大学物理下(计算题)Word版
(完整版)大学物理下期末试题及答案

(完整版)大学物理下期末试题及答案大学物理(下)试卷(A 卷)院系:班级:________ 姓名:学号:一、选择题(共30分,每题3分)1. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[]2. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A)0. (B) 0. (C) 0. (D) 0 []3. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍.[]4. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U 0,U < 0.[]5. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变.x3q 2(D) C 1极板上电荷减少,C 2极板上电荷不变.[]6. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[]7. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的.(D) 三种说法都是正确的.[]8. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍.(C) 0.5倍. (D) 0.25倍.[]9. 已知粒子处于宽度为a 的一维无限深势阱中运动的波函数为 a x n a x nsin 2)( , n = 1, 2, 3, …则当n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率为(A) 0.091. (B) 0.182. (C) 1. . (D) 0.818.[]10. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (3,0,1,21). (B) (1,1,1,21 ). (C) (2,1,2,21). (D) (3,2,0,2 1).[]二、填空题(共30分)11.(本题3分)一个带电荷q 、半径为R 的金属球壳,壳内是真空,壳外是介电常量为的无限大各向同性均匀电介质,则此球壳的电势U=________________.12. (本题3分)有一实心同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则在r < R 1处磁感强度大小为________________. 13.(本题3分)磁场中某点处的磁感强度为)SI (20.040.0j i B,一电子以速度j i66100.11050.0 v (SI)通过该点,则作用于该电子上的磁场力F 为 __________________.(基本电荷e =1.6×10 19C)14.(本题6分,每空3分)四根辐条的金属轮子在均匀磁场B 中转动,转轴与B平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处.15. (本题3分)有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.16.(本题3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W 1 / W 2=___________.17. (本题3分)静止时边长为 50 cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108 m ·s -1运动时,在地面上测得它的体积是____________.18. (本题3分)以波长为 = 0.207 m 的紫外光照射金属钯表面产生光电效应,已知钯的红限频率 =1.21×1015赫兹,则其遏止电压|U a |=_______________________V .(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) 19. (本题3分)如果电子被限制在边界x 与x + x 之间, x =0.5 ?,则电子动量x 分量的不确定量近似地为________________kg ·m /s . (取 x · p ≥h ,普朗克常量h =6.63×10-34 J ·s)三、计算题(共40分)20. (本题10分)电荷以相同的面密度分布在半径为r1=10 cm和r2=20 cm的两个同心球面上.设无限远处电势为零,球心处的电势为U0=300 V.(1) 求电荷面密度.(2) 若要使球心处的电势也为零,外球面上电荷面密度应为多少,与原来的电荷相差多少?[电容率 0=8.85×10-12 C2 /(N·m2)]21. (本题10分)已知载流圆线圈中心处的磁感强度为B0,此圆线圈的磁矩与一边长为a通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.如图所示,一磁感应强度为B的均匀磁场充满在半径为R的圆柱形体内,有一长为l的金属棒放在磁场中,如果B正在以速率dB/dt增加,试求棒两端的电动势的大小,并确定其方向。
大学物理计算题_08[1]
![大学物理计算题_08[1]](https://img.taocdn.com/s3/m/0851d74a852458fb770b568c.png)
计算题练习
一 计算题 (共156分) 1. (本题 5分)(0265)
有一质点沿 x 轴作直线运动,t 时刻的坐标为 x = 4.5 t2 – 2 t3 (1) 第 2 秒内的平均速度; (2) 第 2 秒末的瞬时速度; (3) 第 2 秒内的路程.
(SI) .试求:
2. (本题 5分)(0513)
O m,r
m′, r′
A
B
一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知 r = 10 cm.求:
(1) 组合轮的角加速度β;
(2) 当物体 A 上升 h=40 cm 时,组合轮的角速度ω.
10. (本题 5分)(5427)
电荷为 q1=8.0×10-6 C 和 q2=-16.0×10-6 C 的两个点电荷相距 20 cm,求 离它们都是 20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C2N-1m-2 )
质点 M 在水平面内的运动轨迹如图所示,
MB
OA 段为直线,AB、BC 段分别为不同半径的
两个 1/4 圆周.设 t =0 时,M 在 O 点,已知运 S
15 m
动学方程为
A
30 m
S =30t+5t2 (SI)
15 m C
求 t =2 s 时刻,质点 M 的切向加速度和法向加 O
速度.
3. (本题 5分)(0516)
如图所示线框,铜线横截面积 S = 2.0 mm2,其中 OA 和 DO'两段保持水平不动,ABCD 段是边长为 a O
v
A
B
D
O'
的正方形的三边,它可绕
导线放在匀强磁场
v B
中,
大学物理考卷答案(下学期)

大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
大学物理下计算题

第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E ρ的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+r r rC 点电场强度E ρ的大小方向为即方向与BC 边成33.7°。
9-5 两个点电荷6612410C,810C q q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E ρ。
解:如解图9-5所示1E ρ,2E ρ沿x 、y 轴分解 电场强度为9-12.一均匀带电球壳内半径16cm R =,外半径210cm R =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0d ε∑⎰=⋅q S E sϖϖ得解图9-5解图9-4当5=r cm 时,0=∑q ,得8=r cm 时,∑q 3π4p=3(r )31R - ()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -32(R )31R ()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅ 沿半径向外. 9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,(1)求图中三个区域的场强1E ρ,2E ρ,3E ρ的表达式; (2)若624.4310C m σ--=⨯⋅,那么,1E ρ,2E ρ,3E ρ各多大解:(1)无限大均匀带电平板周围一点的场强大小为在Ⅰ区域Ⅱ区域Ⅲ区域(2)若624.4310C m σ--=⨯⋅则9-17 如题图9-17所示,已知2810m a -=⨯,2610m b -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求: (1)D 点和B 点的电势;(2) A 点和C 点的电势;(3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。
《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷)说明 1考试答案必须写在答题纸上,否则无效。
请把答题纸撕下。
一、 选择题(30分,每题3分)1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为:(A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ参考解:v =dx/dt = -Aωsin (ωt+φ),cos )sin(424/ϕωϕωπA A v T T T t -=+⋅-== ∴选(C)2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(2212421221221221=-=kA k kA kA mv A ∴选(E )3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.参考解:这里的条件是“平面简谐波在弹性媒质中传播”。
由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。
质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。
∴选(D )4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。
大学物理期末计算题复习例题.docx

k2. 8质量为加的物体,最初静止于X 。
,在力f = -一伙为常数)作用下沿直线运动.证 明物体在x 处的速度大小V=[2^(l/x-l/x o )/w ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程… k d 2x/ =——=ma = m —-X 2 dr 2利用v = dv/dr,可得d 2x dv dx dv dv ----- =—= ------------ =v —At 2 dz d/ dr dx mvdv:kdx 一 7 ,积分得1 2 —mv =±+c. 2利用初始条件,当X = x ()时,v = 0,所以C = -k/x^ \ = k k— mv"= ------- ,2 x x 0即 V=—丄).证毕 Y m x x 0• 2.13如图所示,一小球在弹簧的弹力作用下振动.弹力F=・kx,而位移兀=Acoscoh其中力和⑵都是常数.求在/ = 0到t = n/lco 的时间间隔内弹力予小球的冲量.图3.1[解答]方法一:利用冲量公式.根据冲量的定义得 dJ = Fdt = -kAcoscotdt,积分得冲量为 / = J : ° (-kA cos (Vt )dt ,kA . w kA= ----- sm cot = ---------co 0 co方法二:利用动量定理.小球的速度为v = dx/dt = - coAsm (ot r设小球的质量为加,其初动量为p\ = mv\ = 0,末动量为P2 = mvz =・ tna )A,因此方程变为 因此小球获得的冲量为I = P2 ~P\ = -fticoA 可以证明k =mco 2,因此I = -kA/a). 2. 26证明行星在轨道上运动的总能量为E 二 ---------- ・式中M 和加分别为太阳和行 星的质塑,门和厂分别为太阳和行星轨道的近日点和远日点的距离.[证明]设行星在近口点和远口点的速度分别为山和巾,由于只有保守力做功,所以机械 能守恒,总能量为1 2 GMmE = — mv : --------- (1)厂 1 r GMmE = —mv. -------- 2 厂2它们所组成的系统不受外力矩作用,所以行星的角动量守恒.行星在两点的位矢方向与 速度方向垂直,可得角动量守恒方程mV\T\ = 〃汐 2厂2,即 力门=叱厂2・(3) 将(1)式各项同乘以门2得 Er\2 =加(吋])2/2 - GMmr\,(4) 将(2)式各项同乘以尸2?得£>2? = 〃7(W )2/2 - GMW2, (5)将(5)式减(4)式,利用(3)式,可得E (F22 -门彳)=-F )),(6)由于门不等于厂,所以(々 + 门)E = -GMm, GMm3. 6 一短跑运动员,在地球上以10s 的时间跑完了 100m 的距离,在对地飞行速度为0.8c 的飞船上观察,结果如何?[解答]以地球为S 系,则A/= 10s, A.v= 100m.根据洛仑兹坐标和时间变换公式飞船上观察运动员的运动距离为(2)证毕.x-vtJi-e/c )2和t'= t-vx/c 2 Jl-(v/c)2运动员运动的时间为人,A/-vAr/c 2Jl-(T10-0.8xl00/c = - 〜16.67(s). 0.6在飞船上看,地球以0.8c 的速度后退,后退时间约为16.67s ;运动员的速度远小于地 球后退的速度,所以运动员跑步的距离约为地球后退的距离,即4xl09m.3.8已知S'系以0.牝的速度沿S 系x 轴正向运动,在S 系中测得两事件的时空坐标为 x\ = 20m, x 2 = 40m, =4s, 6 = 8s.求S'系屮测得的这两件事的时间和空间间隔.[解答]根据洛仑兹变换可得S'系的时间间隔为' _ 匚 _ 卩(兀 _xj/c?空间间隔为二兀2 一 州一卩((2 一(1)1 Jl-(v/c)240-2(M)&x(—) “&亦).0.63. 11 一粒子动能等于其非相对论动能二倍时,其速度为多少?其动量是按非相对论算 得的二倍时,其速度是多少?[解答](1)粒子的非相对论动能为Ek = /??OV 2/2 ,相对论动能为E'k = fnc 2 - nioc 2,其中tn 为运动质量根据题意得设x = (v/c)2,方程可简化为 A Y = Ar-vA/Ji-e/cF100 — 0&X10Vl-0.82^-4xl09(m). 8_4—0.8(40-20)/C06~6・67G).叫疋Ji-=m Q v 2,或 1 = (1 + 兀)Jl-x ,平方得1 =(1 -x2)( 1 ・x),化简得x(x2-x-l) = 0.由于x不等于0,所以=0.解得1±V52(2)粒子的非相对论动量为P = "7("相对论动量为、"Vp = mv =, =Ji-("er根据题意得方程_ 处-2m vI ---------- r _ z,z7o v -Ji-(如很容易解得速率为V3v =——c= 0.866c.26.11光源发出波长可继续变化的单色光,垂直射入玻璃板的油膜上(油膜〃=1.30), 观察到入=400nm和久2 = 560nm的光在反射屮消失,屮间无其他波长的光消失,求油膜的厚度.[解答]等倾干涉光程差为d = 2〃dcosy +》',其中7 = 0,由于油膜的折射率比空气的大、比玻璃的小,所以附加光程差『 = 0.对于暗条纹,有"=(2£+ 1)久/2,即2nd = (2k{ + 1)>4/2 = (2k2 + l)A2/2.由于22>;p所以k2<k\,又因为两暗纹中间没有其他波长的光消失,因此k? = k\ — \ •光程差方程化为两个2加仙=册 + 1/2, 2nd/^2 =局 + 1/2, 左式减右式得2nd/k\ ・ 2nd//,2 = 1,解得6.12白光照射到折射率为1.33的肥皂上(肥皂膜置于空气中,若从正面垂直方向观察, 皂膜呈黄色(波长2 = 590.5nm ),问膜的最小厚度是多少?[解答]等倾干涉光程差为6 = 2ndcosy +》',从下面垂直方向观察时,入射角和折射角都为零,即y = 0;由于肥皂膜上下两面都是空气, 所以附加光程差3' = A /2 ・对于黄色的明条纹,有<5 = kX,所以膜的厚度为,伙一1/2)2a =- ---------- ・2n当k=\时得最小厚度J = 11 l (nm ).7.7 一衍射光栅,每厘米有400条刻痕,亥I ]痕宽为1.5x10%,光栅后放一焦距为lm 的 的凸透镜,现以2 = 500mn 的单色光垂直照射光栅,求:(1) 透光缝宽为多少?透光缝的单缝衍射屮央明纹宽度为多少?(2) 在该宽度内,有儿条光栅衍射主极大明纹?[解答](1)光栅常数为a +b = 0.01/400 = 2.5xl0_5(m ),由于刻痕宽为1.5x10%,所以透光缝宽为a =(a +b ) - b = 1 .Ox 1 Opm ).根据单缝衍射公式可得中央明纹的宽度为△为=1j7Ja = 100(mm ).(2)由于(G + b )/a = 2.5 = 5/2,因此,光栅干涉的第5级明纹出现在单缝衍射的第2级暗纹处,因而缺级;其他4根条纹各 有两根在单缝衍射的屮央明纹和一级明纹屮,因此单缝衍射的屮央明纹宽度内有5条衍射主 极大明纹,英中一条是中央衍射明纹.7.8波长为600 nm 的单色光垂直入射在一光栅上,第二、第三级主极大明纹分别出现 在sin" = 0.2及sin 〃=0.3处,第四级缺级,求:(1) 光栅常数;(2) 光栅上狭缝的宽度;(3) 屏上一共能观察到多少根主极大明纹?[解答](1)(2)根据光栅方程得2说—入) =535.8(nm).(a + b)sin〃2 = 22;由缺级条件得(a^b)/a = k/k\其中k'=l, k = 4・解缺级条件得b = 3a,代入光栅方程得狭缝的宽度为a = A/2sin^2 = 1500(nm).刻痕的宽度为b = 3a = 4500(nm),光栅常数为a +b = 6000(nm).(3)在光栅方程中(a + b)sin0 = kk,令sin/9 =1,得k =(a + b)/A = 10.由于0 = 90°的条纹是观察不到的,所以明条纹的最高级数为9.又由于缺了4和8级明条纹,所以在屏上能够观察到2x7+1 = 15条明纹.5.15两波在一很长的弦在线传播,设其表达式为:^=6.0cos-(0.02x-8.0/),2TT^2=6.0COS-(0.02X +8.0/),用厘米、克、秒(cm,g,s)制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:t x t xy x = 6.0cos2龙( ------- :—),y2 = 6.0cos2龙(——+ ——),10.5 200 八0.5 200可知它们的周期都为:T=0.5(s),频率为:v= l/T=2(Hz);波长为:A = 200(cm);波速为:u = k/T = 400(cm s_,).(2)位相差=7LX750,当△卩=(2£+1)兀时,可得节点的位置兀=50(2(+l)(cm), (£ = 0,1, 2,...).(3)当厶(p = 2kn吋,可得波腹的位置x=100k(cm),伙=0, 1, 2,...).。
(完整word)大学物理习题册计算题及答案

大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。
弹簧的劲度系数k = 25N ·m -1。
(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。
解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。
5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。
解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。
大学物理下册期末复习计算题

大学物理下册期末复习计算题第7章真空中的静电场*1.一半径为R 的带电导体球,电荷为-Q 。
求:球内、外任意一点的电场强度。
1.解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)*2.一半径为R 的带电导体球,电荷为Q 。
求:(1)球内、外任意一点的电场强度;(2)球内、外任意一点电势。
解:由高斯定理可求出电场强度的分布(3分) (2分)当r>R 时 (3分) 当r ≤R 时 (4分)⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 042020πεπε=⎪⎩⎪⎨⎧<>R r R r r q E0 420πε=r qdr r q V r 02044πεπε=⎰∞=R qdr r q dr V RRr 020440πεπε=+⎰⎰∞=⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 0 4202πεπε=*3. 如图所示,一长为L ,半径为R 的圆柱体,置于场强为E 的均匀电场中,圆柱体轴线与场强方向平行,求穿过圆柱体下列端面的电通量。
(1)左端面(2)右端面 (3)侧面 (4)整个表面解: 根据电通量定义 (1)左端面⎰⎰⎰-=-==⋅=121cos s s R E dS E EdS s d E ππφ(4分)(2)右端面⎰⎰===⋅=2030cos R E ES EdS s d E s πφ(4分) (3)侧面⎰⎰==⋅=02cos 2πφEdS s d E s (1分)(4)整个表面0321=++=s s s s φφφφ(3分)4. 三个点电荷1q 、2q 和3q -在一直线上,相距均为R 2,以1q 与2q 的中心O 作一半径为R 2的球面,A 为球面与直线的一个交点,如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+994111220 1.810910 1.810(N C )4π()(0.03)q E AC ε--⨯⨯⨯===⨯⋅ 994122220 4.810910 2.710(N C )4π()(0.04)q E BC ε--⨯⨯⨯===⨯⋅ C 点电场强度E的大小222244112 1.8 2.710 3.2410(N C )E E E -=+=+⨯=⨯⋅方向为4o142 1.810arctan arctan 33.72.710E E α⨯===⨯ 即方向与BC 边成33.7°。
9-5 两个点电荷6612410C,810C q q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E。
解:如解图9-5所示9661112201910410 3.610(N C )4π10q E r ε---⨯⨯⨯===⨯⋅ 96612222029108107.210(N C )4π10q E r ε---⨯⨯⨯===⨯⋅ 1E ,2E沿x 、y 轴分解611212cos60cos120 1.810(N C )x x x E E E E E -=+=︒+︒=-⨯⋅ 611212sin60sin1209.3610(N C )y y y E E E E E -=+=︒+︒=⨯⋅电场强度为 22619.5210(N C )x y E E E -=+=⨯⋅解图9-5解图9-4C题图9-46o69.3610arctan arctan 1011.810yx E E α⨯===-⨯9-12.一均匀带电球壳内半径16cm R =,外半径210cm R =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0d ε∑⎰=⋅qS E s得2π4ε∑=q rE当5=r cm 时,0=∑q,得0=E8=r cm 时,∑q 3π4p=3(r )31R - ()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -32(R )31R ()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅ 沿半径向外.9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,(1)求图中三个区域的场强1E ,2E ,3E 的表达式;(2)若624.4310C m σ--=⨯⋅,那么,1E ,2E ,3E 各多大?解:(1)无限大均匀带电平板周围一点的场强大小为2E σε=在Ⅰ区域题图9-1310002222σσσεεε-=+=E i i i Ⅱ区域200023222σσσεεε=+=E i i i Ⅲ区域30002222σσσεεε=-=-E i i i (2)若624.4310C m σ--=⨯⋅则51102.5010(V m )2E i i σε-==⨯⋅ 512037.5010(V m )2E i i σε-==⨯⋅ 51302.5010(V m )2E i i σε-=-=-⨯⋅ 9-17 如题图9-17所示,已知2810m a -=⨯,2610m b -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求:(1)D 点和B 点的电势; (2) A 点和C 点的电势;(3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。
解:(1)建立如解图9-17所示坐标系,由点电荷产生的电势的叠加得898912220031091031091004104104π4π22D q q U a a εε----⨯⨯⨯⨯⨯⨯=+=-=⨯⨯⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭同理,可得0B U =题图9-17解图9-17(2)104πA q U b ε=989832910310 1.810(V)610---⨯⨯⨯==⨯⨯204πC q U bε=+989832910310 1.810(V)610---⨯⨯⨯=-=-⨯⨯ (3)将点电荷q 0由A 点移到C 点,电场力所做的功93360210[1.810( 1.810)]7.210(J)AC AC A q U --==⨯⨯⨯--⨯=⨯(4)将q 0由B 点移到D 点,电场力所做的功00BD BD A q U ==9-20 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和λ-,试求:(1) 空间场强分布;(2) 两圆柱面之间的电势差。
解: (1)由高斯定理求对称性电场的场强分布0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=,则rl E S E Sπ2d =⋅⎰小圆柱面内: 1R r <,0q =∑10E =两圆柱面间:21R r R <<,q l λ=∑,rE 02π2ελ=方向沿径向向外大圆柱面外:2R r >,0=∑q3=E(2)12002ln 2d 2d 2121R R r r r E U R R R R AB πελπελ===⎰⎰9-21 在半径为R 1和R 2的两个同心球面上分别均匀带电q 1和q 2,求在10r R <<,12R r R <<,2r R >三个区域内的电势分布。
解:利用高斯定理求出空间的电场强度:0I E = 1r R < 10204II q E r rπε=12R r R <<120204IIIq qE r r πε+= 2r R > 则空间电势的分布:1r R ≤1212d d d R R I I II III rR R U E r E r E r +∞=⋅+⋅+⋅⎰⎰⎰2102114q q R R πε⎛⎫=+ ⎪⎝⎭22R r R ≤≤22d d R II II III rR U E r E r +∞=⋅+⋅⎰⎰2112212002021444R rq q q q q dr r R R r πεπεπε⎛⎫+=+=+ ⎪⎝⎭⎰2r R ≥1212200d d 44III III rrq q q q U E r r r rπεπε+∞+∞++=⋅==⎰⎰解图9-21第11章1. 用两根彼此平行的长直导线将半径为R 的均匀导体圆环联到电源上,如题图所示,b 点为切点,求O 点的磁感应强度。
解:先看导体圆环,由于大ab 和小ab 并联,设大圆弧有电流1I ,小圆弧有电流2I ,必有:12I R I R =大小由于圆环材料相同,电阻率相同,截面积S 相同,实际电阻与圆环弧的弧长l 大和l 小有关,即:12,I l I l =大小 则1I 在O 点产生的1B 的大小为0112,4πI l B R μ=大而2I 在O 点产生的2B 的大小为02212.4I l B B Rμ==π小1B 和2B 方向相反,大小相等.即120B B +=。
直导线1L 在O 点产生的30B =。
直导线2L 在O 点产生的RIB πμ404=,方向垂直纸面向外。
则O 点总的磁感强度大小为RIB B πμ4040==,方向垂直纸面向外。
2.一载有电流I 的长导线弯折成如题图所示的形状,CD 为1/4圆弧,半径为R ,圆心O 在AC ,EF 的延长线上.求O 点处磁场的场强。
解:因为O 点在AC 和EF 的延长线上,故AC 和EF 段对O 点的磁场没有贡献。
CD 段:00,48CD I IB R Rμμπ==π2DE 段0002(cos 45cos135).4242/2DE II IB aRR μμμ=︒-︒==πππO 点总磁感应强度为000112824DE CD III B B B RRR μμμ⎛⎫=+=+=+ ⎪ππ⎝⎭,方同垂直纸面向外.3. 如题图所示,在长直导线AB 内通有电流I ,有一与之共面的等边三角形CDE ,其高为h ,平行于直导线的一边CE 到直导线的距离为b 。
求穿过此三角形线圈的磁通量。
解:建立如解图所示坐标,取距电流AB 为x 远处的宽为d x 且与AB 平行的狭条为面积元d 2()tan 30d .S b h x x =+-︒ 则通过等边三角形的磁通量为:0d 2()tan 30d 2b hSbIB S b h x x xμΦ+=⋅=+-︒π⎰⎰0033d ()ln .33b hbI I b h x b h x b h h x b μμ++-+⎡⎤==+-⎢⎥ππ⎣⎦⎰4. 一根很长的圆柱形实心铜导线半径为R ,均匀载流为I 。
试计算:(1)如题图(a )所示,导线内部通过单位长度导线剖面的磁通量; (2)如题图(b )所示,导线外部通过单位长度导线剖面的磁通量.解: 由磁场的安培环路定理可求得磁感应强度分布情况为020()2()2Ir B r R R IB r R r μπμπ⎧=<⎪⎪⎨⎪=≥⎪⎩内外然后求磁通量。
沿轴线方向在剖面取面元d d S l r =,考虑到面元上各点B 相同,故穿过面元的磁通量d d B S Φ=,通过积分,可得单位长度导线内的磁通量。
(1)导线内部通过单位长度导线剖面的磁通量 0020d d 24RRIr IB r r R μμΦππ===⎰⎰内内 (2)导线外部通过单位长度导线剖面的磁通量. 20d ln 22RRIB r μΦπ==⎰外外解图11-175. 有一根很长的同轴电缆,由两个同轴圆筒状导体组成,这两个圆筒状导体的尺寸如题图11-19所示。
在这两导体中,有大小相等而方向相反的电流I 流过。
求:(1)内圆筒导体内各点(r a <)的磁感应强度B ; (2)两导体之间(a r b <<)的B ; (3)外圆筒导体内(b r c <<)的B ; (4)电缆外(r c >)各点的B 。
解:在电缆的横截面,以截面的轴为圆心,将不同的半径r 作圆弧并取其为安培积分回路L ,然后,应用安培环路定理求解,可得离轴不同距离处的磁场分布。
(1)当r a <时,0d 0==⋅⎰∑liiIl B μ, 20B r π⋅=,得B =0;(2)当a r b <<时,同理可得02IB rμ=π; (3)当b r c <<时,有 22022()2()I r b B r I c b μ⎡⎤π-π=-⎢⎥π-⎣⎦, 得 2202212I r b B r c b μ⎛⎫-=- ⎪π-⎝⎭(4)当r c >时, B =0;6. 如题图所示,一根长直导线载有电流130A I =,矩形回路载有电流220A I =,已知1.0cm a =,8.0cm,12cm.b l ==试计算:(1)作用在回路各边上的安培力; (2)作用在回路上的合力.解:(1)上下导线所受安培力大小相等,方向相反。