨率±1mm,重复误差±3mm,温度范围-300C~+800C,标准孔102~152mm。

国内公司生产的SWJ-90型钢尺水位计,分辨率±1mm,重复误差±2mm。

地铁车站监测的方法及监测点的布置埋设【图】

地铁车站监测的方法及监测点的布置埋设【图】

地铁车站监测的方法及监测点的布置埋设:㈠墙体水平位移监测:1、测点埋设及技术要求:⑴埋设方法:本工程测斜管埋设采用绑扎埋设。

测斜管通过直接绑扎或设置抱箍将其固定在地连墙钢筋笼上,钢筋笼入槽后,浇筑混凝土。

测斜管与支护结构的钢筋笼绑扎埋设,绑扎间距不宜大于1.5米,测斜管与钢筋笼的固定必须十分稳定,以防浇筑混凝土时,测斜管与钢筋笼相脱落。

同时必须注意测斜管的纵向扭转,很小的扭转角度就可能使测斜仪探头被导槽卡住;埋设就位的测斜管必须保证有一对凹槽与基坑边缘垂直。

⑵埋设技术要求:围护结构测斜管埋设与安装应遵守下列原则:①管底宜与钢筋笼底部持平或略低于钢筋笼底部,顶部达到地面(或导墙顶);②测斜管与支护结构的钢筋笼绑扎埋设,绑扎间距不宜大于1.5m;③测斜管的上下管间应对接良好,无缝隙,接头处牢固固定、密封;④测斜管绑扎时应调正方向,使管内的一对测槽垂直于测量面(即平行于位移方向);⑤封好底部和顶部,保持测斜管的干净、通畅和平直;⑥做好清晰的标示和可靠的保护措施。

2、观测方法及数据采集:⑴观测仪器及方法:监测仪器采用测斜仪以及配套测斜管,监测精度可达到0.02mm/0.5m。

测斜仪⑵观测方法如下:①用模拟测头检查测斜管导槽;②使测斜仪测读器处于工作状态,将测头导轮插入测斜管导槽内,缓慢地下放至管底,然后由管底自下而上沿导槽全长每隔0.5m读一次数据,记录测点深度和读数。

测读完毕后,将测头旋转180°插入同一对导槽内,以上述方法再测一次,深点深度同第一次相同。

③每一深度的正反两读数的绝对值宜相同,当读数有异常时应及时补测。

⑶观测方法及数据采集技术要求:①初始值测定:测斜管应在测试前5天装设完毕,在基坑开挖前3天内用测斜仪对同一测斜管作3次重复测量,判明处于稳定状态后,以3次测量的算术平均值作为侧向位移计算的初始值。

②观测技术要求:测斜探头放入测斜管底应等候5分钟,以便探头适应管内水温,观测时应注意仪器探头和电缆线的密封性,以防探头数据传输部分进水。

地铁工程专项监测方案

地铁工程专项监测方案

地铁工程专项监测方案一、背景介绍地铁工程在城市交通建设中发挥着重要的作用,对于提高交通效率,降低交通压力,改善城市交通环境具有重要意义。

然而,在地铁工程建设过程中,可能会存在一些潜在的风险和安全隐患,为了确保地铁工程的安全可靠运营,专项监测工作十分必要。

专项监测工作是指在地铁工程建设过程中对工程地质、结构、水文水质等方面进行监测,及时发现并解决问题,保障地铁工程建设和运营安全的一项重要工作。

本专项监测方案将对地铁工程中的地质监测、结构监测、水文水质监测等方面进行详细的介绍和规划。

二、监测目标1. 地质监测:监测地铁隧道施工中的地质灾害风险,包括滑坡、地裂、地下水涌出等情况,保障地铁隧道稳定施工和运营安全。

2. 结构监测:监测地铁工程中的结构变化,包括地铁隧道和地下车站的变形、渗水等情况,保障地铁工程的结构安全。

3. 水文水质监测:监测地铁工程施工中的地下水位和水质变化情况,及时发现并解决地下水涌出、水质污染等问题,保障地铁工程的建设和运营安全。

三、监测内容1. 地质监测内容:(1)地质构造监测:对地铁隧道施工区域的地质构造进行监测,发现和评估地质灾害的风险。

(2)地下水位监测:对地铁隧道施工中的地下水位进行监测,及时掌握地下水位的变化情况。

(3)地下水渗流监测:对地铁隧道施工中的地下水渗流进行监测,及时发现地下水涌出的情况。

2. 结构监测内容:(1)地铁隧道变形监测:对地铁隧道的变形进行监测,包括地表沉降、支护结构的变形等情况。

(2)地下车站渗水监测:对地下车站的渗水情况进行监测,发现并及时处理地下车站的渗水问题。

3. 水文水质监测内容:(1)地下水位监测:对地铁工程施工区域的地下水位进行监测,及时掌握地下水位的变化情况。

(2)地下水质监测:对地下水的水质进行监测,包括地下水中的溶解氧、PH值、重金属等指标的监测。

四、监测方法1. 地质监测方法:(1)地质构造监测:采用地质勘探、地质雷达探测等方法,对地下隧道施工区域的地质构造进行监测。

地铁运营阶段沉降监测基准点及监测点的布设与精度要求

地铁运营阶段沉降监测基准点及监测点的布设与精度要求

地铁运营阶段沉降监测基准点及监测点的布设与精度要求刘 欣1,侯瑞国2,杨景斌2,朱延文2(1. 中航勘察设计研究院有限公司,北京 100098;2. 中国电力工程顾问集团东北电力设计院有限公司,吉林 长春 130033)摘要:以长春地铁1号线一期工程运营阶段沉降监测项目为实例,介绍工程项目基准点及沉降监测点布设、制作方法与技术要求情况,为以后类似工程提供借鉴。

考虑到地铁建设和运营期间的特殊性,各类基准点宜布设在稳定道床和侧壁上,监测点布设位置应特别关注重点监测对象和变形相对较大的区域。

关键词:沉降监测;基准点;监测点中图分类号:P2 文献标志码:A 文章编号:1671-9913(2020)S1-0176-04The Layout and Precision Requirements of Settlement Monitoring Datum Point and Monitoring Point in Subway Operation StageLIU Xin 1, HOU Rui-guo 2, YANG Jing-bin 2, ZHU Yan-wen 2(1. A VIC Institute of Geotechnical Engineering Co., Ltd., Beijing 100098, China; 2. Northeast Electric Power Design Institute Co., Ltd. of CPECC, Changchun 130033, China)Abstract: This paper takes the settlement monitoring project of the first phase of Changchun Metro Line 1 as an example to introduce the layout, production methods and technical requirements of the project's datum points and settlement monitoring points, and provide reference for similar projects in the future. Considering the particularity of subway construction and operation, all kinds of datum points should be set up on stable track bed and side wall, and the location of monitoring points should pay special attention to key monitoring objects and relatively large deformation areas.Keywords: settlement observation; datum point; monitoring point* 收稿日期:2019-10-15第一作者简介:刘欣(1972- ),男,宁夏永宁人,高级工程师,从事工程测量工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁工程施工中监测点的布设以及监测方法
摘要:随着地铁建设力度的加强,安全问题备受重视,监测工作显得尤为重要,特别是监测点的布设和检测方法的选择,更是重中之重。

文章结合实际案例,对这两大方面进行了具体分析。

关键词:地铁工程;监测点;监测方法;沉降
地铁作为当前城市最重要的交通形式之一,具有运量大、速度快、噪音少等诸多优势,在缓解城市交通、改善环境质量方面发挥着重要作用。

由于多建于市区,周围建筑物较多,且地下管线网复杂,施工有很大难度。

在基坑开挖、结构支护上如果出现质量问题,将延误施工进度,且容易对施工人员的生命安全构成威胁。

因此,必须对整个施工过程进行监测,包括支撑体系、维护体系、水文地质变化等,然后对监测数据加以分析,掌握施工的安全状态,进而可采取防范措施,避免发生安全事故。

1 实际案例分析
某市地铁12号线A站位于市区两个繁忙道路交叉口偏西处,是该线上的第8个站点。

A站呈东西方向而建,长180 m,标准段的宽度为22.5 m,东西两端宽度均为26 m,高度为13.5 m,采用单柱双跨二层矩形框架结构形式。

施工时直接明挖,对施工范围内的地基土状况进行勘察,分析后发现,土层有填土、砂质粉土、粉土和砂质粉土加砂粉几层,局部含有淤泥质粘性土。

开挖区域一砂质粉土为主,强度较低、含水量大,可能会出现基坑涌水、边坡失稳的情况,破坏工程质量。

为保证工程顺利完成,须做好监测工作,利用现代化技术进行监测,一旦发现问题,要及时予以处理。

2 准备阶段
首先要选择相适应的监测工具,需用到全站仪、测斜仪、钢尺、水位计、水准仪、钢筋计等仪器,并制定合理的方案和流程,选择适宜的监测方法对A站的各个部位及其影响范围进行监测。

此次施工所选择的测量仪器有BF515型测斜仪、数字式读数仪、徕卡NA2型精密水准仪,以及来自美国SLOPE INDICATOR 公司的水位计等。

其次是确定监测内容,主要包括支撑轴力、围护结构的土压力、基地回弹、位移和沉降量、地下水位变动情况、围护结构钢筋强度、地表裂缝、地下管道、周围环境等,通过对这些因素的监测,实时了解各自所处状态。

对各方面加以协调,保持整体工作安全稳定地开展。

如若发现实际和设计不相符的情况,要立即分析原因并加以调整。

3 地铁施工中监测点的布设
遵循一般原则,应按设计方案进行现场监测点的布设,结合实际情况,测点
尽量靠近设计的测点位置,需保证能够较好地完成监测任务,获取所需信息。

测点类型不同,应做具体分析,且还要考虑测点数量、成本消耗等因素。

如果测点是为了指导施工工作,则应布设在最先施工处,以便能够及时采集反馈信息,减少失误,从而更好地指导施工;如果测点是为了验证数据,则应将其布设在最为不利的位置;如果测点用于监测地表变形状况,既要保证观测的方便性,又要考虑变形特征,监测时还需保护测点。

总之,不同类型的测点具有独立性和统一性,既单独布设,彼此间又相互联系,实现空间和时间上的结合,同一个监测部位能够反映出多个变化量,从而更好的把握内在规律。

为保证每一个测点都能正常运行,应提前埋设,并观察其初始状态,加以调整。

若测点被破坏,或出现其他异常不能正常工作,需在附近补设,尽量维持监测工作不中断。

基坑周围设有观测墩,使用高精度测量仪器获取其坐标信息;水平位移和沉降是施工中的两个监测重点,其测点务必要合理设置,并采取保护措施保护测点不被破坏;受外界因素或监测仪器的影响,采集的数据可能会出现变动,对此应保持及时更新,对温度等及时修正。

4 地铁施工中的监测方法分析
4.1 测斜
使用测斜仪对测斜管的变形程度进行监测,获取有关数据信息后,可据此推测维护桩墙的水平位移以及维护体的变形状况等。

距离A站施工基坑4 m处埋设测斜管,并提前进行2~3次检测,确保测斜管没有质量问题,并确定初始值。

埋设时,管内导槽应与土体位移方向平行。

将测斜仪的探头沿管内导槽滑至底部,缓慢提升,保持匀速,每升高0.5 m读一次数,提升到管顶时结束测量读数。

之后将测斜仪提出,平转180 ?觷再次测量。

取两次测量的平均值,得到的就是平行于车站中线反向的土体位移变化值。

4.2 支撑轴力监测
该工程使用的是量程为-4 000 kN的钢弦式支撑轴力计,测试共有10个断面。

支撑轴力也是监测的重点内容,支撑体系对工程的安全质量有着直接影响。

钢筋应变计安放在钢筋笼上,在同一个截面上对称分布,然后进行加固。

焊接温度控制在90 ℃以内,使用千斤顶加载时,应做好详细记录。

4.3 地表沉降监测
在所设的测试断面上沿监测断面方向每15 m设一个沉降监测点,每个点位埋设一根长0.5 m、直径为12 m的光圆钢筋,顶部略微隆起。

埋设时在地面挖一直径为10 cm,深0.7 m的柱状孔。

在孔中灌入砂浆插入钢筋,砂浆只能与周围土体固结在一起,但不能与地面混凝土硬化层粘结。

钢筋头低于混凝土地表面10 cm,上加小盖保护,并在旁边用红色油漆标注点号,点号需与平面布置图中点号一一对应。

监测方法:按二级变形测量精度等级用精密电子水准仪,铟钢尺进行量测。

与地面沉降共享高程监测控制网。

地表沉降量测随施工进度进行,根据开挖部位、工序情况及时监测,并将各沉降测点沉降值绘制成沉降变化曲线图、沉降变化速度、加速度曲线图。

4.4 地下管线监测
A站位于市区两条要道交叉口,交通拥挤,且周围高层建筑较多。

为满足市民的需要,地下管线网密集,埋设有燃气、给排水、电力等共18条管线,且大都采用大直径,距离A站很近,挖方时极有可能会对管线造成破坏。

埋设监测点时,先从地面钻孔,然后将钢筋埋入至管顶,用砂浆将其接触部分粘合,为防止管线变形时钢筋受到太大影响,该工程使用PVC管将钢筋套牢。

监测方法和地表沉降监测方法相似,对测量结果加以分析,了解管线的受力状况,如果超出规定值,应尽快查明原因,并采取相应的解决措施,如注浆加固法等。

如果超出规定值较大范围,需立即停止施工,并向上级汇报。

5 检测频率设置
根据行业要求,以及当地的地铁施工规程,对检测频率要求如下:基坑开挖期间,每一个开挖段内的监测点每天要监测一次,尚未开挖的地段则保持每周监测2~3次即可;车站底板完成的区段,每周监测一次,但换撑期间要每天监测一次;车站主体结构施工结束后2个月内,对建筑物和地下管线每周监测一次;当监测数据达到报警范围,或遇到特殊情况,如暴雨、台风等恶劣天气,应适当加密观测,必要时跟踪监测。

6 结语
地铁建设程度是一个城市现代化水平的重要体现,也是缓解城市交通拥堵的重要手段,需加以重视。

然而在实际施工中,需考虑诸多因素,施工难度很大。

这就要求我们必须做好监测工作,了解各方面的状况,促进工程的顺利完成。

参考文献:
[1] 韦选万.地铁隧道变形监测点布设及实施思路研究[J].世界华商经济年鉴,2013,(3).
[2] 赵兵帅,黄腾,王成,等.地铁隧道沉降监测及基准点稳定性分析[J].勘察科学技术,2013,(4).
[3] 梁加俊.谈地铁施工中监测的两个问题[J].建筑界,2014,(4).
[4] 黄维.武汉地铁三号线四新大道站施工监测控制[J].山西建筑,2014,(5).。

相关文档
最新文档