大学物理下(计算题)
大学物理考卷答案(下学期)
大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
大学物理题库——计算题2
1、从一个半径为R 的均匀薄板上挖去两个直径为R/2的圆板,形成的圆洞中心在距原薄板中心R/2处,所剩薄板的质量为m 。
求此时薄板对于通过原中心而与板面垂直的轴的转动惯量。
2、水星绕太阳(太阳质量为M )运行轨道的近日点到太阳的距离为1r ,远日点到太阳的距离为2r ,G 为引力常量。
求出水星越过近日点和远日点的速率1υ和2υ的表达式。
(1/2)*(V1*Δt)*r1=(1/2)*(V2*Δt)*r2 得:V1/V2=r2/r1 据“开普勒第三定律” R^3/T^2=GM/4∏^2 r1+r2=T/∏ √GM3、证明:行星在轨道上运动的总能量为21r r GMmE +-=式中M ,m 分别为太阳和行星质量,r 1,r 2分别为太阳到行星轨道近日点和远日点距离。
4、如图所示,一质量为m 的物体,从质量为M 的圆弧形槽顶端由静止滑下,圆弧形草的半径为R ,张角为2/π。
忽略所有摩擦,求:(1)物体刚离开槽底端时,物体和槽的速度各是多少?(2)在物体从A滑到B的过程中,物体对槽所做的功?5、如图所示,均匀直杆长L,质量M,由其上端的光滑水平轴吊起而处于静止。
有一质量为m的子弹以速率 水平射入杆中而不复出,射入点在轴下3L/4。
求子弹停在杆中时杆的角速度和杆的最大偏转角的表达式。
若m=8.0g ,M=1.0kg ,L=0.40m ,υ=200m/s 则子弹停在杆中时杆的角速度有多大?6、如图所示,在光滑的水平面上有一木杆,其质量kg 0.11=m ,长m 4.0=l ,可绕通过其中点并与之垂直的轴转动。
一质量为kg 01.02=m 的子弹,以12s m 100.2-⋅⨯=υ的速度射入杆端,其方向与杆及轴正交。
若子弹陷入杆中,试求得到的角速度。
题4.17解:根据角动量守恒定理()ωω'+=212J J J式中()2222l m J =为子弹绕轴的转动惯量,ω2J 为子弹在陷入杆前的角动量,l v 2=ω为子弹在此刻绕轴的角速度。
大学物理下计算题
第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E ρ的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+r r rC 点电场强度E ρ的大小方向为即方向与BC 边成33.7°。
9-5 两个点电荷6612410C,810C q q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E ρ。
解:如解图9-5所示1E ρ,2E ρ沿x 、y 轴分解 电场强度为9-12.一均匀带电球壳内半径16cm R =,外半径210cm R =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0d ε∑⎰=⋅q S E sϖϖ得解图9-5解图9-4当5=r cm 时,0=∑q ,得8=r cm 时,∑q 3π4p=3(r )31R - ()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -32(R )31R ()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅ 沿半径向外. 9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,(1)求图中三个区域的场强1E ρ,2E ρ,3E ρ的表达式; (2)若624.4310C m σ--=⨯⋅,那么,1E ρ,2E ρ,3E ρ各多大解:(1)无限大均匀带电平板周围一点的场强大小为在Ⅰ区域Ⅱ区域Ⅲ区域(2)若624.4310C m σ--=⨯⋅则9-17 如题图9-17所示,已知2810m a -=⨯,2610m b -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求: (1)D 点和B 点的电势;(2) A 点和C 点的电势;(3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。
大学物理(下)习题
E
Q
E
r
l
Pe
r l
r
2
l /4
2
3/2
E
r
3
p 4 π 0 r
3
q
q
结论:电偶极子中垂线上,距离中心较远处一点
的场强,与电偶极子的电矩成正比,与该点离中心 的距离的三次方成反比,方向与电矩方向相反。
当r R 高斯面内电荷为 0
高斯面 E 0
均匀带电球壳
rR
高斯面
结果表明:
Q
均匀带电球壳外的场强 分布正像球面上的电荷 都集中在球心时所形成 的点电荷在该区的场强 分布一样。在球面内的 场强均为零。
R
r
例5:求无限大均匀带电平板的场强分布。
设面电荷密度为 e 。
解:由于电荷分布对于求场点 p到平面的垂线 op 是对称的, 所以 p 点的场强必然垂直于该 平面。
3 rR Q E r r 3 1 3 1 3 0 r1 4π 0 r1
r1 R
Q
E
r 1 Q E r2 r 3 2 3 0 4π 0 R
r2 R
r
R
例4:均匀带电的球壳内外的场强分布。 设球壳半径为 R,所带总电量为 Q。 解:场源的对称性决定着场强分布的对称性。
需注意方向:
A
C
B
由图可知,在A 区和B区场强均为零。C 区场强 的方向从带正电的平板指向带负电的平板。 场强大小为一个带电平板产生的场强的两倍。
2 0
EC E E 2
0
A
(完整word)大学物理习题册计算题及答案
大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。
弹簧的劲度系数k = 25N ·m -1。
(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。
解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。
5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。
解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。
大学物理下册期末复习计算题
大学物理下册期末复习计算题第7章真空中的静电场*1.一半径为R 的带电导体球,电荷为-Q 。
求:球内、外任意一点的电场强度。
1.解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)*2.一半径为R 的带电导体球,电荷为Q 。
求:(1)球内、外任意一点的电场强度;(2)球内、外任意一点电势。
解:由高斯定理可求出电场强度的分布(3分) (2分)当r>R 时 (3分) 当r ≤R 时 (4分)⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 042020πεπε=⎪⎩⎪⎨⎧<>R r R r r q E0 420πε=r qdr r q V r 02044πεπε=⎰∞=R qdr r q dr V RRr 020440πεπε=+⎰⎰∞=⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 0 4202πεπε=*3. 如图所示,一长为L ,半径为R 的圆柱体,置于场强为E 的均匀电场中,圆柱体轴线与场强方向平行,求穿过圆柱体下列端面的电通量。
(1)左端面(2)右端面 (3)侧面 (4)整个表面解: 根据电通量定义 (1)左端面⎰⎰⎰-=-==⋅=121cos s s R E dS E EdS s d E ππφ(4分)(2)右端面⎰⎰===⋅=2030cos R E ES EdS s d E s πφ(4分) (3)侧面⎰⎰==⋅=02cos 2πφEdS s d E s (1分)(4)整个表面0321=++=s s s s φφφφ(3分)4. 三个点电荷1q 、2q 和3q -在一直线上,相距均为R 2,以1q 与2q 的中心O 作一半径为R 2的球面,A 为球面与直线的一个交点,如图。
大学物理习题选编(主编:陈晓)(下)
振动习题一、选择题1、 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.则与之对应的振动曲线是 [ B ]2、 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为A 、T /12B 、T /8.C 、T /6.D 、T /4 [ C ] 3、 将两个振动方向,振幅,周期都相同的简谐振动合成后,若合振幅和分振动的振幅相同,则这两个分振动的位相差是: A 、6π; B 、3π; C 、2π; D 、23π [ D ]二、填空题4、 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为 0 ,速度为 3π cm/s .5、 一简谐振动的旋转矢量如图所示,振幅矢量长2cm ,则该简谐振动的初相为 π/4 .振动方程为x=2cos(πt+π/4) cm .6、 一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为x=0.04cos(πt+π/2) m 。
三、计算题7、 质量为2 kg 的质点,按方程)]6/(5sin[2.0π-=t x 沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小;(2) 作用于质点的力的最大值和此时质点的位置.t-解:(1))65cos(π-==t dt dx v )65sin(5π--==t dt dv aN t ma F 5)65sin(520=-⨯==∴π(2)N F10max=m x 2.0±=∴8、 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:(1) T=8s )/(42s rad T ππω==∴ 设振动方程为)4cos(ψπ+=A xt=0时,5cos 0-==ψA x①t=2时,5)2cos(0=+=πψA x ② 由①②得,1=ψtg ,考虑到00>vπψ43-=∴ 代入①得,cm A 25=)434cos(25ππ-=∴t x (cm)(2))434sin(245πππ--==t dt dx vππ45222450=⨯=v (cm/s)波动习题1一、选择题1、 一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]m )-m )2、 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则A 、波的频率为a .B 、波的传播速度为 b/a .C 、波长为 π / b .D 、波的周期为2π / a . [ D ] 3、 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为A 、])/(cos[0φω+-=u x t Ay . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y . D 、})]/([cos{0φω++=u x t A y . [ D ] 二、填空题4、 A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .5、 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为 π.6、 请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______ ;_______X 射线___; ___γ射线______ . 三、计算题7、 图为t = T / 4 时一平面简谐波的波形曲线,求其波的表达式。
大学物理(下)题库
3. 在复色光照射下的单缝衍射图样中,其中某一波长的第3级明纹位置恰与波长λ=600nm的单色光的第2级明纹位置重合,此光波的波长是_______。
4.一束平行单色光垂直入射在一光栅上,若光栅的透光缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为__________。
10: 在作单缝衍射实验时,缝宽为0.6 mm,屏幕距单缝40 cm,用波长为600nm的单色光垂直照射单缝,求屏幕上中央亮纹的宽度及第三级极小到中心点的距离。
11:用白光垂直照射一光栅时,能在30o衍射方向上观察到λ1=6000的第三级明纹,但在该方向上不见λ2=4500的第四级明纹,求光栅常数和最小缝宽。(1=10-10m)
4.用红光和紫光分别做杨氏双缝干涉实验,则所产生的干涉条纹的间距哪种光大?___________.
5. 在硅片上(n1=3.4)生成一层二氧化硅薄膜,并作成劈尖形状,如图。二氧化硅的折射率n2= 1.5,今用波长=590nm的单色光垂直照射到二氧化硅上,则劈尖边缘(棱边)是____纹,现共看到5个亮条纹,且膜的最厚处恰为亮条纹,则膜的厚度为_________。
一定量的理想气体,从a状态(2P1,V1)经历如图所示的直线过程到b状态(P1,2V1),则ab过程中系统作功A=___________,内能改变ΔE=___________。
计算题
设一动力暖气装置,由一台卡诺热机和一台卡诺制冷机组合而成。热机靠燃料燃烧时释放的热量工作并向暖气系统中的水放热。同时,热机带动制冷机。制冷机自天然蓄水池中吸热,也向暖气系统放热。假定热机锅炉的温度为t1=2100C,天然蓄水池中水的温度为t2=150C,暖气系统的温度为t3=600C,热机从燃料燃烧时获得热量2.1×107J,计算暖气系统所得热量。
大学物理 下 计算题参考答案
大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。
⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。
求 (1)导体内部各点的磁感应强度。
(2)导体内壁和外壁上各点的磁感应强度。
解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。
由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。
解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。
)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。
O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。
大学物理考试卷及答案下
汉A一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得 3 分,共15 分)1、强度为0I 的自然光,经两平行放置的偏振片,透射光强变为 ,若不考虑偏振片的反射和吸收,这两块偏振片偏振化方向的夹角为【 】 A.30º; B. 45º ; C.60º; D. 90º。
2、下列描述中正确的是【 】 A.感生电场和静电场一样,属于无旋场;B.感生电场和静电场的一个共同点,就是对场中的电荷具有作用力;C.感生电场中可类似于静电场一样引入电势;D.感生电场和静电场一样,是能脱离电荷而单独存在。
3、一半径为R 的金属圆环,载有电流0I ,则在其所围绕的平面内各点的磁感应强度的关系为【 】A.方向相同,数值相等;B.方向不同,但数值相等;C.方向相同,但数值不等;D.方向不同,数值也不相等。
4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【 】A.感生电场和涡旋磁场;B.位移电流和位移电流密度;C.位移电流和涡旋磁场;D.位移电流和感生电场。
5、当波长为λ的单色光垂直照射空气中一薄膜(n>1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【 】A. ;B. ;C. ;D. ;二、填空题(本大题共15小空,每空 2分,共 30 分。
)6、设杨氏双缝缝距为1mm ,双缝与光源的间距为20cm ,双缝与光屏的距离为1m 。
当波长为0.6μm 的光正入射时,屏上相邻暗条纹的中心间距为 。
7、一螺线管的自感系数为0.01亨,通过它的电流为4安,则它储藏的磁场能量为 焦耳。
8、一质点的振动方程为 (SI 制),则它的周期是 ,频率是 ,最大速度是 。
9、半径为R 的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设dtdB为已知,则感生电场在r<R 区域为 ,在r>R 4I n 4λn 32λn2λn 43λ)6100cos(1052ππ-⨯=-t xd区域为 。
大学物理计算题
m x 100=00=v 00=x 00=v m x 100=物理复习题总编三、计算题★1、一质点沿x 轴运动,其加速度为a=4t (SI),已知t=0时,质点位于 处,初速度。
试求其位置和时间的关系式。
★2、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a=2+6x 2(SI)。
如果质点在原点处的速度为零,试求其在任意位置处的速度。
★ 3、已知一质点绕半径为0.2米的圆周运动,其转过的弧长随时间变化的关系式是S=2t 2+3t+1(式中t 以秒计,S 以米计)。
求:(1)前2秒内质点的平均速率;(2)质点在第2秒末的瞬时速率;(3)质点在第2秒末的切向加速度、法向加速度和总加速度的大小。
★4、质点m=2kg 的物体沿x 轴作直线运动,所受合外力F=10+6x 2(SI)。
如果在处时速度 ;试求该物体运动到x=4m 处时速度的大小。
★5、已知质点的运动方程为x=5-3t 3,y=3t 2+2t-8(SI)求:(1)任意时刻质点的位置矢量、速度和加速度;(2)质点在第二秒内的位移、平均速度和平均加速度。
★6、质量为2.0kg 的质点沿x 轴运动,其速度v=5+t2,当t=0时,质点坐标为 。
试求:(1) t=3s 时质点的加速度和加速度和所受的力(2) 质点的运动方程(3) 前2秒内,力对质点所作的功。
★7、有一个水平的弹簧振子,振幅A=2.0×10-2米,周期为0.5秒,当t=0时,(1)物体经过x=1.0×10-2米处,且向负方向运动,(2)物体过x=-1.0×10-2米处,且向正方向运动。
请分别用旋转矢量图来表示它们各自运动的初相位,同时分别写出以上两种运动情况下的振动表达式;振动速度表达式;振动加速度表达式。
★8、如果所示,以P点在平衡位置向正方向运动作计时零点,已知圆频率为ω,振幅A,简谐波以速度u向x轴的正方向传播,试求:(1)P点振动方程。
(2)波动方程。
大学物理下期末试题及答案
一、选择题(共30分,每题3分)1. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]2. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为:(A) 0. (B) 0.(C)0. (D) 0 [ ]3. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. [ ] 4. 球壳,则在球壳中一点P 处的场强大小与电势(点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0.(C) E = 0,U = 0. (D) E > 0,U < 0. 5. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则 (A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变. (D) C 1极板上电荷减少,C 2极板上电荷不变. 6. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ] 7. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关.(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的.x(D) 三种说法都是正确的. [ ]8. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍.(C) 0.5倍. (D) 0.25倍. [ ] 9. 已知粒子处于宽度为a 的一维无限深势阱中运动的波函数为 ax n a x n π=sin 2)(ψ , n = 1, 2, 3, … 则当n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率为(A) 0.091. (B) 0.182. (C) 1. . (D) 0.818. [ ]10. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (3,0,1,21-). (B) (1,1,1,21-). (C) (2,1,2,21). (D) (3,2,0,21). [ ]二、填空题(共30分)11.(本题3分)一个带电荷q 、半径为R 的金属球壳,壳内是真空,壳外是介电常量为ε 的无限大各向同性均匀电介质,则此球壳的电势U =________________. 12. (本题3分)有一实心同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则在r < R 1处磁感强度大小为________________.13.(本题3分)磁场中某点处的磁感强度为)SI (20.040.0j i B-=,一电子以速度j i66100.11050.0⨯+⨯=v (SI)通过该点,则作用于该电子上的磁场力F 为__________________.(基本电荷e =1.6×10-19C) 14.(本题6分,每空3分)四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处. 15. (本题3分) 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.16.(本题3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W 1 / W 2=___________.17. (本题3分)静止时边长为 50 cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108 m ·s -1运动时,在地面上测得它的体积是____________.18. (本题3分)以波长为λ= 0.207 μm 的紫外光照射金属钯表面产生光电效应,已知钯的红限频率 ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V .(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) 19. (本题3分)如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量的不确定量近似地为________________kg ·m /s . (取∆x ·∆p ≥h ,普朗克常量h =6.63×10-34 J ·s) 三、计算题(共40分) 20. (本题10分)电荷以相同的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V . (1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上电荷面密度应为多少,与原来的电荷相差多少?[电容率ε0=8.85×10-12 C 2 /(N ·m 2)] 21. (本题10分)已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径. 22.(本题10分) 如图所示,一磁感应强度为B 的均匀磁场充满在半径为R 的圆柱形体内,有一长为l 的金属棒放在磁场中,如果B 正在以速率dB/dt 增加,试求棒两端的电动势的大小,并确定其方向。
大学物理习题下(完整版)
物理(下)作业专业班级:姓名:学号:第十章真空中的静电场(1)一、选择题1、根据电场强度定义式0/q F E(0q 为正的实验点电荷),下列说法中哪个是正确的?(A)、若场中某点不放实验电荷0q ,则F =0,从而E=0;(B)、电场中某点场强的大小与实验点电荷q 0的大小成反比;(C)、电场中某点场强的方向,就是正电荷在该点所受电场力的方向;(D)、以上说法都不正确。
[]2、如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)xq04 ;(B)30xqa;(C)302xqa;(D)204xq 。
[]3、(2010年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互作用力为F ,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变为:(A)F/2;(B)F/4;(C)3F/8;(D)F/10.[]二、填空题1、一电量为–5×10―9C 的试验电荷放在电场中某点时,受到20×10―9N 向下的力,则该点的电场强度大小为___________________,方向__________________。
2、(2011年电子科技大学)由一根绝缘细线围成的边长为l 的正方形线框,今使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度大小E=__________________。
3、铁原子核里两质子间相距4.0×10-15米,每个质子的电荷都是1.6×10-19库仑,则它们之间的库仑力应为______________牛顿。
三、计算题1、(2012年深圳大学)如图,在O x 轴上有长为a 的细杆OM ,其电荷线密度为Cx ,其中C为大于零的常量,求:(1)在OM 延长线上距M点为b的P点的电场强度的大小;(2)如果在P点放置一个带电量为+q 的点电荷,该点电荷所受库仑力大小为多少?2、有一半径为R的半圆细环上均匀地分布电荷Q,若在其环心处放置一电荷量为q的点电荷,求该点电荷q所受到的电场力的大小及方向。
大学物理下作业答案.docx
静电场(一)一. 选择题:1.解:在不考虑边缘效应的情况下,极板间的电场等同于电荷均匀分布,密度为o = ±q/S的两面积无限大平行薄板之间的电场一-匀强电场,一板在另一板处之电场强度为£ = o/(2s0),方向垂直于板面.所以,极板间的相互作用力F =q・E = q2 /(2件)。
故选(B)。
2.解:设置八个边长为a的立方体构成一个大立方体,使A(即Q)位于大立方体的中心.所以通过大立方体每一侧面的电场强度通量均为q/(6&o),而侧面abed是大立方体侧面的1/4,所以通过侧面abed的电场强度通量等于q/(24%).选(C)。
3.解:寸亘•丞=jpdV/£°适用于任何静电场.选(A)。
4.解:选(B)。
5.解:据高斯定理知:通过整个球面的电场强度通=q/&. ■内电荷通过昂、&的电通量相等且大于零; 外电荷对品的通量为负,对&的通量为正. 所以0>1 <0>2 •故(D)对。
二. 填空题:1.解:无限大带电平面产生的电场E= —2&oA L 八(5 2(5 3(5A 区:E A= ------------------ = ------2s0 2s02g0CL L b 2b bB 区:E R = ------------ = ------2s0 2s 02s0C区"c=三+至=至2s n 2s n 2s n2.解:据题意知,P点处场强方向若垂直于OP,则入在P点场强的OP分量与Q在P点的场强E QP一定大小相等、方向相反.即Jcp = ------------- c os——= ----------- =也冲= -------- , O — aA .2%。
3 4%。
4%。
之3. 解:无限长带电圆柱体可以看成由许多半径为r 的均匀带电无限长圆筒叠加而成,因此 其场强分布是柱对称的,场强方向沿圆柱半径方向,距轴线等距各点的场强大学相等。
大学物理下练习题答案
大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。
( D )以上说法都不正确。
3.图所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x < 0)和( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A )i a02πελ. (B) 0.(C)i a 04πελ. (D))(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图所示的点电荷,则中心O 处场强(C)(A) 大小为零.(B) 大小为q/(20a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.5. 如图所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) R 2E . (B) R 2E /2 .(C) 2R 2E .(D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+(0, a )xyO图O qa2q q 2q xy图 E O 图 xy(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
大学物理习题集(下,含解答)
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理(下册)习题与答案
大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过微分面积 的磁通量为
通过矩形线圈的磁通量为
感生电动势
时,回路中感应电动势的实际方向为顺时针; 时,回路中感应电动势的实际方向为逆时针。
13-3均匀磁场 被限制在半径R=10cm的无限长圆柱形空间内,方向垂直纸面向里。取一固定的等腰梯形回路ABCD,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示。设磁场以 的匀速率增加,已知 , ,求等腰梯形回路ABCD感生电动势的大小和方向。
第9章
9-4直角三角形ABC如题图9-4所示,AB为斜边,A点上有一点荷 ,B点上有一点电荷 ,已知 , ,求C点电场强度 的大小和方向( , ).
解:如解图9-4所示C点的电场强度为
C点电场强度 的大小
方向为
即方向与BC边成33.7°。
9-5两个点电荷 的间距为0.1m,求距离它们都是0.1m处的电场强度 。
而 在O点产生的 的大小为
和 方向相反,大小相等.即 。
直导线 在O点产生的 。
直导线 在O点产生的 ,方向垂直纸面向外。
则O点总的磁感强度大小为 ,方向垂直纸面向外。
2.一载有电流 的长导线弯折成如题图所示的形状,CD为1/4圆弧,半径为R,圆心O在AC,EF的延长线上.求O点处磁场的场强。
解:因为O点在AC和EF的延长线上,故AC和EF段对O点的磁场没有贡献。
解:设顺时针方向为等腰梯形回路绕行的正方向.则t时刻通过该回路的磁通量
,其中S为等腰梯形ABCD中存在磁场部分的面积,其值为
感应电动势
代入已知数值得
“–”说明,感应电动势的实际方向为逆时针,即沿ADCBA绕向。用楞次定律也可直接判断感应电动势的方向为逆时针绕向。
13-4如题图13-4所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度 沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:
4.一根很长的圆柱形实心铜导线半径为 ,均匀载流为 。试计算:
(1)如题图(a)所示,导线内部通过单位长度导线剖面的磁通量;
(2)如题图(b)所示,导线外部通过单位长度导线剖面的磁通量.
解:由磁场的安培环路定理可求得磁感应强度分布情况为
然后求磁通量。沿轴线方向在剖面取面元 ,考虑到面元上各点 相同,故穿过面元的磁通量 ,通过积分,可得单位长度导线内的磁通量。
(1)求图中三个区域的场强 , , 的表达式;
(2)若 ,那么, , , 各多大?
解:(1)无限大均匀带电平板周围一点的场强大小为
在Ⅰ区域
Ⅱ区域
Ⅲ区域
(2)若 则
9-17如题图9-17所示,已知 , , , ,D为 连线中点,求:
(1)D点和B点的电势;
(2)A点和C点的电势;
(3)将电量为 的点电荷q0由A点移到C点,电场力所做的功;
(3)外圆筒导体内( )的B;
(4)电缆外( )各点的B。
解:在电缆的横截面,以截面的轴为圆心,将不同的半径 作圆弧并取其为安培积分回路 ,然后,应用安培环路定理求解,可得离轴不同距离处的磁场分布。
(1)当 时, , ,得B=0;
(2)当 时,同理可得 ;
(3)当 时,有 ,得
(4)当 时,B=0;
6.如题图所示,一根长直导线载有电流 ,矩形回路载有电流 ,已知 , 试计算:
(1)作用在回路各边上的安培力;
(2)作用在回路上的合力.
解:(1)上下导线所受安培力大小相等,方向相反。
左右导线所受安培力大小分别为:
线框所受总的安培力 为左、右两边安培力 和 之矢量和,故合力的大小为:
合力的方向朝左,指向直导线.
(1)空间场强分布;
(2)两圆柱面之间的电势差。
解: (1)由高斯定理求对称性电场的场强分布
取同轴圆柱形高斯面,侧面积 ,则
小圆柱面内: ,
两圆柱面间: , ,
方向沿径向向外
大圆柱面外: ,
(2)
9-21在半径为R1和R2的两个同心球面上分别均匀带电q1和q2,求在 , , 三个区域内的电势分布。
解:利用高斯定理求出空间的电场强度:
Cห้องสมุดไป่ตู้段:
DE段
O点总磁感应强度为
,方同垂直纸面向外.
3.如题图所示,在长直导线AB内通有电流 ,有一与之共面的等边三角形CDE,其高为 ,平行于直导线的一边CE到直导线的距离为 。求穿过此三角形线圈的磁通量。
解:建立如解图所示坐标,取距电流AB为 远处的宽为 且与AB平行的狭条为面积元
则通过等边三角形的磁通量为:
第13章
13-1如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为 , 。已知两导线中电流都为 ,其中I0和 为常数,t为时间。导线框长为a,宽为b,求导线框中的感应电动势。
解:无限长直电流激发的磁感应强度为 。取坐标Ox垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。取回路的绕行正方向为顺时针。由场强的叠加原理可得x处的磁感应强度大小
则空间电势的分布:
第11章
1.用两根彼此平行的长直导线将半径为R的均匀导体圆环联到电源上,如题图所示,b点为切点,求O点的磁感应强度。
解:先看导体圆环,由于 和 并联,设大圆弧有电流 ,小圆弧有电流 ,必有: 由于圆环材料相同,电阻率相同,截面积S相同,实际电阻与圆环弧的弧长 和 有关,即:
则 在O点产生的 的大小为
解:如解图9-5所示
, 沿x、y轴分解
电场强度为
9-12.一均匀带电球壳内半径 ,外半径 ,电荷体密度为 ,求:到球心距离 分别为 处场点的场强.
解: 根据高斯定理 得
当 时, ,得
时,
, 方向沿半径向外.
cm时,
沿半径向外.
9-13两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,
(1)导线内部通过单位长度导线剖面的磁通量
(2)导线外部通过单位长度导线剖面的磁通量.
5.有一根很长的同轴电缆,由两个同轴圆筒状导体组成,这两个圆筒状导体的尺寸如题图11-19所示。在这两导体中,有大小相等而方向相反的电流 流过。求:
(1)内圆筒导体内各点( )的磁感应强度B;
(2)两导体之间( )的B;
(4)将q0由B点移到D点,电场力所做的功。
解:(1)建立如解图9-17所示坐标系,由点电荷产生的电势的叠加得
同理,可得
(2)
(3)将点电荷q0由A点移到C点,电场力所做的功
(4)将q0由B点移到D点,电场力所做的功
9-20半径为 和 ( > )的两无限长同轴圆柱面,单位长度上分别带有电量 和 ,试求: