加热炉控制系课程设计
加热炉控制系统课程设计
第1章加热炉控制系统1.1加热炉控制系统工程背景及说明加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。
早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。
现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。
为了保证安全生产,在生产线中增加了安全联锁保护系统。
影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。
根据干扰施加点位置的不同,可组成多参数的串级控制。
使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。
这种方案比较简单,在炼油厂中应用广泛。
这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。
简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。
含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。
现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。
应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。
加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。
一般通过引入阻尼滞后或增加非线性环节来改善控制品质。
在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。
为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。
联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。
当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。
压力调节系统投入运行保证燃料管道压力不超过规定上限。
加热炉温度控制系统设计
加热炉温度控制系统设计一、引言加热炉是一种常见的工业设备,用于将物体加热至一定温度。
在许多工业过程中,加热炉的温度控制至关重要,它直接影响到产品的质量和生产效率。
因此,设计一个稳定可靠的温度控制系统对于提高工业生产的效益十分重要。
本文将介绍一个基于控制理论的加热炉温度控制系统的设计。
二、控制系统设计原理1.温度传感器:温度传感器是测量加热炉内部温度的重要组成部分。
常用的温度传感器包括热电偶和热敏电阻。
传感器将温度信号转换为电信号,并将其发送给控制器。
2.控制器:控制器接收温度传感器发送的信号,并与设定值进行比较。
根据比较结果,控制器将控制信号发送给加热器以调整加热功率。
控制器通常使用PID控制算法,它根据偏差、积分和微分项来计算控制信号。
3.加热器:加热器是加热炉温度控制系统中的执行器。
根据控制信号,加热器可以调整加热功率,从而控制加热炉的温度。
三、温度传感器选择温度传感器的选择对于温度控制系统的性能至关重要。
常见的温度传感器有热电偶和热敏电阻。
在选择传感器时需要考虑以下因素:1.测量范围:根据加热炉的工作温度范围选择合适的传感器。
不同的传感器有不同的工作温度范围。
2.精度:传感器的精度对于控制系统的准确性非常重要。
一般来说,热电偶的精度比热敏电阻高。
3.响应时间:加热炉温度的变化通常需要快速响应。
因此,传感器的响应时间也是一个重要的考虑因素。
四、控制器设计1.控制算法选择:常见的控制算法有比例控制、积分控制和微分控制。
PID控制算法结合了这三种控制算法,被广泛应用于温度控制系统。
2. 参数调节:根据具体的应用场景和系统性能要求,需要对PID控制器进行参数调节。
常见的调节方法有Ziegler-Nichols方法和临时增减法。
3.控制信号输出:控制信号输出给加热器,影响加热功率。
一般来说,控制信号越大,加热功率越高,温度升高的速度越快。
五、系统测试和优化完成控制系统的设计后,需要进行系统测试和优化。
加热炉过程自动控制系统的设计
加热炉过程自动控制系统的设计以下是一个加热炉过程自动控制系统的设计方案,详细描述了系统的组成、工作原理及控制策略:一、系统组成:1.传感器:用于检测加热炉的温度、湿度、压力、流量等参数。
2.执行器:负责控制加热炉的加热功率、燃料供给、风量等。
3.控制器:根据传感器信号,通过计算和判断,产生相应的控制命令,控制执行器的动作。
4.人机界面:提供对加热炉过程的监控、设置和操作功能,使操作员能够方便地对加热炉进行调试和控制。
二、工作原理:1.传感器采集加热炉的各项参数,并将数据传输给控制器。
2.控制器根据传感器数据进行计算和分析,将所需的控制命令传输给执行器。
3.执行器根据控制命令控制相应设备的动作,如调节加热功率、燃料供给量、风量等。
4.执行器调整加热炉的工作状态,使其达到预定的温度、湿度、压力、流量等参数。
5.人机界面可以通过可视化界面显示加热炉的运行状态和参数,操作员可以通过界面进行参数设置和调整。
三、控制策略:1.温度控制:根据加热炉的加热需求,设置温度控制器的目标温度,并通过加热功率的控制来调节温度,使其尽量趋近目标温度。
2.湿度控制:根据加热炉的加热需求,设置湿度控制器的目标湿度,并通过蒸汽量或喷雾量的控制来调节湿度,使其尽量趋近目标湿度。
3.压力控制:根据加热炉的加热需求,设置压力控制器的目标压力,并通过调节燃料供给量和风量的控制来调节压力,使其尽量趋近目标压力。
4.流量控制:根据加热炉的加热需求,设置流量控制器的目标流量,并通过调节燃料供给量和风量的控制来调节流量,使其尽量趋近目标流量。
5.故障诊断与安全保护:系统可以检测加热炉的异常状态和故障情况,并进行相应的故障诊断和安全保护措施,如当温度超过安全范围时,自动切断燃料供给等。
毕业设计_加热炉温度控制器设计课程设计
辽宁工业大学单片机原理及接口技术课程设计(论文)题目:加热炉温度控制器设计课程设计(论文)任务及评语院(系):电气工程学院 教研室:注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号学生姓名专业班级电气122课程设计(论文)题目加热炉温度控制器设计课程设计(论文)任务高温加热炉利用煤气加热,通过传感器测量温度,四相5V 、1A 步进电机调节阀门来调节进气量。
温度控制范围0~1800℃。
设计任务:1. CPU 最小系统设计(包括CPU 选择,晶振电路,复位电路)2. 温度传感器及接口电路设计3. 步进电机驱动电路设计4. 程序流程图设计及程序清单编写 技术参数:1.温度控制范围:0-1800℃ 2.工作电源220V 设计要求:1、分析系统功能,尽可能降低成本,选择合适的单片机、AD 转换器、输出电路等;2、应用专业绘图软件绘制硬件电路图和软件流程图;3、按规定格式,撰写、打印设计说明书一份,其中程序开发要有详细的软件设计说明,详细阐述系统的工作过程,字数应在4000字以上。
进度计划第1天 查阅收集资料 第2天 总体设计方案的确定 第3-4天 CPU 最小系统设计第5天 温度传感器及接口电路设计 第6天 步进电机驱动电路设计 第7天程序流程图设计第8天 软件编写与调试 第9天 设计说明书完成 第10天答辩指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要随着计算机技术、控制理论和控制技术的发展,电加热炉的温度控制技术日趋成熟,已经成为工业生产中的一个重要部分。
本设计为基于单片机的电加热炉温度控制系统,通过控制电阻丝两端电压的工作时间,来控制电阻丝的输出平均功率,从而实现对电加热炉温度的自动控制。
系统分为温度测量、A/D转换、单片机系统、键盘操作系统、温度显示电路、D/A 转换等若干个功能模块。
该系统具有硬件成本低,控温精度较高,可靠性好,抗干扰能力强等特点。
课程设计--加热炉温度串级控制系统(设计部分)
加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade co ntrol system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLA B-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (14)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。
步进式加热炉课程设计
步进式加热炉课程设计一、教学目标本课程的教学目标是使学生掌握步进式加热炉的基本原理、结构、工作流程及其在工业中的应用。
通过本课程的学习,学生应能够:1.描述步进式加热炉的原理和结构;2.解释步进式加热炉的工作流程和操作方法;3.分析步进式加热炉的优缺点及应用场景;4.设计简单的步进式加热炉控制系统。
二、教学内容本课程的教学内容主要包括以下几个部分:1.步进式加热炉的基本原理:介绍步进式加热炉的工作原理,包括炉膛、加热器、步进式送风系统等;2.步进式加热炉的结构与特点:讲解步进式加热炉的各个组成部分及其结构特点;3.步进式加热炉的工作流程:详细介绍步进式加热炉的工作流程,包括送风、加热、排烟等;4.步进式加热炉的应用:分析步进式加热炉在工业中的应用场景及其优势;5.步进式加热炉的控制系统:讲解步进式加热炉的控制系统及其工作原理。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行授课:1.讲授法:通过讲解步进式加热炉的基本原理、结构、工作流程等知识点,使学生掌握基本概念;2.案例分析法:分析实际案例,使学生更好地理解步进式加热炉的应用及其优势;3.实验法:学生进行步进式加热炉的实验操作,提高学生的实践能力;4.讨论法:学生进行小组讨论,培养学生的团队协作能力和解决问题的能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习资料;2.参考书:提供相关的参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣;4.实验设备:准备步进式加热炉实验设备,为学生提供实践操作的机会。
五、教学评估本课程的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过课堂参与、提问、小组讨论等环节,评估学生的学习态度和课堂表现;2.作业:布置相关的作业,评估学生的理解和应用能力;3.考试:安排期中和期末考试,评估学生对课程知识的掌握程度;4.实验报告:评估学生在实验过程中的操作技能和问题解决能力。
过程控制课程设计 加热炉温度控制
目录1 系统简介 (2)2 设计方案及仪表选型 (3)2.1 设计方案 (3)2.2 仪表选型 (4)2.2.1 调节器 (6)2.2.2 执行器 (8)2.2.3 变送器 (9)2.2.4 检测元件 (11)3 控制系统仪表配接图及说明 (12)3.1 控制系统仪表配接图 (12)3.2 控制系统仪表配接说明 (12)4 仪表型号清单 (13)5 参考文献 (14)附录控制系统仪表配接图 (15)1 系统简介电加热炉被广泛应用于工业生产和科学研究中。
由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。
在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定性已成为产品质量的决定性因素。
对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。
在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。
在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。
为此,可靠的温度的监控在工业中是十分必要的。
加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。
随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。
本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。
物料被加热后,温度达到生产要求后,进入下一个工艺环节。
电加热炉温度控制系统设计
电加热炉温度控制系统设计摘要:1.引言电加热炉广泛应用于金属加热、熔化、回火等工艺过程中,其温度控制对产品质量的稳定性和一致性具有重要影响。
因此,设计一套高效可靠的电加热炉温度控制系统对于提高生产效率和节约能源具有重要意义。
2.系统结构设计电加热炉温度控制系统主要由传感器、控制器、执行器和人机界面组成。
传感器用于实时感知电加热炉内部温度变化,控制器根据传感器数据进行温度控制算法的计算,执行器根据控制器输出的控制信号调节电加热炉的供电功率,人机界面用于显示和操作温度控制系统。
3.温度传感器设计温度传感器一般采用热电偶或热电阻器进行测量,其工作原理基于材料的温度和电阻之间的相关性。
在电加热炉温度控制系统中,传感器应具有快速响应、精确稳定的特性,选择合适的传感器材料和安装位置对于准确测量温度值至关重要。
4.控制器设计电加热炉温度控制系统常用的控制器包括PID控制器和模糊控制器。
PID控制器基于比例、积分和微分三个部分的线性组合,能够根据系统的误差进行相应的调节,具有简单可靠的特点。
模糊控制器基于模糊逻辑推理,能够根据模糊规则进行决策,适应性强。
选择合适的控制器取决于电加热炉的温度调节需求和实际使用场景。
5.执行器设计电加热炉的供电功率调节通常通过调整炉内的电阻或使用可调电压/电流源实现。
执行器的设计应考虑到功率调节的精度和响应时间等因素,确保控制系统能够快速准确地调节电加热炉的供电功率,实现温度控制目标。
6.人机界面设计温度控制系统的人机界面一般包括温度显示、参数设置、报警显示和历史数据查询等功能。
界面设计应简洁明了,易于操作,提供必要的温度控制信息和报警提示,方便操作员进行实时监测和调节。
7.系统安全与优化温度控制系统应考虑到系统的安全性和优化性能。
安全性包括对系统故障的检测和处理,例如传感器异常、控制器故障等;优化性能包括对温度变化的快速响应和精确控制,例如减小温度波动、提高温度稳定性等。
8.结论本文基于电加热炉温度控制系统设计原理和方法进行了综合考虑,针对不同的温度控制要求给出了相应的解决方案。
过程控制课程设计-加热炉出口温度控制系统的设计
二○一三~二○一四学年第一学期信息科学与工程学院课程设计报告书课程名称:过程控制与集散系统课程设计班级:自动化2010级4班学号: 2姓名:肖翔指导教师:万恒二○一三年十一月一.设计题目和设计要求;设计题目:加热炉出口温度控制系统的设计图1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1 加热炉出口温度系统但是,由于炉子时间常数大,而且扰动的因素多,单回路反馈控制系统不能满足工艺对炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
设计要求:1.绘制加热炉出口温度单回路反馈控制系统结构框图。
2.以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统,要求绘制该串级控制系统结构图。
3.假设主对象的传递函数为0140()(1)(2)G s s s =++,副对象的传递函数为02()(1)G s s =+40,主、副控制器的传递函数分别为sK s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。
4.利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出 响应曲线。
二.设计任务分析(包括系统建模、控制方案);单回路反馈控制系统(温度):单回路反馈控制系统结构框图管式加热炉的控制目标是保证原料的出口温度达到设定值并维持在工艺要求范围内。
在加热炉工作的过程中,原料出口温度To受进入管式加热炉原料的初始温度和进入流量,燃料的流量和燃烧值的影响。
其中,原料的流量和燃料的流量是影响原料出口温度的主要因素。
加热炉设备控制课程设计
加热炉设备控制课程设计一、课程目标知识目标:1. 让学生掌握加热炉设备的基本工作原理,理解各部件的功能及相互关系。
2. 使学生了解加热炉设备控制系统的组成,掌握主要参数的调整方法。
3. 帮助学生掌握加热炉设备控制系统的故障分析与处理方法。
技能目标:1. 培养学生能够运用所学知识,对加热炉设备进行操作和调试的能力。
2. 提高学生分析和解决加热炉设备控制系统中问题的能力。
3. 培养学生团队协作和沟通能力,能够就加热炉设备控制问题进行有效讨论。
情感态度价值观目标:1. 培养学生对加热炉设备控制技术的研究兴趣,激发学生学习热情。
2. 培养学生严谨、负责的工作态度,注重操作安全,遵循职业道德。
3. 增强学生的环保意识,认识到节能减排在加热炉设备控制中的重要性。
本课程针对高年级学生,结合学科特点,注重理论知识与实践操作相结合。
通过本课程的学习,使学生能够掌握加热炉设备控制的核心知识,具备实际操作和故障处理能力,同时培养良好的职业素养和团队协作精神,为将来的学习和工作打下坚实基础。
二、教学内容本章节教学内容主要包括以下三个方面:1. 加热炉设备基本原理与结构- 加热炉设备的工作原理及各部件功能- 加热炉设备的类型及适用场合- 课本第三章第一、二节内容2. 加热炉设备控制系统- 控制系统的组成及功能- 主要参数的调整方法及影响因素- 课本第三章第三、四节内容3. 故障分析与处理- 常见故障类型及其原因- 故障诊断与处理方法- 课本第三章第五、六节内容教学进度安排如下:第一周:加热炉设备基本原理与结构第二周:加热炉设备控制系统第三周:故障分析与处理教学内容注重科学性和系统性,结合课本内容,确保学生能够掌握加热炉设备控制的核心知识。
同时,注重理论与实践相结合,提高学生的实际操作能力。
三、教学方法针对本章节内容,采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:用于讲解加热炉设备的基本原理与结构、控制系统等理论知识。
过程控制课程设计加热炉出口温度控制系统的设计
通过合理的控制策略和算法设计,成功实现了对加热炉出口温度的精确控制,提高了生产过程的稳定性和产品质量。
实现了加热炉出口温度的稳定控制
通过参数整定和算法优化,提高了控制系统的响应速度和稳定性,减少了温度波动和误差,提高了生产效率。
优化了控制性能
尽管已经实现了对加热炉出口温度的稳定控制,但在某些极端情况下,控制精度仍可能受到一定影响,需要进一步优化控制算法以提高控制精度。
利用热电效应测量温度,具有测量范围广、精度高、稳定性好等特点。适用于高温环境,可将温度变化转换为电信号输出。
热电阻传感器
基于电阻随温度变化的原理,具有测量精度高、稳定性好、响应速度快等优点。适用于中低温测量,输出信号为电阻值变化。
红外温度传感器
通过测量目标物体辐射的红外能量来推算温度,具有非接触式测量、响应速度快、适用于远距离测量等特点。但受环境因素影响较大,测量精度相对较低。
控制器根据设定的控制算法对温度信号进行处理,计算出控制量,并输出相应的控制信号。
采用比例、积分、微分控制算法,对加热炉出口温度进行精确控制,具有响应快、精度高的特点。
PID控制
结合人工智能、神经网络等先进技术,对加热炉出口温度进行智能预测和控制,提高系统的自适应能力和智能化水平。
智能控制
利用模糊数学理论对加热炉出口温度进行模糊推理和控制,适用于难以建立精确数学模型的复杂系统。
仿真模型搭建
在仿真平台上,根据系统模型搭建仿真模型,包括各组成部分的模型、控制算法的实现等。
仿真参数设置
设置仿真参数,如仿真时间、步长、初始条件等,以确保仿真的准确性和有效性。
仿真平台选择
选择合适的仿真平台,如MATLAB/Simulink、LabVIEW等,用于实现系统仿真。
加热炉串级控制系统课程设计
串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。
二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。
关键词:串级控制主调节器 PID控制反馈1 串级控制系统的优点及如何设计 (1)1.1 串级控制系统原理图、结构框图 (1)1.2 串级控制系统的工作过程 (2)2 管式加热炉的设计 (3)2.1 系统设计与对比 (3)2.1.1 两种单回路控制系统 (3)2.1.2 串级控制管式加热炉整体设计 (4)2.1.3 管式加热炉出口温度串级控制系统的方框图 (5)2.2 副回路的设计与副参数的选择 (5)2.3 主、副调节器调节规律的选择 (5)2.4 主、副调节器正反作用方式选择 (6)2.4主、副调节器选用 (6)2.5 主、副电路检测变送器的确定 (7)2.5.1 温度检测元件 (7)2.5.2 温度变送器 (8)2.6 调节阀的确定 (9)3 系统参数整定 (9)4 串级控制系统的控制效果 (10)4.1 迅速克服进入副回路的二次干扰 (10)4.2 提高了系统的工作频率 (11)4.3 对负荷剧烈变化的适应能力 (12)小结与体会 (13)参考文献 (14)管式加热炉温度串级控制系统设计1 串级控制系统的优点及如何设计1.1 串级控制系统原理图、结构框图图1-1系统原理图串级控制系统与简单控制系统的主要区别是,串级控制系统在结构上增加了一个测量变速器和一个调节器,形成了两个闭合回路,其中一个称为副回路,一个称为主回路。
课程设计基于PLC的电加热炉温度控制系统设计
第一章绪论1.1选题背景及意义加热炉是利用电能来产生蒸汽或热水的装置。
因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。
而传统的加热炉普遍采用继电器控制。
由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。
随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。
二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。
在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。
在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。
由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。
虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。
1.2国内外研究现状及发展趋势一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。
直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。
与欧美、日本,德国等先进国家相比,其差距较大。
目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。
对于一些过程复杂的,时变温度系统的场合往往束手无策。
而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。
并且普遍采用自适应控制、模糊控制及计算机技术。
近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及性能的不断提升,人工智能理论的实用化。
因此,高精度、智能化、人性化必然是国内外必然的发展趋势。
加热炉自动上料控制电路设计课程设计
目录一、前言 (2)二、课程设计课题任务的内容和要求 (3)三、设计思路 (4)四、设计过程及相关说明 (5)五、电路图 (6)六、工作原理 (7)七、实训总结 (7)八、参考文献 (8)一、前言随着现代工业设备的自动化越来越来多的工厂设备采用PLC,变频器,人机界面自动化器件来控制,因此自动化程度越来越高。
电器控制技术是随着科学技术的不断发展,生产工艺不断提出新的要求而得到迅速发展的。
在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。
控制系统使整个生产线的灵魂,对整个生产线起着指挥的作用。
一旦控制系统轻者影响整个生产的继续运行,重者甚至发生人工安全事故,这样给企业造成重大损失。
自动化加工工艺基本与特点:(1)自动化加工工艺基本内容,随着机械加工自动化程度的发展,自动化加工的工艺范围也在不断的扩大,自动化加工的工艺的基本内容已包括大部分切削加工,如钻孔、扩孔、车削、滚压等(2)自动化加工工艺的特点 1)自动化加工中的工件毛坯精度比普通加工要求高,并且在结构工艺上要考虑适应自动化加工需要。
2)自动化加工的生产率比采用万能机床的普通加工一般要高几倍到几十倍。
3)自动化加工中的工件加工精度稳定,受人为因素影响小。
4)自动化加工中切削用量的选择,以及刀具尺寸控制系统的应用,是以保证加工进度,满足一定的刀具耐用度,提高劳动生产率为目的的。
5)在多种小批量的自动化加工中,在工艺方案上考虑以成组技术为基础,充分发挥数控机床等技工设备在适应加工品种改变方面的优势。
加热炉自动上料系统是基于PLC控制系统设计的,控制系统的每一部动作都直接作用直接自动上料系统的运行,因此自动上料系统的小车性能的好坏与控制系统性能的好坏有着直接的关系。
小车能否正常运行、工作效率的高低都与控制系统密不可分。
二、课程设计课题任务的内容和要求(包括原始数据、技术参数、设计要求等):加热炉自动上料控制电路具体完成加热炉门自动打开与闭合,燃料的自动填装,炉门的开到位和关到位分别有两个相应的行程开关控制,送料机到达和退出到预定位置也分别有另外两个行程开关控制,其过程为:送料机的电机功率为5.5kw。
电加热炉温度控制系统的设计
电加热炉温度控制系统的设计1. 本文概述随着现代工业的快速发展,电加热炉在许多工业生产领域扮演着至关重要的角色。
电加热炉的温度控制系统,作为其核心部分,直接关系到生产效率和产品质量。
本文旨在设计并实现一种高效、精确的电加热炉温度控制系统,以满足现代工业生产中对温度控制精度和稳定性的高要求。
本文首先对电加热炉温度控制系统的需求进行了详细分析,明确了系统设计的目标和性能指标。
接着,本文对现有的温度控制技术进行了全面的综述,包括传统的PID控制方法以及先进的智能控制策略。
在此基础上,本文提出了一种结合PID控制和模糊逻辑控制的新型温度控制策略,以实现更优的控制效果。
本文还详细阐述了系统的硬件设计和软件实现。
在硬件设计方面,本文选择了适合的传感器、执行器和控制器,并设计了相应的电路和保护措施。
在软件实现方面,本文详细描述了控制算法的实现过程,包括数据采集、处理、控制决策和输出控制信号等环节。
本文通过实验验证了所设计温度控制系统的性能。
实验结果表明,本文提出的温度控制系统能够实现快速、准确的温度控制,且具有较好的鲁棒性和稳定性,能够满足实际工业生产的需求。
本文从理论分析到实际设计,全面探讨了一种适用于电加热炉的温度控制系统的设计方法。
通过结合传统和先进的控制技术,本文提出了一种高效、稳定的温度控制策略,为提高电加热炉的温度控制性能提供了新的思路和实践参考。
2. 电加热炉的基本原理与构造电加热炉作为一种高效、清洁且精准的热能产生设备,其工作原理基于电磁感应和电阻加热两种基本方式,而构造则包括电源系统、加热元件、温控系统、隔热保温结构以及安全防护装置等关键组成部分。
电磁感应加热:在特定类型的电加热炉中,尤其是应用于金属工件加热的场合,电磁感应加热原理占据主导地位。
这种加热方式利用高频交流电通过感应线圈产生交变磁场,当金属工件置于该磁场中时,由于电磁感应现象,会在工件内部产生涡电流(又称涡流)。
涡电流在工件内部形成闭合回路,并依据焦耳定律产生热量,即电流通过电阻时产生的热效应。
过程控制课程设计-加热炉炉温控制系统设计
内蒙古科技大学过程控制课程设计说明书题目:加热炉炉温控制系统设计学生姓名:学号:专业:测控技术与仪器班级:2012-1指导教师:2016年 9 月 8 日目录第一章加热炉概述 (3)1.2加热炉自动控制发展与现状 (3)第二章控制方案论证 (4)2.1加热炉控制影响因素及基本要求 (4)2.2 系统控制方案选择 (5)2.3系统控制参数确定 (5)2.3.1 被控参数选择 (5)2.3.2 控制参数选择 (6)第三章加热炉控制基本原理及系统设计 (6)3.1炉温控制基本原理 (6)3.2加热温度控制系统总体结构图 (7)3.3加热炉温度单回路反馈控制系统结构框图 (7)3.4加热炉串级控制系统 (8)3.5 控制仪表的选型及配置 (9)3.5.1测温元件 (9)3.5.2一体化温度变送器 (9)3.5.3 DX2000型无纸记录仪: (9)3.5.4 调节器 (10)3.5.5执行器选型 (11)3.5.6 电/气阀门定位器ZPD-01 (12)3.5.7安全栅 (12)3.5.8 配电器 (12)3.5.9 薄膜气动调节阀ZMBS-16K (13)第四章设计总结 (14)参考文献引言目前在我国钢铁冶金行业中,能源问题日益严峻以及企业面临越来越激烈的市场竞争,节能增效就显得尤为重要。
这就需要对钢铁冶金行业中的主要耗能设备——加热炉的运行状态进行及时和准确的分析并进行优化,以提高加热炉的运行效率,达到节能降耗的目的。
近年来,随着自动化程度的不断提高,轧钢加热炉燃烧控制已实现串级控制。
加热炉的主要技术经济指标为加热温度和能耗两项。
轧钢加热炉控制质量的好坏直接关系到经济效益,特别是炉温控制对杜绝粘钢现象,提高加热炉寿命,降低钢坯烧损、提高成材率、节能降耗、减少环境污染等具有重要意义。
因此,本设计先根据加热炉结构特点设计控制系统,并介绍和比较其它相关的控制系统,选定了加热炉燃料流量控制系统,并阐述了PID控制思想应用于加热炉燃烧过程控制的情况和特点。
加热炉课程设计
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊第一章前言1.1 意义及研究背景在工业中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
其中温度控制也也越来越重要。
在工业生产的很多领域中,人们都需要对环境中的温度进行控制。
在石油工业中,加热炉尤为重要,加热炉应用非常明显。
而对加热炉进行温度控制在整个工艺生产中的重要性尤为突出。
加热炉被广泛应用于工业生产和科学研究中。
由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。
1.2 目前国内外发展状况电热炉温度控制系统在工业生产中获得了广泛的应用,在农业生产、国防、科研以及日常生活等领域占有重要的地位。
电阻炉温度控制系统是人类供热、取暖的主要设备的驱动来源,它的出现迄今已有两百余年的历史。
期间,从低级到高级,从简单到复杂,随着生产力的发展和对电阻炉温度控制精度要求的不断提高,电阻炉温度控制系统的控制技术得到迅速发展。
当前比较流行的温度控制系统有基于单片机的温度控制系统,基于PLC的温度控制系统,基于工控机(IPC)的温度控制系统,集散型温度控制系统(DCS),现场总线控制系统(FCS)等。
21世纪是高度信息化时代,智能检测和控制已成为新的发展趋势,它不仅能完成较高层次信号的自动化检测,而且具有多种智能控制作用。
所以,单片机在检测和控制系统中得到广泛的应用,在本文中主要采用的控制芯片为MCS-51,此芯片功能强大,能够满足设计要求。
同时从系统的硬件和软件两方面介绍了MCS-51单片机温度控制系统的设计,对硬件原理和程序框图做了简洁的描述。
通过对电路的设计,对芯片的外围扩展,来达到对电阻炉温度的控制和调节功能。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊1.3 本系统主要研究内容及要求利用微机控制系统完成加热炉温度的检测、处理以及数字控制计算,根据数据结果或进行相应的处理或改变加热功率,达到控制温度的目的。
过程控制课程设计 燃油加热炉温度控制系统
《过程控制》课程设计题目: 燃油加热炉温度控制系统班 级: 学 号:姓 名: 同组人员: 任课教师: 张虹完成时间: 2013年10月30日目 录一、设计任务及要求----------------------------------------------------------------------3 二、被控对数学模型建模及对象特性分析------------------------------------------32.1对象数学模型的计算及仿真验证--------------------------------------------3 2.2对象特性分析--------------------------------------------------------------------5 三、控制系统设计-------------------------------------------------------------------------53.1 基本控制方案--------------------------------------------------------------------5 3.2 控制仪表选型--------------------------------------------------------------------9 3.3 参数整定计算-------------------------------------------------------------------10 3.4 控制系统MATLAB 仿真-----------------------------------------------------10 3.5 仿真结果分析-------------------------------------------------------------------11 四、设计总结------------------------------------------------------------------------------12 一、设计任务及要求1. 在模壳浇铸、焙烧时常用燃油炉,烧制过程中需要对温度加以控制,对一个燃油炉装置进行如下实验,在温度控制稳定到500℃时,在开环状态下将执行器的输入燃油流量增加大约%25,即h /T2.1q =∆I ,持续s t 100=∆后结束,等间隔s t 001=∆记录炉内温度变化数据如下表,试根据实验数据设计一个超%20≤具体设计要求如下:(1) 根据实验数据选择一定的辨识方法建立对象的模型;(2) 根据辨识结果设计符合要求的控制系统(给出带控制点的控制流程图,控制系统原理图等,选择控制规律);画出控制系统SAMA图;(3)根据设计方案选择相应的控制仪表(DDZ-Ⅲ),绘制原理接线图;(4)对设计系统进行仿真设计,首先按对象特性法求出整定参数,然后按4:1衰减曲线法整定运行参数。
加热炉温度控制系统设计本科毕业设计
控制系统综合设计报告题目: 加热炉温度控制系统设计报告题目:加热炉温度控制系统设计一、 课程的要求和意义(一 )课程设计的具体要求 1、加热炉温度单回路反馈控制系统。
2、以加热炉温度为主变量,夹套温度为副变量,构成加热炉出口温度与夹套温度的串级控制系统。
被加热物料流过排列炉膛四周的夹套后,加热到炉出口工艺所要求的温度。
在加热用的装有一个调节阀,用以控制夹套温度控制,以达到控制出口温度的目的。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
3、利用Simulink 实现单回路系统仿真和串级系统仿真,得出系统输出响应曲线,根据两种系统仿真结果分析串级控制系统的优缺点,验证串级系统是否能提高控制的精度。
本设计是通过加热炉两种控制方案的对比并利用MATLAB 中的Simulink 进行系统仿真,采用衰减曲线法进行参数的整定,通过比较两种方案,最终说明加热炉串级控制系统的设计方案在实际控制中的优越性。
4、要求设计的系统满足快速、准确、稳定,且超调量8%≤δ≤10%。
5、给定各传递函数如下:主控制对象加热炉温度传递函数:011()(301)(31)G s s s =++副对象对象夹套温度传递函数:0221()(101)(1)G s s s =++主PID 控制器的传递函数为:111()(1)c I G s K T s=+副PID 控制器的传递函数为:22()c G s K =二、 加热温度控制系统设计(一) 加热炉单回路温度控制系统结构图加热炉温度单回路控制系统结构框图 (二) 加热炉温度串级控制系统结构图加热炉温度串级控制系统结构框图图3加热炉温度串级控制系统结构图图1加热炉单回路温度控制系统结构图PID 调节器调节装置夹套加热炉温度反馈 1()t+- ++ + 干扰 干扰 图2 加热炉温度单回路控制系统结构框图 +(三)衰减曲线法参数整定的相关资料(1)衰减曲线法是在系统闭环情况下,将控制器积分时间TI放在最大,微分时间T D 放到最小,比例放大倍数KC设为1;(2)然后使KC 由小往大逐步改变,并且每改变一次KC值时,通过改变给定值给系统施加一个阶跃干扰,同时观察过渡过程变化情况。
电加热炉温度控制系统设计方案
电加热炉温度控制系统设计方案1.系统概述2.系统组成2.1温度传感器:用于实时感知炉内温度,并将温度信号转换成电信号进行采集。
2.2控制器:负责对温度信号进行处理和判断,并生成相应的控制信号。
2.3加热功率调节器:根据控制信号调整电加热炉的加热功率。
2.4人机界面:为操作人员提供温度设定、显示和报警等功能。
2.5电源和电路保护装置:为电加热炉提供稳定的电源和安全的电路保护。
3.控制原理电加热炉温度控制系统采用了闭环控制的原理,即通过与实际温度进行比较,调整加热功率来实现温度的控制。
控制器根据实际温度和设定温度之间的偏差,产生相应的控制信号,通过加热功率调节器对电加热炉的加热功率进行调整,使实际温度逐渐接近设定温度,并保持在一定范围内。
4.系统算法4.1温度传感器采集到的温度信号经过模数转换,转换成数字信号输入到控制器。
4.2控制器对传感器采集到的温度信号进行处理和判断,计算出温度偏差。
4.3控制器根据温度偏差通过PID控制算法产生相应的控制信号,控制信号的大小决定了加热功率的调整幅度。
4.4控制信号经过加热功率调节器进行放大和整流,并驱动电加热炉进行相应的加热功率调整。
4.5加热功率调整会导致炉内温度变化,温度变化会反过来影响温度传感器采集到的温度信号,形成一个闭环控制的循环过程。
5.人机界面5.1人机界面通过触摸屏或按钮等形式,提供温度设定、显示和报警等功能。
5.2操作人员可以通过人机界面设置所需的温度设定值。
5.3人机界面会显示当前的实际温度,并根据温度偏差的大小显示相应的报警信号。
5.4人机界面可以设定温度上下限,当温度超出设定范围时自动报警。
6.电源和电路保护装置6.1在电加热炉温度控制系统中,电源提供稳定的电压和电流给电路运行。
6.2为了确保系统的安全运行,在电路中设置过流保护、过压保护、欠压保护等电路保护装置。
6.3当发生过流、过压或欠压等异常情况时,电路保护装置会立即切断电源,以保护电路和设备的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章加热炉控制系统加热炉控制系统工程背景及说明加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。
早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。
现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。
为了保证安全生产,在生产线中增加了安全联锁保护系统。
影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。
根据干扰施加点位置的不同,可组成多参数的串级控制。
使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。
这种方案比较简单,在炼油厂中应用广泛。
这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。
简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。
含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。
现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。
应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。
加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。
一般通过引入阻尼滞后或增加非线性环节来改善控制品质。
在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。
为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。
联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。
当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。
压力调节系统投入运行保证燃料管道压力不超过规定上限。
当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制。
当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火。
随着节能技术不断发展,加热炉节能控制系统正日趋完善。
以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段。
例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用。
有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧。
随着建立燃烧模型工作的进展和计算机技术的应用,加热炉燃烧过程控制系统将得到进一步的完善。
加热炉的单回路控制方案如下。
加热炉的最主要控制指标往往是工艺介质的出口温度。
对于不少加热炉来说,温度控制指标要求相当严格,例如允许波动范围为±(1~2)℃。
影响路出口温度的扰动因素有:工艺介质进料的流量、温度、组分,燃料方面有燃料油的压力、成分、燃料油的雾化情况,空气过量情况,喷嘴的阻力,烟囱抽力等。
在这些扰动因素中有的是可控的,有的是不可控的。
问了保证炉出口稳定,对扰动应采取必要的措施。
图1-1为某一燃油加热炉控制系统示意图,其主要的控制系统是以炉出口温度为控制变量、燃料油流量为操纵变量组成的单回路控制系统。
其他辅助控制系统有:进入加热炉工艺介质的流量控C制系统,如FC控制系统;燃料油总压控制,总压控制一般调回油量,如入P1控制系统。
图1-1 加热炉控制系统示意图采用雾化蒸汽压力控制系统后,在燃料压力变化不大的情况下是可以满足雾化要求的,目前炼厂中大多数采用这种方案。
假如燃料油压力变化较大时,单采用雾化蒸汽压力控制就不能保证燃料油得到良好的雾化,可以根据燃料油阀后压力与雾化蒸汽压力之差来调节雾化蒸汽,还可以采用燃料油阀后压力与雾化蒸汽压力比值控制。
但只能保持近似的流量比,还应注意经常保持喷嘴、管道、节流件等通道的畅通,以免喷嘴堵塞及管道局部阻力发生变化,引起控制系统的误动作。
此外,也可以采用二者流量的比值控制,则能克服上述缺点,但所用仪表多且重油流量测量困难。
采用单回路控制系统往往很难满足工艺满足,因为加热炉需要将工艺介质从几十度升温到数百度,其热负荷很大。
当燃料油的压力或热值有波动时,就会引起炉出口温度的显著变化。
采用单回路控制时,当加热量改变后,由于传递滞后和测量滞后较大,控制作用不及时,而使炉口温度波动较大,满足不了工艺生产要求。
因此单回路控制系统仅适用于对炉出口温度要求不十分严格;其外来扰动缓慢而较小,且不频繁;炉膛容量较小,即滞后不大。
CAD图形图1-2 加热炉控制系统工艺流程图第2章标准节流装置设计及计算程序设计GB/T2624-93概述GB/T2624-93全称为《流量测量节流装置用孔板、喷嘴和文丘里管测量充满圆管的流体测量》。
1993年2月3日由国家技术监督局批准GB/T2624-93代替GB2624-81,1993年8月1日实施。
该标准第一次等效采用ISO5167(1991)与国际接轨,标志着我国现行的标准节流装置,在推广采用国际标准上的研究成果、提高测量精度方面,以取得了突破性的进展。
GB/T2624-93主要特点有:1.以流出系数C代替流量系数α;C值的计算中的β降阶计算由原流量系数α计算中的最高阶β20降至流出系数C计算中的最高阶β8次幂。
2.提出5种命题以适应自控工程设计中各方面的需要。
3.提出迭代计算方法,给出计算机计算程序框图。
4.差压上限不再计算,而要由用户自行选定,要求设计者有更多的经验。
5.管道粗糙度不再参加计算,而是在计算结果出来后验证。
计算实例位号:FHC2155B。
名称:常压炉炉膛温度与高压瓦斯流量串级。
表2-1 标准节流装置设计计算数据序号项目符号单位数值1 2 3 4 5 6 7 8 91011 12已知条件:被测介质名称最大流量工作温度工况密度工况粘度工作压力管内径(20℃下实测值)节流件形式取压方式管道材料热膨胀系数等熵指数压缩系数tPD20λDm3/h℃kg/m3CPPammm/mm℃高压瓦斯300603500000孔板角接11.辅助计算(1)计算流量标尺:q m =q v ×ρ1=300×3600=s ,取标准流量为 Kg/s (2)计算差压上限: 再根据公式1214241ρπεβP d C q m ∆-=计算P ∆其中C =,1ε=1,β=,d =20D ×β,m q 代 Kg/s ,全部代入得ΔP = 因国产差变的系列值为,,,,×10n ,取ΔP =160000Pa (3)求工况下管道直径:D =D 20 [1+λD (t -20)] =×[1+×(60-20)] = m(4)求雷诺数:R eD =μπD gm4 =0800.0360000016.0141592654.34.13004⨯⨯⨯⨯⨯=(5)求A 2A 2=1D2Re ρμP D ∆=4.1160002080042816.004793.1160500016.0⨯⨯⨯⨯=2.计算初值 (1)求1β设: C 0=C ∞=,0ε=1 并令 1X =02εC A = 又 1β=25.021211⎥⎦⎤⎢⎣⎡+X X =(2)求1ε因被测介质为液体,所以11=ε(3)求1C1C =+β—β18+β(106/R eD )故1C =+×()—×()8+×()×(106/)=,1δ=1112εC X A - = (4)精确度判断211A E δ==3.进行迭代计算,设定第二个假定值X 2X 2=112εC A = 2β=25.022221⎥⎦⎤⎢⎣⎡+X X =2ε=12C =+1.22β—82β +5.22β()75.06/10eDR=因此2δ=2222εC X A - = 所以0000232938.02=E4.进行迭代计算,设定第三个假定值3X ,利用快速收敛弦截法公式(n=3起用)1212223δδδ--⨯-=X X X X =25.0232331⎥⎦⎤⎢⎣⎡+=X X β=3ε=1()75.065.23831.233/100029.01840.00312.05959.0eDR C βββ+-+==因此 33323εδC X A -== 所以 0000000005.03=E 由于 3E =精确度达到要求。
5.此题用计算机编程求解时:工作温度下的管道直径D = 雷诺数 R eD = 不变量 A 2= matlab 程序见附录, 运行结果 d = b1=把精确度判断定为5×10-10,程序参照附录, 计算结果列于下表2-2。
n 1 2 3 X β C δ δ6. 计算结果 因此得:β=3β=C = 3C = 求20d20d =20)(t 1d —λ+d=33. 最后得:20d =(mm )第3章 调节阀选型及计算调节阀的选型调节阀的阀体种类很多,常用的阀体种类有直通单座、直通双座、角形、隔膜、小流量、三通、偏心旋转、蝶形、套筒式、球形等。
在具体选择时,可做如下考虑:(1)阀芯形状结构:主要根据所选择的流量特性和不平衡力等因素考虑。
(2)耐磨损性:当流体介质是含有高浓度磨损性颗粒的悬浮液时,阀的内部材料要坚硬。
(3)耐腐蚀性:由于介质具有腐蚀性,尽量选择结构简单阀门。
(4)介质的温度、压力:当介质的温度、压力高且变化大时,应选用阀芯和阀座的材料受温度、压力变化小的阀门。
(5)防止闪蒸和空化:闪蒸和空化只产生在液体介质。
在实际生产过程中,闪蒸和空化会形成振动和噪声,缩短阀门的使用寿命,选择阀门时应防止阀门产生闪蒸和空化。
对于双作用的气动、液动、电动执行机构,一般都没有复位弹簧。
对于单作用的气动执行机构,输出力与阀门的开度有关,调节阀上的出现的力也将影响运动特性,因此要求在整个调节阀的开度范围建立力平衡。
对执行机构输出力确定后,根据工艺使用环境要求,选择相应的执行机构。
对于现场有防爆要求时,应选用气动执行机构。
从节能方面考虑,应尽量选用电动执行机构。
若调节精度高,可选择液动执行机构。
调节阀的作用方式只是在选用气动执行机构时才有,其作用方式通过执行机构正反作用和阀门的正反作用组合形成。
组合形式有4种即正正(气关型)、正反(气开型)、反正(气开型)、反反(气关型),通过这四种组合形成的调节阀作用方式有气开和气关两种。
对于调节阀作用方式的选择,主要从三方面考虑:工艺生产安全;介质的特性;保证产品质量,经济损失最小。
调节阀口径计算从调节阀的Kv计算到阀的口径确定,一般需经以下步骤:(1)计算流量的确定。
现有的生产能力、设备负荷及介质的状况,决定计算流量的Qmax和Qmin。