电力系统频率及其特性数学模型

合集下载

电力系统负荷运行特性及数学模型(培训)

电力系统负荷运行特性及数学模型(培训)
恒定阻抗与异步电动机的组合。
补充:负荷预测概述 ---电力部门一项十分重要的基础工作
长期负荷预测 中、短期负荷预测 超短期负荷预测
负荷预测的方法,如弹性系数法、回归法、神 经网络、模糊数学等。
负荷预测与许多因素相关联,如所在地区的规 模、人口、经济水平、负荷结构、地理位置、 气候条件、人们生活习惯、电价政策等等。
补充:工业及民用负荷配电系统
负荷在电网中如何接入?
配电系统分为:TN, IT, TT系统三种。
1、几种配电方式
① TN系统。 电源有一点(通常是中性点)直接接
地,负荷側的建筑物电气装置的外露导电 部分通过保护线与该接地点连接的系统。
a) TN-S系统。整个系统中保护线PE 与中性线N是分开的,见下图
按负荷的构成范围------电网负荷、地区性负荷、 小区负荷、单个负荷等
4、工业用电典型负荷比重(%)
3-1负荷的描述-----负荷曲线
负荷曲线 日负荷曲线 年(最大)负荷曲线 年持续负荷曲线
1、典型日负荷曲线
P (kw)
峰荷 Pmax
2、负荷曲线的描述 日负荷曲线 谷荷 Pmin
3、负荷的分类
按用电设备-----异步电动机、同步电动机、电热 装置、整流装置、照明设备等
按用户性质------工业负荷、农业负荷、交通运输 业负荷、市政及生活用电等
按用户的重要程度------一级负荷、二级负荷、三 级负荷
按负荷的工作特点------连续性负荷、间断性负荷、 冲击负荷等
24
Wd Pdt
0
Pav

Wd 24

1 24 Pdt
24 0
Pmin Pm a x

第二章电力系统各元件的数学模型

第二章电力系统各元件的数学模型

试验时小绕组不过负荷,存在归算问题,归算到SN
2) 对于(100/50/100)
2
Pk (12)
P' k (12)
IN 0.5IN
P 4 ' k (12)
2
Pk ( 23)
P' k (23)
IN 0.5IN
P 4 ' k ( 23 )
3) 对于(100/100/50)
2
Pk (13)
P' k (13)
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
一次整循环换位:
A B
C
换位的目的:为了减 少三相参数的不平衡
§2.3 电力线路的参数和数学模型
Xd
§2.1 发电机的数学模型
受限条件
定子绕组: IN为限—S园弧
转子绕组: Eqn ife 励磁电流为限—F园弧 Xd
原动机出力:额定有功功率—BC直线
其它约束: 静稳、进相导致漏磁引起温升—T弧
进相运行时受定 子端部发热限制 受原动机出力限制
定子绕组不超 过额定电流
励磁绕组不超 过额定电流 留稳定储备
2、由短路电压百分比求XT(制造商已归算,直接用)
U U U U 1 k1(%) 2
k(12) (%) k(13) (%) (%) k(23)
XT1
Uk
1(%
)U2 N
100SN
U U U U 1 k2 (%) 2
k(12) (%) k(23) (%) (%) k(13)

第2章 电力系统稳态分析_电力系统各元件的特性和数学模型

第2章 电力系统稳态分析_电力系统各元件的特性和数学模型
k U 1N : U 20 U 1N : U 2 N
第二节 变压器的参数和数学模型
两绕组变压器的 Γ 型等值电路与参数计算公式
2 2 Pk U N Uk % UN ,X T RT 2 SN 100 S N P0 I0 % SN GT 2 ,BT 2 U 100 U N N k U 1 N / U 2 N
~ S (U d jU q )(I d jI q ) (U d I d U q I q ) j(U q I d U d I q )
P U d I d U q I q Q U q I d U d I q
从而
第一节 发电机组的运行特性和数学模型
P0 GT 2 1000 UN
第二节 变压器的参数和数学模型
3. 变比 k 定义为一次额定电压与二次空载电压之比,可由 空载试验测得或由变压器铭牌查得。 安装在高压绕组上; 对应于额定电压的抽头为主抽头,其余抽头的 电压相对额定电压偏离一定值;
变压器的实际变比=对应于实际 抽头位置的一 次电压与二次电压之比。
一型
第二节 变压器的参数和数学模型
特点:
增加传输能力 减少功率损耗
S 3UI
S L 3I 2 Z ZS 2 / U 2
减少电压降落
3ZI Z S/ U dU


类型:
单相、三相 两绕组、三绕组 普通、自耦 普通、有载调压、加压调压
第二节 变压器的参数和数学模型
一、双绕组变压器的参数和数学模型
1 U 1ZT 1 NhomakorabeaYT
ZT 2
2
ZT 3
3
U 3
U 2
第二节 变压器的参数和数学模型

电力系统分析第4章 电力网络的数学模型

电力系统分析第4章 电力网络的数学模型

Vn
I2(1)


Y (1) n2
V2
Y (1) nn
Vn
I2(1)
式中
Y (1) ij
Yij
Yi1Yj1 Y11
; Ii(1)
I
Yi1 Y11
I1
第四章电力网络的数学模型
4.2 网络方程的解法
➢ 对方程式再作一次消元,其系数矩阵便演变为
Y11
Y (2)
Y12 Y13 Y1n
Y (1) 22
第四章电力网络的数学模型
4.1 节点导纳矩阵
➢一般地,对于有n个独立节点地网络,可以列写n个 节点方程



Y11 V1 Y12 V2 Y1n Vn

I1



Y21 V1 Y22 V2 Y2n Vn

I2


• •
Yn1 V1 Yn2 V2 Ynn Vn In
(4-3)
4.1 节点导纳矩阵
➢上述方程经过整理可以写成


Y11 V1 Y12 V2
0




Y21 V1 Y22 V2 Y23 V3 Y24 V4 0



Y32 V2 Y33 V3 Y34 V4 0



Y42 V2 Y43 V3 Y44 V4

I
4
(4-2)
第四章电力网络的数学模型
4.1 节点导纳矩阵
➢将电势源和阻抗的串联变 换成电流源和导纳的并联,得 到的等值网络如图所示,其中:


I 1 y10 E1

1 电力系统各元件数学模型

1 电力系统各元件数学模型

1 电力系统各元件数学模型1.1 发电机组参数及数学模型发电机组在稳态运行时的数学模型(图1所示)极为简单,通常由两个变量表示,即发出的有功功率P 和端电压U 的大小或发出的有功功率P 和无功功率Q 的大小。

以第一种方式表示时,往往还需伴随给出相应的无功功率限额,即允许发出的最大、最小无功功率max Q 、min Q 。

图 1 发电机数学模型1.2 变压器参数及数学模型1.2.1双绕组变压器Γ型等值电路模型TjX 图2 双绕组变压器Γ型等值电路模型双绕组变压器Γ型等值电路模型如图2所示,电路参数通过以下公式计算。

注意,公式中N U 取不同绕组的额定电压,表示将参数归算到相应绕组所在的电压等级(所得所得阻抗/导纳参数都是等值为Y/Y 接线的单相参数);公式中各参数由变压器厂家提供,采用实用单位。

22020210001001000%100k N T Nk NT N T NN T N P U R S U U X S P G U I S B U ⎧∙=⎪⎪⎪%∙=⎪⎪⎨⎪=⎪⎪⎪=∙⎪⎩(1-1) 其中,k P 为短路损耗,k U %为短路电压百分数,0P 为空载损耗,0%I 为空载电流百分数,N U 为归算侧的额定电压,N S 为额定容量 该电路模型一般用于手算潮流中。

1.2.2 双绕组变压器T 型等值电路模型1jX '图 3 双绕组变压器T 型等值电路模型其中,1R 和1X 为绕组1的电阻和漏抗,'2R ,'2X 为归算到1次侧的绕组2 的电阻和漏抗,m R 和m X 为励磁支路的电阻和电抗。

该电路模型一般用于电机学中加深对一二次侧和励磁支路电阻电抗的理解以及手算潮流计算中。

1.2.2 三绕组变压器Z 图4三绕组变压器的等值电路三绕组变压器的等值电路如图3所示,图中,变压器的励磁支路也以导纳表示。

该电路模型一般用于手算潮流计算中。

三绕组变压器的参数计算如下: 电阻:由短路损耗计算()()()1(12)(31)(23)2(23)(12)(31)3(31)(23)(12)121212k k k k k k k k k P P P P P P P P P P P P ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-2) 211222233100010001000k N T Nk N T Nk NT N P U R S P U R S P U R S ⎧∙=⎪⎪⎪∙⎪=⎨⎪⎪∙⎪=⎪⎩(1-3) 其中,k P 为短路损耗,N U 为归算侧的额定电压,N S 为额定容量对于容量比为100/100/50和100/50/100的变压器,厂家提供的短路损耗是小容量绕组达到自身额定电流()/2N I 时的试验数据,计算时应首先将短路损耗折算为对应于变压器额定电流()N I 的值例如,对于100/100/50型变压器,厂家提供的是未经折算的短路损耗'(23)k P -,'(31)k P -,'(12)k P -首先应进行容量归算'(23)(23)'(31)(31)44k k k k P P P P ----⎧=⎪⎨=⎪⎩(1-4) 按新标准,厂家仅提供最大短路损耗max k P ,按以下公式计算电阻:2max (100%)2(50%)(100%)20002k N T N T T P U R S RR ⎧=⎪⎨⎪=⎩(1-5) 其中max k P 为最大短路损耗,N U 为归算侧的额定电压,N S 为额定容量 电抗:由短路电压百分数计算()()()1(12)(31)(23)2(12)(23)(31)3(23)(31)(12)1%%%%21%%%%21%%%%2k k k k k k k k k k k k U U U U U U U U U U U U ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-6) 211222233100100100k N T Nk N T N k NT N U U X S U U X S U U X S ⎧%=⎪⎪⎪%⎪=⎨⎪⎪%⎪=⎪⎩(1-7) 其中,k U %为短路电压百分数,N U 为归算侧的额定电压,N S 为额定容量 注意,厂家提供的短路电压是经过额定电流折算后的数据。

电力系统频率及其特性数学模型

电力系统频率及其特性数学模型

5/32
2、原动机——汽轮机
•气阀位置 X B 的改变会导致进气量的变化,使汽轮机输入功率变 动 PT,因而引起发电机功率的变化 PG
•汽轮机的调节阀门和第一级喷嘴之间有一定的空间,开启/关 闭气门使进入气门的蒸汽量有所改变,但是这个空间的压力 不能立即改变,这样就形成了机械功率滞后于气门开度变化, 也就是“汽容影响”。
可以用惯性环节来描述: GTs X PTBss1 K T TTs
对于再热式汽轮机要考 虑再热段充气时延
G Ts X P T B s s(1 K T T 1 Ts )K 1r T T rs rs
2020/5/12
North China Electric Power University
6/32
4/32
X
B
s
Kn 1 sTn
Pc
s
1 R
F
s
Kn
K2 K4
T
n
1 K3K 4
R
K2 K1
Gn
s
Kn 1sTn
XBsG nsP csR 1Fs
表示了原动机调节量与控制指令信号Pcs及系
统频率Fs间的动态特性
2020/5/12
North China Electric Power University
第三节 电力系统的频率调节系统及其特性
1、调速器
B X B
E
进汽 PT
数学建模
C
f (X A )
2、原动机
D
F
X D
PC
G~
PG 系 统
发电机
汽轮机
调节指令
3、区域系统
数学分析 物理系统
物理映射
2020/5/12

电力系统模型

电力系统模型

电力系统模型(PSM)电力系统模型应当与实际电力系统相似,其目的是模拟电力系统的机电特性,它包括网络模型和设备模型。

电力系统模型模拟了输变电系统、保护及自动装置。

DTS能够正确描述电网主控室中所观察到的现象,关键在于电力系统模型。

动态潮流DTS中的潮流是EMS中调度员潮流的拓展。

DTS中的潮流利用了EMS中的调度员潮流的基本模型外,还要实现与网络模型的联合求解。

准确的模拟系统的响应过程。

这种算法的基本思想是:1.1.忽略电网中机组的震荡,仅描述事故后的稳态,假定全网频率统一。

2.2.忽略原动机出力变化,假定发电机机械力矩按原动机特性变化,或机械力矩不变。

3.3.不模拟快速的机电暂态过程及计及锅炉、核反应堆等的中长期过程。

在一般情况下,常规潮流中功率平衡条件不能得到满足,系统中总存在净加速功率。

动态潮流就是将总的净加速(净减速)功率按一定分配因子分配给各台机组,而不是由平衡母线完全承担。

分配因子可以根据用户需要定为惯性常数、机组容量或某种分配因子。

对于动态潮流,在计算过程中采用牛顿——拉夫逊法进行求解,系统中包含若干个平衡节点,但只有一个γδ节点。

动态潮流中包含N-1个有功功率方程,N-1-γ个无功平衡方程,N为系统节点数,γ为Pγ节点数。

继电保护和自动装置的仿真保护仿真电力系统保护设备是保证电网安全运行、保护电气设备的主要装置。

共分为两类:一类称为继电保护设备;另一类称为安全自动装置设备。

在电力系统运行中,可能发生两种对系统产生危害的运行状态:一类是设备发生短路和线路断线等故障;另一类是电气元件的正常工作遭到破坏,单没有发生故障,属于不正常运行状态,如电压和频率过高、过低和设备过载等。

继电保护的作用是快速判断故障类型和地点并及时切除故障元件,主要作用于单一的电气设备;安全自动装置则是根据电压、频率和设备的异常情况,按照事先设定的方案投切某些元件和负荷,消除设备异常现象。

继电保护设备元件主要用于暂态过程分析、短路、断线故障计算等软件。

电力系统各元件的特性和数学模型课件

电力系统各元件的特性和数学模型课件
通过改变初级和次级绕组的匝数比, 可以改变输出电压的大小。
变压器的主要参数
额定电压
变压器能够长期正常工作的电压值。
额定容量
变压器的最大视在功率,表示变压器的输出 能力。
额定电流
变压器能够长期通过的最大电流值。
效率
变压器传输的功率与输入的功率之比,表示 变压器的能量转换效率。
变压器数学模型
变压器数学模型通常采用传递函数的 形式来表示,可以描述变压器在不同 工作状态下的输入输出关系。
THANKS FOR WATCHING
感谢您的观看
配电系统是电力系统的重要组成部分,主要负责将电能从发电厂或上级电网分配给 终端用户。
配电系统的工作原理包括电压变换、电流变换和功率传输等过程,通过变压器、开 关设备和输配电线路等设备实现。
配电系统通常分为高压配电、中压配电和低压配电三个层次,以满足不同用户的需 求。
配电系统的主要参数
电压
配电系统的电压等级通常在1kV至35kV之间,其 中1kV以下为低压配电,35kV以上为高压配电。
电力系统的控制策略
电力系统的控制策略包括发电机的励磁控 制、调速控制等,这些控制策略对电力系
统的稳定性起着至关重要的作用。
电力系统的运行状态
电力系统的运行状态对稳定性有直接影响 ,如负荷的大小和分布、发电机的出力、 电压和频率等。
外部环境因素
外部环境因素包括自然灾害、战争、恐怖 袭击等,这些事件可能导致电力系统受到 严重干扰,影响其稳定性。
04
负荷:消耗电能的设备或设施。
电力系统元件的分类
一次元件
包括发电机、变压器、输电线路等,是构成电力系统的主体 部分。
二次元件
包括继电器、断路器、测量仪表等,用于控制、保护和监测 电力系统。

新能源电力系统模态频率定义、分析与控制

新能源电力系统模态频率定义、分析与控制

01
数据驱动控制
强化学习
02
03
模型自适应与优化
利用采集的系统运行数据,通过 机器学习算法对系统频率进行预 测和控制。
通过强化学习算法,根据系统频 率的实时反馈,动态调整新能源 发电功率。
利用数据驱动的控制策略,实现 模型自适应和优化,提高系统频 率的稳定性和可靠性。
基于混合方法的模态频率调控策略
常用的鲁棒性分析方法包括H∞控制、μ分析和基于李雅普诺夫函数的方法等。这些方法可以评估系统在面临 不确定性因素时的性能和稳定性,并提供相应的控制策略以增强系统的鲁棒性。
03
新能源电力系统模态频率 控制
模态频率的开环控制
01 02
定义
开环控制是指不依赖于系统反馈信息,仅根据输入指令进行控制的控 制方式。在模态频率控制中,开环控制主要通过预设的频率阈值或频 率调度计划来实现。
定义
特点
应用场景
优化控制是指在满足系统约束 条件下,寻求最优控制策略的 控制方式。在模态频率控制中 ,优化控制主要通过优化算法 和模型预测等技术手段,实现 系统频率的高效调控。
优化控制能够综合考虑多种因 素,实现系统全局的最优解。 但优化控制需要解决复杂的数 学问题,计算复杂度较高,对 算法和计算能力要求较高。
模态频率的估计方法
参数识别法
通过分析系统的输入输出数据, 估计系统的模态参数,包括模态 频率。例如,利用风力发电机的 运行数据,通过参数识别算法估 计风力发电机的模态频率。
时频分析法
对系统的动态信号进行时频分析 ,在时频平面上识别出模态频率 。例如,利用短时傅里叶变换对 电力系统的电压信号进行时频分 析,识别出频谱中的峰值频率作 为模态频率。
模态频率的基本概念

电力系统各元件的特性和数学模型

电力系统各元件的特性和数学模型

E q
Ixd cos
P ,Q
Eq sin
Q
Ixd
Ixd cos
U
I
Ixd
sin
Eq
cos
U
I I
cos sin
Eq sin
xd
Eq cos
xd
U
P
UI
cos
由此,
Q UI sin
EqU sin
xd
EqU cos
xd
U 2
EqU cos
xd
U2
xd
(2-2)
(2-3)
按每相的绕组数目
双绕组:每相有两个绕组,联络两个电压等级
三绕组:每相有三个绕组,联络三个电压等级,三个绕 组的容量可能不同,以最大的一个绕组的容量为变压器 的额定容量。
类别 普通变 自耦变
高 100% 100% 100% 100%
中 100% 50% 100% 100%
低 100% 100% 50% 50%
1.3 凸极机的稳态相量图和数学模型
11
第一节 发电机组的运行特性和数学模型
12
第一节 发电机组的运行特性和数学模型
13
第一节 发电机组的运行特性和数学模型
稳态分析中的发电机模型
发电机简化为一个节点 节点的运行参数有:
U U G
节点电压:U U u 节点功率:S~ P jQ
S~ P jQ
19
第二节 变压器的参数和数学模型
2.1 变压器的分类:有多种分类方法
按用途:升压变、降压变 按电压类型:交流变、换流变 按三相的磁路系统:
单相变压器、三相变压器 按每相绕组的个数:双绕组,三绕组 按绕组的联结方式:

电力系统各元件的特性和数学模型

电力系统各元件的特性和数学模型
第二章
电力系统各元件的 特性和数学模型
复功率的规定

• 国际电工委员会(IEC)的规定 S U I
j U

S U I Ue ju Ie ji UIe j(u i ) UIe j
UI cos j sin
I
u
i
S cos j sin
P jQ
“滞后功率因数 运行”的含义
符号 S φ P Q
电力系统各元件的特性和数学模型
18
双绕组变压器和三绕组变压器
• 双绕组变压器:每相两个绕组,联络两个电压等级
2020/9/7
电力系统各元件的特性和数学模型
6
2.1节要回答的主要问题
• 功角的概念是什么?与功率因数角的区别? • 隐极机的稳态功角特性描述的是什么关系?(由此可
以引申出高压输电网的什么功率传输特性?) • 发电机的功率极限由哪些因素决定?对于隐极机,这
些因素如何体现在机组的运行极限图中?发电机的额 定功率与最大功率有什么关系?发电机能否吸收无功 功率? • 稳态分析中所采用的发电机的数学模型是怎样的?
• 负荷以超前功率因数运行时所吸收的无功功率为 负。——容性无功负荷(负)
• 发电机以滞后功率因数运行时所发出的无功功率为 正。——感性无功电源(正)
• 发电机以超前功率因数运行时所发出的无功功率为 负。——容性无功电源(负)
2020/9/7
ห้องสมุดไป่ตู้
电力系统各元件的特性和数学模型
3
目录
2.1 发电机组的运行特性和数学模型 2.2 变压器的参数和数学模型 2.3 电力线路的参数和数学模型 2.4 负荷的运行特性和数学模型 2.5 电力网络的数学模型 本章小结 习题

电力系统各元件的特性和数学模型

电力系统各元件的特性和数学模型
机械特性
变压器需要承受一定的机械应力,包括自身的重量、运输 过程中的振动以及运行时的电磁力等。因此,变压器需要 有足够的机械强度和稳定性。
数学模型
01 02
电路模型
变压器可以用电路模型表示,其中电压和电流的关系由阻抗和导纳表示 。对于多绕组变压器,需要使用复杂的电路模型来描述各绕组之间的耦 合关系。

调相机
主要用于无功补偿和电压调节 ,通过吸收或发出无功功率来
维持电压稳定。
电动机
作为电力系统的负荷,能将电 能转换为机械能。
数学模型
同步发电机
基于电磁场理论和电路理论, 建立电压、电流、功率等变量
的数学关系。
异步发电机
通过分析转子磁场与定子绕组 的相互作用,建立数学模型。
调相机
基于无功功率理论,建立电压 与无功电流之间的数学关系。
05
CATALOGUE
电力电子元件
特性
非线性特性
动态特性
电力电子元件在正常工作状态下表现出非 线性特性,如开关状态下的电压-电流关系 。
电力电子元件的动态特性表现在其工作状 态的快速变化,如开关的快速通断。
时变特性
控制性
由于电力电子元件的工作状态和效率会随 着时间、温度、负载等因素的变化而变化 。
电力系统各元件的 特性和数学模型
contents
目录
• 发电机 • 变压器 • 输电线路 • 配电系统元件 • 电力电子元件
01
CATALOGUE
发电机
特性
01
02
03
04
同步发电机
作为电力系统中的主要电源, 能将机械能转换为电能,具有
稳定的电压和频率输出。
异步发电机

电力系统数学模型与稳定性分析

电力系统数学模型与稳定性分析

电力系统数学模型与稳定性分析电力系统是现代社会中不可或缺的基础设施,它承担着电能的生产、传输和分配的重要任务。

为了确保电力系统的安全运行,人们需要对电力系统进行数学建模和稳定性分析。

本文将介绍电力系统数学模型和稳定性分析的基本概念、方法和应用。

一、电力系统数学模型1.1 电力系统的基本组成部分电力系统主要由发电机、变压器、输电线路、配电网和负荷等组成。

发电机用于将机械能转化为电能,变压器用于变换电压,输电线路用于电能的长距离传输,配电网用于将电能分配到各个用户,负荷则表示对电能的需求。

1.2 电力系统的数学模型电力系统的数学模型主要包括节点模型和支路模型。

节点模型是用来描述电力系统中各个节点(发电机、变压器、负荷等)的状态和特性,通常使用节点电压和相角来表示。

支路模型是用来描述电力系统中各个支路(输电线路、变压器等)的传输特性,通常使用支路功率和阻抗来表示。

1.3 节点模型节点模型是电力系统数学模型的核心部分,它描述了电力系统中各个节点的电压和相角的变化规律。

节点模型基于基尔霍夫电流法和基尔霍夫电压法,利用电流平衡和功率平衡等原理建立。

节点模型可以通过节点电压和相角的变化来分析电力系统的稳态和暂态行为。

1.4 支路模型支路模型描述了电力系统中各个支路的传输特性,包括输电线路的电阻、电抗和电导等参数。

支路模型基于欧姆定律和基尔霍夫电压法,利用电压平衡和功率平衡等原理建立。

支路模型可以通过支路功率和阻抗的变化来分析电力系统的稳态和暂态行为。

二、电力系统稳定性分析2.1 稳定性的概念电力系统的稳定性是指系统在外部扰动或内部故障的作用下,能够保持稳定的运行状态。

稳定性分为稳态稳定性和动态稳定性两种。

稳态稳定性是指系统在平衡点附近的行为,动态稳定性是指系统在扰动后恢复稳定的能力。

2.2 稳定性的分析方法稳定性分析的主要方法包括潮流计算、短路计算、暂态稳定性分析和频率稳定性分析等。

潮流计算是用来计算电力系统中各个节点的电压和功率,以确定系统的稳态工作点。

电力系统分析基础知识点总结

电力系统分析基础知识点总结

电力系统分析基础目录稳态部分一.电力系统的基本概念填空题简答题二.电力系统各元件的特征和数学模型填空题简答题三.简单电力网络的计算和分析填空题简答题四.复杂电力系统潮流的计算机算法简答题五.电力系统的有功功率和频率调整1.电力系统中有功功率的平衡2.电力系统中有功功率的最优分配3.电力系统的频率调整六.电力系统的无功功率和频率调整1.电力系统的无功功率平衡2.电力系统无功功率的最优分布3.电力系统的电压调整暂态部分一.短路的基本知识1.什么叫短路2.短路的类型3.短路产生的原因4.短路的危害5.电力系统故障的分类二.标幺制1.数学表达式2.基准值的选取3.基准值改变时标幺值的换算4.不同电压等级电网中各元件参数标幺值的计算三.无限大电源1.特点2.产生最大短路全电流的条件3.短路冲击电流4.短路电流有效值四.运算曲线法计算短路电流1.基本原理2.计算步骤3.转移阻抗4.计算电抗五.对称分量法1.正负零序分量2.对称量和不对称量之间的线性变换关系3. 电力系统主要元件的各序参数六.不对称故障的分析计算1.单相接地短路2.两相短路3.两相接地短路4.正序增广网络七.非故障处电流电压的计算1.电压分布规律2.对称分量经变压器后的相位变化稳态部分一一、填空题1、我国国家标准规定的额定电压有3 、6、10、35 、110 、220 、330、500 。

2、电能质量包含电压质量、频率质量、波形质量三方面。

3、无备用结线包括单回路放射式、干线式、链式网络。

4、有备用界结线包括双回路放射式、干线式、链式、环式、两端供电网络。

5、我国的六大电网:东北、华北、华中、华东、西南、西北。

6、电网中性点对地运行方式有:直接接地、不接地、经消弧线圈接地三种,其中直接接地为大接地电流系统。

7、我国110与以上的系统中性点直接接地,35与以下的系统中性点不接地。

二、简答题1、电力网络是指在电力系统中由变压器、电力线路等变换、输送、分配电能设备所组成的部分。

电力系统自动化第3章电力系统频率

电力系统自动化第3章电力系统频率

分布式电源对电力系统频率的影响与应对策略
分布式电源的接入
随着可再生能源等分布式电源的广泛应用,其接入对电力系统频率的影响逐渐凸显。分 布式电源的随机性和间歇性可能引起电力系统的频率波动,影响电力系统的稳定运行。
应对策略
为应对分布式电源对电力系统频率的影响,需要采取一系列应对策略。包括加强分布式 电源的调度管理,提高其并网技术水平,以及建立健全的电力市场机制,鼓励分布式电
现代电力系统通常采用自动发电控制(AGC)系统来实现电力系 统的频率控制,该系统能够根据电力系统的实时运行状态自动调 节发电机组的出力,以保证电力系统的频率稳定。
2
03
频率静态特性定义
指在稳态运行条件下,电 力系统有功功率与系统频 率之间的关系。
频率静态特性分析
源参与电力系统的频率调节。
未来电力系统频率技术的发展方向
高级算法的应用
随着人工智能和大数据技术的发展,高级算法在电力系统频率分析和管理方面的应用将更加广泛。通过运用机器 学习、优化算法等高级算法,能够更加精准地预测和调控电力系统的频率,提高电力系统的稳定性和可靠性。
智能化监测与控制
未来电力系统频率技术的发展方向还包括智能化监测与控制。通过集成传感器、通信和控制技术,实现对电力系 统频率的实时监测和智能调控,提高电力系统的自适应能力和智能化水平。
根据分析结果采取相应的措施,如优化调度 策略、加强设备维护等,以提高电力系统的 频率稳定性。
03
电力系统频率调整与控 制
电力系统频率调整的方法
1 2
一次调频
通过发电机组的调速系统,快速响应系统负荷变 化,调整发电机组出力以维持频率稳定。
自动发电控制(AGC) 利用计算机系统对区域电网内的机组出力进行自 动控制,以满足负荷需求,并维持频率稳定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机
进汽
调节指令
F (s)
PT
P Ts P G s1 K T n ns1 K T T Ts P cs
1 R
Pc(s) — +
GnT (s)
1
PT (s)
(1 sTn )(1 sTT )
2021/4/17
电力系统频率及其特性数学模型
North China Electric Power University
•气阀位置 X B 的改变会导致进气量的变化,使汽轮机输入功率变 动 PT,因而引起发电机功率的变化 PG
•汽轮机的调节阀门和第一级喷嘴之间有一定的空间,开启/关 闭气门使进入气门的蒸汽量有所改变,但是这个空间的压力 不能立即改变,这样就形成了机械功率滞后于气门开度变化, 也就是“汽容影响”。
可以用惯性环节来描述: GTs X PTBss1 K T TTs
2
I
1
1
1
XA
A
XD D
接主轴
IV
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
4/32
X XEA
K1'XA k1f
K2' XDK4XB
机械杠杆反馈
机械加法器 B
开度反馈
蒸汽 调节
XDk2Pc
(同步器输出) 转速给定
主要内容
• 电力系统的频率调节系统及其特性
– 调节系统的传递函数
• 调速器 • 原动机——汽轮机
– 汽轮发电机组的传递函数 – 单区域系统
• 多区域闭环调节系统 • 电网的频率调节特性
– 单区域电网的频率特性 – 多区域电网的频率特性
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
1/32
第三节 电力系统的频率调节系统及其特性
1、调速器
B X B
进汽 PT
C
f (X A )
E
D
2、原动机
F
X D
PC
G~
PG 系 统
发电机
汽轮机
调节指令
3、区域系统
数学分析
数学建模
物理映射
物理系统
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
(1 sTn )(1 sT电T )力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
9/32
汽轮机与无限大系统并联运行
B X B
C
E
D
f (X A )
发电机的功率变化对 系统的频率没有影响
F
X D
PC
G~
PG 系 统
发电机
F s 0 PG PT
•当迅速关小导向叶片的开度,导管中的水压力会急 剧上升;当迅速开大导向叶片的开度,导管中的水压 力会急剧下降。这就是水锤现象。
•水轮机的功率不能随着开度的变化而有一个时滞
Gn
s
1TW 0.5TWs
s 1
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University

放行



反馈
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
3/32
1、调速器
只讨论小偏离的情况,假定:
1、系统稳态时的频率为 f N ,对应的原动机汽阀位置为 X B ,发 电机输出功率为 PG 。
2、D点移动微小距离X D,正比于发生增加功率指令 PC ,DPC
对于再热式汽轮机要考 虑再热段充气时延
G Ts X P T B s s(1 K T T 1 Ts )K 1r T T rs rs
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
7/32
3、原动机——水轮机
•在水流的稳态情况下,水的流速是一定的。
10/32
P Ts P G s1 K T n ns1 K T T Ts P cs
施加一个阶跃变化 Pc
P Ts P G s1 K T nns1 K T T Ts s P c
P G lis m P G s K n K T P c s 0
+ D
-E -
放大执行 气阀 (错油门,油动机)开度
X E s K 1 F s K 2 P c s K 4 X B s
汽阀 汽轮机
转速
(汽轮机主轴)
假定流入油压机的油量与
A
转速反馈
导油阀的位置 X E 成正比
dXB dt
K3XEXBsK3XsEs飞 Nhomakorabea测速机械
XB
B XE E
XC C
F
2
2/32
一、调节系统的传递函数
•进入原动机的动力元素是由调速器控制的,它是电力系统频率和 有功功率调节系统的基本组成部分。
•不论汽轮机或者是水轮机,调速器的执行环节都是利用液压放大 原理控制气门(或者导水叶)的开度,尽管调速器构成各异,但 是他们主要部件的方程式的型式是相同的。
整定
进气



分执

8/32
4、汽轮发电机组的传递函数
XBsG nsP csR 1Fs GTs X PTBss1 K T TTs
F (s)
F(s)
1/ R
Pc(s)

+
Gn (s)
GT (s)
K n XB(S) K T PT (s)
1 sTn
1 sTT
调速器
汽轮机
1
R
Pc(s) — +
GnT (s)
1
PT (s)
3、当D点升高时,引起E点降低 X E ,通过错油门作用,使B点
升高 X B,从而原动机的输入功率增加PT,稳态时两者相等。
4、由于发电机功率增加,使系
统频率发生微小变化 f ,引起调
速器响应,使A点向上移动 ,
正比X于A f。
X A
5、正方向如图中所标柱。 进汽
XB
B XE E
III
II
XC C
F
T
n
1 K3K 4
R
K2 K1
Gn
s
Kn 1sTn
XBsG nsP csR 1Fs
表示了原动机调节量与控制指令信号Pcs及系
统频率Fs间的动态特性
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
6/32
2、原动机——汽轮机
I
1
1
1
XA
A
XD D
接主轴
XB s K2PcKs4K K s31F 电力s系统频率进 及汽 其特性数学模型III
II
IV
2021/4/17
North China Electric Power University
5/32
X
B
s
Kn 1 sTn
Pc
s
1 R
F
s
Kn
K2 K4
相关文档
最新文档