人教版高中数学必修1第一章集合与函数概念-《1.1集合》教案

合集下载

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.1.1.1集合的含义与表示(一)集合的有关概念:⒈定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3.集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

新人教版高中数学必修一全套教案

新人教版高中数学必修一全套教案

b. {(x,y) ∣ x+y=6 ,x、 y∈ N}用列举法表示为
.
c. 用列举法表示下列集合 , 并说明是有限集还是无限集 ?
(1){x ∣ x 为不大于 20 的质数 }; (2){100
以下的 ,9 与 12 的公倍数 };
(3){(x,y)
∣ x+y=5,xy=6};
d. 用描述法表示下列集合 , 并说明是有限集还是无限集 ?
1. 1. 2 集 合间的基 本关系 (1 课时 )
教学目标: 1. 理解子集、真子集概念;
2. 会判断和证明两个集合包含关系;
3. 理解“ ”、“ ”的含义; 4. 会判断简单集合的相等关系;
5. 渗透问题相对的观点。
教学重点: 子集的概念、真子集的概念
教学难点: 元素与子集、属于与包含间区别、描述法给定集合的运算
, 以提供某种规律 ,
例 1.用列举法表示下列集合: (1) 小于 5 的正奇数组成的集合; (2) 能被 3 整除而且大于 4 小于 15 的自然数组成的集合; (3) 从 51 到 100 的所有整数的集合; (4) 小于 10 的所有自然数组成的集合;
(5) 方程 x 2 x 的所有实数根组成的集合;
②若 a Ν ,b Ν , 则 a+b 的最小值是 2 ④ x 2+4=4x 的解集可表示为 {2,2}
其中正确命题的个数是 ( )
A .0
B
.1
C
.2
D
.3
( IV )课时小 结
1. 集 合的含 义;
2. 集合元素的三个特征中,确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集
合的表示,无序性可用于判定集合的关系。

集合第一课时教案数学必修第一章集合与函数概念11人教A版

集合第一课时教案数学必修第一章集合与函数概念11人教A版

第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。

虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。

在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。

要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。

在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。

本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。

在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。

人教课标版高中数学必修1第一章集合与函数概念集合教案

人教课标版高中数学必修1第一章集合与函数概念集合教案

⼈教课标版⾼中数学必修1第⼀章集合与函数概念集合教案课题:1.1集合-集合的概念(1)教学⽬的:(1)使学⽣初步理解集合的概念,知道常⽤数集的概念及记法(2)使学⽣初步了解“属于”关系的意义(3)使学⽣初步了解有限集、⽆限集、空集的意义教学重点:集合的基本概念及表⽰⽅法教学难点:运⽤集合的两种常⽤表⽰⽅法——列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的⼀个重要的基本概念在⼩学数学中,就渗透了集合的初步概念,到了初中,更进⼀步应⽤集合的语⾔表述⼀些问题在⼏何中⽤到的有点集⾄于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运⽤,基本的逻辑知识在⽇常⽣活、学习、⼯作中,也是认识问题、研究问题不可缺少的⼯具这些可以帮助学⽣认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在⾼中数学的最开始,是因为在⾼中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使⽤数学语⾔的基础例如,下⼀章讲函数的概念与性质,就离不开集合与逻辑本节⾸先从初中代数与⼏何涉及的集合实例⼊⼿,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常⽤表⽰⽅法,包括列举法、描述法,还给出了画图表⽰集合的例⼦这节课主要学习全章的引⾔和集合的基本概念学习引⾔是引发学⽣的学习兴趣,使学⽣认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有⼀个初步认识教科书给出的“⼀般地,某些指定的对象集在⼀起就成为⼀个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:⼀、复习引⼊:1.简介数集的发展,复习最⼤公约数和最⼩公倍数,质数与和数;2.教材中的章头引⾔;3.集合论的创始⼈——康托尔(德国数学家)(见附录);4.“物以类聚”,“⼈以群分”;5.教材中例⼦(P4)⼆、讲解新课:阅读教材第⼀部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表⽰的?(3)集合中元素的特性是什么?(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的.我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:⼀般地,某些指定的对象集在⼀起就成为⼀个集合. 1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R{}数数轴上所有点所对应的=R 注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0 的集,表⽰成Z *3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、⑴集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… ⑵“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 5练习1、22、下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数(不确定)(2)好⼼的⼈(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b 是⾮零实数,那么bb aa +可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素5、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证: (1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,⽽x1不⼀定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2 ∵a ∈Z, b ∈Z,c ∈Z, d ∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d)2 ∈G ,⼜∵211b a x +==2222222b a b b a a --+-且22222,2ba bb a a ---不⼀定都是整数,∴211b a x +==2222222b a b b a a --+-不⼀定属于集合G四、⼩结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于) 2.集合元素的性质:确定性,互异性,⽆序性 3.常⽤数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:⼋、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor ,1845-1918)是德国数学家,集合论的创始者1845年3⽉3⽇⽣于圣彼得堡,1918年1⽉6⽇病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时⼊瑞⼠苏黎世⼤学,翌年⼊柏林⼤学,主修数学,1866年曾去格丁根学习⼀学期1867年以数论⽅⾯的论⽂获博⼠学位年在哈雷⼤学通过讲师资格考试,后在该⼤学任讲师,1872年任副教授,1879年任教授由于研究⽆穷时往往推出⼀些合乎逻辑的但⼜荒谬的结果(称为“悖论”),许多⼤数学家唯恐陷进去⽽采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的⽆穷宣战他靠着⾟勤的汗⽔,成功地证明了⼀条直线上的点能够和⼀个平⾯上的点⼀⼀对应,也能和空间中的点⼀⼀对应这样看起来,1厘⽶长的线段内的点与太平洋⾯上的点,以及整个地球内部的点都“⼀样多”,后来⼏年,康托尔对这类“⽆穷集合”问题发表了⼀系列⽂章,通过严格证明得出了许多惊⼈的结论康托尔的创造性⼯作与传统的数学观念发⽣了尖锐冲突,遭到⼀些⼈的反对、攻击甚⾄谩骂有⼈说,康托尔的集合论是⼀种“疾病”,康托尔的概念是“雾中之雾”,甚⾄说康托尔是“疯⼦”来⾃数学权威们的巨⼤精神压⼒终于摧垮了康托尔,使他⼼⼒交瘁,患了精神分裂症,被送进精神病医院真⾦不怕⽕炼,康托尔的思想终于⼤放光彩1897年举⾏的第⼀次国际数学家会议上,他的成就得到承认,伟⼤的哲学家、数学家罗素称赞康托尔的⼯作“可能是这个时代所能夸耀的最巨⼤的⼯作”可是这时康托尔仍然神志恍惚,不能从⼈们的崇敬中得到安慰和喜悦1918年1⽉6⽇,康托尔在⼀家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产⽣了探索⽆穷集和超穷数的兴趣康托尔肯定了⽆穷数的存在,并对⽆穷问题进⾏了哲学的讨论,最终建⽴了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创⽴了集合论作为实数理论,以⾄整个微积分理论体系的基础17世纪⽜顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创⽴微积分理论体系之后,在近⼀⼆百年时间⾥,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等⼈进⾏的微积分理论严格化所建⽴的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的⽼师,对康托尔表现了⽆微不⾄的关怀他⽤各种⽤得上的尖刻语⾔,粗暴地、连续不断地攻击康托尔达⼗年之久他甚⾄在柏林⼤学的学⽣⾯前公开攻击康托尔⼀个薪⾦较⾼、声望更⼤的教授职位使得康托尔想在柏林得到职位⽽改善其地位的任何努⼒都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个⼈,⽽且还不只我⼀⼈,认为重要之点在于,切勿引进⼀些不能⽤有限个⽂字去完全定义好的东西集合论是⼀个有趣的“病理学的情形”,后⼀代将把(Cantor)集合论当作⼀种疾病,⽽⼈们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想H.A.施⽡兹,康托尔的好友,由于反对集合论⽽同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很⾃卑,甚⾄怀疑⾃⼰的⼯作是否可靠他请求哈勒⼤学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒⼤学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着⼿研究数学中最困难的问题之⼀⼀般π次⽅程求解问题许多数学家为之耗去许多精⼒,但都失败了直到1770年,法国数学家拉格朗⽇对上述问题的研究才算迈出重要的⼀步伽罗华在前⼈研究成果的基础上,利⽤群论的⽅法从系统结构的整体上彻底解决了根式解的难题他从拉格朗⽇那⾥学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进⼀步发展了他的思想,把全部问题转化成或者归结为置换群及其⼦群结构的分析上同时创⽴了具有划时代意义的数学分⽀——群论,数学发展史上作出了重⼤贡献1829年,他把关于群论研究所初步结果的第⼀批论⽂提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论⽂的鉴定⼈在1830年1⽉18⽇柯西曾计划对伽罗华的研究成果在科学院举⾏⼀次全⾯的意见听取会然⽽,第⼆周当柯西向科学院宣读他⾃⼰的⼀篇论⽂时,并未介绍伽罗华的著作1830年2⽉,伽罗华将他的研究成果⽐较详细地写成论⽂交上去了以参加科学院的数学⼤奖评选,论⽂寄给当时科学院终⾝秘书J .B .傅⽴叶,但傅⽴叶在当年5⽉就去世了,在他的遗物中未能发现伽罗华的⼿稿1831年1⽉伽罗华在寻求确定⽅程的可解性这个问题上,⼜得到⼀个结论,他写成论⽂提交给法国科学院于群论的重要著作当时的数学家S .K .泊松为了理解这篇论⽂绞尽了脑汁尽管借助于拉格朗⽇已证明的⼀个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5⽉30⽇,临死的前⼀夜,他把他的重⼤科研成果匆忙写成后,委托他的朋友薛伐⾥叶保存下来,从⽽使他的劳动结晶流传后世,造福⼈类年5⽉31⽇离开了⼈间死因参加⽆意义的决⽃受重伤1846年,他死后14年,法国数学家刘维尔着⼿整理伽罗华的重⼤创作后,⾸次发表于刘维尔主编的《数学杂志》上课题:1.1集合-集合的概念(2)教学⽬的:(1)进⼀步理解集合的有关概念,熟记常⽤数集的概念及记法(2)使学⽣初步了解有限集、⽆限集、空集的意义(3)会运⽤集合的两种常⽤表⽰⽅法教学重点:集合的表⽰⽅法教学难点:运⽤集合的列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:⼀、复习引⼊:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾃然数集:全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… (2)“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写⼆、讲解新课:(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程012=-x 的所有解组成的集合,可以表⽰为{-1,1} 注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表⽰⼀个元素,{a}表⽰⼀个集合,该集合只有⼀个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{x ∈A| P (x )}含义:在集合A 中满⾜条件P (x )的x 的集合例如,不等式23>-x 的解集可以表⽰为:}23|{>-∈x R x 或23|{>-x x所有直⾓三⾓形的集合可以表⽰为:}|{是直⾓三⾓形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直⾓三⾓形};{⼤于104的实数} (2)错误表⽰法:{实数集};{全体实数}3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?⑴有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三)有限集与⽆限集1、有限集:含有有限个元素的集合2、⽆限集:含有⽆限个元素的集合3、空集:不含任何元素的集合Φ,如:}01|{2=+∈x R x三、练习题:1、⽤描述法表⽰下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且 2、⽤列举法表⽰下列集合①{x ∈N|x 是15的约数} {1,3,5,15} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防⽌把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(-④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)} ⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的⽅程ax +b=0,当a,b 满⾜条件____时,解集是有限集;当a,b 满⾜条件_____时,解集是⽆限集4、⽤描述法表⽰下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、⼩结:本节课学习了以下内容:1.集合的有关概念:有限集、⽆限集、空集2.集合的表⽰⽅法:列举法、描述法、⽂⽒图五、课后作业:六、板书设计(略)七、课后记:1.2 ⼦集、全集、补集教学⽬标:(1)理解⼦集、真⼦集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关⼦集、全集、补集的符号及表⽰⽅法,会⽤它们正确表⽰⼀些简单的集合,培养学⽣的符号表⽰的能⼒;(4)会求已知集合的⼦集、真⼦集,会求全集中⼦集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会⽤符号及图形(⽂⽒图)准确地表⽰出来,培养学⽣的数学结合的数学思想;(6)培养学⽣⽤集合的观点分析问题、解决问题的能⼒.教学重点:⼦集、补集的概念教学难点:弄清元素与⼦集、属于与包含之间的区别教学⽤具:幻灯机教学过程设计(⼀)导⼊新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表⽰⽅法是列举法.2.哪些集合表⽰⽅法是描述法.3.将集M、集从集P⽤图⽰法表⽰.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系⽤符号表⽰出来.将集N中元素3与集M的关系⽤符号表⽰出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学⽣回答】1.集合M和集合N;(⼝答)2.集合P;(⼝答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(⼝答)5.,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(⼝答)【引⼊】在上⾯见到的集M与集N;集M与集P通过元素建⽴了某种关系,⽽具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(⼆)新授知识1.⼦集(1)⼦集定义:⼀般地,对于两个集合A与B,如果集合A的任何⼀个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。

高中数学人教版必修1全套教案

高中数学人教版必修1全套教案

第一章 集合与函数§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3. 集合相等:构成两个集合的元素完全一样。

4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。

人教版高中数学必修1第1章1.1.1 集合的含义与表示(1)教案

人教版高中数学必修1第1章1.1.1  集合的含义与表示(1)教案

第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示(一)教学目标分析:知识目标:1、了解集合的含义,体会元素与集合的“属于”关系。

2、掌握集合中元素的特性。

3、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

过程与方法:通过实例,从集合中的元素入手,正确表示集合,结合集合中元素的特性,学会观察、比较、抽象、概括的思维方法,领悟分类讨论的数学思想。

情感目标:在运用集合语言解决问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学思维方法解决问题。

重难点分析:重点:集合的含义与表示方法。

难点:集合表示方法的恰当选择及应用。

互动探究:一、课堂探究:1、情境引入军训前学校通知:8月13日上午8点,高一年级学生在学校操场集合前往军训基地;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

2、集合论是德国著名数学家康托尔于19世纪末创立的。

在学习集合之前,我们先来简单了解这位著名数学家的生平。

1845年3月3日,乔治••康托尔生于俄国的一个丹麦——犹太血统的家庭。

1856年康托尔和他的父母一起迁到德国的法兰克福。

像许多优秀的数学家一样,他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论。

他的父亲力促他学工,因而康托尔在1863年带着这个目的进入了柏林大学。

这时柏林大学正在形成一个数学教学与研究的中心。

康托尔很早就向往这所由外尔斯特拉斯占据着的世界数学中心之一。

所以在柏林大学,康托尔受了外尔斯特拉斯的影响而转到纯粹的数学。

他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授。

1874年康托尔在克列勒的《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章。

人教版高中数学必修1第一章集合与函数的概念-《1.1.2集合间的基本关系》教案(1)

人教版高中数学必修1第一章集合与函数的概念-《1.1.2集合间的基本关系》教案(1)




下列说法正确的是()
A.任一集合必有真子集
B、任一集合必有两个子集
C、若A∩B=Φ,则A、B之中至少有一个为空集
D、若A∩B=B,则B A
学生思考,叫学生
回答




子集、
真子集的概念,
等集的概念及其符号
师生共同完成
作业布置
习题1.1A组1,2,4题
做在作业本
难点:空集的概念.
教学程序与环节设计:
教学过程与操作设计:
环节
教学内容设计
师生双边互动




提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系
生:独立思考完成引例.
师:引导学生分析归纳概括得出结论.
师生:共同归纳子集




一.“包含”关系—子集
1.AB (或BA),AB (或BA)
课题:§1.1.2集合间的基本关系
教学目标:
知识与技能:让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.
过程与方法:研究集合与集合之间的“包含”与“相等”两种关系..
情感、价值观:体会集合之间的“包含”与“相等”两种关系在生活中的现实意义,理解空集的概念.
教学重点:
重点:子集的概念及其表示法,等集与真子集的有关概念.
2.规定:空集是任何集合的子集.φA
二.“相等”关系:AB且BA则A=B
①任何一个集合是它本身的子集。AA
②真子集:如果AB ,且AB那就说集合A是集合B的真子集,记作A B
③空集是任何非空集合的真子集。
④如果AB, BC ,那么AC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合(第1课时)一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特征等集合的基础知识。

②重点:集合的基本概念及集合元素的特征③难点:元素与集合的关系④注意点:注意元素与集合的关系的理解与判断;注意集合中元素的基本属性的理解与把握。

二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;②由集合的学习感受数学的简洁美与和谐统一美。

三、教学过程:Ⅰ)情景设置:军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。

这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。

数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。

Ⅱ)探求与研究:①一般地,某些指定的对象集在一起就成为一个集合,也简称集。

问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子)②为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个整体来看待,就用大括号{ }将这些指定的对象括起来,以示它作为一个整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母A、B、C……来表示不同的集合,如同学们刚才所举的各例就可分别记为……(板书)另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字母a、b、c……(或x1、x2、x3……)表示同学口答课本P5练习中的第1大题③分析刚才同学们所举出的集合例子,引出:对某具体对象a与集合A,如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a A④再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论:集合中的元素具有确定性、互异性和无序性。

然后请同学们分别阅读课本P5和P40上相关的内容。

⑤在数学里使用最多的集合当然是数集,请同学们阅读课本P4上与数集有关的内容,并思考:常用的数集有哪些?各用什么专用字母来表示?你能分别说出各数集中的几个元素吗?(板书N、Z、Q、R、N*(或N+))注意:数0是自然数集中的元素。

这与同学们脑子里原来的自然数就是1、2、3、4……的概念有所不同同学们完成课本P5练习第2大题。

注意:符号“∈”、“∉”的书写规范化练习:(一)下列指定的对象,能构成一个集合的是①很小的数②不超过30的非负实数③直角坐标平面内横坐标与纵坐标相等的点④π的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形全体A、②③④⑥⑦⑧B、②③⑥⑦⑧C、②③⑥⑦D、②③⑤⑥⑦⑧(二)给出下列说法:①较小的自然数组成一个集合②集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合③某同学的数学书和物理书组成一个集合④若a∈R,则a∉Q⑤已知集合{x,y,z}与集合{1,2,3}是同一个集合,则x=1,y=2,z=3其中正确说法个数是()A、1个B、2个C、3个D、4个(三)已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值Ⅲ)回顾与总结:1.集合的概念2.元素的性质3.几个常用的集合符号Ⅳ)作业:①P7习题1.1第1大题②阅读课本并理解概念课后反思:这节课由于开学典礼的影响,没有来得及全部上完。

等待明天继续上然后与老教师产生一节课的差距。

总体来看,比昨天稍微好一点,语气上连贯了些,但是还没有理清自己上课的思路,到了课堂上原本的准备有些忘记了。

集合(第2课时)一、知识目标:①内容:深入理解集合的基本概念,掌握集合元素的三个特征并会应用,了解有限集、无限集的概念②重点:集合元素的三个特征,空集③难点:集合元素的三个特征的应用二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;③由运用集合的观点分析、处理实际问题,培养由具体到抽象,由抽象到具体的思维方式,形成正确的认知观;三、教学过程:1)情景设置:复习上一节课所学的主要内容①集合的概念:某些指定的对象集在一起就成为一个集合。

集合非常类似于电脑中的文件夹,文件夹就是一个集合,文件夹的内容就是该集合的元素②元素:集合中的每个对象③元素与集合的关系:∈、∉④集合中元素的特征:确定性、互异性、无序性⑤常用数集2)新课讲授例1、下列指定的对象,能构成一个集合的是⑨很小的数⑩不超过30的非负实数⑪直角坐标平面内横坐标与纵坐标相等的点⑫π的近似值⑬高一年级优秀的学生⑭所有无理数⑮大于2的整数⑯正三角形全体分析:①“很小”是不明确的,不确定的②“π的近似值”也是不确定的③“优秀”不确定例2、给出下列说法:⑥较小的自然数组成一个集合⑦集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合⑧某同学的数学书和物理书组成一个集合⑨若a∈R,则a∉Q⑩已知集合{x,y,z}与集合{1,2,3}是同一个集合,则x=1,y=2,z=3其中正确说法个数是()A、1个B、2个C、3个D、4个例3、已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值解:若a+2=1,则a=-1,此时A={1,0,0}违反互异性,舍去若(a+1)2=1,则a=0或-2当a=0时,此时A={2,1,3}当a=-2时,此时A={0,1,1}违反互异性,舍去若a2+3a+3=1,则a=-1(舍去)或a=-2(舍去)所以a=0练习1:在下列各题中,分别指出集合的所有元素①世界上最高的山峰② 组成中国国旗图案的颜色③ 所有大于0且小于10的奇数④ 小于100的自然数⑤ 由1,2,3这三个数字抽出一部分或全部数字所组成的一切自然数(没有重复)⑥ 不等式x-3>2的解集⑦ 平面内到一定点o 的距离等于定长1的所有的点P⑧ 两边之和小于第三边的三角形练习2:集合{3,x,x 2-2x}中,x 应满足什么条件?解:根据集合元素的互异性,x 应满足x ≠3,且x 2-2x ≠3,且x 2-2x ≠x解得x ≠3且x ≠0且x ≠-1为进一步研究集合,需要将行行色色的集合进行分类,假如这项工作由你来做,你会选用什么标准对集合进行分类呢?(拿刚才的练习题为例加以讨论) 师生共同探讨形成共识:根据“集合中元素个数”可将形形色色集合分成以下三类:a) 有限集——含有有限个元素的集合b) 无限集——含有无限个元素的集合c) 空集——不含任何元素的集合,记作φ练习3:指出下列集合中哪些是有限集?哪些是无限集?哪些是空集?为什么?①{0}②{x 2+x+2=0的解}③{使得x 6为自然数的整数} ④{不等式x-3>2的解}思考题:已知集合{关于x 的 方程ax 2+2x+1=0的解}只含1个元素,求a 的值。

分析:若a=0,则方程是一次函数若a ≠0,则方程是二次函数,要使方程只有1个解,则Δ=01.1集合(第3课时)一、知识目标:①内容:初步理解集合的表示法②重点:集合的表示法③难点:集合的表示法中的描述法④注意点:注意集合的各种表示方式的特点及联系,注意描述法中的代表元素二、能力目标:由集合表示方式的选择,集合符号语言的使用,培养自觉使用符号的意识能 力三、教学过程:1)情景设置首先请一位同学回答一下上节课我们所学的内容:集合元素的三大特征:确定性、互异性、无序性集合的分类:有限集,无限集,空集练习:1、不等式X+1>0的解集是有限集吗?X-1<02、集合{0},{φ},{空集}是空集吗?我们对集合的研究要想继续深入下去的话,除了应懂得以上集合的基础知识外,还须知道如何将集合清楚、准确的表示出来2)新课讲授集合的表示方法最主要有三类:列举法,描述法和图示法①列举法——将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开例如:{所有大于0且小于10的奇数}这个集合用列举法表示为{1,3,5,7,9}注意:1。

元素之间用“,”放开2。

.对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须要把元素间的规律显示清楚后才能用删节号。

例如{小于100的自然数}这个集合可用列举法表示为{0,1,2,3,4, (99)②描述法——将所给集合中全部元素的共同特征和性质用文字或符号语言描述出来其一般格式如下:{ x│x∈P }↑↑该集合中的元素是什么?这些元素具有什么共同的特征和性质?例如:不等式x-3>2的解集表示为{x│x>5,x∈R}注意:1。

明确集合中的代表元素的形式。

代表元素只代表了一个集合中元素的形式,至于代表元素中表示变量的字母的取值,则是由后面的条件关系决定的,只要不影响元素的取值,代表元素中表示变量的字母并不是固定不变的。

2。

说明该集合中代表元素的性质。

③图示法——画一条封闭曲线,用它的内部来表示一个集合。

常用于表示不需给出具体元素的抽象集合,对已经给出了具体元素的集合集合当然也可以用图示法表示。

例1:用适当的方法表示下列集合1.由24与30的所有公约数组成的集合答:{1,2,3,4}2.大于10的所有自然数组成的集合答:{x│x>10,x∈N}3.所有正偶数组成的集合答:{x│x=2n,n∈N*}4.直角坐标系中,第二象限内的点构成的集合答:{(x,y )│x<0.y>0}5.抛物线y=x 2上的所有点组成的集合{(x,y)│y=x 2}例2:把下列集合用另一种方法表示出来1.{x │x 2-x-6=0}2.{y │y= x 2-x-6,x ∈R}3.{(x,y)│y= x 2-x-6,x ∈R }4.{(x,y)│x+y=5,x ∈N*,y ∈N* }分析:(1)-2,3(2)代表元素是y ,这个集合是当x 取任意实数时,二次函数y=x 2-x-6的所有函数值的集合。

而y= x 2-x-6=2125()24x --∴函数y= x 2-x-6有最小值254-,无最大值故这个集合还可以表示为{y │≥254-}(3)代表元素时(x,y ),是直角坐标系中点的坐标形式,并且满足y= x 2-x-6,因此这个集合是由抛物线y= x 2-x-6上所有点构成的点的集合(点集)∴这个集合还可以表示为{抛物线y= x 2-x-6上的点}(4)代表元素是(x,y ),并且点(x,y )满足x+y=5, x ∈N*,y ∈N*所以这个集合还可以表示为{(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)}练习1:课本P7,习题1.1第3题练习2:(一)将集合{x │-3≤x ≤3,x ∈N},用列举法表示出来的是( )A ){-3,-2,-1,0,1,2,3}B ){-2,-1,0,1,2}C ){0,1,2,3}D ){1,2,3}(二)下面对集合{1,5,9,13,17}用描述法表示,其中正确的是()A ){x │x 是小于18的正奇数}B ){x │x=4k+1,k ∈z 且k<5}C) {x │x=4t-3,t ∈N 且t ≤5}D) {x │x=4s-3,s ∈N+且s<6}(三)已知集合A={x │ax 2+2x+1=0,x ∈R},其中a ∈R①1是A 中的一个元素,用列举法表示A②若A 中有且仅有一个元素,求a 的值组成的集合B③若A 中至多有一个元素,试求a 的取值范围思考题:注意区别:A={x|y=x 2 }B={y|y=x2}C={(x,y)|y=x2}判断-1,1,(-1,1)是哪些集合的元素?这三个集合的意义分别是什么?3)归纳总结1、集合的表示法2、描述法中的代表元素。

相关文档
最新文档