大学物理下经典计算题共75页

合集下载

大学物理下经典计算题75页PPT

大学物理下经典计算题75页PPT
大学物理下经典计算题
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢!
51、 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来

大学物理下计算题

大学物理下计算题

第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E ρ的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+r r rC 点电场强度E ρ的大小方向为即方向与BC 边成33.7°。

9-5 两个点电荷6612410C,810C q q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E ρ。

解:如解图9-5所示1E ρ,2E ρ沿x 、y 轴分解 电场强度为9-12.一均匀带电球壳内半径16cm R =,外半径210cm R =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0d ε∑⎰=⋅q S E sϖϖ得解图9-5解图9-4当5=r cm 时,0=∑q ,得8=r cm 时,∑q 3π4p=3(r )31R - ()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -32(R )31R ()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅ 沿半径向外. 9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,(1)求图中三个区域的场强1E ρ,2E ρ,3E ρ的表达式; (2)若624.4310C m σ--=⨯⋅,那么,1E ρ,2E ρ,3E ρ各多大解:(1)无限大均匀带电平板周围一点的场强大小为在Ⅰ区域Ⅱ区域Ⅲ区域(2)若624.4310C m σ--=⨯⋅则9-17 如题图9-17所示,已知2810m a -=⨯,2610m b -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求: (1)D 点和B 点的电势;(2) A 点和C 点的电势;(3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。

大学物理下册期末考试重点计算题

大学物理下册期末考试重点计算题

大学物理下册期末考试重点计算题8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r rE E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理下册期末复习计算题

大学物理下册期末复习计算题

大学物理下册期末复习计算题第7章真空中的静电场*1.一半径为R 的带电导体球,电荷为-Q 。

求:球内、外任意一点的电场强度。

1.解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)*2.一半径为R 的带电导体球,电荷为Q 。

求:(1)球内、外任意一点的电场强度;(2)球内、外任意一点电势。

解:由高斯定理可求出电场强度的分布(3分) (2分)当r>R 时 (3分) 当r ≤R 时 (4分)⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 042020πεπε=⎪⎩⎪⎨⎧<>R r R r r q E0 420πε=r qdr r q V r 02044πεπε=⎰∞=R qdr r q dr V RRr 020440πεπε=+⎰⎰∞=⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 0 4202πεπε=*3. 如图所示,一长为L ,半径为R 的圆柱体,置于场强为E 的均匀电场中,圆柱体轴线与场强方向平行,求穿过圆柱体下列端面的电通量。

(1)左端面(2)右端面 (3)侧面 (4)整个表面解: 根据电通量定义 (1)左端面⎰⎰⎰-=-==⋅=121cos s s R E dS E EdS s d E ππφ(4分)(2)右端面⎰⎰===⋅=2030cos R E ES EdS s d E s πφ(4分) (3)侧面⎰⎰==⋅=02cos 2πφEdS s d E s (1分)(4)整个表面0321=++=s s s s φφφφ(3分)4. 三个点电荷1q 、2q 和3q -在一直线上,相距均为R 2,以1q 与2q 的中心O 作一半径为R 2的球面,A 为球面与直线的一个交点,如图。

大学物理习题答案(下学期有图)

大学物理习题答案(下学期有图)

⼤学物理习题答案(下学期有图)1. (C)2.a4I0πµ, ? 3.)412(R 2I 0ππµ+-, ?4. 可看成许多平⾏的⽆限长载流直导线组成,其中⼀宽为θRd dl =的直导线载有电流dl RIdI π=θθπµθπd sin R2I)2cos(dB dB 20x -=+=-=-=ππµθθπµ02020x RI d sin R 2I Bθθπµθπd cos R 2I )2sin(dB dB 20y =+= 0d cos R2I B 020y ==?πθθπµ )T (i1037.6i RI B 620O -?-=-=πµ5. 将此盘看成⽆数同⼼带电圆环组成,半径为r的圆环带电rdr2dq πσ?=圆环转动形成的电流为rdr dq 2dI ωσπω==则 dr r dI dB ωσµµ00212== 各B d 同向R 21dr 21dB B 00Rσωµωσµ===∴??1. (B)2. 变量,I οµ-3. 1∶1, 304. 在横截⾯上以轴点为圆⼼,作半径为r 的圆形环路则(1) a r < ?=?Ll d B 0, 0=∴B(2) b r a << I a b a r rB l d B L )()(22222--==??ππµπο , ra b Ia r B )(2(22)22--=∴πµο (3) b r <I rB l d B L==?οµπ2,rIB πµο2=∴ 5. 取电流元 dI=(I/b)dx则 )x r b (b 2Idx)x r b (2dIdB 00-+=-+=πµπµrbr lnb 2I )x r b (b 2IdxB b00+=-+=?πµπµ ⽅向向⾥练习三(磁)1.(B )2. 03. 1∶14.取⾯积元xdx ahydx dS ==,它距长直载流导线为(b+x ) m d φ=S d B ?=xdx ahx b I+)(2πµο=dx xb ba hI )1(2+-πµο∴ m φ=?m d φ=ahIπµο2dx xb ba)1(0+-=ahI πµο2[b ab ln b a +-]5. 在横截⾯上以轴点为圆⼼作半径为r 的圆形环路,由环路定理可得:R r < 222r R I rB ππµπο= r R I B 22πµο=内R r ≥ I rB οµπ=2 rIB πµο2=外矩形纵截⾯外内S S S +=,其总磁通量为:+?=S 外S 内m S d B S d Bφ)m 1l (2ln 212I ldr r 2I ldr R2Ir R 2R 0R20=+=+=)(πµπµπµο练习四(磁)1. (D)2. (B)3. (B)4. AB 处的B )6a3b (2IB AB -=πµο,?,受⼒)6a3b (2aI I F 211-=πµο, ⽅向AB ⊥向左1I 在BC 上与1I 相距x 的电流元l d I 2处的xIB πµο21=,?,由B l d I F=22 及 2330cos dxdx dl ==得 6a 3b 3a 3b ln 3I I 23dx x 2I I F 21a 33b a63b 212-+=?=+-πµπµοο⽅向:在?平⾯⾥BC ⊥向外同理知23F F =,CA F ⊥3向外(在?平⾯⾥)。

大学物理(下)练习题

大学物理(下)练习题

大学物理(下)练习题第十章10-8一均匀带电的半圆形弧线,半径为R ,所带电量为Q ,以匀角速度ω绕轴OO /转动,如图所示,求O 点处的磁感应强度。

解:此题可利用运动电荷产生的磁场计算,也可利用圆电流产生的磁场计算。

以下根据圆电流在轴线产生的磁感应强度来计算的。

如图电荷dq 旋转在O 处产生的磁感应强度为3202R dIr dB μ=3202)sin (2RR Rd θπωθλμ= ⎰πθθπλωμ=020sin 4d B 240ππλωμ=80λωμ= RQπωμ=80 方向沿轴线向上。

10-15一半径为R 的无限长半圆柱面形导体,与轴线上的长直导线载有等值反向的电流I ,如图所示。

试求轴线上长直导线单位长度所受的磁力。

解:此电流结构俯视如图,圆柱面上的电流 与轴线电流反向,反向电流电流相斥,如图,对 称分析可知,合力沿x 轴正向,有θππμ==Rd R IR I BldI dF 20θπμ=d RI 2202=θ=⎰sin dF F θθπμ⎰πd RI 0220sin 2 RI 220πμ=习题 10-8图习题 10-15图x10-16半径为R 的圆形线圈载有电流I 2,无限长载有电流I 1的直导线沿线圈直径方向放置,求圆形线圈所受到的磁力。

解:此电流结构如图,对称分析可知,合力沿x 轴负向,有r I dl I dF πμ=2102θθπμ=Rd R I I cos 2210θθπμ=d II cos 2210=θ=⎰cos dF F θθθπμ=⎰πd I I cos cos 220210⎰πθπμ=202102d II 210I μ=10-19一半径为R 的薄圆盘,放在磁感应强度为B的均匀磁场中,B 的方向与盘面平行,如图所示,圆盘表面的电荷面密度为σ,若圆盘以角速度ω绕其轴线转动,试求作用在圆盘上的磁力矩。

解:圆盘上任一薄层电荷运转时产生的电流为dI ,其对应的磁矩为rdr r rdrr dI dm σω=ππωπσ=π=2222 整个圆盘的磁矩为44R rdr dm m Rσωπ=σω==⎰⎰作用在圆盘上的磁力矩为B m M ⨯====mB mB M 090sin B R 44σωπ,方向垂直纸面向里。

大学物理习题集(下)

大学物理习题集(下)

大学物理习题集下册物理教研室2003年8月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习二电场强度(续) 电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习五电势梯度静电能静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9练习六静电场中的导体(续) 静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄┄10练习七静电场中的电介质(续) 电容静电场的能量┄┄┄┄┄┄┄┄┄┄┄┄12练习八静电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习九恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15练习十磁感应强度毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17练习十一毕奥—萨伐尔定律(续) 磁场的高斯定理┄┄┄┄┄┄┄┄┄┄┄┄18练习十二安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十三洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22练习十四安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十五静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25练习十六静磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27练习十七电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八感生电动势自感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习十九自感(续) 互感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十位移电流麦克斯韦方程组电磁波┄┄┄┄┄┄┄┄┄┄┄┄┄┄34练习二十一电磁感应习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄35练习二十二狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄37练习二十三相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39练习二十四热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄40练习二十五光电效应康普顿效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41练习二十六德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43练习二十七薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄44练习二十八近代物理习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4612部 分 物 理 常 量引力常量 G=6.67×10-11N 2·m 2·kg -2重力加速度 g=9.8m/s -2阿伏伽德罗常量 N A =6.02×1023mol -1 摩尔气体常量 R =8.31J·mol -1·K -1 标准大气压 1atm=1.013×105Pa 玻耳兹曼常量 k=1.38×10-23J·K -1 真空中光速 c=3.00×108m/s 电子质量 m e =9.11×10-31kg中子质量 m n =1.67×10-27kg质子质量 m p =1.67×10-27kg 元电荷 e=1.60×10-19C 真空中电容率 ε0= 8.85×10-12 C 2⋅N -1m-2真空中磁导率 μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量 h = 6.63×10-34 J ⋅ s 维恩常量 b =2.897×10-3mK 斯特藩-玻尔兹常量 σ = 5.67×10-8W/m 2⋅K 4练习一 库仑定律 电场强度一、选择题1.一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个电量为σd S 的电荷元在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零.(D) 无法判定.2.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? (A) 场强E 的大小与试探电荷q 0的大小成反比;(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0.3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为:(A )i a02πελ. (B) 0.(C)i a04πελ. (D))(40j +i aπελ.4.下列说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.+λ-λ∙ (0, a ) xy O图1.13(B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C) 场强方向可由E = F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.5.如图1.2所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强的大小为:(A) x q 04πε. (B) 204x q πε. (C) 302x qa πε(D)30xqaπε.二、填空题1.如图1.3所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离a= . 2.如图1.4所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E = ,场强最大值的位置在y = .3.一电偶极子放在场强为E 的匀强电场中,电矩的方向与电场强度方向成角θ.已知作用在电偶极子上的力矩大小为M ,则此电偶极子的电矩大小为 .三、计算题1.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ.求球心处的电场强度. 2.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正点荷Q , 试求圆心O 处的电场强度.练习二 电场强度(续) 电通量一、选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;图1.2d 图1.3图1.44(B) 电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致.2. 边长为a 的正方形的四个顶点上放置如图2.1所示的点电荷,则中心O 处场强 (A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.3. 试验电荷q 0在电场中受力为f ,得电场强度的大小为E=f/q 0,则以下说法正确的是(A) E 正比于f ;(B) E 反比于q 0;(C) E 正比于f 反比于q 0;(D) 电场强度E 是由产生电场的电荷所决定,与试验电荷q 0的大小及其受力f 无关.4. 在电场强度为E 的匀强电场中,有一如图2.2所示的三棱柱,取表面的法线向外,设过面AA 'CO ,面B 'BOC ,面ABB 'A '的电通量为Φ1,Φ2,Φ3,则(A) Φ1=0, Φ2=Ebc , Φ3=-Ebc . (B) Φ1=-Eac , Φ2=0, Φ3=Eac .(C) Φ1=-Eac , Φ2=-Ec 22b a +, Φ3=-Ebc .(D) Φ1=Eac , Φ2=Ec 22b a +, Φ3=Ebc .5. 两个带电体Q 1,Q 2,其几何中心相距R , Q 1受Q 2的电场力F 应如下计算(A) 把Q 1分成无数个微小电荷元d q ,先用积分法得出Q 2在d q 处产生的电场强度E 的表达式,求出d q 受的电场力d F =E d q ,再把这无数个d q 受的电场力d F 进行矢量叠加从而得出Q 1受Q 2的电场力F =⎰1d Q q E(B) F =Q 1Q 2R /(4πε0R 3).(C) 先采用积分法算出Q 2在Q 1的几何中心处产生的电场强度E 0,则F =Q 1E 0.(D) 把Q 1分成无数微小电荷元d q ,电荷元d q 对Q 2几何中心引的矢径为r , 则Q 1受Q 2的电场力为F =()[]⎰1324d Q rqQπεr二、填空题1. 电矩为P e 的电偶极子沿x 轴放置, 中心为坐标原点,如图2.3.则点A (x ,0), 点B (0,y )电场强度的矢量表达式为:E A = , E B =.图2.1图2.2图2.3图2.452. 如图2.4所示真空中有两根无限长带电直线, 每根无限长带电直线左半线密度为λ,右半线密度为-λ,λ为常数.在正负电荷交界处距两直线均为a 的O 点.的电场强度为E x = ;E y = .3. 设想将1克单原子氢中的所有电子放在地球的南极,所有质子放在地球的北极,则它们之间的库仑吸引力为 N .三、计算题1. 宽为a 的无限长带电薄平板,电荷线密度为λ,取中心线为z 轴, x 轴与带电薄平板在同一平面内, y 轴垂直带电薄平板. 如图2.5. 求y 轴上距带电薄平板为b 的一点P 的电场强度的大小和方向.2. 一无限长带电直线,电荷线密度为λ,傍边有长为a , 宽为b 的一矩形平面, 矩形平面中心线与带电直线组成的平面垂直于矩形平面,带电直线与矩形平面的距离为c ,如图2.6. 求通过矩形平面电通量的大小.练习三 高斯定理一、选择题1. 如图3.1所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E .(D) 0 .2. 关于高斯定理,以下说法正确的是:(A) 高斯定理是普遍适用的,但用它计算电场强度时要求电荷分布具有某种对称性; (B) 高斯定理对非对称性的电场是不正确的;(C) 高斯定理一定可以用于计算电荷分布具有对称性的电场的电场强度; (D) 高斯定理一定不可以用于计算非对称性电荷分布的电场的电场强度. 3.有两个点电荷电量都是+q ,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面. 在球面上取两块相等的小面积S 1和S 2,其位置如图3.2所示. 设通过S 1和S 2的电场强度通量分别为Φ1和Φ2,通过整个球面的电场强度通量为Φ,则(A) Φ1 >Φ2 , Φ = q /ε0.λ图2.6图2.5图3.1图 3.26(B) Φ1 <Φ2 , Φ = 2q /ε0 . (C) Φ1 = Φ2 , Φ = q /ε0 .(D) Φ1 <Φ2 , Φ = q /ε0 .4.图3.3所示为一球对称性静电场的E ~ r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离) .(A) 点电荷.(B) 半径为R 的均匀带电球体. (C) 半径为R 的均匀带电球面.(D) 内外半径分别为r 和R 的同心均匀带球壳.5. 如图3.4所示,一个带电量为q 的点电荷位于一边长为l 的正方形abcd 的中心线上,q 距正方形l/2,则通过该正方形的电场强度通量大小等于:(A) 02εq . (B) 06εq . (C) 012εq . (D)24εq .二、填空题1.如图3.5, 两块“无限大”的带电平行平板,其电荷面密度分别为-σ (σ > 0 )及2σ.试写出各区域的电场强度.Ⅰ区E 的大小 ,方向 . Ⅱ区E 的大小 ,方向 . Ⅲ区E 的大小 ,方向 . 2.如图3.6所示, 真空中有两个点电荷, 带电量分别为Q 和-Q , 相距2R ..若以负电荷所在处O 点为中心, 以R 为半径作高斯球面S , 则通过该球面的电场强度通量Φ = ;若以r 0表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为 .3.电荷q 1、q 2、q 3和q 4在真空中的分布如图3.7所示, 其中q 2 是半径为R 的均匀带电球体, S 为闭合曲面,则通过闭 合曲面S 的电通量⎰⋅SS E d = ,式中电场强度E 是哪些电荷产生的?答:是 产生的.是它们ⅠⅡ Ⅲ-σ 2σ 图3.5图3.3图3.4图3.6∙ q 1∙ q 3∙ q 4S图3.7q 27产生电场强度的矢量和还是标量和?答:是 .三、计算题1.真空中有一厚为2a 的无限大带电平板,取垂直平板为x 轴,x 轴与中心平面的交点为坐标原点,带电平板的体电荷分布为ρ=ρ0cos[πx /(2a )],求带电平板内外电场强度的大小和方向.2.半径为R 的无限长圆柱体内有一个半径为a(a<R)的球形空腔,球心到圆柱轴的距离为d (d >a ),该球形空腔无限长圆柱体内均匀分布着电荷体密度为ρ的正电荷,如图3.8所示. 求:(1) 在球形空腔内,球心O 处的电场强度E O .(2) 在柱体内与O 点对称的P 点处的电场强度E P .练习四 静电场的环路定理 电势一、选择题1. 如图4.1所示,半径为R 的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E = 0 , U = Q /4πε0R . (B) E = 0 , U = Q /4πε0r .(C) E = Q /4πε0r 2 , U = Q /4πε0r .(D) E = Q /4πε0r 2 , U = Q /4πε0R .2. 如图4.2所示,两个同心的均匀带电球面,内球面半径为R 1,带电量Q 1,外球面半径为R 2,带电量为Q 2.设无穷远处为电势零点,则在两个球面之间,距中心为r 处的P 点的电势为:(A) rQ Q 0214πε+. (B) 20210144R Q R Q πεπε+.(C) 2020144R Q r Q πεπε+. (D)rQ R Q 0210144πεπε+.3. 如图4.3所示,在点电荷+q 的电场中,若取图中M 点为电势零点,则P 点的电势为(A) q / 4πε0a . (B) q / 8πε0a .(C) -q / 4πε0a .图4.1图4.2M图4.3图3.88 (D) -q /8πε0a .4. 一电量为q 的点电荷位于圆心O 处 ,A 是圆内一点,B 、C 、D 为同一圆周上的三点,如图4.4所示. 现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大. (D) 从A 到各点,电场力作功相等.5. 如图4.5所示,CDEF 为一矩形,边长分别为l 和2l ,在DC 延长线上CA =l 处的A 点有点电荷+q ,在CF 的中点B 点有点电荷-q ,若使单位正电荷从C 点沿CDEF 路径运动到F 点,则电场力所作的功等于:(A)515420-⋅lq πε.(B) 55140-⋅l q πε. (C) 31340-⋅l q πε. (D)51540-⋅lq πε.二、填空题1.电量分别为q 1, q 2, q 3的三个点电荷位于一圆的直径上, 两个在圆周上,一个在圆心.如图4.6所示. 设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = .2.如图4.7所示,在场强为E 的均匀电场中,A 、B 两点间距离为d ,AB 连线方向与E 的夹角为α. 从A 点经任意路径 到B 点的场强线积分l E d ⎰⋅AB= .3.如图4.8所示, BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为-q 的点电荷,O 点有一电量为+q 的点 电荷. 线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道 BCD 移到D 点,则电场力所作的功为 .三、计算题1.如图4.9所示,一个均匀带电的球层,其电量为Q ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点(r <R 1)的电势.2.已知电荷线密度为λ的无限长均匀带电直线附近的电场强度为E=λ/(2πε0r ).(1)求在r 1、r 2两点间的电势差21r r U U -;-q ll ll +qA BC D E F∙ ∙ 图4.5∙ ∙∙ q 1 q 2q 3ROb图4.6R -q +q ABC DO∙ ∙ 图4.8图4.9B 图4.4B图4.79(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电直线附近的电势能否这样取?试说明之.练习五 电势梯度 静电场中的导体一、选择题1.在均匀电场中各点,下列诸物理量中:(1)电场强度;(2)电势;(3)电势梯度.相等的物理量是?(A) (1) (3); (B) (1) (2); (C) (2) (3); (D) (1) (2) (3).2. 一“无限大”带负电荷的平面,若设平面所在处为电势零点, 取x 轴垂直带电平面,原点在带电平面处,则其周围空间各点电势U 随坐标x 的关系曲线为3.在如图5.2所示的圆周上,有N 个电量均为q 的点电荷,以两种方式分布,一种是无规则地分布,另一种是均匀分布,比较这两种情况下过圆心O 并垂直于圆平面的z 轴上一点的场强与电势,则有:(A) 场强相等,电势相等; (B) 场强不等,电势不等;(C) 场强分量E z 相等,电势相等;(D) 场强分量E z 相等,电势不等.4.一个带正电荷的质点,在电场力作用下从A 点出发,经C 点运动到B 点,其运动轨迹如图5.3所示,已知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是:图5.2B(A)(B)(C)(D)图5.3(A)(B)(C)(D)图5.15.一个带有负电荷的均匀带电球体外,放置一电偶极子,其电矩的方向如图5.4所示.当电偶极子被释放后,该电偶极子将(A) 沿逆时针方向旋转至电矩p指向球面而停止.(B) 沿逆时针方向旋转至p指向球面,同时沿电力线方向向着球面移动.(C) 沿逆时针方向旋转至p指向球面,同时逆电力线方向远离球面移动.(D) 沿顺时针方向旋转至p沿径向朝外,同时沿电力线方向向着球面移动.二、填空题1. 一平行板电容器,极板面积为S,相距为d. 若B板接地,且保持A板的电势U A = U0不变,如图5.5所示. 把一块面积相同的带电量为Q的导体薄板C平行地插入两板之间,则导体薄板C的电势U C= .2. 任意带电体在导体体内(不是空腔导体的腔内)(填会或不会)产生电场,处于静电平衡下的导体,空间所有电荷(含感应电荷)在导体体内产生电场的(填矢量和标量)叠加为零.3. 处于静电平衡下的导体(填是或不是)等势体,导体表面(填是或不是)等势面, 导体表面附近的电场线与导体表面相互,导体体内的电势(填大于,等于或小于) 导体表面的电势.三、计算题1. 已知某静电场在xy平面内的电势函数为U=Cx/(x2+y2)3/2,其中C为常数.求(1)x轴上任意一点,(2)y轴上任意一点电场强度的大小和方向.2.如图5.6,一导体球壳A(内外半径分别为R2,R3),同心地罩在一接地导体球B(半径为R1)上,今给A球带负电-Q, 求B球所带电荷Q B及的A球的电势U A.练习六静电场中的导体(续)静电场中的电介质一、选择题1. A、B是两块不带电的导体,放在一带正电导体的电场中,如图6.1所示.设无限远处为电势零点,A的电势为U A,B的电势为U B,则:(A) U B > U A≠ 0 .(B) U B < U A= 0 .p图5.4UU ABC-Q图5.310(C) U B= U A .(D) U B < U A .2. 半径分别为R和r的两个金属球,相距很远.用一根长导线将两球连接,并使它们带电.在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr为:(A) R/r .(B) R2/r2.(C) r2/R2.(D) r/R .3. 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,如图6.2所示.已知A上的电荷面密度为σ,则在导体板B的两个表面1和2上的感应电荷面密度为:(A) σ1 =-σ , σ2 =+σ.(B) σ1 =-σ/2 , σ2 =+σ/2.(C) σ1 =-σ , σ2 = 0.(D) σ1 =-σ/2 , σ2 =-σ /2.4. 欲测带正电荷大导体附近P点处的电场强度,将一带电量为q0 (q0 >0)的点电荷放在P点,如图6.3所示. 测得它所受的电场力为F .若电量不是足够小.则(A) F/q0比P点处场强的数值小.(B) F/q0比P点处场强的数值大.(C) F/q0与P点处场强的数值相等.(D) F/q0与P点处场强的数值关系无法确定.5. 三块互相平行的导体板,相互之间的距离d1和d2比板面积线度小得多,外面两板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图6.4所示.则比值σ1/σ2为(A) d1/d2 .(B) 1.(C) d2/d1.(D) d22/d12.二、填空题1. 分子中正负电荷的中心重合的分子称分子,正负电荷的中心不重合的分子称分子.2. 在静电场中极性分子的极化是分子固有电矩受外电场力矩作用而沿外场方向而产生的,称极化.非极性分子的极化是分子中电荷受外电场力使正负电荷中心发生从而产生附加磁矩(感应磁矩),称极化.A+σ 2图6.2∙Pq0图6.4B(1) (2)图6.51112 3. 如图6.5,面积均为S 的两金属平板A ,B 平行对称放置,间距远小于金属平板的长和宽,今给A 板带电Q , (1)B 板不接地时,B 板内侧的感应电荷的面密度为 ; (2)B 板接地时,B 板内侧的感应电荷的面密度为 .三、计算题1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A ,B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求 (1)两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2)两板间的电势差V =U A -U B .四、证明题 1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.练习七 静电场中的电介质(续) 电容 静电场的能量一、选择题1. 一孤立金属球,带有电量1.2⨯10-8C ,当电场强度的大小为3⨯106V/m 时,空气将被击穿. 若要空气不被击穿,则金属球的半径至少大于(A) 3.6⨯10-2m . (B) 6.0⨯10-6m . (C) 3.6⨯10-5m .(D) 6.0⨯10-3m .2. 关于静电场中的电位移线,下列说法中,哪一种是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断; (B) 任何两条电位移线互相平行;(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交; (D) 电位移线只出现在有电介质的空间.3. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为:(A) ε0E . (B) ε0εr E . (C) εr E . (D) (ε0εr -ε0)E.B Q 图6.62 σ 2 σ 44. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则:(A) 空心球电容值大.(B) 实心球电容值大.(C) 两球电容值相等.(D) 大小关系无法确定.5. C1和C2两个电容器,其上分别标明200pF(电容量)、500V(耐压值)和300pF、900V . 把它们串联起来在两端加上1000V电压,则(A) 两者都被击穿.(B) 两者都不被击穿.(C) C2被击穿,C1不被击穿.(D) C1被击穿,C2不被击穿.二、填空题1. 一平行板电容器,充电后切断电源,然后使两极板间充满相对电容率为εr的各向同性均匀电介质,此时两极板间的电场强度是原来的倍;电场能量是原来的倍.2. 在相对电容率为εr= 4的各向同性均匀电介质中,与电能密度w e = 2⨯10-6J/cm3相应的电场强度的大小E = .3.一平行板电容器两极板间电压为U,其间充满相对电容率为εr的各向同性均匀电介质,电介质厚度为d . 则电介质中的电场能量密度w = .三、计算题1. 半径为R1的导体球带电Q,球外一层半径为R2相对电容率为εr的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r1(r1<R1), r2(R1<r1<R2), r3(r1>R2)处的D和E;(2)离球心r1, r2, r3,处的U;(3)介质球壳内外表面的极化电荷.2. 两个相距很远可看作孤立的导体球,半径均为10cm,分别充电至200V和400V,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功.练习八静电场习题课一、选择题1. 如图8.1, 两个完全相同的电容器C1和C2,串联后与电源连接. 现将一各向同性均匀电介质板插入C1中,则:(A) 电容器组总电容减小.(B) C1上的电量大于C2上的电量.(C) C1上的电压高于C2上的电压.图8.1图7.11314 (D) 电容器组贮存的总能量增大.2.一空气平行板电容器,接电源充电后电容器中储存的能量为W 0,在保持电源接通的条件下,在两极间充满相对电容率为εr 的各向同性均匀电介质,则该电容器中储存的能量W 为(A) W = W 0/εr . (B) W = εr W 0.(C) W = (1+εr )W 0. (D) W = W 0.3. 如图8.2所示,两个“无限长”的半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的带电量分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212πελλ+.(B) )(2)(2202101R r R r -+-πελπελ.(C) )(22021R r -+πελλ.(D)20210122R R πελπελ+.4. 如图8.3,有一带电量为+q ,质量为m 的粒子,自极远处以初速度v 0射入点电荷+Q 的电场中, 点电荷+Q 固定在O 点不动.当带电粒子运动到与O 点相距R 的P 点时,则粒子速度和加速度的大小分别是(A) [v 02+Qq /(2πε0Rm )]1/2, Qq /(4πε0Rm ).(B) [v 02+Qq /(4πε0Rm )]1/2, Qq /(4πε0Rm ).(C) [v 02-Qq /(2πε0Rm )]1/2, Qq /(4πε0R 2m ). (D) [v 02-Qq /(4πε0Rm )]1/2, Qq /(4πε0R 2m ).5 空间有一非均匀电场,其电场线如图8.4所示.若在电场中取一半径为R 的球面,已知通过球面上∆S 面的电通量为∆Φe ,则通过其余部分球面的电通量为(A) -∆Φe(B) 4πR 2∆Φe /∆S , (C) (4πR 2-∆S ) ∆Φe /∆S , (D) 0二、填空题1. 一个平行板电容器的电容值C = 100pF, 面积S = 100cm 2, 两板间充以相对电容率为εr = 6的云母片. 当把它接到50V 的电源上时,云母片中电场强度的大小E = ,金属板上的自由电荷电量q = .2. 半径为R 的细圆环带电线(圆心是O ),其轴线上有两点A 和B ,且OA=AB=R ,如图8.5.若取无限远处为电势零点,设A 、B 两点的电势分别为P图8.2图8.3图8.5图8.415U 1和U 2,则U 1/U 2为 .3. 真空中半径为R 1和R 2的两个导体球相距很远,则两球的电容之比C 1/C 2 = . 当用细长导线将两球相连后,电容C = . 今给其带电,平衡后球表面附近场强之比E 1 / E 2 = .三、计算题1. 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极间距拉开到2d ,求:(1)电容器能量的改变;(2)在此过程中外力所作的功,并讨论此过程中的功能转换关系.2. 在带电量为+Q 半径为R 的均匀带电球体中沿半径开一细洞并嵌一绝缘细管,一质量为m 带电量为-q 的点电荷在管中运动(设带电球体固定不动,且忽略点电荷所受重力)如图8.6所示.t =0时,点电荷距球心O 为a (a <R ),运动速度v 0=0,试写出该点电荷的运动方程(即点电荷到球心的距离r 随时间的变化关系式).练习九 恒定电流一、选择题1.室温下,铜导线内自由电子数密度n = 8.85⨯1028m -3,导线中电流密度j = 2⨯106A/m 2,则电子定向漂移速率为:(A) 1.4⨯10-4m/s. (B) 1.4⨯10-2m/s. (C) 5.4⨯102m/s.(D) 1.1⨯105m/s.2.在一个半径为R 1的导体球外面套一个与它共心的内半径为R 2的导体球壳,两导体的电导可以认为是无限大.在导体球与导体球壳之间充满电导率为γ的均匀导电物质,如图9.1所示.当在两导体间加一定电压时,测得两导体间电流为I , 则在两导体间距球心的距离为r 的P 点处的电场强度大小E 为:(A) I γ/(4πr 2) . (B) I /(4πγr 2) . (C) I /(4πγR 12) .(D) IR 22/(4πγR 12r 2) .3. 一平行板电容器极板间介质的介电常数为ε,电导率为γ,当极板上充电Q 时,则极板间的漏电流为(A) Q/(γε). (B) γε/Q .(C) εQ/γ. (D) γQ/ε .图8.6图9.116 4.有一根电阻率为ρ、截面直径为d 、长度为L 的导线,若将电压U 加在该导线的两端,则单位时间内流过导线横截面的自由电子数为N ;若导线中自由电子数密度为n ,则电子平均漂移速度为v d . 下列哪个结论正确:(A) Lne U v Le Ud N d ρρπ==,42. (B) L ne U v ed LUN d ρπρ==,42.(C) LUnev Le Ud N d ρρπ==,82. (D) LUnev ed LUN d ρπρ==,42.5. 在氢放电管中充有气体,当放电管两极间加上足够高的电压时,气体电离. 如果氢放电管中每秒有4⨯1018个电子和1.5⨯1018个质子穿过放电管的某一截面向相反方向运动,则此氢放电管中的电流为(A) 0.40A .(B) 0.64A . (C) 0.88A . (D) 0.24A .二、 填空题1. 如图9.2所示为某复杂电路中的某节点,所设电流方向如图.则利用电流连续性列方程为 .2. 如图9.3所示为某复杂电路中的某回路,所设电流方向及回路中的电阻,电源如图.则利用基尔霍夫定律列方程为 .3. 有两个相同的电源和两个相同的电阻,按图9.4和图9.5所示两种方式连接. 在图9.3中I = ,U AB = ; 在图9.3中I = ,U AB = .三、计算题1. 把大地看作电阻率为ρ的均匀电介质,如图9.6.所示. 用一个半径为a 的球形电极与大地表面相接,半个球体埋在地面下,电极本身的电阻可忽略.求(1)电极的接地电阻;(2)当有电流流入大地时,距电极中心分别为r 1和r 2的两点A 、B 的电流密度j 1与j 2的比值.图9.2图9.3图9.4图9.5图9.6172. 一同轴电缆,长L = 1500m ,内导体外半径a = 1.0 mm ,外导体内半径b = 5.0 mm ,中间填充绝缘介质,由于电缆受潮,测得绝缘介质的电阻率降低到6.4⨯105Ω·m. 若信号源是电动势ε= 24V ,内阻r = 3.0 Ω的直流电源. 求在电缆末端负载电阻R 0=1.0 k Ω上的信号电压为多大.练习十 磁感应强度 毕奥—萨伐尔定律一、选择题1. 如图10.1所示,边长为l 的正方形线圈中通有电流I ,则此线圈在A 点(如图)产生的磁感强度为:(A) l I πμ420. (B) l I πμ220.(C)lIπμ02.(D) 以上均不对.2. 电流I 由长直导线1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图10.2所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O 点磁感强度的大小为:(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ≠ 0, B 2 ≠ 0, B 1+B 2 = 0, B 3=0(C) B ≠ 0. 因为虽然B 3 = 0, 但 B 1+B 2 ≠ 0(D) B ≠ 0. 因为虽然B 1+B 2 = 0, 但 B 3 ≠ 0 3. 如图10.3所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为:(A) B = 0 .(B) B =3μ0I /(πa ) . (C) B =3μ0I /(2πa ) .(D) B =3μ0I /(3πa ) . . 4. 如图10.4所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:(A) RIπμ20. (B)RI40μ.图10.1图10.2图10.3图10.418 (C) )11(20πμ-R I. (D))11(40πμ+RI .5. 一匝数为N 的正三角形线圈边长为a ,通有电流为I , 则中心处的磁感应强度为 (A) B = 33μ0N I /(πa ) . (B) B =3μ0NI /(πa ) . (C) B = 0 .(D) B = 9μ0NI /(πa ) .二、填空题1. 平面线圈的磁矩为p m =IS n ,其中S 是电流为I 的平面线圈 , n 是平面线圈的法向单位矢量,按右手螺旋法则,当四指的方向代表 方向时,大拇指的 方向代表 方向.2 两个半径分别为R 1、R 2的同心半圆形导线,与沿直径的直导线连接同一回路,回路中电流为I .(1) 如果两个半圆共面,如图10.5.a 所示,圆心O 点的磁感强度B 0的大小为 ,方向为 .(2) 如果两个半圆面正交,如图10.5b 所示,则圆心O 点的磁感强度B 0的大小为 ,B 0的方向与y 轴的夹角为 .3. 如图10.6所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B = .三、计算题1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.2. 如图10.7所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.图10.5图10.6b图10.8图10.7。

大学物理 下 计算题参考答案

大学物理 下 计算题参考答案

大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。

⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。

求 (1)导体内部各点的磁感应强度。

(2)导体内壁和外壁上各点的磁感应强度。

解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。

由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。

解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。

)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。

O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。

大一下册物理50道计算题

大一下册物理50道计算题

大学物理50道计算题第1章(10道,考1道)(2道例题)p17 例1.3 p22例1.5 (4道作业题)1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =.由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为as -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+. 即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为v21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t =.算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕. (4道补充的)(PPT 转格式的,所以有些图片格式的字体格式不想改了,一个个改很麻烦。

大学物理复习计算

大学物理复习计算

大学物理复习计算题1 一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求:(1) 物体能够上升的最大高度h ;(2) 该物体达到最高点后,沿斜面返回到原出发点时的速率v .2 如图所示,在与水平面成α角的光滑斜面上放一质量为m 的物体,此物体系于一劲度系数为k 的轻弹簧的一端,弹簧的另一端固定.设物体最初静止.今使物体获得一沿斜面向下的速度,设起始动能为E K 0,试求物体在弹簧的伸长达到x 时的动能.3 某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为 F =52.8x +38.4x 2(SI )求:(1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.(3)此弹簧的弹力是保守力吗?24 一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).5 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).6 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)3)57 两导体球A 、B .半径分别为R 1 = 0.5 m ,R 2 =1.0 m ,中间以导线连接,两球外分别包以内半径为R =1.2m 的同心导体球壳(与导线绝缘)并接地,导体间的介质均为空气,如图所示.已知:空气的击穿场强为3×106 V/m ,今使A 、B 两球所带电荷逐渐增加,计算:(1) 此系统何处首先被击穿?这里场强为何值?(2) 击穿时两球所带的总电荷Q 为多少?(设导线本身不带电,且对电场无影响.) (真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 )8 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.。

大学物理下册考试计算题和证明题

大学物理下册考试计算题和证明题

22q 计算题和证明题1、照相机镜头呈现蓝紫色——为了消除黄绿色的反射光而镀了膜。

在折射率1n =1.52的镜头表面镀一层折射率2n =1.38的Mg 2F 增透膜。

试证明:如果此膜适用于波长λ=5500 oA 的光,则镀膜的最薄厚度应取996oA .证明:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即2、传输微波信号的无限长圆柱形同轴电缆,各通有电流I ,流向相反。

内、外导体的截面半径分别为1R 和2R (1R <2R ),两导体之间磁介质的磁导率假设为μ,试求:(1)介质中的磁场强度和磁感应强度的大小;(2)长为L 的一段同轴电缆中磁场的能量.3、利用空气劈尖可以精确测量金属细丝的直径。

如图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径为d 的细钢丝隔开.若两玻璃片间的夹角=θ44.010-⨯弧度,求: (1)细钢丝的直径是多少?(2)相邻两暗条纹的间距是多少?4、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i ' 4、解:tg i 0=1.56 / 1.33 i 0=49.6° 光自玻璃中入射到水表面上时,tg 0i '=1.33 / 1.56 0i '=40.4° (或 0i '=90°-i 0=40.4°)5、两个均匀带电的金属同心球壳,内球壳半径为1R ,带电1q ,外球壳半径为2R ,带电2q ,试求两球壳之间任一点12()P R r R <<的场强与电势? 5、解:由高斯定理:Ci 内外球壳在P 点产生的场强2014r q E P πε=内外球壳在外球壳外产生的场强20214rq q E πε+=P 点的电势01221012021201411444222121πεπεπεπεq q R r q drrq q dr rq dr E dr E UR R R r R r p p-+⎪⎪⎭⎫ ⎝⎛+=∙+∙=∙+∙=+⎰⎰⎰⎰6、一根很长的直导线载有交变电流0i I sin t ω=,它旁边有一长方形线圈ABCD ,长为l ,宽为b a -, 线圈和导线在同一平面内,求:(1) 穿过回路ABCD 的磁通量m Φ; (2 ) 回路ABCD 中的感应电动势。

大学物理习题集(下)习题解答

大学物理习题集(下)习题解答

单元一 简谐振动一、 选择、填空题1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π34,则t=0时,质点的位置在: 【 D 】(A) 过A 21x =处,向负方向运动; (B) 过A 21x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 21x -=处,向正方向运动。

3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】(A) θ; (B) 0; (C)π/2; (D) -θ4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】(A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。

6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: 【 C 】)4(填空选择)5(填空选择A2332,3)D (;A 22,43or ,4)C (;A 23,65,6)B (;A 21,32or ,3)A (±±±±±±±±±±±±,ππππππππ7. 如果外力按简谐振动的规律变化,但不等于振子的固有频率。

大学物理计算题

大学物理计算题

计算题 第三章2.质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时 它的速度大小v 为多少? 十二5. 一质点的运动轨迹如图所示.已知质点的质量为20 g ,在A 、B 二位置处的速率都为20 m/s ,A v 与x 轴成45°角,B v垂直于y 轴,求质点由A 点到B 点这段时间内,作用在质点上外力的总冲量.八6. 质量为m 的小物体放在质量为M 的冰块的弧形斜面上,斜面下端为水平面,如图.所有接触面的摩擦力都可忽略不计.开始时m 与M 均静止,现在令m 滑下来落入下面的凹部而相对M 静止,问M 可滑多远. 有位同学这么解:m 滑下高度h ,由机械能守恒,得mgh =21m v 2即m 到最低位置时有水平速度v =gh 2,然后与M 碰撞后达到一共同速度V ,由动量守恒m v =(M+m )V ,可得gh mM mm M m 2+=+=v V因为忽略摩擦力所以M 将以稳定速度V 不断向前滑行. 请指出这位同学的错误,并给出正确解答. 四7. 一物体按规律x =ct 3 在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k ,试求物体由x =0运动到x =l 时,阻力所作的功 四8.一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为 .令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少? 十二xyO BABv Aval -a12. 由mgh m W +=2v 21有人把一物体由静止开始举高h 时,物体获得速度v ,在此过程中,若人对物体作功为W ,这可以理解为“合外力对物体所作的功等于物体动能的增量与势能的增量之和”吗?为什么? 一第四章1. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量. 一3. 从牛顿运动定律出发,推导出刚体的定轴转动定律. 五4. 一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2/ 4 ) 七5.质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小. 十一6. 一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求: 九 (1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度;(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.7. 质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度;(2) 绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为21121R M J =,22221r M J =) 二8. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为 ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求 三(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)9 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 五10. 如图所示,一半径为R ,质量为m 的水平圆台,正以角速度 0绕通过其中心的竖直固定光滑轴转动,转动惯量J =221mR .台上原站有2人,质量各等于转台质量的一半,一人站于台边A 处,另一人站于距台中心R 21的B 处.今A处的人相对于圆台以速率v 顺着圆台转向沿圆周走动,同时B 处的人相对于圆台以速率2v 逆圆台转向沿圆周走动.求圆台这时的角速度 . 六11. 质量为M =0.03 kg ,长为l =0.2 m 的均匀细棒,在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动.细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02 kg .开始时,两小物体分别被固定在棒中心的两侧且距棒中心各为r =0.05 m ,此系统以n 1=15 rev/ min 的转速转动.若将小物体松开,设它们在滑动过程中受到的阻力正比于它们相对棒的速度,(已知棒对中心轴的转动惯量为Ml 2/ 12)求:4-3二(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端,棒的角速度是多少? 八12. 在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为R 21处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度 0匀速转动,现在此人垂直圆盘半径相对于盘以速率v 沿与盘转动相反方向作圆周运动,如图所示. 已知圆盘对中心轴的转动惯量为221MR .求: 十 (1) 圆盘对地的角速度.(2) 欲使圆盘对地静止,人应沿着R 21圆周对圆盘的速度v 的大小及方向?第五章1.图示闭合面包围了两个等量异号点电荷±q .下列说法是否正确?如有错误请改正.(1) 高斯定理∑⎰⋅=0/d εq S E S成立. (2) 因闭合面内包围净电荷∑q i =0,得到0d =⎰⋅S E S故闭合面上场强E 处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零. 十二4. 有两块“无限大”带电导体平板平行放置.试证明:静电平衡时 1.相向两面的电荷面密度总是大小相等、符号相反的; 2.相背两面的电荷面密度总是大小相等、符号相同的. 六5. 有一带电球壳,内、外半径分别为a 和b ,电荷体密度ρ = A / r ,在球心处有一点电荷Q ,证明当A = Q / ( 2πa 2 )时,球壳区域内的场强E的大小与r 无关. 三6.一均匀带电球面和一均匀带电球体.如果它们的半径相同且总电荷相等.问哪一种情况的电场能量大? 为什么? 十一7. 一均匀电场,场强大小为E =5³104N/C ,方向竖直朝上,把一电荷为q = 2.5³10-8C的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ;(2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad=260cm(与水平方向成45°角). 八8. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 九9. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差. 三10. 图示两个半径均为R 的非导体球壳,表面上均匀带电,电荷分别为+Q 和-Q ,两球心相距为d (d>>2R ).求两球心间的电势差. 三11. 电荷以相同的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V . (1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上应放掉多少电荷? 五 [ε0=8.85³10-12 C 2 /(N ²m 2)]+Q Ⅱ da12. 电荷q 均匀分布在长为2l 的细杆上,求杆的中垂线上与杆中心距离为a 的P 点的电势(设无穷远处为电势零点). 六15.在盖革计数器中有一直径为2.00 cm 的金属圆筒,在圆筒轴线上有一条直径为0.134 mm 的导线.如果在导线与圆筒之间加上850 V 的电压,试分别求: (1) 导线表面处 (2) 金属圆筒内表面处的电场强度的大小.十16. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183) 七17 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为R a 、R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2. 一18. 一电偶极子的电矩为p,放在场强为E的匀强电场中,p与E之间夹角为θ,如图所示.若将此偶极子绕通过其中心垂直于p、E平面的轴转180°,外力需作功多少? 九第六章1. 将一平行板电容器充电后切断电源,用相对介电常量为εr 的各向同性均匀电介质充满其内.下列有关说法是否正确?如有错误请改正. 九 (1) 极板上的电荷保持不变 . (2) 介质中的场强是原来的1 / εr 倍 .(3) 介质中的电场能量是原来的1 / εr 2倍.θpE第七章3. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量. 四4.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学物理下(计算题)

大学物理下(计算题)

大学物理下(计算题)第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷911.810C q -=⨯,B 点上有一点电荷924.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+994111220 1.810910 1.810(N C )4π()(0.03)q E AC ε--⨯⨯⨯===⨯⋅ 994122220 4.810910 2.710(N C )4π()(0.04)q E BC ε--⨯⨯⨯===⨯⋅C 点电场强度E的大小 2222441121.82.7103.2410(N C )E E E -=+=+⨯=⨯⋅方向为4o142 1.810arctan arctan 33.72.710E E α⨯===⨯即方向与BC 边成33.7°。

9-5 两个点电荷6612410C,810Cq q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E。

解:如解图9-5所示9661112201910410 3.610(N C )4π10q E r ε---⨯⨯⨯===⨯⋅ 96612222029108107.210(N C )4π10q E r ε---⨯⨯⨯===⨯⋅解图9-5解图9-4C题图9-41E ,2E沿x 、y 轴分解611212cos60cos120 1.810(N C )x x x E E E E E -=+=︒+︒=-⨯⋅611212sin60sin1209.3610(N C )y y y E E E E E -=+=︒+︒=⨯⋅电场强度为619.5210(N C )E -==⨯⋅6o69.3610arctan arctan 1011.810yx E E α⨯===-⨯9-12.一均匀带电球壳内半径16cm R =,外半径210cmR =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解:根据高斯定理0d ε∑⎰=⋅qS E s得2π4ε∑=q r E当5=r cm 时,0=∑q,得 0=E8=r cm时,∑q 3π4p=3(r)31R -()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm时,3π4∑=ρq -32(R)31R()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅沿半径向外.9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示, (1)求图中三个区域的场强1E ,2E ,3E 的表达式; (2)若624.4310C m σ--=⨯⋅,那么,1E ,2E ,3E各多大?解:(1)无限大均匀带电平板周围一点的场强大小为2E σε=在Ⅰ区域10002222σσσεεε-=+=E i i iⅡ区域200023222σσσεεε=+=E i i iⅢ区域30002222σσσεεε=-=-E i i i(2)若624.4310C m σ--=⨯⋅则题图9-1351102.5010(V m )2E i i σε-==⨯⋅ 512037.5010(V m )2E i i σε-==⨯⋅51302.5010(V m )2E i i σε-=-=-⨯⋅ 9-17 如题图9-17所示,已知2810ma -=⨯,2610mb -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求:(1)D 点和B 点的电势; (2) A 点和C 点的电势; (3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。

大学物理下册练习及答案

大学物理下册练习及答案

电磁学 磁力图所示,一电子经过A 点时,具有速率s m /10170⨯=υ。

(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场大小和方向;(2) 求电子自A 运动到C 所需的时间。

解:(1)电子所受洛仑兹力提供向心力 Rv m B ev 200=得出T eR mv B 3197310101.105.0106.11011011.9---⨯=⨯⨯⨯⨯⨯== 磁场方向应该垂直纸面向里。

(2)所需的时间为s v R T t 870106.110105.0222-⨯=⨯⨯===ππ eV 3100.2⨯的一个正电子,射入磁感应强度B =0.1T 的匀强磁场中,其速度矢量与B 成B 的方向。

试求这螺旋线运动的周期T 、螺距h 和半径r 。

解:正电子的速率为731193106.21011.9106.110222⨯=⨯⨯⨯⨯⨯==--m E v k m/s 做螺旋运动的周期为101931106.31.0106.11011.922---⨯=⨯⨯⨯⨯==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --⨯=⨯⨯⨯⨯==T v h m半径为3197310105.1.0106.189sin 106.21011.989sin ---⨯=⨯⨯⨯⨯⨯⨯==eB mv rm d =1.0mm ,放在B =1.5T 的磁立方厘米有8.42210⨯个自由电子,每个电子的电荷19106.1-⨯-=-e C ,当铜片中有I =200A 的电流流通时,(1)求铜片两侧的电势差'aa U ;(2)铜片宽度b 对'aa U 有无影响?为什么?解:(1)531928'1023.2100.1)106.1(104.85.1200---⨯-=⨯⨯⨯-⨯⨯⨯==nqd IB U aa V ,负号表示'a 侧电势高。

(2)铜片宽度b 对'aa U =H U 无影响。

(完整版)大学物理下册考题大全

(完整版)大学物理下册考题大全

真空中的静电场1、一均匀带电球面,电荷面密度为,球面内电场强度到处为零,球面上边元dS的一个带电量为 ds 的电荷元,在球面内各点产生的电场强度(A)到处为零.(B)不必定都为零.(C)到处不为零.(D)没法判断.2、在边长为a的正方体中心处搁置一电量为Q的点电荷,则正方体顶角处的电场强度的大小为:Q Q(A)120a 2.(B)60 a 2.Q Q(C)30 a2.(D)0 a2.3、如图示,直线MN长为2l,弧OCD是以N点为中心,l 为半径的半圆弧,N点有正电荷+q,M点有负电荷q.今将一试验电荷q0从O点出发沿路径OCDP移到无量远处,设无量远处电势为零,则电场力作功(A)A<0且为有限常量.(B)A>0且为有限常量.(C)A=∞.(D)A=0.第3题图第4题图4、图中实线为某电场中的电力线,虚线表示等势(位)面,由图可看出:(A)E A>E B>E C,U A>U B>U C.(B)E A<E B<E C,U A<U B<U C.(C)E A>E B>E C,U A<U B<U C.(D)E A <E B<E C,U A>U B>U C.5、真空中有两个点电荷M、N,相互间作用力为 F ,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变.(B)大小改变,方向不变.(C)大小和方向都不变.(D)大小和方向都改变.6、电量之比为1∶3∶5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的地点使B所受电场力为零时,AB 与BC 的比值为(A)5.(B)1/5.(C) 5 .(D)1 5 .7、关于电场强度与电势之间的关系,以下说法中,哪一种是正确的?(A)在电场中,场强为零的点,电必定为零.(B)在电场中,电势为零的点,电场强度必为零.(C)在电势不变的空间,场强到处为零.(D)在场强不变的空间,电势到处相等8、在空间有一非均匀电场,其电力线分布以以下图.在电场中作一半径为R的闭合球面S,已 知经过球面上某一面元 S 的电场强度通量为ΔΦ e ,则经过该球面其他部分的电场强度通量为4 R 2(B)Se(A)e..4R 2S(C)Se.(D) 0第8题图第9题图9、 一电量为-q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,以以下图.现将一试验电荷从A点分别挪动到B、C、D各点,则(A)从A到B,电场力作功最大.(B)从A到C,电场力作功最大.(C)从A到D,电场力作功最大.(D)从A到各点,电场力作功相等.10、 在边长为a的正方体中心处搁置一电量为Q的点电荷,设无量远处为电势零点,则在一个侧面的中心处的电势为:Q Q(A)4a.(B)2 0a.QQ(C)0 a . (D) 2 20 a. 11、在边长为a的正方体中心处搁置一点电荷Q,设无量远处为电势零点,则在正方体顶角处的电势为:QQ (A)430a.(B)230a.QQ(C)6a .(D) 12 0 a12. 以以下图,O点是两个相同的点电荷所在处连线的中点,P点为中垂线上的一点,则O、P两点的电势和场强盛小有以下关系:(A) U 0 U P ,E 0 E p . (B)U 0 U P ,E 0E p . (C) U 0U P , E 0 E p . (D)U 0U P , E 0E p .第 12题图第 14题图13、 依据高斯定理的数学表达式 E ds q 0可知下述各种说法中,正确的选项是: S(A)闭合面内的电荷代数和为零时,闭合面上各点场强必定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强必定到处不为零. (C)闭合面内的电荷代数和为零时,闭合面上各点场强不必定到处为零.(D)闭合面上各点场强均为零时,闭合面内必定到处无电荷.14、 一带电量为-q的质点垂直射入开有小孔的两带电平行板之间,以以下图.两平行板之间的电势差为U,距离为d,则此带电质点经过电场后它的动能增量等于(A)-qU /d .(B)+qU.(C)-qU.(D)qU /d15、 真空中有一电量为Q的点电荷,在与它相距为r的a点处有一试验电荷q.现使试验电荷q从a点沿半圆弧轨道运动到b点,以以下图.则电场力作功为Qqr 2 Qq2r(A)40 r 22 .(B)40 r 2.Qq2r(C)40 r.(D) 0.第 15题图第16题图16、一电场强度为 E 的均匀电场, E 的方向与X轴正向平行,以以下图.则经过图中一半径为R的半球面的电场强度通量为(A) R 2E .1 R2 E(B) 2 .(C)2 R 2E . (D)0.17、 关于电场强度定义式E F q 0,以下说法中哪个是正确的? (A)场强 E 的大小与尝试电荷 q 0 的大小成反比.(B)对场中某点,尝试电荷受力 F 与 q 0 的比值不因 q 0 而变.(C)尝试电荷受力F 的方向就是场强 E 的方向.(D)若场中某点不放尝试电荷q 0 ,则 F =0,从而 E =0.18、一带电体可作为点电荷办理的条件是(A)电荷一定呈球形分布. (B)带电体的线度很小.(C)带电体的线度与其他有关长度对比可忽视不计.(D)电量很小.E dsVdV19、高斯定理s(A)合用于任何静电场.(B)只合用于真空中的静电场.(C)只合用于拥有球对称性、轴对称性和平面对称性的静电场.(D)只合用于固然不拥有(C)中所述的对称性、但可以找到适合的高斯面的静电场. 和R (R <R ) 所带电量分别为Q20、两个齐心均匀带电球面,半径分别为Ra a和Q .设某babb点与球心相距r,当Ra <r<Rb 时,该点的电场强度的大小为:1Q aQ b1 Q aQ b(A)4r 2 .(B)4r2.1Q a Q b )1Q a4 0( 224 0 2(C) rb. (D)r .R21、半径为r的均匀带电球面1,带电量为q;其外有一齐心的半径为R的均匀带电球面2,带电量为Q,则此两球面之间的电势差U-U2为:1q(11 ) q(11 ) (A)40 rR .(B)4Rr .4 1 ( qQ )q(C) 0 rR .(D) 4 0 r .22、已知一高斯面所包围的体积内电量代数和∑qi =0,则可必定:(A)高斯面上各点场强均为零.(B)穿过高斯面上每一面元的电通量均为零.(C)穿过整个高斯面的电通量为零.(D)以上说法都不对.23、 有四个等量点电荷在OXY平面上的四种不一样组态,全部点电荷均与原点等距.设无量远处电势为零 , 则原点O处电场强度和电势均为零的组态是 (D)24. 在静电场中,有关静电场的电场强度与电势之间的关系,以下说法中正确的选项是:(A)场强盛的地方电势必定高.(B)场强相等的各点电势必定相等.(C)场强为零的点电势不必定为零.(D)场强为零的点电必定定是零.25、 正方形的两对角上,各置电荷Q,在其他两对角上各置电荷q,若Q所受合力为零,则Q与q的大小关系为(A)Q22q . (B) Q 2q .(C) Q4q .(D) Q2q .有导体和介质的静电场1. 关于高斯定理,以下说法中哪一个是正确的?(A)高斯面内不包围自由电荷,则面上各点电位移矢量 D 为零.(B)高斯面上到处D 为零,则面内必不存在自由电荷.(C)高斯面的 D 通量仅与面内自由电荷有关.(D)以上说法都不正确.2. 关于静电场中的电位移线,以下说法中,哪一种是正确的?(A)起自正电荷,止于负电荷,不形成闭合线,不中断.(B)任何两条电位移线相互平行.(C)起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不订交.(D)电位移线只出此刻有电介质的空间.3.两个半径相同的金属球,一为空心,一为实心,把二者各自孤即刻的电容值加以比较,则(A)空心球电容值大.(B)实心球电容值大.(C)两球电容值相等.(D)大小关系没法确立.4. C1和C2两空气电容器串通此后接电源充电.在电源保持联接的状况下,在C 2 中插入一电介质板,则(A)C 1 极板上电量增添,C 2 极板上电量增添.(B)C 1 极板上电量减少,C 2 极板上电量增添.(C)C 1 极板上电量增添,C 2 极板上电量减少.(D)C 1 极板上电量减少,C 2 极板上电量减少.第4题图第5题图5. C1和C 2 两空气电容器串通起来接上电源充电.而后将电源断开,再把一电介质板插入C1中,则(A)C 1 上电势差减小,C 2 上电势差增大.(B)C 1 上电势差减小,C 2 上电势差不变.(C)C 1 上电势差增大,C 2 上电势差减小.(D)C 1 上电势差增大,C 2 上电势差不变.6. C1和C2两空气电容器并联此后接电源充电.在电源保持联接的状况下,在C质板,则1 中插入一电介(A)C 1 极板上电量增添,C 2 极板上电量减少.(B)C 1 极板上电量减少,C 2 极板上电量增添.(C)C 1 极板上电量增添,C 2 极板上电量不变.(D)C 1 极板上电量减少,C 2 极板上电量不变.第6题图第7题图7. C1和C2两空气电容器,把它们串通成一电容器组.若在C(A)C 1 的电容增大,电容器组总电容减小.(B)C 1 的电容增大,电容器组总电容增大.(C)C 1 的电容减小,电容器组总电容减小.(D)C 1 的电容减小,电容器组总电容增大.1 中插入一电介质板,则8.有两个带电不等的金属球,直径相等,但一个是空心,一个是实心的.现使它们相互接触,则这两个金属球上的电荷(A)不变化.(C)空心球电量多.(B)均匀分配.(D)实心球电量多.9.在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,以以下图.当电容器充电后,若忽视边沿效应,则电介质中的场强 E 与空气中的场强E0对比较,应有(A)E E0,二者方向相同.(B) E E0,二者方向相同.(C) E E0,二者方向相同.(D) E E0,二者方向相反.第9题图10.两个半径不一样带电量相同的导体球,相距很远.今用一修长导线将它们连接起来,则:(A)各球所带电量不变.(B)半径大的球带电量多.(C)半径大的球带电量少.(D)没法确立哪一个导体球带电量多.真空中的稳固磁场1.一铜条置于均匀磁场中,铜条中电子流的方向以以下图.试问下述哪一种状况将会发生?(A)在铜条上a、b两点产生一小电势差,且U a >U b . (B)在铜条上a、b两点产生一小电势差,且U a <U b .(C)在铜条上产生涡流.(D)电子遇到洛仑兹力而减速.第1题图第2题图2. 边长为 l 的正方形线圈,分别用图示两种方式通以电流I(此中ab、cd与正方形共面),在这两种状况下,线圈在此中心产生的磁感觉强度的大小分别为(A) B 1 0,B 2 0 .(B)B 1 0,B 2 22 0 I / l.(C)B12 2 0 I / l ,B 2 0 .(D)B 1 2 2 0 I / l ,B 2 2 2 0 I / l .3. 一电荷量为q的粒子在均匀磁场中运动,以下哪一种说法是正确的?(A)只要速度大小相同,粒子所受的洛仑兹力就相同.(B)在速度不变的前提下,若电荷q变成-q,则粒子受力反向,数值不变. (C)粒子进入磁场后,其动能和动量都不变.(D)洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.4. 两个齐心圆线圈,大圆半径为R,通有电流I 1;小圆半径为r,通有电流I 图.若 r<<R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线 圈所受磁力矩的大小为2,方向如I1I 2 r 20 I 1I 2 r 2(A)2R.(B)2R.0 I 1I 2R 2(C) 2r. (D)0第 4题图第5题图5. 以以下图,在磁感觉强度为B 的均匀磁场中,有一圆形载流导线,a、b、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A)F a >F b >F c .(B)F a <F b <F c .(C)F b >F c >F a .(D)F a >F c >F b .6. 电流由长直导线1沿切向经a点流入一个电阻均匀分布的圆环,再由b点沿切向从圆环流出,经长直导线2返回电源 (如图) .已知直导线上电流强度为I,圆环的半径为R,且a、b和圆心O在同向来线上.设长直载流导线1、 2 和圆环分别在O点产生的磁感觉强度为B1 ,B 2 ,B 3,则圆心处磁感觉强度的大小(A)B=0,因为B=B =B =0.123 (B)B=0,因为固然B 1≠0,B 2≠0,但 B 1B 2 0 , B 3=0.(C)B≠0,因为B1≠0,B 2≠0,B 3≠0.(D)B≠0,因为固然B3=0,但B 1 B 2 0 .第6题图 第 7题图7. 在图(a)和(b)中各有一半径相同的圆形回路L、L 2,圆周内有电流I1、I ,其分布12相同,且均在真空中,但在(b)图中L2回路外有电流I,P 1、P2为两圆形回路上的对应3点,则:(A) L 1B dlL 2 B dl , B P 1B P 2(B) L 1 B dl L 2B dl , B P 1 B P 2 .(C) L 1 BdlL 2B dl , B P 1B P 2 .B dlB dl , B P 1BP 2(D)L 1L 2.8. 一电子以速度v 垂直地进入磁感觉强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A)正比于B,反比于v 2 .(B)反比于B,正比于v 2 .(C)正比于B,反比于v .(D)反比于B,反比于v .第 8 题图第 9题图9.把轻的正方形线圈用细线挂在载流直导线AB的周边,二者在同一平面内,直导线AB固定,线圈可以活动.当正方形线圈通以以以下图的电流时线圈将(A)不动.(B)发生转动,同时凑近导线AB. (C)发生转动,同时走开导线AB. (D)凑近导线AB.(E)走开导线AB.10. 两根载流直导线相互正交搁置,以以下图.I1 沿Y轴的正方向流动,I2 沿Z轴负方向流动.若载流I 1 的导线不可以动,载流I 2 的导线可以自由运动,则载流I 2 的导线开始运动的趋向是(A)沿X方向平动.(B)以X为轴转动.(C)以Y为轴转动.(D)没法判断.第 10题图第 11题图11. 在匀强磁场中,有两个平面线圈,其面积A1=2A 2,通有电流I1=2I 2,它们所受的最大磁力矩之比M1/M 2 等于(A)1.(B)2.(C)4.(D)1/4.12. 如图,无穷长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A)向着长直导线平移.(B)走开长直导线平移.(C)转动.(D)不动.13. 取一闭合积分回路L,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A)回路L内的∑I不变,L上各点的 B 不变. (B)回路L内的∑I不变,L上各点的 B 改变. (C)回路L内的∑I改变,L上各点的B 不变.(D)回路L内的∑I改变,L上各点的B 改变.14. 四条平行的无穷长直导线,垂直经过边长为a= 20cm的正方形极点,每条导线中的电流都是I= 20A,这四条导线在正方形中心O点产生的磁感觉强度为-(A) B 0.(B) (C) B 0.8 104T .(D)B104T .B104T .第 14题图 第 15题图15. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A)ab边转入纸内,cd边转出纸外.(B)ab边转出纸外,cd边转入纸内.(C)ad边转入纸内,bc边转出纸外.(D)ad边转出纸外,bc边转入纸内.16. 一个电流元idl位于直角坐标系原点,电流沿Z轴方向,空间点P(x,y,z)的磁感应强度沿x轴的重量是:(A)0;(B)(4 )i y dl (x 2 y 2z 2 )3 2 ;(C)(4 )i x dl (x 2 y 2z 2 ) 3 2 ;222(D) ( 0 4 )i y dl (x y z ) .17. 图为四个带电粒子在O点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片 . 磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则此中动能最大的带负电的粒子的轨迹是(A)Oa.(B)Ob.(C)Oc.(D)Od.第 17题图第 18题图18. 把轻的导线圈用线挂在磁铁N极周边,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,以以下图.当线圈内通以以以下图方向的电流时,线圈将(A)不动.(B)发生转动,同时凑近磁铁. (C)发生转动,同时走开磁铁. (D)不发生转动,只凑近磁铁.(E)不发生转动,只走开磁铁.19. 磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上,图(A)~(E)哪一条曲线表示B-x的关系? (B)20. 有一由N匝细导线绕成的平面正三角形线圈,边长为a,通有电流I,置于均匀外磁场中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩Mm 值为:B(A)3Na 2IB 2 .(B)3Na 2IB 4 . (C) 3Na 2IB sin 60 0. (D)0.21. 如图,两根直导线ab和cd沿半径方向被接到一个截面到处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感觉强度B dlB 沿图中闭合路径L的积分L等于(A) I . (B) I/3 .(C) I/4 .(D) 2 I /3.第 21题图第23题图22. 若要使半径为4 10 -3m 的裸铜线表面的磁感觉强度为 7.5 10- 5T ,则铜线中需要经过的电流为(A) A. (B)A. (C) 14A.(D) A.23. 以以下图带负电的粒子束垂直地射入两磁铁之间的水平磁场,则:(A)粒子以原有速度在本来的方向上连续运动.(B)粒子向N极挪动.(C)粒子向S极挪动.(D)粒子向上偏转.(E)粒子向下偏转.24. 若空间存在两根无穷长直载流导线,空间的磁场分布就不拥有简单的对称性,则该磁场分布(A)不可以用安培环路定理来计算. (B)可以直接用安培环路定理求出.(C)只好用毕奥-萨伐尔-拉普拉斯定律求出.(D)可以用安培环路定理和磁感觉强度的叠加原理求出.25. 图示一测定水平方向匀强磁场的磁感觉强度 B (方向见图) 的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调理均衡;通电后,因为磁场对线框的作用力而破坏了天平的均衡,须在天平左盘中加砝码m才能使天平重新均衡.若待测磁场的磁感觉强度增为本来的3倍,而经过线圈的电流减为本来的 1/2,磁场和电流方向保持不变,则要使天平重新均衡,其左盘中加的砝码质量应为(A)6m.(C)2m/3.(B)3m/2.(D)m/6.(E)9m/2.第 25题图有介质时的稳恒磁场1. 关于稳恒磁场的磁场强度 H 的以下几种说法中哪个是正确的?(A) H 仅与传导电流有关.(B)若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零.(C)若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零.(D)以闭合曲线L为边沿的任意曲面的H 通量均相等.2. 图示为载流铁芯螺线管,此中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力 线方向相互不矛盾.)(C)第3题图3. 附图中,M、P、O由软磁资料制成的棒,三者在同一平面内,当K闭合后,(A)M的左端出现N极.(B)P的左端出现N极.(C)O的右端出现N极.(D)P的右端出现N极.4. 磁介质有三种,用相对磁导率 r 表征它们各自的特征时,(A)顺磁质 >0,抗磁质 r <0,铁磁质 r >>1 .r (B)顺磁质 r >1,抗磁质 r =1,铁磁质 r >>1 .(C)顺磁质r >1,抗磁质 r <1,铁磁质r >>1 .(D)顺磁质r >0,抗磁质r <0,铁磁质 r >1.5. 用细导线均匀密绕成长为l 、半径为 a(l>> a)、总匝数为N的螺线管,管内充满相对磁导率为r 的均匀磁介质.若线圈中载有稳恒电流I,则管中任意一点的(A)磁感觉强度大小为 B= 0 r NI .(B)磁感觉强度大小为B= rNI /l(C)磁场强度大小为H=NI /l .(D)磁场强度大小为H=NI /l .电磁感觉1. 在一中空圆柱面上绕有两个完整相同的线圈aa'和bb',当线圈aa'和bb'如图(1)绕制及联系时,ab间自感系数为L1;如图(2)相互重叠绕制及联系时,ab间自感系数为L2.则(A)L 1=L 2=0.(B)L1=L2≠ 0.(C)L 1=0,L 2≠0.(D)L1≠ 0,L2=0.第1题图第2题图2.面积为S和2S的两圆线圈1、2如图搁置,通有相同的电流I.线圈1的电流所产生的经过线圈2的磁通用Φ21 表示,线圈2的电流所产生的经过线圈1的磁通用Φ12 表示,则Φ21和Φ 12 的大小关系为:/2.(A)Φ 21=2Φ 12 .(B)Φ 21 =Φ 12(C)Φ 21 =Φ 12.(D)Φ 21>Φ 12.3. 一根长度为L的铜棒,在均匀磁场 B 中以匀角速度旋转着, B 的方向垂直铜棒转动的平面,如图.设t=0时,铜棒与Ob成角,则在任一时辰t这根铜棒两端之间的感觉电动势是:(A)L2 Bcos(t+).(B) [ L2Bcost ]/2.(C)2L2Bcos(t+).(D)L2 B.(E)L2B /2.第3题图第5题图4.用线圈的自感系数L来表示载流线圈磁场能量的公式W m=LI 2/2(A)只合用于无穷长密绕螺线管.(B)只合用于单匝圆线圈.(C)只合用于一个匝数很多,且密绕的螺线环.(D)合用于自感系数L必定的任意线圈.5. 有甲乙两个带铁芯的线圈以以下图.欲使乙线圈中产生图示方向的感生电流i ,可以采纳下列哪一种方法?(A)接通甲线圈电源.(B)接通甲线圈电源后,减少变阻器的阻值.(C)接通甲线圈电源后,甲乙相互凑近.(D)接通甲线圈电源后,抽出甲中铁芯.旋转(如图所6. 一矩形线框长为a宽为b,置于均匀磁场中,线框绕OO 轴,以匀角速度示).设t=0时,线框平面处于纸面内,则任一时辰感觉电动势的大小为(A) 2abBcos t(B)abB .1abB cos t(C)2.(D)abBcos t(E)abBsin t第 6题图第 7题图7. 以以下图的电路中,A、B是两个完整相同的小灯泡,其内阻r>> R,L是一个自感系数相当大的线圈,其电阻与R相等.当开关K接通和断开时,关于灯泡A和B的状况下边哪一种说法正确?(A)K接通时,I A >I B . (B)K接通时,I (C)K断开时,两灯同时熄灭.(D)K断开时,I8. 两根无穷长平行直导线载有大小相等方向相反的电流I,I以一矩形线圈位于导线平面内(如图),则:A =IB .A =IB .dI/dt的变化率增添,(A)线圈中无感觉电流.(B)线圈中感觉电流为顺时针方向. (C)线圈中感觉电流为逆时针方向.(D)线圈中感觉电流方向不确立.第8题图第9题图9. 如图,两个线圈P和Q并联地接到一电动势恒定的电源上.线圈P的自感和电阻分别是线圈Q的两倍,线圈P和Q之间的互感可忽视不计.当达到稳固状态后,线圈P的磁场能量与Q的磁场能量的比值是(A)4.(B)2.(C)1.(D) 1/2 .10. 如图,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A)不动.(B)转动. (C)向左挪动.(D)向右挪动.第10题图第 11题图11. 如图,矩形地域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O作逆时针方向匀角速转动,O点是圆心且恰好落在磁场的边沿上,半圆形闭合导线完整在磁场外时开始计 时.图(A)─(D)的-t函数图象中哪一条属于半圆形导线回路中产生的感觉电动势?12. 在以以下图的装置中,把静止的条形磁铁从螺线管中按图示状况抽出时(A)螺线管线圈中感生电流方向如A点处箭头所示.(B)螺线管右端感觉呈S极.(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转.(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转.第 12题图第 13题图13. 如图,导体棒AB在均匀磁场B中绕经过C点的垂直于棒长且沿磁场方向的轴OO'转动(角速度与 B 同方向),BC的长度为棒长的1/3 .则 (A)A点比B点电势高. (B)A点与B点电势相等.(C)A点比B点电势低.(D)有稳恒电流从A点流向B点.14. 一个圆形线环,它的一半放在一分布在方形地域的匀强磁场B 中,另一半位于磁场以外,以以下图.磁场 B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感觉电流,应使(A)线环向右平移.(B)线环向上平移.(C)线环向左平移.(D)磁场强度减弱.第14题图第 17题图15. 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b,a 和b相对地点固定.若线圈b中没有电流经过,则线圈b与a 间的互感系数:(A)必定为零.(B)必定不为零.(C)可以不为零.(D)是不行能确立的.16. 一块铜板放在磁感觉强度正在增大的磁场中时,铜板中出现涡流(感觉电流),则涡流将(A)加快铜板中磁场的增添. (B)减缓铜板中磁场的增添.(C)对磁场不起作用.(D)使铜板中磁场反向.17. 如图,长度为 l 的直导线ab在均匀磁场B 中以速度 v挪动,直导线ab中的电动势为(A) Blv .(B) Blv sin .(C) Blv cos .(D)0.18. 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,环中:(A) 感觉电动势不一样.(B) 感觉电动势相同,感觉电流相同. (C) 感觉电动势不一样,感觉电流相同.(D) 感觉电动势相同,感觉电流不一样.19. 在无穷长的载流直导线周边搁置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作以以下图的三种不一样方向的平动时,线圈中的感觉电流(A)以状况Ⅰ中为最大.(B)以状况Ⅱ中为最大.(C)以状况Ⅲ中为最大.(D)在状况Ⅰ和Ⅱ中相同. 第19题图第22题图20. 一导体圆线圈在均匀磁场中运动,能使此中产生感觉电流的一种状况是(A)线圈绕自己直径轴转动,轴与磁场方向平行.(B)线圈绕自己直径轴转动,轴与磁场方向垂直. (C)线圈平面垂直于磁场并沿垂直磁场方向平移.(D)线圈平面平行于磁场并沿垂直磁场方向平移.21. 自感为 0.25 H的线圈中,当电流在( 1/ 16)s内由2A均匀减小到零时,线圈中自感电动势的大小为:(A) 7.8 × 10-3V.(B) 2.0 V.(C) 8.0 V.(D)× 10-2V.22. 以以下图,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感觉电流 i ,以下哪一种状况可以做到?(A)载流螺线管向线圈凑近.(B)载流螺线管走开线圈.(C)载流螺线管中电流增大.(D)载流螺线管中插入铁芯.23. 真空中一根无穷长直细导线上通有电流强度为I的电流,则距导线垂直距离为a的空间某点处的磁能密度为1(0 I) 21(0 I)2(B)202 a(A) 22 a1 2 a21( 0 I22 ()2)(C)0 I(D)2a24. 以以下图,闭合电路由带铁芯的螺线管,电源,滑线变阻器构成.问在以下哪一种状况下可使线圈中产生的感觉电动势与原电流I的方向相反.(A)滑线变阻器的触点A向左滑动.(B)滑线变阻器的触点A向右滑动.(C)螺线管上接点B向左挪动(忽视长螺线管的电阻).(D)把铁芯从螺线管中抽出.25. 将形状完整相同的铜环和木环静止搁置,并使经过两环面的磁通量随时间的变化率相等,则(A)铜环中有感觉电动势,木环中无感觉电动势. (B)铜环中感觉电动势大,木环中感觉电动势小. (C)铜环中感觉电动势小,木环中感觉电动势大.(D)两环中感觉电动势相等.光的干涉1. 在真空中波长为λ的单色光,在折射率为n的透明介质中从A沿某路径流传到B,若A、B两点位相差为3 ,则此路径AB的光程为(A)λ. (B) nλ. (C) 3λ.(D) λ/n2. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A)流传的行程相等,走过的光程相等.(B)流传的行程相等,走过的光程不相等.(C)流传的行程不相等,走过的光程相等.(D)流传的行程不相等,走过的光程不相等.3.用白光光源进行双缝实验,若用一个纯红色的滤光片掩饰一条缝,用一个纯蓝色的滤光片掩饰另一条缝,则(A)干涉条纹的宽度将发生改变.(B)产生红光和蓝光的两套彩色干涉条纹.(C)干涉条纹的亮度将发生改变.(D)不产生干涉条纹.4.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采纳的方法是(A)使屏凑近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度略微调窄.(D)改用波长较小的单色光源5.在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A)2(n-1)d.(B)2nd.(C)2(n-1)d+λ/2.(D)nd.(E)(n-1)d.6. 在双缝干涉实验中,光的波长为600 nm( 1nm= 10-9m),双缝间距为2mm,双缝与屏的间距为 300cm.在屏上形成的干涉图样的明条纹间距为(A)mm.(B)mm.(C) 3.1 mm(D) 1.2 mm.7.在迈克尔逊干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A)λ/2.(B)λ/(2n).(C)λ/n.(D)λ /2( n -1)8. 如图,S1、S2是两个相关光源,它们到P点的距离分别为r 1 和r 2.路径S1P垂直穿过一块厚度为t 1,折射率为n 1 的介质板,路径S2P垂直穿过厚度为t 2,折射率为n 2 的另一介质板,其他部分可看作真空,这两条路径的光程差等于(A)(r 2+n 2t 2)-(r 1+n 1t 1)(B) [r2+ (n2- 1)t2]- [r1+ (n1- 1)] t1(C)(r 2-n 2t 2)-(r 1-n 1t 1)(D)n 2t 2-n 1t 1第8题图第9题图9. 在双缝干涉实验中,若单色光源S到两缝SS 1、S 2 距离相等,则观察屏上中央明条纹位于图中O处.现将光源S向下挪动到表示图中的地点,则(A)中央明条纹也向下挪动,且条纹间距不变.(B)中央明条纹向上挪动,且条纹间距不变.(C)中央明条纹向下挪动,且条纹间距增大.(D)中央明条纹向上挪动,且条纹间距增大10.真空中波长为λ的单色光,在折射率为n的均匀透明媒质中,从A点沿某一路径流传到B点,路径的长度为 L .A、B两点光振动位相差记为Δφ,则(A) L=3λ/2,Δφ=3π.(B) L=3λ/(2n),Δφ=3nπ.(C) L=3λ/(2n),Δφ=3π.(D) L =3nλ/2,Δφ=3nπ光的衍射1.丈量单色光的波长时,以下方法中哪一种方法最为正确?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档