小学五年级上册数学奥数知识点讲解《数的整除问题》试题附答案

合集下载

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析数的整除数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c 的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

小学生奥数数的整除问题知识点及练习题

小学生奥数数的整除问题知识点及练习题

小学生奥数数的整除问题知识点及练习题1.小学生奥数数的整除问题知识点数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数。

“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0)。

下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数。

又因为4|64,所以1864能被4整除。

但因为2564,所以1864不能被25整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数。

又因为125|375,所以29375能被125整除。

但因为8375,所以829375。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

例如:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20。

因为25—20=5,又因为115,所以11123456789。

再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

因为0是任何整数的倍数,所以11|0。

因此13574是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数。

因为1059-282=777,又7|777,所以7|1059282。

小学五年级奥数数的整除问题知识点及练习题

小学五年级奥数数的整除问题知识点及练习题

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是整理的《⼩学五年级奥数数的整除问题知识点及练习题》相关资料,希望帮助到您。

1.⼩学五年级奥数数的整除问题知识点 ⼀、基本概念和符号: 1、整除:如果⼀个整数a,除以⼀个⾃然数b,得到⼀个整数商c,⽽且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常⽤符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”; ⼆、整除判断⽅法:1、能被2、5整除:末位上的数字能被2、5整除。

2、能被4、25整除:末两位的数字所组成的数能被4、25整除。

3、能被8、125整除:末三位的数字所组成的数能被8、125整除。

4、能被3、9整除:各个数位上数字的和能被3、9整除。

5、能被7整除: ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后⼀位数字并减去末位数字的2倍后能被7整除。

6、能被11整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后⼀位数字并减去末位数字后能被11整除。

7、能被13整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后⼀位数字并减去末位数字的9倍后能被13整除。

三、整除的性质: 1、如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2、如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3、如果a能被b整除,b⼜能被c整除,那么a也能被c整除。

4、如果a能被b、c整除,那么a也能被b和c的最⼩公倍数整除。

2.⼩学五年级奥数数的整除问题练习题 1.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从⼩到⼤排列起来,第五个数的末位数字是多少? 2.如果六位数1992□□能被105整除,那么它的最后两位数是多少? 3.从左向右编号的1991名同学排成⼀⾏,从左向右1⾄11报数,报数为11的同学原地不动,其余同学出列,然后留下的同学再报数,第三次报数后,最后留下的同学中,从左边数第⼀个⼈的最初编号是多少? 4.173□是四位数字,⽼师在这个□中先后添⼊3个数字,所得到的3个四位数,依次可被9、11、6整除,⽼师添⼊的3个数字的和是多少? 5.在1992后⾯补上三个数字,组成⼀个七位数,使他们能被2、3、5、11整除,这个七位数最⼩值是多少?3.⼩学五年级奥数数的整除问题练习题 1.能同时被2、5、7整除的五位数的多少? 2.下⾯⼀个19983位数33…3(991个3)□44…4(991个4)中间漏写了⼀个数字(⽅框),已知,这个多位数被7整除,那么,中间⽅框内的数字是多少? 3.有这样的两位数,它的两个数字之和能被4整除,⽽且⽐这个两位数⼤1的数,它的两个数字之和也能被4组成,所以这样的两位数的和是多少? 4.⼀个⼩于200的⾃然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个⾃然数是多少? 5.任取⼀个四位数乘3456,⽤A表⽰其积的个位数字之和,⽤B表⽰A的个位数字之和,C表⽰B是个位数字之和,那么C是多少?4.⼩学五年级奥数数的整除问题练习题 试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明。

《数的整除问题》五年级奥数题

《数的整除问题》五年级奥数题

《数的整除问题》五年级奥数题
《数的整除问题》五年级奥数题
分析:
第一次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的.学生最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号.
解:
第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121的倍数;
第三次报数后留下的同学最初编号都是1331的倍数;
所以最后留下的只有一位同学,他的最初编号是1331;
答:从左边数第一个人的最初编号是1331号.。

数的整除问题奥数题及答案

数的整除问题奥数题及答案

数的整除问题奥数题及答案1 试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明. 考点:数的整除特征. 分析:根据题意,可采⽤假设的⽅法进⾏分析,100个⾃然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都⾄少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1⾄100的⾃然数中只有33个是3倍数,所以不能. 解答:假设能够按照题⽬要求在圆周上排列所述的100个数, 按所排列顺序将它们每5个分为⼀组,可得20组, 其中每两组都没有共同的数,于是,在每⼀组的5个数中都⾄少有两个数是3的倍数. ⼩学五年级数的整除问题奥数题及答案:从⽽⼀共会有不少于40个数是3的倍数.但事实上在1⾄100的这100个⾃然数中只有33个数是3的倍数, 导致⽭盾,所以不能. 答:不能.数的整除问题奥数题及答案2 数的整除性规律 【能被2或5整除的数的特征】⼀个数的末位能被2或5整除,这个数就能被2或5整除 【能被3或9整除的数的特征】⼀个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24 3|24,则3|1248621。

⼜如,372681各位上的数字之和是3+7+2+6+8+1=27 9|27,则9|372681。

【能被4或25整除的数的特征】⼀个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如, 173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

【能被8或125整除的数的特征】⼀个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

五年级奥数数的整除问题及答案

五年级奥数数的整除问题及答案

五年级奥数数的整除问题及答案
奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学习惯的过程。

让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。

数学网为大家准备了奥数题,希望的五年级奥数题及参考答案:数的整除问题,可以帮助到你们,助您快速通往高分之路!!
李老师为学校一共买了28支价格相同的钢笔,共付人民币
9□.2□元.□处数字相同,请问每支钢笔多少元?
解:∵9□.2□元=9□2□分
28=4×7,
∴根据整除"性质2"可知
4和7均能整除9□2□。

4|2□可知□处能填0或4或8。

因为79020,79424,所以□处不能填0和4;
因为7|9828,所叫□处应该填8。

又∵9828分=98.28元
98.28÷28=3.51(元)
答:每支钢笔3.51元。

【小学数学】小学五年级奥数:数的整除知识点汇总+例题解析

【小学数学】小学五年级奥数:数的整除知识点汇总+例题解析

数的整除数的整除问题;内容丰富;思维技巧性强。

它是小学数学中的重要课题;也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5;63÷7=9一般地;如a、b、c为整数;b≠0;且a÷b=c;即整数a除以整除b(b不等于0);除得的商c正好是整数而没有余数(或者说余数是0);我们就说;a能被b整除(或者说b能整除a)。

记作b|a.否则;称为a不能被b整除;(或b不能整除a);记作ba。

如果整数a能被整数b整除;a就叫做b的倍数;b就叫做a的约数。

例如:在上面算式中;15是3的倍数;3是15的约数;63是7的倍数;7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除;那么它们的和与差也能被c整除。

即:如果c|a;c|b;那么c|(a±b)。

例如:如果2|10;2|6;那么2|(10+6);并且2|(10—6)。

性质2:如果b与c的积能整除a;那么b与c都能整除a.即:如果bc|a;那么b|a;c|a。

性质3:如果b、c都能整除a;且b和c互质;那么b与c的积能整除a。

即:如果b|a;c|a;且(b;c)=1;那么bc|a。

例如:如果2|28;7|28;且(2;7)=1,那么(2×7)|28。

性质4:如果c能整除b;b能整除a;那么c能整除a。

即:如果c|b;b|a;那么c|a。

例如:如果3|9;9|27;那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面;个位数字是偶数(包括0)的整数;必能被2整除;另一方面;能被2整除的数;其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析.DOC数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b 能整除a)。

记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档