22有理数和无理数
无理数的性质及与有理数的比较
无理数的性质及与有理数的比较在数学领域,有理数和无理数是两个重要的概念。
有理数是可以表示为两个整数的比值的数,而无理数则不能用有限的小数或分数表示。
本文将探讨无理数的性质,并与有理数进行比较。
首先,无理数的定义是不能表示为有限小数或分数的数。
最著名的无理数是圆周率π,它的小数表示是无限不循环的。
这意味着π的小数部分永远不会重复。
类似地,根号2也是一个无理数,它不能表示为两个整数的比值。
无理数的这种特性使其在数学中具有重要的地位。
其次,无理数与有理数在数轴上的分布也有所不同。
有理数可以在数轴上找到一个精确的位置,而无理数则是无限不可数的。
这意味着在任何两个有理数之间,都存在无穷多个无理数。
例如,在数轴上的任意两个有理数之间,总能找到一个无理数。
这种无限性使得无理数在数学中具有广泛的应用。
此外,无理数还具有一些特殊的运算性质。
例如,无理数的加法、减法和乘法仍然是无理数。
这意味着两个无理数的和、差或积仍然是无理数。
然而,无理数的除法则可能是有理数。
例如,根号2除以根号2等于1,这是一个有理数。
这种运算性质使得无理数与有理数之间的关系更加复杂。
此外,无理数还具有一些有趣的性质。
例如,无理数的平方是无理数。
这意味着如果一个数是无理数,那么它的平方也是无理数。
这可以通过反证法证明。
假设一个数的平方是有理数,那么这个数本身就是有理数,这与无理数的定义相矛盾。
因此,无理数的平方必然是无理数。
最后,无理数与有理数之间存在一种特殊的关系,即无理数可以通过有理数的逼近来近似表示。
例如,我们可以用有理数来逼近根号2,使得它们的差尽可能地小。
这种逼近方法被广泛应用于实际问题的求解中。
通过有理数的逼近,我们可以获得无理数的近似值,从而更好地理解无理数的性质。
综上所述,无理数具有许多独特的性质,使其在数学中具有重要的地位。
与有理数相比,无理数在数轴上的分布更为广泛,运算性质更为复杂。
无理数的平方是无理数,但它们可以通过有理数的逼近来近似表示。
苏科版初中数学教材目录
七年级上第1章我们与数学同行1.1 生活数学 1.2 活动思考第2章有理数2.1 正数与负数 2.2 有理数与无理数 2.3 数轴 2.4 绝对值与相反数 2.5 有理数的加法与减法 2.6 有理数的乘法与除法 2.7 有理数的乘方 2.8 有理数的混合运算第3章代数式3.1 字母表示数 3.2 代数式 3.3 代数式的值 3.4 合并同类项 3.5 去括号 3.6 整式的加减第4章一元一次方程4.1 从问题到方程 4.2 解一元一次方程 4.3 用一元一次方程解决问题第5章走进图形世界5.1 丰富的图形世界 5.2 图形的运动 5.3 展开与折叠 5.4主视图、左视图、俯视图第6章平面图形的认识(一)6.1 线段、射线、直线 6.2 角 6.3 余角、补角、对顶角 6.4 平行 6.5 垂直七年级下第7章平面图形的认识(二)7.1 探索直线平行的条件 7.2 探索平行线的性质 7.3 图形的平移7.4 认识三角形7.5 多边形的内角和与外角和第8章幂的运算8.1 同底数幂的乘法 8.2 幂的乘方与积的乘方8.3 同底数幂的除法第9章整式乘法与因式分解9.1 单项式乘单项式 9.2 单项式乘多项式 9.3 多项式乘多项式 9.4 乘法公式9.5 多项式的因式分解第10章二元一次方程组10.1 二元一次方程 10.2 二元一次方程组 10.3 解二元一次方程组 10.4 三元一次方程组10.5 用二元一次方程组解决问题第11章一元一次不等式11.1 生活中的不等式11.2 不等式的解集 11.3 不等式的性质11.4 解一元一次不等式11.5 用一元一次不等式解决问题11.6 一元一次不等式组第12章证明12.1 定义与命题12.2 证明 12.3 互逆命题八年级上册第1章全等三角形1.1 全等图形 1.2 全等三角形 1.3 探索三角形全等的条件第2章轴对称图形2.1 轴对称与轴对称图形 2.2 轴对称的性质 2.3 设计轴对称图案 2.4 线段、角的轴对称性 2.5 等腰三角形的轴对称性第3章勾股定理3.1 勾股定理 3.2 勾股定理的逆定理 3.3 勾股定理的简单应用第4章实数4.1 平方根 4.2 立方根 4.3 实数 4.4 近似数第5章平面直接坐标系5.1 物体位置的确定 5.2 平面直角坐标系第6章一次函数6.1 函数 6.2 一次函数 6.3 一次函数的图像 6.4 用一次函数解决问题6.5 一次函数与二元一次方程 6.6 一次函数、一元一次方程和一元一次不等式八年级下第7章数据的收集、整理、描述7.1 普查与抽样调查7.2 统计表、统计图的选用7.3 频数和频率7.4 频数分布表和频数分布直方图第8章认识概率8.1 确定事件与随机事件 8.2 可能性的大小 8.3 频率与概率第9章中心对称图形——平行四边形9.1 图形的旋转9.2 中心对称与中心对称图形 9.3 平行四边形9.4 矩形、菱形、正方形 9.5 三角形的中位线第10章分式10.1 分式10.2 分式的基本性质 10.3 分式的加减 10.4 分式的乘除10.5 分式方程第11章反比例函数11.1 反比例函数11.2 反比例函数的图像与性质11.3用反比例函数解决问题第12章12.1 二次根式12.2 二次根式的乘除 12.3 二次根式的加减九年级上第1章一元二次方程1.1 一元二次方程 1.2 一元二次方程的解法 1.3 一元二次方程的根与系数的关系 1.4 用一元二次方程解决问题第2章对称图形——圆2.1 圆 2.2 圆的对称性 2.3 确定圆的条件 2.4 圆周角2.5 直线与圆的位置关系 2.6 正多边形与圆 2.7 弧长及扇形的面积 2.8 圆锥的侧面积第3章数据的集中趋势和离散程度3.1 平均数 3.2 中位数与众数 3.3 用计算器求平均数3.4 方差 3.5 用计算器求方差第4章等可能条件下的概率4.1 等可能性 4.2 等可能条件下的概率(一) 4.3 等可能条件下的概率(二)九年级下第5章二次函数5.1 二次函数 5.2 二次函数的图像与性质 5.3 用待定系数法确定二次函数表达式 5.3 二次函数与一元二次方程 5.4 用二次函数解决问题第6章图形的相似6.1 图上距离与实际距离 6.2 黄金分割 6.3 相似图形 6.5 探索三角形相似条件 6.6 相似三角形的性质 6.7 图形的位似 6.8 用相似三角形解决问题第7章锐角三角形7.1 正切7.2 正弦、余弦7.3 特殊角的三角函数7.4 由三角函数值求锐角 7.5 解直角三角形7.6 用锐角三角函数解决问题第8章统计和概率的简单应用8.1 中学生的视力情况调查 8.2 货比三家8.3 统计分析帮你做预测 8.4 抽签方法合理吗 8.5 概率帮你做估计8.6 收取多少保险费才合理优质文档,内容可编辑。
有理数与无理数
谈谈有理数与无理数实数通常分为有理数和无理数两类。
这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。
本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。
关于有理数,我们知道得较多,其特征有:1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数;m2、每个有理数都可以写成分数的形式,即,其中m和n都是整数,且nn≠0。
利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。
我们不加证明地给出关于有理数的一条结论:m当有理数的分母n能分解质因数为2α×5β(其中α、β为自然数)nm时,有理数能化成有限小数;否则,化为无限循环小数。
(关于有理数与小n数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述)2无理数是指那些无限不循环小数。
大家熟悉的无理数很多,、e、π等等都是。
与有理数相比,无理数不具备那样好的性质。
譬如,两个无理数的四2则运算结果不一定是无理数,象π-π=0,=1。
2根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用:1、任何有理数≠任何无理数;2、设是a有理数,b是无理数,则a+b,a-b,a·b(a≠0),a/b(a≠0)都是无理数。
下面着重介绍实数无理性的判定方法。
在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算2311有关,如,;与对数值有关,如log23;与三角函数值有关,如cos20°,sin1°;此外还有象e(自然对数的底)、π(圆周率)这样的特殊值。
判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。
原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数m和无理数的关系,α就是有理数,故α=(n≠0),于是就得到一个具体的n等式,这为我们导出矛盾提供了一个直观的工具。
2,2有理数与无理数
n 0
的形式.
无限不循环小数叫做无理数.
练一练
把下列各数分别填在相应的集合里:
12 , 6 , 3 . 14 , 0 . 222 , 521 120 , 0 , ,1 . 696696669
正数集合: 有理2011江苏无锡中考
请写出一个大于1且小于2的 无理数 .
2.2有理数与无理数
教学目标
1.理解有理数和无理数的意义 2.会判断一个数是有理数还是无理数
思考
1.什么叫做有理数?
我们把能够写出分数形式 的数叫做有理数.
m n
m , n 是整数,
n 0
思考
2.(1)你能把0.81、1.56化为分数形式吗?
(2)你能把0.666…、0.818181…化为分数形式吗?
聚焦导学案
既不是正数也不是整数的有理数是( ) A.0和负分数 B.负分数 C.负整数和负分数 D.正整数和正分数 不小于-2.5而小于2.8的非负整数有( )
A.2个
B.3个
C.4个
D.5个
聚焦导学案
写出所有适合下列条件的数: (1)不大于3的正整数: (2)大于-3且不大于4的整数:
; .
反思感悟
1.我最大的收获是? 2.我对自己的表现感想是?
3.我与昨天相比有哪些进步? 4.你对本节课的学习还有哪些 困惑和建议?
(3)你能把0.1333…、0.3456456456…化为分数形式吗?
注意:1.实际上,有理数包括整数和分数两大类, 即整数和分数都是有理数 2.有限小数和循环小数都可以化为分数,所以它们都是有理数
将下列八个数填人它所在的数集里:
-18,3.1416,0,2004,π, 22 -0.1235,-96%,
七年级数学上册数学 2.2 有理数与无理数(五大题型)(解析版)
2.2有理数与无理数分层练习考察题型一有理数的识别1.在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数的个数有()A .5个B .4个C .3个D .2个【详解】解:在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数有:5-,0,1.3,,3.1415926,共4个.故本题选:B .2.在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有()A .4个B .5个C .6个D .7个【详解】解:在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有:0.010010001,0.3333⋯,227-,0,43%-,共5个.故本题选:B .考察题型二有理数的分类1.在下列数π,1+,6.7,15-,0,722,1-,25%中,属于整数的有()A .2个B .3个C .4个D .5个【详解】解:在数π,1+,6.7,15-,0,722,1-,25%中,整数的有:1+,15-,0,1-,共4个.故本题选:C .2.在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有()A .4个B .3个C .2个D .1个【详解】解:在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有:25,3.14,共2个.故本题选:C .3.在数12-,π, 3.4-,0,3+,73-中,属于非负整数的个数是()A .4B .3C .2D .1【详解】解:12-、 3.4-、73-为负数,不属于非负整数;π不属于整数;0,3+属于非负整数.故本题选:C .4.下列各数:452,1,8.6,7,0,,4,101,0.05,9563---+--中,()A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有42,453--,0.05-是负分数【详解】解:由题意可知:A 、整数包括:1,7-,0,101+,9-,故本选项错误;B 、正整数包括:1和101+,故本选项错误;C 、非负数包括:1,8.6,101+,0,56,故本选项错误;D 、负分数包括:45-,243-,0.05-,故本选项正确.故本题选:D .5.把下列各数填入相应的集合中:6+,0.75,3-,0, 1.2-,8+,245,13-,9%,正分数集合:{}⋯;正整数集合:{}⋯;整数集合:{}⋯;有理数集合:{}⋯.【详解】解:正分数集合:{0.75,245,9%,}⋯;正整数集合:{6+,8+,}⋯;整数集合:{6+,3-,0,8+,}⋯;有理数集合:{6+,0.75,3-,0, 1.2-,8+,245,13-,9%,}⋯.6.把下列将数填入相应的集合中:23-,0.5,23-,28,0,4,135, 5.2-.【详解】解:如图所示:.7.将数分类:2-,0,0.1314-,11,227,143-,0.03,2%.正数:{};非负数:{};负分数:{};非负整数:{}.【详解】解:正数有:11,227,0.03,2%,非负数有:0,11,227,0.03,2%,负分数有:0.1314-,143-,非负整数有:0,11.8.把下列各数填在相应的集合内:3-,4,2-,15-,0.58-,0, 3.4- ,0.618,139,3.14.整数集合:{}⋯;分数集合:{}⋯;负有理数集合:{}⋯;非正整数集合:{}⋯.【详解】解:整数集合:{3-,4,2-,0}⋯;分数集合:1{5-,0.58-, 3.4- ,0.618,139,3.14}⋯;负有理数集合:{3-,2-,15-,0.58-, 3.4}-⋯;非正整数集合:{3-,2-,0}⋯.考察题型三有理数的概念辨析1.下列关于0的说法错误的是()A.任何情况下,0的实际意义就是什么都没有B.0是偶数,也是自然数C.0不是正数也不是负数D.0是整数也是有理数【详解】解:A、0的实际意义不是什么都没有,符合题意;B、0是偶数,也是自然数,不合题意;C、0不是正数也不是负数,不合题意;D、0是整数也是有理数,不合题意.故本题选:A.2.下面是关于0的一些说法:①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的负数;⑤0既不是奇数又不是偶数.其中正确说法的个数是()个.A.0B.1C.2D.3【详解】解:①0是正数与负数的分界,所以0既不是正数也不是负数,故原说法正确;②0和正整数都是自然数,所以0是最小的自然数,故原说法正确;③0既不是正数也不是负数,故原说法错误;④0既不是正数也不是负数,故原说法错误;⑤整数按能否被2整除分为奇数与偶数,0属于偶数,故原说法错误;综上,①②正确.故本题选:C.3.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【详解】解:负整数和负分数统称负有理数,A正确,不合题意;整数分为正整数,0,负整数,B正确,不合题意;正有理数,0,负有理数组成全体有理数,C错误,符合题意;3.14是小数,也是分数,小数是分数的一种表达形式,D正确,不合题意.故本题选:C.4.下列说法正确的是()A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.正数、0、负数统称为有理数D.整数、分数、小数都是有理数【详解】解:A.正整数、0、负整数统称为整数,故本选项错误;B.正分数、负分数统称为分数,故本选项正确;C.正有理数、0、负有理数统称为有理数,故本选项错误;D.无限不循环小数不是有理数,故本选项错误.故本题选:B.5.下列说法中正确的是()A.非负有理数就是正有理数B.有理数不是正数就是负数C.正整数和负整数统称为整数D.整数和分数统称为有理数【详解】解:A、非负有理数就是正有理数和0,故A选项不正确;B、0既不是正数也不是负数,是有理数,故B选项不正确;C、正整数、0、负整数统称为整数,故C选项不正确;D、整数和分数统称有理数,故D选项正确.故本题选:D.6.下列说法:(1) 3.56既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0是非正数;(4)2023-既是负数,也是整数,但不是有理数;(5)自然数是整数.其中正确的个数是()A.1个B.2个C.3个D.4个【详解】解:(1)正确;(2)错误,还有0;(3)正确;(4)错误,2023-是有理数;(5)正确.正确的有3个,故本题选:C.7.下列说法中,正确的是()A.在有理数集合中,有最大的正数B.在有理数集合中,有最小的负数C.在负数集合中,有最大的负数D.在正整数集合中,有最小的正整数【详解】解:A、在有理数集合中,没有最大的正数,故A选项错误;B、在有理数集合中,没有最小的负数,故B选项错误;C、在负数集合中,没有最大的负数,故C选项错误;D、在正整数集合中,有最小的正整数1,故D选项正确.故本题选:D.8.下面说法中正确的有()A.非负数一定是正数B.有最小的正整数,有最小的正有理数C.a-一定是负数D.0既不是正数,也不是负数【详解】解: 非负数包括0和正数,A∴选项不合题意;∴选项不合题意;没有最小的正有理数,B若a是负数,则a∴选项不合题意;-是正数,C∴选项符合题意.既不是正数,也不是负数,D故本题选:D.9.下列说法正确的是()A.最小的正有理数是1B.最小的正整数是1C.0是最小的有理数D.有理数由正数和负数组成【详解】解:A.没有最小的有理数,故本选项不合题意;B.最小的正整数是1,故本选项符合题意;C.有最小的有理数,故本选项不合题意;D.有理数由正有理数,0,负有理数组成,故本选项不合题意.故本题选:B.10.有下列说法:①最小的自然数为1;②最大的负整数是1-;③没有最小的负数;④最小的整数是0;⑤最小非负整数为0,其中,正确的说法有()A.2个B.3个C.4个D.5个【详解】解:①最小的自然数为0,故①不正确;②最大的负整数是1-,故②正确;③没有最小的负数,故③正确;④没有最小的整数,故④不正确;⑤最小非负整数为0,故⑤正确;综上,正确的说法有3个.故本题选:B.考察题型四数感问题1.有两个正数a,b,且a b<,把大于等于a且小于等于b所有数记作[a,]b,例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么nm的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,6【详解】m在[5,15]内,n在[20,30]内,515m∴,2030n,∴2030155nm,即463nm,∴nm的一切值中属于整数的有2,3,4,5,6.故本题选:B.2.设有三个互不相等的有理数,既可表示为1-,a b+,a的形式,又可表示为0,ba-,b的形式,则ab 的值为.【详解】解: 三个互不相等的有理数,既可表示为1-,a b +,a 的形式,又可表示为0,b a,b 的形式,∴这两个数组的数分别对应相等,a b ∴+与a 中有一个是0,b a-与b 中有一个是1-,若0a =,则b a无意义,0a ∴≠,0a b +=,∴a b =-,即1b a =-,b a-1=,∴1b =-,1a =,ab ∴的值为1-.故本题答案为:1-.考察题型五无理数的识别1.在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数的个数是()A .2个B .3个C .4个D .5个【详解】解:在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数有:2π,3π-,共2个.故本题选:A .2.下列八个数:8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0),无理数的个数有()A .0个B .1个C .2个D .3个【详解】解:在实数8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0)中,无理数有:2π,0.8080080008⋯⋯(每两个8之间逐次增加一个0),共2个.故本题选:C .3.介于3和π之间的一个无理数是()A .32π+B .3.15C .3.1D .0.15π-【详解】解:介于3和π之间的一个无理数是32π+.故本题选:A .4.(1)请你写出一个比1大且比2小的无理数,该无理数可以是;(2)两个无理数,它们的和为1,这两个无理数可以是.【详解】解:(1)无理数为:2π-,故本题答案为:2π-(答案不唯一);(2)(1)1ππ+-=,故本题答案为:π,1π-(答案不唯一).1.循环小数0.15可化分数为.【详解】解:设0.15x ⋅⋅=,则10015.15x ⋅⋅=,15.15150.15⋅⋅⋅⋅∴=+,10015x x ∴=+,解得:533x =.故本题答案为:533.2.已知有A ,B ,C 三个数集,每个数集中所包含的数都写在各自的大括号内,{2A =-,3-,8-,6,7},{3B =-,5-,1,2,6},{1C =-,3-,8-,2,5},请把这些数填在图中相应的位置.【详解】解:如图所示:.3.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.12B.1118C.76D.59【详解】解:由题意可得:这10个有理数,每9个相加,一共得出另外10个数,原10个有理数互不相等,∴它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22, 它们每一个都是原来10个有理数其中9个相加的和,∴如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.∴10个真分数相加得出结果为5,故所求的10个有理数之和为5/9.故本题选:D.。
有理数与无理数加减乘除的结果
有理数与无理数加减乘除的结果有理数和无理数,这俩家伙就像两位性格迥异的邻居。
有理数嘛,大家都知道,像1、2、0.5这类,都是整整齐齐的,能用分数表示的朋友。
他们的日常生活可简单了,数一数,算一算,结果总是看得见的。
可这无理数可就不那么简单了,比如根号2、π,还有那些永远也不能写成简单分数的家伙,他们像个小精灵,总在数轴上神出鬼没,让人哭笑不得。
想象一下,有理数在厨房里做饭,一切都得心应手,切菜、煮汤,调料放得刚刚好。
而无理数则像个艺术家,在画布上挥洒自如,几笔之后,竟然能产生不可思议的效果。
你问他是怎么做到的?他只会眨眨眼,不告诉你,因为他的秘密可不是谁都能懂的。
这俩人碰到一起,就好比火星撞地球,火花四溅。
加法呢,简单得很!有理数和有理数加起来,结果还是有理数。
你说好不好?再比如,无理数和无理数相加,结果也是无理数,这让人感到安慰。
可偏偏有理数和无理数相加,那结果却可能是有理数也可能是无理数,这让很多人绞尽脑汁,心里嘀咕:“这到底是咋回事?”就像开盲盒,兴奋又忐忑,你永远不知道自己会抽到什么。
再来说说减法,嘿,没什么好担心的,结果也还是跟加法差不多。
有理数减去有理数,还是有理数;无理数减无理数,还是无理数。
可如果你要是从有理数里减去无理数,那结果又得看运气,或许是有理数,或许是无理数。
简直像抽奖,谁能猜得到呢?乘法就更有意思了。
有理数乘有理数,结果依旧是有理数;无理数乘无理数,结果也是无理数。
可是,一旦有理数跟无理数一起玩儿,结果就像脱缰的野马,令人目瞪口呆,没准儿变成了有理数,也有可能还是无理数。
这种感觉就像打游戏,明明是简单的操作,却能产生千变万化的结果。
至于除法,哈哈,稍微复杂一点。
一个有理数除以一个无理数,那结果又有可能是无理数,或者在特定的情况下也能是有理数。
可千万别问我怎么来的,谁知道呢?就像你去酒吧喝酒,喝的再好,醒来也不一定记得昨天发生了什么。
看吧,这有理数和无理数的互动,真是耐人寻味。
有理数与无理数
40
2.2.4实数集是不可数的
定理6
实数集是不可数的。 证明:1)构造法 2)区间套法 定理7 存在着无理的实数。
41
2.2.5代数数
a0 xn a1xn1 a2 xn2 ... an1x an 0
代数基本定理 n次方程(1)在复数域中有n 个根。 定义 一个实数或复数叫做代数数,如果它 是某一个整系数方程的根。 定义 任何不是代数数的实数叫做超越数。 定理8 代数数的集合是可数的。 定理9 存在超越数。
38
几个对等集的例子:
A
A B
B
A
B
39
2.2.3有理数集是可数的
定义
凡与集N对等的集A都叫做可数集, 或称集 A是可数的。 定理1 正有理数的集合是可数的。 定理2 一个有限集和一个可数集如无公共 元素,那么它们的和集是可数的。 定理3 两两不相交的有限个可数集的和集 是可数的。 系1 全体整数的集合是可数的。 系2 全体有理数的集合是可数的。 定理4 两两不相交的可数个有限集的和集 是可数的。 定理5 两两不相交的可数个可数集的和集
17
2.1.5有理数域 数学造型:从0和1出发,通过有理运算可以 造出全部有理数。 有理数域兊服了自然数系的缺陷,相对来说 是比较完美的:对四则运算是封闭的,而且 具有稠密性。 数域是抽象代数的一个基本概念,有理数域 只是数域的一种(最小的数域).
18
2.1.6第一次数学危机
一个正方形的对角线与其 一边的长度是不可公度的 「万物皆数」
书里的著名对话说明远在康托尔 的集合论创始之前,伽利略对 无限已经有了很好的理解。
36
2.2.1一段富有启发性的历史对话
无理数与有理数的运算法则
无理数与有理数的运算法则
无理数和有理数是数学中两种不同的数。
有理数可以表示为两个整数的比例,而无理数则无法表示为有理数的比例。
在进行无理数和有理数的运算时,有以下法则:
1. 无理数和有理数相加减,结果为无理数。
例如,π+3=π+3,√2-4=√2-4。
2. 无理数和有理数相乘,结果为无理数。
例如,π×2=2π,√3×5=5√3。
3. 无理数和有理数相除,结果为无理数。
例如,π÷5=π/5,√5÷2=√5/2。
4. 无理数之间的加减乘除,结果为无理数。
例如,π+√2=π+√2,π×√2=π√2,π÷√2=π/√2。
5. 有理数之间的加减乘除,结果为有理数。
例如,2+3=5,4-2=2,2×3=6,6÷2=3。
在实际运用中,我们需要注意无理数和有理数的运算结果是否有实际意义,并根据需求进行适当的化简或精度控制。
- 1 -。
有理数与无理数
谈谈有理数与无理数实数通常分为有理数和无理数两类。
这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。
本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。
关于有理数,我们知道得较多,其特征有:1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数;2、每个有理数都可以写成分数的形式,即nm ,其中m 和n 都是整数,且n ≠0。
利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。
我们不加证明地给出关于有理数的一条结论: 当有理数nm 的分母n 能分解质因数为2α×5β(其中α、β为自然数)时,有理数nm 能化成有限小数;否则,化为无限循环小数。
(关于有理数与小数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述) 无理数是指那些无限不循环小数。
大家熟悉的无理数很多,2、e 、π等等都是。
与有理数相比,无理数不具备那样好的性质。
譬如,两个无理数的四则运算结果不一定是无理数,象π-π=0,22=1。
根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用:1、任何有理数≠任何无理数;2、设是a 有理数,b 是无理数,则a+b ,a-b ,a ·b (a ≠0),a/b (a ≠0)都是无理数。
下面着重介绍实数无理性的判定方法。
在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算有关,如2,311;与对数值有关,如log 23;与三角函数值有关,如cos20°,sin1°;此外还有象e (自然对数的底)、π(圆周率)这样的特殊值。
判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。
原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数和无理数的关系,α就是有理数,故α=nm (n ≠0),于是就得到一个具体的等式,这为我们导出矛盾提供了一个直观的工具。
有理数和无理数
(2)以平均值为基准,用正负数Байду номын сангаас示每位 学生体重与平均值的差.
小结:
1)体会负数引入的必要性和有理数应 用的广泛性。
2)会判断一个数的正负性,能应用正 负数表示生活中具有相反意义的量。
在学习了负数的概念之后,我们可以 将所有学过的数进行分类:
正整数:如 1,2,3,
整数 零: 0
负整数:如 1,-2,-3,
分数
正分数:如12,5.9,52, 负分数:如15,-3.5,-56,
整数和分数统称为有理数。
你能把下面的数分分类吗?
-5.6,-3,2.5,
3 4
,0,-3.14,5%,
例1 下列各数中,哪些是有理数?哪些是无理 数? 3.14 , -4/3, 0.57, 0.101000100 0001…(相邻 两个1之间0的个数逐次加2)
解:有理数有: 3.14 , -4/3, 0.57
无理数有: 0.101000100 0001…
随堂练习
❖ 哪些是有理数?哪些是无理数?
0.351
❖ 有理数总可以用有限小数或无限循环小数表示。 ❖ 反之,任何有限小数或无限循环小数也都是有理数。
❖ 无限不循环小数叫做无理数
更多无理数
❖ a=1.41421356… ❖ b=2.2360679…
❖π=3.14159265…
❖ 0.58588588858888…(相邻两个5之间8的 个数逐次加1)
❖ 把下列各数表示成小数,你发现了什么?
❖ 3 , 4/5, 5/9, -8/45, 2/11
❖ 4/5=0.8 ❖ 5/9=0.555555555555555… ❖ -8/45= ❖ 2/11=
苏科版七年级上册数学2.2有理数与无理数
2.2有理数与无理数1. 0是 ( )A .最小的正数B .最大的负数C .最小的有理数D .整数 2.下列说法正确的是( )A. 0.555…是分数B. -5是负分数C.3.8不是分数D.自然数一定是正数 3.下列说法:①有限小数是有理数;②无限小数都是无理数;③无理数都是无限小数;④有理数是有限小数中错误的个数是 ( ) A.1 B.2 C.3 D.4 4.下列说法正确的是( )A.整数包括正整数和负整数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数 5.以下各正方形的边长是无理数的是( )A.面积为25的正方形B.面积为16的正方形C.面积为3的正方形D.面积为1.44的正方形 6.在下列各数中:0,-3.14,722,0.101 001 0001…,3π,有理数有( ) A.1个 B.2个 C.3个 D.4个7.整数和分数统称为__________数,无限不循环小数是___________数.8.在-2,+3.5,0,-32,-0.7,11,-5π,-0.23 223 2223…,-••31.0中,负分数是__________.9.写出一个比-3大的无理数是___________.10.如图,两个圈分别表示负数集合、整数集合,请从-1,5,-80%,-7,0,-0.2,72,-10这些数中,选择适当的数填在这两个圈的重叠部分为__________.11.有6个数:0.123,-1.5,3.1416,722,π-,0.102 002 0002,若其中无理数的个数是x ,整数的个数是y ,非负数的个数是z ,则x+y+z=_________. 12.我们知道,无限循环小数都可以转化成分数.如:0.333…转化为分数时,可设0.333…=x , 则x x 1013.0+=,解得31=x ,即0.333…=31.仿此方法,将0.454545…化为分数得_____.13.将下列各数分类:5.1,-3.14, ,0,0.222…,1.696696669,1.696696669…,0.5, -0.210有理数有________________________________; 无理数有________________________________.14.将下列各数填入相应的括号内:11.将下列各数填入相应的括号内:-6,9.3, 17 ,42,0,-0.33,0.333…,1.41421356,-2 ,3.3030030003…,-3.1415926,2π,0.58588588858888….正数集合{ …} 负数集合{ …} 有理数数集合{ …} 无理数数集合{ …} 15.把下列各数填在相应的大括号中-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6 有理数集合{ …} 无理数集合{ …} 正数集合{ …} 负数集合{ …} 整数集合{ …} 分数集合{ …} 非负有理数集合{ …} 16.漠漠做数学:假设抽到牌的点数为x ,漠漠猜中的结果为y ,则y 等于 ( ) A.2 B.3 C.6 D.x+2参考答案 1.D 2.A 3.B 4.B 5.C 6.C7.有理数,无理数 8.-2,-32,-0.7,-9.-0.23 2232223… 10.-7,-10 11.6 12.45/9913.有理数有5.1,-3.14,0,0.222…,1.696696669,0.5, -0.210无理数有 ,1.696696669…14.正数集合{ 9.3, 17,42 ,0.333…,1.41421356, 3.3030030003…,2π ,0.58588588858888…. …}负数集合{ -6,-0.33,-2 , -3.1415926 …}有理数数集合{ -6,9.3, 17,42,0,-0.33,0.333…,1.41421356,-2 ,-3.1415926, …}无理数数集合{ 3.3030030003…,2π,0.58588588858888…. …} 15.-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6有理数集合{15.-311,-10%,722,0.3,0,-1.7,21,-2,1.01001,+6 …}••31.0无理数集合{ π, 1.2020020002… …} 正数集合{722,0.3,π, 21,1.01001,1.2020020002…,+6 …} 负数集合{-311,-10%, -1.7 , -2 …}整数集合{0, 21, -2, +6 …}分数集合{ -311,-10%,722,0.3,-1.7, -2,1.01001 …}非负有理数集合{ 15. 722,0.3,0,21,1.01001,+6 …} 16.2初中数学试卷灿若寒星 制作。
有理数与无理数分类
有理数与无理数分类数学中的数可以分为有理数和无理数两类。
有理数是可以表示为两个整数的比例形式的数,而无理数则是不可用有限或无限循环小数形式表示的数。
有理数和无理数在数学中有着不同的性质和特点。
本文将对有理数和无理数进行分类和讨论。
一、有理数的分类有理数可以分为整数和分数两种。
1. 整数整数包括正整数、负整数和零。
正整数是大于零的整数,负整数是小于零的整数,而零既不是正整数也不是负整数。
2. 分数分数由分子和分母组成,分子是整数,而分母是正整数。
分数可以表示为两个整数的比值。
分数又可以分为真分数和假分数。
- 真分数:分子小于分母的分数。
例如,1/2、3/4都是真分数。
- 假分数:分子大于或等于分母的分数。
例如,5/4、7/4都是假分数。
二、无理数的分类无理数包括无限不循环小数和无限循环小数两种。
1. 无限不循环小数无限不循环小数是无理数的一种形式,不能表示为两个整数的比例形式。
无限不循环小数的小数部分是无限长度的,且没有循环模式。
例如,圆周率π和自然对数的底数e都是无限不循环小数。
2. 无限循环小数无限循环小数是无理数的另一种形式,同样不能表示为两个整数的比例形式。
无限循环小数的小数部分是有限长度的,且有一个或多个循环模式。
例如,1/3和22/7都是无限循环小数。
三、有理数与无理数的性质比较有理数和无理数在数学运算、大小比较和表示形式等方面有着不同的性质。
1. 数学运算:有理数之间的四则运算(加法、减法、乘法、除法)仍然是有理数,两个有理数之间的运算结果也是有理数。
例如,1/2 + 3/4 = 5/4,结果是一个有理数。
而无理数与有理数之间的运算结果通常是无理数。
例如,√2 + 1/2是一个无理数。
2. 大小比较:有理数之间可以通过大小关系进行比较。
例如,2/3 < 4/5,即2/3小于4/5。
而无理数之间的大小比较相对复杂,需要借助数学方法进行推导。
一般来说,无理数之间无法直接通过大小关系进行比较。
有理项与无理项的概念
有理项与无理项的概念有理项与无理项的概念一、引言在数学中,我们常常会遇到有理项和无理项。
有理项和无理项是代数式中的两个重要概念。
它们在代数运算、方程解法、数学推导等方面都有着广泛的应用。
二、有理数和无理数的基本概念1. 有理数有理数是可以表示为两个整数之比的数字,即可以写成分数形式的数字。
例如,1/2、3/4等都是有理数。
它包括正整数、负整数、零以及正分数和负分数。
2. 无理数无理数是不能表示为两个整数之比的数字,即不能写成分数形式的数字。
例如,π和√2等都是无理数。
三、代数式中的有理项和无理项1. 代数式代数式是由数字、变量以及加减乘除等基本运算符号组成的表达式。
例如,3x+2y-5z就是一个代数式。
2. 有理项有理项是指代表一个有理数字(包括整型和分型)的部分。
例如,在3x+2y-5z中,3x、2y和-5z都是有理项。
3. 无理项无理项是指代表一个无法表示为一个整型或分型的数字的部分。
例如,在代数式√2x+3y-πz中,√2x和πz都是无理项。
四、有理项和无理项的运算1. 加减法有理项之间可以进行加减法运算。
例如,3x+2y-5z+4x-3y+6z可以化简为7x-z。
2. 乘法有理项之间可以进行乘法运算。
例如,(3x+2y)(4x-5y)可以化简为12x²-7xy-10y²。
3. 除法有理项之间也可以进行除法运算。
例如,(3x²+6xy)/(3x)可以化简为x+2y。
五、应用举例1. 方程解法在解一元二次方程时,我们常常会遇到无理数根。
例如,在求解方程x²+5=0时,我们需要求出√5这个无理数根。
2. 几何应用在几何中,我们常常会遇到无理数的概念。
例如,在求一个正方形的对角线长度时,我们需要使用√2这个无理数。
六、总结有理项和无理项是代数式中的两个重要概念。
它们在代数运算、方程解法、几何应用等方面都有着广泛的应用。
了解它们的概念和运算规则,对于学习和应用数学知识都有着重要的作用。
有理数与无理数
谈谈有理数与无理数实数通常分为有理数和无理数两类。
这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。
本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。
关于有理数,我们知道得较多,其特征有:1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数;2、每个有理数都可以写成分数的形式,即nm ,其中m 和n 都是整数,且n ≠0。
利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。
我们不加证明地给出关于有理数的一条结论: 当有理数nm 的分母n 能分解质因数为2α×5β(其中α、β为自然数)时,有理数nm 能化成有限小数;否则,化为无限循环小数。
(关于有理数与小数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述) 无理数是指那些无限不循环小数。
大家熟悉的无理数很多,2、e 、π等等都是。
与有理数相比,无理数不具备那样好的性质。
譬如,两个无理数的四则运算结果不一定是无理数,象π-π=0,22=1。
根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用:1、任何有理数≠任何无理数;2、设是a 有理数,b 是无理数,则a+b ,a-b ,a ·b (a ≠0),a/b (a ≠0)都是无理数。
下面着重介绍实数无理性的判定方法。
在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算有关,如2,311;与对数值有关,如log 23;与三角函数值有关,如cos20°,sin1°;此外还有象e (自然对数的底)、π(圆周率)这样的特殊值。
判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。
原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数和无理数的关系,α就是有理数,故α=nm (n ≠0),于是就得到一个具体的等式,这为我们导出矛盾提供了一个直观的工具。
有理数与无理数知识点以及专项训练(含答案解析)
有理数与无理数知识点以及专项训练知识点1:有理数有理数:有理数是整数和分数的统称;正整数:1、2、3、4、5···整数: 0负整数:-1、-2、-3、-4、-5····分数:正分数:12、65、83···负分数:−12、−56、−38、−215···注意分数:只要能够写成分子、分母都是整数且分子不是分母倍数的数都是分数。
有限小数、无限循环小数由于都能够写成这种形式,所以它们都是分数。
非正整数:0、-1、-2、-3、-4···非负整数:0、1、2、3、4、5···最小的正整数:1最大的负整数:-1有理数的划分:(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:知识点2:无理数无理数:无限不循环小数叫做无理数。
我们初中接触到的数中,不是有理数就是无理数。
无理数常见的特征:①看似循环实际不循环: 0.1010010001…(每两个1之间0的数量逐渐增加)、0.12345678910111213…(数字按照规律逐渐增加)②含π类的数:2π、12π、-10π等等③含√类:√2、√3、√5、2√2、√10等等;但是注意:√4=2、√9=3、√16=4、√25=5等等,这些属于整数。
知识点3:循环小数化分数定义:如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数,其中重复出现的一个或几个数字叫做它的一个循环节.纯循环小数:从小数点后面第一位起就开始循环的小数,叫做纯循环小数.例如:0.666…、0.2·等等纯循环小数化为分数的方法是:分子是一个循环节的数字组成的数;分母的各位数字都是9,9的个数等于一个循环节的位数.例如 0.3=39=13,0.189=189999=737.混循环小数:如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.1·2·、0.3456456….混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.0.918=918−9990=101110,0.239=239−23900=625,0.35135=35135−3599900=3510099900=1337注意: (1)任何一个“循环小数”都可以化为“分数”.(2)“混循环小数”化“分数”也可以先化为纯循环小数,然后再化为分数.【有理数和无理数】1. 下列各数是正整数的是( )A .-1B .2C .0.5D .√22. 下面说法中正确的是( ).A .非负数一定是正数.B .有最小的正整数,有最小的正有理数.C .−a 一定是负数.D .正整数和正分数统称正有理数. 3. 下列四种说法,正确的是( ).A. 所有的正数都是整数B. 不是正数的数一定是负数C. 正有理数包括整数和分数D. 0不是最小的有理数4. 下列说法正确的是( )A .整数就是正整数和负整数B .分数包括正分数、负分数C .正有理数和负有理数统称有理数D .无限小数叫做无理数5. 下列说法:①一个有理数不是整数就是分数;②有理数包括正有理数和负有理数;③分数可分为正分数和负分数;④存在最大的负整数;⑤不存在最小的正有理数.其中正确的个数是( )A .2个B .3个C .4个D .5个 6.112是( )A .整数B .有限小数C .无限循环小数D .无限不循环小数7. 在实数√5、227、0、π2、√36、﹣1.414,有理数有( ) A .1个 B .2个 C .3个 D .4个 8. 下列实数中,是无理数的为( )A .﹣4B .0.101001C .13D .√29. 以下各正方形的边长是无理数的是( )A.面积为25的正方形;B.面积为16的正方形;C.面积为8的正方形;D.面积为1.44的正方形. 10. 下列说法正确的是( )A .不循环小数是无理数B .无限不循环小数是无理数C .无理数大于有理数D .两个无理数的和还是无理数 11. 下列说法:①﹣2.5既是负数、分数,也是有理数;②﹣22既是负数、整数,也是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数. 其中正确的有( ) A .1个 B .2个 C .3个 D .4个 12. 已知a 为有理数,b 为无理数,你们a +b 为___________.13. 在﹣1、0.2、−15、3、0、﹣0.3、12中,负分数有_______________________,整数有_____________________.14. 在227、3.14159、√7、﹣8、√23、0.6、0、√36、π3中是无理数的个数____________.15. 在有理数−23、﹣5、3.14中,属于分数的个数共有_________. 16. 请把下列各数填入它所属于的集合的大括号里.1、0.0708、 -700、 -3.88、 0、3.14159265、 −723、0.2·3·正整数集合:{ }; 负整数集合:{ }; 整数集合:{ }; 正分数集合:{ }; 负分数集合:{ }; 分数集合:{ }; 非负数集合:{ }; 非正数集合:{ }. 17. 将下列各数填入相应的括号内3π、-2、−12、3.020020002…、0、227、2、2012、-0.2·3·整数集合:{ } 分数集合:{} 负有理数集合:{ } 无理数集合:{}18. 下面两个圆圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置.﹣28%、−(−37)、﹣2014、3.14、﹣(+5)、﹣0.3·【循环小数化分数】1. 把循环小数6.142化成分数是( ) A . 6142999B . 6745C . 62999D . 6322252. 在6.4040…、3.333、9.505,三个数中,6.4040…是循环小数,把这个数化为分数可以写作________________. 3. 0.2666…化为分数是_______________.4. 把下列循环小数化分数 (1)0.6·(2)3.1·02·(3)0.21·5·(4)6.353·(5)0.7·8· (6)1. 7·8·(7)0.17·8·(8)1.17·8·5. 试验与探究我们知道13写为小数即0.3·,反之,无限循环小数0.3·写成分数即13.一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.7·为例进行讨论:设0.7·= x ,由0.7·=0.7777…,可知,10x −x =7,解方程得x =79,于是得0.7·=79.请仿照上述例题完成下列各题: (1)请你把无限循环小数0.5·写成分数,即0.5·=_____________. (2)你能化无限循环小数0.7·3·为分数吗?请仿照上述例子求之.有理数与无理数知识点以及专项训练(含有答案解析)知识点1:有理数有理数:有理数是整数和分数的统称;正整数:1、2、3、4、5···整数: 0负整数:-1、-2、-3、-4、-5····分数:正分数:12、65、83···负分数:−12、−56、−38、−215···注意分数:只要能够写成分子、分母都是整数且分子不是分母倍数的数都是分数。
2.2有理数与无理数
2.1有理数与无理数主备人乔高霞二次备课1.教学目标1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。
2.会判断一个数是有理数还是无理数。
经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。
2.教学重点区分有理数与无理数,知道无理数是客观存在的。
感受夹逼法,估算无理数的大小3.教学难点会判断一个数是有理数还是无理数,体会“无限”的过程教学过程:一.自主学习1、我们上了六多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?2、想一想:小学里我们还学过有限小数和循环小数,它们是有理数吗?循环小数如何化为分数可以一起学习书P17、读一读二.合作、探究、展示1.议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形。
(1)设大正方形的边长为a,a满足什么条件?(2)a可能是整数吗?说说你的理由。
(3)a可能是分数吗?说说你的理由2、算一算:(1)a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请一位同学把自己的探索过程整理一下,用表格的形式反映出来。
a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.(2)请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.除上面的a,b外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3、有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.三.反馈练习1.判断题. (1)无理数都是无限小数. ()(2)无限小数都是无理数. ()11111111(3)有理数与无理数的差都是有理数. ( )二次备课(4)两个无理数的和是无理数. ( ) 2.把下列各数填在相应的大括号内:35,0,π3,3.14,-23,227,49,-0.55,8, 1.121 221 222 1…(相邻两个1之间依次多一个2),0.211 1,999正数集合:{ …};负数集合:{ …};有理数集合:{ …};无理数集合:{ …}.3.以下各正方形的边长是无理数的是( )(A )面积为25的正方形; (B)面积为16的正方形;(C)面积为3的正方形; (D)面积为1.44的正方形.四.小结提升1.什么叫无理数?2.数的分类?3.如何判定一个数是无理数还是有理数.五.作业巩固《伴你学》检测反馈教学反思。
有理数与无理数
有理数与无理数知识点1 有理数整数和分数统称有理数.(有理数也叫可比数)整数: 正整数、零和负整数统称为整数。
()...2,1,0,1,2....--自然数:正整数和零。
()0,1,2,3.... 分数:正分数和负分数统称为分数。
40.3,0.31,......5••⎛⎫- ⎪⎝⎭⎧⎪⎧⎨⎨⎪⎩⎩有限小数小数无限循环小数无限小数无限不循环小数注意:有限小数和无限循环小数都可以化为分数,它们都是有理数。
例:0.333……可以化为31 知识点2 有理数的分类1.按有理数的定义分类2.按正负分类 正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数 分数 负有理数负分数 负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数考点:有理数的分类例1 把下列各数填在相应的集合中:-7,3.5,-3.14,0,1713,0.03%,-314,10.自然数集合:{ …};整数集合:{ …};负数集合:{ …};正分数集合:{ …};正有理数集合:{ …}.知识点3 无理数无限不循环小数叫做无理数.常见的无理数有以下三种类型:(1)常数型无理数,如:π、e 等.(2)规律型无理数,如0.1010010001……(3)开方型无理数(八年级学习),如2、3、5等注意:(1)只有满足“无限”和“不循环”这两个条件,才是无理数.(2)圆周率π是无理数.(3)无理数与有理数的和差一定是无理数.(4)无理数乘或除以一个不为0的有理数一定是无理数.例2下列各数中..3.14,12π,1.090 090 009…,227,0,3.1415是无理数的有()A.1个B.2个C.3个D.4个例3、把下列各数填在相应的大括号里.+8,+3 4 ,0.275,2,0,-1.04,22 7 ,-8,-100,-1 3 ,0.•3 .(1)正整数集合{ …}(2)负整数集合{ …}(3)正分数集合{ …}(4)负分数集合{ …}.例4、把下列和数按要求分类.-4,10%,−11 2 ,-2.00,101,2 1 ,-1.5,0,0.1010010001…,0.6.负整数集合:{ …}正分数集合:{ …}负分数集合:{ …}整数集合:{ …}有理数集合:{ …}例5、如图、两个圈分别表示负数集和整数集,请你分别在A、B、C处分别填入3个数.例6、把下列各数填入表示它所在的数集的大括号内:。
初二数学:上册2.2有理数与无理数一起走近无理数
一起走近无理数在前面的学习中,我们认识了负数,使数的范围扩展到有理数.现在我们又开始学习无理数,把数的范围扩展到了实数.刚开始学习无理数,认为无理数不像有理数那样直观易懂,总有一种虚幻的感觉.那么该怎样学习无理数呢?一、明确无理数的存在无理数并不是“无理”,也不是人们臆想出来的,而是实实在在的存在.如:(1)两条直角边都为1的等腰直角三角形,它的斜边为2;(2)任何一个圆,它的周长和直径之比为常数π.像2、π这样的数在我们的身边还有很多.二、弄清无理数的定义及常见无理数无理数是指无限不循环小数,这说明无理数可以化为具有两个特征的小数:一是小数的位数时无限的,二是不循环的.我们比较常见的无理数往往具备以下几种表现形式:1.某些含有π的数,如:π,π3等; 2.开方开不尽得到的数,如:3、5等;3.依某种规律构造的无限不循环小数,如0.1010010001…(两个1之间依次多一个0).三、了解无理数的性质1.所有的无理数都可以用数轴上唯一的一个点来表示,并且右边的无理数总比左边的大;2.在有理数中的互为相反数的定义、绝对值得定义、大小比较法则及运算法则、运算律等,对于无理数仍然适用,如52-的相反数是25-,因为052<-,所以52-的绝对值是25-.四、澄清一些模糊认识1.无理数包括正无理数、0、负无理数0是一个整数,故它是有理数,因此无理数只能分为正无理数和负无理数两类.2.带根号的数就是无理数 由于像4、38-这样的数通过计算可以化为2和-2,因此它们是有理数,可见带根号的不一定是无理数.特别是π,它是无理数但并不是用根号形式表示的.3.无理数的数量比有理数少有些同学认为1、2、3、4、5这五个数,它们都是有理数,而开平方后得到的无理数只有2、3、5三个,因此得出无理数的数量要比有理数少.其实,我们对1、2、3、4、5开立方时还会产生32、33、34、35等无理数,如果再开四次方、五次方……还可以产生更多的无理数.因此无理数并不比有理数少.4.有些无理数是分数因为分数属于有理数,且无理数与有理数是两类不同的数,所以无理数不可能写成分数.当然,有些无理数可以借助分数线来表示,如32,但不能因为它具备了分数的形式就认为它是分数.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.将一块直角三角板的直角顶点放在长方形直尺的一边上,如∠1=43°,那么∠2的度数为()A.43°B.57°C.47°D.53°【答案】C【解析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】解:如图,,∵∠1=43°,∴∠3=∠1=47°,∴∠2=90°-43°=47°.故选:C.【点睛】此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.2.下面不是同类项的是()A.-2与12 B.-2a2b与a2b C.2m与2x D.-y2x2与12x2y2【答案】C【解析】根据同类项的定义逐项分析即可,同类项的定义是所含字母相同,并且相同字母的指数也相同的项,叫做同类项.【详解】A、B、D符合同类项的定义,是同类项;C中所含字母不同,不是同类项.故选C.【点睛】本题考查了利用同类项的定义,熟练掌握同类项的定义是解答本题的关键. 同类项定义中的两个“相同”:①所含字母相同;②相同字母的指数相同,是易混点.注意几个常数项也是同类项,同类项定义中的两个“无关”:①与字母的顺序无关,②与系数无关.3.某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.40【答案】D【解析】试题分析:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.考点:1.条形统计图;2.扇形统计图.4.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3【答案】C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.5.下列调查中,比较适合用全面调查(普查)方式的是()A.了解某班同学立定跳远的情况B.了解某种品牌奶粉中含三聚氰胺的百分比C.了解一批炮弹的杀伤半径D.了解全国青少年喜欢的电视节目【答案】A【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据定义判断即可得到答案.【详解】A、了解某班同学立定跳远的情况,适合全面调查;B、了解某种品牌奶粉中含三聚氰胺的百分比,具有破坏性,适合抽样调查;C、了解一批炮弹的杀伤半径,具有破坏性,适合抽样调查;D、了解全国青少年喜欢的电视节目,任务量过大,适合抽样调查;故选择:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.在一手机界面中出现了下列图形,其中不是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的概念求解.【详解】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.【点睛】考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.7.下列调查中,适合用全面调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵【答案】A【解析】全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此逐个选项分析判断.【详解】A. 调查“神舟十一号”飞船重要零部件的产品质量,由于是“重要零部件”,适合全面调查;B. 调查某电视剧的收视率,适合抽样调查;C. 调查一批炮弹的杀伤力,适合抽样调查;D. 调查一片森林的树木有多少棵,适合抽样调查.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查,要根据所要考察的对象的特征灵活选用.一般来说对于具有破坏性的调查,无法进行普查,普查的意义或价值不大应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.下列语句中,是命题的是()A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AM D.两个锐角的和大于直角【答案】D【解析】选项A,B,C不能写成如果……那么……的形式.选项D,如果两个角是锐角,那么它们的和大于直角.所以选D.9.将图1中五边形ABCDE纸片的点A以BE为折线向下翻折,点A恰好落在CD上,如图2所示:再分AB AE为折线,将,C D两点向上翻折,使得A、B、C、D、E五点均在同一平面上,别以图2中的,∠的度数为()如图3所示.若图1中122∠=,则图3中CADA︒A.58︒B.61︒C.62︒D.64︒【答案】D【解析】根据平角的定义和定理和折叠的性质来解答即可.【详解】解:由图2知,∠BAC+∠EAD=180°−122°=58°,所以图3中∠CAD=122°−58°=64°.故选:D.【点睛】本题考查了折叠的性质,结合图形解答,需要学生具备一定的读图能力和空间想象能力.10.下列选项中,不是依据三角形全等知识解决问题的是()A.同一时刻,同一地点两栋等高建筑物影子一样长B.工人师傅用角尺平分任意角C .利用尺规作图,作一个角等于已知角D .用放大镜观察蚂蚁的触角【答案】D【解析】分别利用作一个角等于已知角,以及工人师傅用角尺平分任意角,和同一时刻,同一地点两栋等高建筑物影子一样长都是利用全等三角形的知识解决问题,进而分析得出答案.【详解】解:A 、利同一时刻,同一地点两栋等高建筑物影子一样长,依据三角形全等知识解决问题,故此选项不合题意;B 、工人师傅用角尺平分任意角,是利用SSS 得出,依据三角形全等知识解决问题,故此选项不合题意;C 、利用尺规作图,作一个角等于已知角,是利用SSS 得出,依据三角形全等知识解决问题,故此选项不合题意;D 、用放大镜观察蚂蚁的触角,是利用相似,不是依据三角形全等知识解决问题,故此选项正确. 故选D .【点睛】此题主要考查了相似图形,正确掌握全等三角形的判定方法是解题关键.二、填空题题11.如果0,7x y xy +==-,则22x y xy +=______.【答案】0【解析】22x y xy +=xy(x+y)=-70⨯=0.故答案为0.12.在数轴上,如果点A 、点B 所对应的数分别为3-、2,那么A 、B 两点的距离AB =_______.【答案】5【解析】利用A ,B 对应的数,进而求出两点之间的距离.【详解】A ,B 两点之间的距离为2-(-3)=2+3=1.故答案为:1.【点睛】此题主要考查了实数与数轴,得出异号两点之间距离求法是解题关键.13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____.【答案】h =0.3n+1【解析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式.【详解】设该函数的解析式为h =kn+b ,将n =1,h =1.6以及n =4,h =3.1代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩, ∴h =0.3n+1,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+1.故答案为:h =0.3n+1.【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.已知2x =是不等式(5)(32)0x ax a --+≤的解,且1x =不是这个不等式的解,则实数a 的取值范围是________.【答案】12a <≤【解析】∵2x =是不等式(5)(32)0x ax a --+≤的解,∴(25)(232)0a a --+≤,解得2a ≤,∵1x =不是这个不等式的解,∴(15)(32)0a a --+>,解得1a >,所以a 的取值范围是12a <≤,故答案为:12a <≤.15.如图所示,将含有30°角的三角板的直角顶点放在互相平行的两条直线其中一条上,若∠1=35°,则∠2的度数为 度【答案】25°【解析】试题分析:根据平行线的性质定理可得:∠1+∠2=60°,根据题意求出∠2的度数.考点:平行线的性质16.已知33+的整数部分为m ,33的小数部分为n ,则m n +的值为__. 【答案】63333+33m 、n 的值,代入求出即可. 【详解】解:132<<,4335∴<<,231-<<-,1332∴<<, 33+的整数部分为m ,33n ,m 4∴=,n 33123==-,m n 42363∴+=+= 故答案为:63-【点睛】本题考查了估算无理数的大小的应用,能求出m 、n 的值是解此题的关键.17.若a ﹣3有平方根,则实数a 的取值范围是_____.【答案】a≥1.【解析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得30.a -≥解得: 3.a ≥故答案为 3.a ≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、解答题18.在ABC ∆中,BD 是ABC ∠的角平分线,DE BC ∥,交AB 于点E ,60A ︒∠=,95BDC ︒∠=,求BDE ∆各内角的度数.【答案】35︒,35︒,110︒【解析】先根据三角形外角性质计算出∠ABD 的度数,再根据角平分线的定义得到∠CBD=∠ABD ,然后利用平行线的性质由DE ∥BC 得∠EDB=∠CBD ,最后根据三角形内角和定理计算∠BED 的度数. 【详解】解:∵60A ︒∠=,95BDC ︒∠=,1BDC A ∠=∠+∠∴1956035BDC A ︒︒︒∠=∠-∠=-=,∵BD 平分ABC ∠,∴2135︒∠=∠=,又∵ED BC ∥,∴3235︒∠=∠=,∴180131803535110BED ︒︒︒︒︒∠=-∠-∠=--=,∴BDE ∆各内角的度数分别是35︒,35︒,110︒.【点睛】本题考查了平行线性质、三角形内角和定理及外角性质,熟知相关性质是解题的关键.19.如图,点D 为射线CB 上一点,且不与点B 、C 重合,DE ∥AB 交直线AC 于点E ,DF ∥AC 交直线AB 于点F.画出符合题意的图形,猜想∠EDF 与∠BAC 的数量关系,并说明理由.【答案】当点D 在线段CB 上时,∠EDF=∠BAC ;当点D 在线段CB 的延长线上时,∠EDF+∠BAC=180°,证明见解析. 【解析】①当点在线段CB 上时,因为DE ∥AB ,两直线平行,同位角相等,所以∠BAC=∠1;因为DF ∥AC ,两直线平行,内错角相等,所以∠EDF=∠1.等量代换,即可证明∠EDF=∠BAC ;②当点D 在线段CB 的延长线上时,因为DF ∥AC ,两直线平行,内错角相等且同旁内角和为180°,所以∠BAC=∠AFD ,∠EDF+∠AFD=180°.等量代换,即可证明∠EDF+∠BAC=180°.【详解】证明:(1)如图1,2所示:①当点D 在线段CB 上时,如图1,∠EDF=∠A,证明:∵DE ∥AB(已知),∴∠1=∠BAC(两直线平行,同位角相等).∵DF ∥AC(已知),∴∠EDF=∠1(两直线平行,内错角相等).∴∠EDF=∠BAC(等量代换).②当点D 在线段CB 的延长线上时,如图②,∠EDF+∠BAC=180°, 证明:∵DE ∥AB(已知),∴∠EDF+∠F=180°(两直线平行,同旁内角互补). ∵DF ∥AC(已知),∴∠F=∠BAC(两直线平行,内错角相等).∴∠EDF+∠BAC=180°(等量代换). 点睛:本题考查了平行线的判定与性质,利用分类讨论得出结果是解答本题的关键.20.已知x ﹣1x 5x 2+21x 的值. 【答案】1. 【解析】把x ﹣1x 5x 2+21x 的值. 【详解】∵x ﹣1x 5 ∴(x ﹣1x )2=5, ∴x 2+21x ﹣2=5, ∴x 2+21x =1.【点睛】此题考查代数式求值,注意所给算式的特点,灵活选用适当的方法解决问题.21.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.【答案】(1)14cm;(2)36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.【详解】(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【点睛】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.22.前几天,在青岛召开了举世目的“上合”会议,会议之前需要印刷批宣传彩页.经招标,A印务公司中标,该印务公司给出了三种方案供主办方选择:方案一:每份彩页收印刷费1元.方案二:收制版费1000元,外加每份彩页收印刷费0.5元.方案三:印数在1000份以内时,每份彩页收印刷费1.2元,超过1000份时,超过部分按每份0.7元收费.(1)分别写出各方案的收费y (元)与印刷彩页的份数x (份)之间的关系式.(2)若预计要印刷5000份的宣传彩页,请你帮主办方选择一种合算的方案.【答案】(1)方案一:y=x ;方案二:y=1000+0.5x ;方案三:当0≤x ≤1000时,y=1.2x ,当x >1000时,y=0.7x+500(2)方案二更节省费用,理由见解析【解析】(1)根据题意即可分别表示出各方案的收费y (元)与印刷彩页的份数x (份)之间的关系式; (2)将x =5000分别代入(1)中的关系式,然后比较大小,即可解答本题.【详解】(1)由题意可得,方案一:y=x ;方案二:y=1000+0.5x ;方案三:当0≤x ≤1000时,y=1.2x ,当x >1000时,y=1.2×1000+0.7(x-1000)=0.7x+500 (2)当x =5000时,方案一:y=5000;方案二:y=1000+0.5×5000=3500; 方案三: y=0.7×5000+500=4000 ∵5000>4000>3500,∴当印刷宣传彩页5000本时,应该方案二更节省费用.【点睛】本题是一道方案选择问题、考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的式子的值,求出最优方案.23.如图,已知A (0,)a ,B (,0)b ,且满足460a b -++=(1)求A 、B 两点的坐标;(2)点C (m,n)在线段AB 上,m 、n 满足n-m=5,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且S △MBC =S △MOD ,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG ⊥x 轴于G ,若S △PAB =20,且GE=12,求点P 的坐标.【答案】(1)A(0,2),B(-4,0);(2)D(0,-2);(3)P(-3,-3).【解析】(1)根据非负数的性质求得a 、b 的值即可;(2)由S △BCM =S △DOM 知S △ABO =S △ACD =1.连CO ,作CE ⊥y 轴,CF ⊥x 轴,则S △ABO =S △ACO +S △BCO ,据此列出方程组求得C (-3,2)而S △ACD =12×CE×AD=1,易得OD=2,故D (0,-2); (3)由S △PAB =S △EAB =5求得OE=2.由S △ABF =S △PBA =5求得OF=83.结合S △PGE =S 梯GPFO +S △OEF 求得PG=3.所以P (-3,-3). 【详解】解:(1)∵|a-2|≥060b +≥,460a b -++=∴4060a b -=+=,.∴a=2,b=-4.∴A (0,2),B (-4,0);(2)如图,由S △BCM =S △DOM∴S △ABO =S △ACD ,∵S △ABO =12×AO×BO=1. 连CO ,作CE ⊥y 轴于E ,CF ⊥x 轴于FS △ABO =S △ACO +S △BCO即12×4×n+12×2×(-m )=1 ∴53212n m n m -=⎧⎨-=⎩, ∴32m n =-⎧⎨=⎩∴C (-3,2)而S △ACD =12×CE×AD=12×3×(2+OD )=1 ∴OD=2,∴D (0,-2);(3)如图,∵S △PAB =S △EAB =5,∴12AO×BE=5,即2×(4+OE )=5, ∴OE=2.∴E (2,0).∵GE=1,∴GO=3.∴G (-3,0).∵S △ABF =S △PBA =5,∴S △ABF =12×BO×AF=12×4×(2+OF )=5. ∴OF=83. ∴F (0,-83). ∵S △PGE =S 梯GPFO +S △OEF∴12×1×PG=12×(83+PG )×3+12×2×83 ∴PG=3∴P (-3,-3).【点睛】考查了坐标与图形性质,非负数的性质以及算术平方根,解题的关键是利用三角形的面积公式求得相关线段的长度.24.如图,在ABC 中,BD AC ⊥于点D ,E 为BC 上一点,过E 点作EF AC ⊥,垂足为F ,过点D作//DH BC 交AB 于点H .()1请你补全图形(不要求尺规作图);()2求证:BDH CEF ∠=∠.【答案】 (1)见解析 (2)见解析【解析】(1)按要求作图;(2)先由DH //BC ,BDH DBC ∠∠=得,BD //EF 再证,CEF DBC ∠∠=得,BDH CEF ∠∠=所以.【详解】解:()1如图所示,EF ,DH 即为所求;(2)证明: //DH BC ,BDH DBC ∴∠=∠,BD AC ⊥,EF AC ⊥,//BD EF ∴,CEF DBC ∴∠=∠,BDH CEF ∴∠=∠.【点睛】本题考核知识点:平行线的判定和性质.解题关键点:熟记平行线的判定和性质.25.小华与爸爸用一个如图所示的五等分、可以自由转动的转盘来玩游戏;将转盘随机转一次,指针指向的数字如果是奇数.爸爸获胜,如果是偶数,则小华获胜(指针指到线上则重转)(1)转完转盘后指针指向数字2的概率是多少?(2)这个游戏公平吗?请你说明理由.【答案】(1)15;(2)不公平,理由见解析【解析】(1)列举出所有可能出现的结果,进而求出指针指向数字2的概率;(2)分别求出爸爸获胜和小华获胜的概率,通过比较得出结论.【详解】解:(1)将转盘随机转一次,指针指向的数字所有可能的结果有1,2,3,4,5,共五种,且每种出现的可能性相等,因此指向数字2的概率为:P=15,答:转完转盘后指针指向数字2的概率是15;(2)不公平,理由:爸爸获胜的概率为:P=35,小华获胜的概率为:P=25,∵32 55 ,∴不公平.【点睛】本题考查随机事件发生的概率,列举出所有可能出现的结果是解决问题的前提.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列计算正确的是( )A .(-a 3)2=a 5B .a 2÷a 2=0C .a 2•a 3=a 5D .(-a 2b )3=a 6b 3【答案】C【解析】根据幂的乘方与积的乘方、同底数幂的乘除法计算法则计算得到各式结果,即可做出判断.【详解】解:A 、原式=6a ,不符合题意;B 、原式=1,不符合题意;C 、原式=5a ,符合题意;D 、原式=63a b -,不符合题意.故选:C .【点睛】此题考查了同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 2.如图所示,直线a 、b 被直线c 所截,下列条件不能使//a b 的是( )A .25∠=∠B .17∠=∠C .37∠=∠D .18180∠+∠=︒【答案】A 【解析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【详解】解:A 、24∠∠=,4∠与5∠是同旁内角,同旁内角相等不能说明//a b ;故A 符合题意; B 、57∠=∠,1∠与5∠是同位角,同位角相等能说明//a b ;故B 不符合题意;C 、37∠=∠,同位角相等能说明//a b ,故C 不符合题意;D 、1∠=5∠,8∠与5∠是邻补角,则18180∠+∠=︒能说明//a b ;故D 不符合题意;故选:A .【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 3.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a+c >b+cD .a+b >c+b 【答案】B【解析】根据数轴判断出a 、b 、c 的正负情况,然后根据不等式的性质解答.【详解】解:由图可知,a <b <0,c >0,A 、ac <bc ,故本选项错误;B 、ab >cb ,故本选项正确;C 、a+c <b+c ,故本选项错误;D 、a+b <c+b ,故本选项错误.故选B .4.已知实数x 、y 、z 同时满足x+y =5及z 2=xy+y ﹣9,则x+3y+5z 的值为( )A .22B .15C .12D .11 【答案】D【解析】由已知得出5x y =-,代入第二个式子后整理得出()223=0z y -+,推出030z y =-=,,求出x ,y ,z 的值,最后将x ,y ,z 的值代入计算,即可求出35x y z ++的值.【详解】解:∵x+y =5,∴5x y =-,把5x y =-代入29z xy y =+-得: ()259z y y y -+-=,∴()223=0z y -+,∴030z y =-=,,∴3532y x ==-=,, 352335011x y z ++=+⨯+⨯=,故选:D .【点睛】本题主要考查了因式分解的方法及代数式求值的方法,综合性较强,有一定难度.5.已知线段AB的A点坐标是(3,2),B点坐标是(-2,-5),将线段AB平移后得到点A的对应点A′的坐标是(5,-1),则点B的对应点B′的坐标为().A.(0,-6)B.(3,-8)C.(1,-4)D.(0,-8)【答案】D【解析】根据点A的对应点A′的坐标是(5,-1)可知平移规律,即可解答.【详解】∵点A(3,2)的对应点A′的坐标是(5,-1)∴平移规律是横坐标加2,纵坐标减3,∴点B(-2,-5)的对应点B′的坐标(0,-8)故选D【点睛】本题考查了平面直角坐标系内点的平移问题,难度较低,找出平移规律是解题关键.6.如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°【答案】B【解析】由平行线的性质得出∠AEC=∠AFD=58°,再由三角形的外角性质即可得出∠BCE的度数.【详解】解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.【点睛】本题主要考查了平行线的性质以及三角形的外角性质,解题时注意:两直线平行,同位角相等.7.在3.14,2273这四个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B【解析】无限不循环小数是无理数.据此分析即可.【详解】在3.14,227,﹣3,π这四个数中,无理数是:﹣3,π这两个数. 故选:B【点睛】本题考核知识点:无理数.解题关键点:理解无理数的意义.8.如图①,从边长为a 的正方形中剪去一个边长为b 的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+【答案】A 【解析】由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式. 【详解】由大正方形的面积-小正方形的面积=矩形的面积得()()22a b a b a b -=+-故答案为:A .【点睛】本题考查了平方差公式的证明,根据题意列出方程得出平方差公式是解题的关键.9.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一直线上,则三角板ABC 旋转的度数是( )A .60°B .90°C .120°D .150°【答案】D 【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选D .考点:旋转的性质.10.手机上使用14nm 芯片,1nm =0.0000001cm ,则14nm 用科学记数法表示为( )A .1.4×10﹣6cmB .1.4×10﹣7cmC .14×10﹣6cmD .14×10﹣7cm【答案】A【解析】绝对值小于1的数可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】14nm=14×0.0000001cm =1.4×10﹣6cm , 故选:A .【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).二、填空题题11.某剧院的观众席的座位为扇形,且按下列方式设置:写出座位数y 与排数x 之间的关系式___________________________【答案】y=3x+1【解析】分析:首先设函数解析式为y=kx+b ,然后找两组值代入解析式求出k 和b 的值,从而得出答案. 详解:设函数解析式为y=kx+b ,将x=1,y=50;x=2,y=53代入可得: 50253k b k b +=⎧⎨+=⎩,解得:347k b =⎧⎨=⎩, ∴函数解析式为y=3x+1. 点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.设出函数解析式是解决这个问题的关键.12.高斯函数[x],也称为取整函数,即[x]表示不超过x 的最大整数.例如:[1.3]=1,[-1.5]=-1.若[x-1]=3,则x 的取值范围是__________ .【答案】45x ≤<【解析】由[x-1]=3得314x ,解之即可.【详解】若 [x-1]=3,则314x ,解得:45x ≤<.【点睛】本题主要考查解一元一次不等式组,根据取整函数的定义得出关于x 的不等式组是解题的关键. 13.如图直线l ∥m,将含有45°角的三角板的直角顶点放在直线m 上,若∠1=16°,则∠2的度数为_____.【答案】29°【解析】过点A 作直线b ∥l,再由直线m ∥可知m ∥l ∥b,得出∠3=∠1,∠2=∠4,由此可得出结论【详解】过点A 作直线b ∥l,如图所示∵直线m ∥1∴m ∥l ∥b,∴.∠3=∠1,∠2=∠4.∵∠1=16°∴∠3=16°∴∠4=45°-16°=29° ∴∠2=∠4=29°故答案为:29°【点睛】此题考查平行线的性质,做辅助线是解题关键14.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为16,则BE 等于 _________【答案】1【解析】过B点作BF⊥CD,与DC的延长线交于F点,运用割补法把原四边形转化为正方形,即可求出BE的长.【详解】解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,在△BCF和△BAE中,∵∠F=∠BEA,∠CBF=∠ABE,AB=BC,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD=S正方形BEDF=16,∴16.故答案为:1.【点睛】此题考查三角形全等的判定与性质,正方形的判定与性质,运用割补法把原四边形转化为正方形,其面积保持不变,所求BE就是正方形的边长了;也可以看作将三角形ABE绕B点逆时针旋转90°后的图形.15.点M(2,﹣3)到x轴的距离是_____.【答案】3【解析】根据点到x 轴的距离等于纵坐标的绝对值解答. 【详解】33-=,∴点()2,3M -到x 轴的距离是3.故答案为:3.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值是解题的关键.16.请你写出一个比4大且比6小的无理数,这个无理数是_______.1π+【解析】分析:根据无理数的三种形式写出即可,无理数通常有以下三种形式,①开方开不尽的数, ,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅(0的个数一次多一个). 详解:设这个无理数是x ,则4<x<6,∴16<x 2<36,…,∵π是无理数,且π≈3.14,∴这个无理数还可以是:π+1,π+2等.1π+.点睛:本题考查了实数的大小比较,熟练掌握无理数的定义及无理数的三种形式是解答本题的关键. 17.因式分解:2y 2﹣18=_____.【答案】2(y+3)(y ﹣3).【解析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(y 2﹣9)=2(y+3)(y ﹣3),故答案为:2(y+3)(y ﹣3)【点睛】此题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.三、解答题18.△ABC 在网格中的位置如图所示,请根据下列要求作图:(1)过点C 作AB 的平行线;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在学习了负数的概念之后,我们可以 将所有学过的数进行分类:
正整数:如 1,2,3,L
整数 零: 0
负整数:如 1,-2,-3,L
分数
正分数:如
1 ,5.9,5
2
2
,L
负分数:如
1 5
,-3.5,-
5 6
,L
整数和分数统称为有理数。
你能把下面的数分分类吗?
-05..6618,,-3,2,1.65,,346下的表格
边长 a 1<a<2 1.4<a<1.5 1.41<a<1.42 1.414<a<1.415
1.4142<a<1.4143
面积s=a2 1<S<4
1.96<S<2.25 1.9881<S<2.0164 1.999396<S<2.002225
1.99996164<S<2.00024449
2.1.2 有理数与无理 数
• 奇与偶,有界与无界,善与恶,左与右, 一与众,.雄与雌,直与曲,正方与长方, 亮与暗,动与静.
• 上面所写的这些对立概念被两千多年前的 著名的“毕达哥拉斯学派”认为是整个宇 宙的10个对立概念.
• 因此两千多年以前人们就认识到,世界是 由许多相互矛盾的事物组成的.你要认识这 个世界,改造这个世界,就要从这些矛盾 的事物入手.既然这是万物的普遍规律,那 么数学也要遵守.
练习3.把下列各数填入相应的集合中
2
-2 , 0 , 3
,
-0.25,
24 11
5.3,
2 7
整数集合{ … } 分数集合{ … }
正数集合{ … } 负数集合{ … }
非正数集合{ … }非负数集合{ … }
2.把下列数填在相应的集合里。
18, 32, 6.3, 5.1,1, 5 , 9.5, 1 , , 0.9
12
4
…… 整数集合
…… 偶数集合
…… 有理数集合
…… 非负数数集合
3.下面两个圈中分别表示正数集合和整数集合, 请在每个圈中填6个数,其中3个数既是正数又是 整数,这3个数应填在哪?你能说出着两个圈的 重叠部分表示什么数的集合吗?
正数集
整数集
m
我们把能够写成分数形式
n
的数叫 有理数
(m、n是整数且 n 0
负分数:如
1 5
,-3.5,-
56 ,L
思考: 还有没有别的分类方法?
能否将有理数按照是否正有理数或是 否负有理数来分类?
我们说:自然数的全体组成自然数集.
同样的,整数的全体组成整数集。
本校初一学生组成一个集合。
我们把具有某一特征的一类事物的全 体叫集合.
含有无限个元素的集合我们称为无限集, 例如:自然数集,整数集;含有有限个元素 的集合叫有限集,例如:本校全体初一学生 组成的集合等等。
❖ 结论:
❖ C=1.25992105…它也是一个无限不循环小数
定义
❖ 有理数总可以用有限小数或无限循环小数表示。 ❖ 反之,任何有限小数或无限循环小数也都是有理数。
❖ 无限不循环小数叫做无理数
更多无理数
❖ a=1.41421356… ❖ b=2.2360679…
❖π=3.14159265…
❖ 0.58588588858888…(相邻两个5之间8的 个数逐次加1)
正整数:如 1,2,3,L
正数
正分数:如
1 2
,5.3,8 3
,L
零: 0
负整数:如-1,-2,-3,L
负数
负分数:如
1 ,-3.5,5
5 6
,L
正整数:如 1,2,3,L
正有理数
正分数:如
1 ,5.3,8
2
3
,L
零: 0
负整数:如-1,-2,-3,L
负有理数
❖ 把下列各数表示成小数,你发现了什么?
❖ 3 , 4/5, 5/9, -8/45, 2/11
❖ 4/5=0.8 ❖ 5/9=0.555555555555555… ❖ -8/45=-0.177777777777… ❖ 2/11=0.18181818181818…
0.8 有限小数 0.555555555555555… -0.177777777777… 0.18181818181818…
2 3
-5.232323…
..
4.96
π
3
3.14159…
0.1234567891011…(由相继的正整数组成)
❖ 判断对错 ❖ (1)有限小数是有理数; ❖ (2)无限小数都是无理数; ❖ (3)无理数都是无限小数; ❖ (4)有理数是有限小数.
我们把一些数放在一起,就组成一个数的集合, 简称数集。
所有有理数的集合,称为有理数集。 所有整数的集合,称为 所有分数的集合,称为 所有正数的集合,称为 所有负数的集合,称为 所有正整数的集合,称为
那非负数集是什么数的集合?
非正数集呢?非整数集?非分数集?非正整 数集?非负整数集?非正分数集?非负分数 集?
无限循环小数 无限循环小数 无限循环小数
有限小数、无限循环小数都可以化成分数,因此它
们都是 有理数
❖ 面积为2的正方形,边长a究竟是多少? ❖ 即a2=2时,a是多少?
❖ 3个正方形的边长之间有怎样的大小关系?
❖ 边长a的整数部分是几? 十分位是几?百分 位呢?千分位呢?......借助计算器进行探索
7
4
大家有没有观察到:刚才老师把小数也分进 分数里去了。那上面的那些小数能不能说它 们是分数?为什么?那它们是不是有理数?
说明:我们把有限小数和无限循环小数统称为分数
是不是所有的小数都是分数?都是有理数?你能 举个例子吗?
• 注意: • 现在我们学的数中,除了含∏的数,都是有
理数.
• 小数属于分数.
例1 下列各数中,哪些是有理数?哪些是无理 数? 3.14 , -4/3, 0.57, 0.101000100 0001…(相邻 两个1之间0的个数逐次加2)
解:有理数有: 3.14 , -4/3, 0.57
无理数有: 0.101000100 0001…
随堂练习
❖ 哪些是有理数?哪些是无理数?
0.351
讨论
❖ 还可以继续计算下去么?
❖ a可能是有限小数么? 结论: a=1.41421356……,它是一个无限不循环小数
❖ 估计面积为5的正方形的边长b的值,(结果精 确到十分位),并用计算器验证你的估计.
❖ 探索:b=? 精确到百分位 ❖结论: ❖b=2.2360679…它也是一个无限不循环小数
同样,对于体积为2的立方体,借助计算器, 求它的棱长