小学奥数最全知识点汇总知识讲解
小学奥数有哪些知识点
小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。
2. 素因数分解:将一个合数分解为质数的乘积。
3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。
4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。
5. 整数的四则运算:掌握整数加减乘除的规则和技巧。
6. 同余定理:理解同余的概念及其在解决数论问题中的应用。
二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。
2. 分数的四则运算:分数的加、减、乘、除运算规则。
3. 分数的化简与比较:化简分数和比较分数大小的方法。
4. 小数的基本概念:小数的意义和性质。
5. 小数的四则运算:小数的加、减、乘、除运算规则。
6. 分数与小数的互化:分数与小数之间的转换方法。
三、几何知识1. 平面图形的认识:点、线、面的基本性质。
2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。
3. 面积和周长的计算:计算各种平面图形的面积和周长。
4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。
5. 空间想象能力:通过剖面图、视图等理解三维空间。
四、代数基础1. 变量与常数:理解变量和常数的概念。
2. 简易方程:一元一次方程的建立和解法。
3. 代数表达式的简化:合并同类项、分配律等代数运算。
4. 不等式的概念:理解不等式的意义和基本性质。
5. 简单不等式的解法:解一元一次不等式。
五、逻辑推理1. 合情推理:通过已知信息推断未知信息。
2. 演绎推理:从一般到特殊的逻辑推理过程。
3. 归纳推理:从特殊到一般的推理方法。
4. 逻辑应用题:解决需要逻辑推理的实际问题。
六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。
2. 简单排列组合问题:解决基础的排列组合问题。
3. 二项式定理:理解二项式定理并能够进行简单应用。
4. 容斥原理:解决涉及集合容斥问题的方法。
七、数列与级数1. 等差数列:理解等差数列的定义和性质。
小学奥数知识点(30个)知识讲解
小学奥数知识点(30个)1、和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的: 和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
奥数知识点总结(非常全面)
小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
}关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):!②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!\6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差\③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学奥数知识点总结
小学奥数知识点总结小学奥数作为数学学习的拓展和延伸,对于培养孩子的逻辑思维、创新能力和解决问题的能力有着重要的作用。
以下是对小学奥数常见知识点的总结。
一、计算类1、速算与巧算这部分主要包括加法交换律、结合律,乘法交换律、结合律、分配律的灵活运用。
例如,通过凑整、拆数等方法,可以让计算变得更加简便。
2、等差数列要掌握等差数列的通项公式:第 n 项=首项+(n 1)×公差;求和公式:和=(首项+末项)×项数÷2 。
3、定义新运算根据给出的新运算规则,进行计算和推理。
二、数论类1、整除能被 2、3、5、9 等整除的数的特征要牢记。
例如,能被 2 整除的数末尾是偶数,能被 3 整除的数各位数字之和能被 3 整除。
2、质数与合数理解质数和合数的概念,知道 20 以内的质数有 2、3、5、7、11、13、17、19 。
3、最大公因数与最小公倍数通过短除法等方法求两个或多个数的最大公因数和最小公倍数。
三、图形类1、平面图形(1)三角形三角形的内角和是 180 度,三角形的面积=底×高÷2 。
(2)四边形包括平行四边形、长方形、正方形、梯形等。
要掌握它们的周长和面积计算公式。
(3)圆形圆的周长=2πr ,面积=πr² 。
2、立体图形(1)长方体和正方体了解它们的表面积、体积计算公式。
(2)圆柱体和圆锥体圆柱体的表面积=侧面积+两个底面积,体积=底面积×高;圆锥体的体积= 1/3×底面积×高。
四、应用题类1、行程问题涉及速度、时间和路程的关系,如相遇问题、追及问题。
2、工程问题工作总量=工作效率×工作时间,通常把工作总量看作单位“1”。
3、利润问题要清楚成本、售价、利润、利润率之间的关系。
4、浓度问题浓度=溶质÷溶液×100% ,通过溶质和溶液的变化来解决问题。
5、植树问题分为两端都种、两端都不种、一端种一端不种等情况。
小学奥数34个必掌握知识点
小学奥数知识点汇总2020年3月1、和差倍问题2、年龄问题基本特征①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
【关键问题】根据题目中的条件确定并求出单一量;4、植树问题【基本类型】在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树【基本公式】棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长【关键问题】确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题【基本概念】鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;【基本思路】①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
【基本公式】①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)【关键问题】找出总量的差与单位量的差。
6、盈亏问题【基本概念】一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
【基本思路】先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
【基本题型】①一次有余数,另一次不足;【基本公式】总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;【基本公式】总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;【基本公式】总份数=(较大不足数一较小不足数)÷两次每份数的差【基本特点】对象总量和总的组数是不变的。
小学奥数30类知识详解
小学奥数30类知识详解1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数知识点总结汇总
小学奥数知识点回顾1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
34个小学奥数核心知识点
34个小学奥数必掌握知识点1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数棵数=段数-1棵距×段棵数=段数棵距×段数=总长=总长数=总长关键确定所属类型,从而确定棵数与段数的关系问题5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
汇总小学阶段奥数知识点
汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。
下面为大家汇总小学阶段常见的奥数知识点。
一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。
小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
3、分数四则运算同分母分数加减法:分母不变,分子相加减。
异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。
分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。
分数除法:除以一个数等于乘这个数的倒数。
二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。
偶数:能被 2 整除的整数。
奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。
合数:除了 1 和它本身还有别的因数的自然数。
1 既不是质数也不是合数。
3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。
倍数:c 就是 a 和 b 的倍数。
4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
小学奥数30个知识点
小学奥数30个知识点1.和差倍问题和差问题 和倍问题 差倍问题已知条件 几个数的和与差 几个数的和与倍数几个数的差与倍数公式适用范围 已知两个数的和,差,倍数关系公式 ①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题 求出同一条件下的和与差 和与倍数 差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型 在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树基本公式 棵数=段数+1棵距×段数=总长 棵数=段数-1棵距×段数=总长 棵数=段数棵距×段数=总长关键问题 确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数30个知识点大全
小学奥数30个知识点大全1.数字的认识:了解从0到9的数字及其数值。
2.加法和减法:学习如何进行简单的加法和减法运算。
3.乘法和除法:了解乘法和除法的概念,并学习如何进行基本的乘除运算。
4.分数:认识和理解分数的概念,并学习如何进行分数运算。
5.小数:了解小数的概念,学习小数的读法和运算。
6.百分数:学习百分数的概念和应用,掌握如何进行百分数运算。
7.数字的顺序:学习数字的大小顺序和大小比较。
8.数字的组合:了解数字的组合和排列,学习如何进行数字的组合排列。
9.除法的应用:学习如何应用除法解决实际问题。
10.质数和合数:认识质数和合数的概念,并学习如何判断一个数是质数还是合数。
11.因数和倍数:了解因数和倍数的概念,并学习如何确定一个数的因数和倍数。
12.三角形的性质:学习三角形的定义和性质。
13.矩形和正方形:认识矩形和正方形的概念,并了解它们的性质。
14.圆的性质:学习圆的定义和性质,包括半径、直径、周长和面积等概念。
15.体积和容量:了解体积和容量的概念,并学习如何进行体积和容量的计算。
16.十进制数的读法:学习如何读写包含小数点的十进制数。
17.十进制数的运算:了解十进制数的加减乘除运算。
18.十进制数的应用:学习如何应用十进制数解决实际问题。
19.几何图形的变换:了解几何图形的平移、旋转和翻转等变换。
20.分数和小数的换算:学习如何将分数和小数互相转换。
21.图表和统计:认识各种图表的种类和用途,并学习如何读取和分析图表数据。
22.概率:了解概率的概念和计算方法。
23.平均数:学习如何求取一组数的平均数。
24.进制转换:了解十进制、二进制和八进制等不同进制之间的转换方法。
25.时、分和秒:学习如何读写和计算时间。
26.角的度数:认识角的度数的概念,学习如何进行角的度数的计算。
27.单位换算:了解不同单位之间的换算关系,并学习如何进行单位换算。
28.二次方程:认识二次方程的概念,并学习如何解二次方程。
小学奥数计算要点知识点整理汇总及典型例题讲解
奥数计算要点知识点整理汇总及典型例题讲解速算与巧算一、加减法中的巧算:1、加补数法两个自然数相加,如果它们的和恰好是整十、整百、整千……那么就称其中的一个数为另一个数的“补数”,这两个数称为互补。
在加减法的运算中,如果有两个加数互为补数,那么可以先求出它们的和,使计算迅速简便;如果题中没有互补的加数,那么可以设法分出互补的加数,以便凑成整十、整百、整千……的数。
2、去括号和添括号的法则在只有加减的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+c+d)=a-b-c-da-(b-c)=a-b+c如:100+(10+20+30)=100+10+20+30=160100-(10+20+30)=100-10-20-30=40100-(30-10)=100-30+10=803、找“基准数”法在算式中的加减运算中,当所有数都接近某个数时,可以将这个数作为基数,然后把每个数都看作是基数,计算,并且算出每个数与基数的差值,最后从结果中减去或加上这些差值。
4、分组凑整法先把能凑成整十或整百(包括0)的数结合在一起,再把它们各自的结果数相加。
5、位值原理法当遇到复杂的加减运算时,可以将每个数按位值分解,使具有相同位值的优先加减,最后将各个位值运算的结果合并起来,使运算简化。
6、带“符号”搬家如325+46-125+54=325-125+46+54=(325-125)+(46+54)=200+100=300。
二、乘法中的巧算:1、两数的乘积是整十、整百、整千,要先乘。
为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=10002、拆并法在乘除法的计算问题中,观察题目,将其中的部分数拆分,从而能够使用相应的乘除法分配率、结合率等等。
小学奥数知识点汇总基础知识点
小学奥数知识点汇总基础知识点小学奥数是小学数学的拓展和延伸,它不仅能够锻炼孩子们的思维能力,还能培养他们解决问题的能力和创造力。
以下是对小学奥数基础知识点的汇总。
一、计算类1、整数四则运算加法、减法、乘法和除法是最基本的运算。
要熟练掌握运算顺序(先乘除后加减,有括号先算括号内),以及简便运算方法,如凑整法、交换律、结合律、分配律等。
例如:25×44 = 25×(40 + 4) = 25×40 + 25×4 = 1000 + 100 =11002、小数和分数的运算掌握小数和分数的相互转化,以及小数和分数的四则运算。
比如:025 可以转化为 1/4,计算 025 + 1/2 = 1/4 + 2/4 = 3/43、速算与巧算通过观察数字特点,寻找规律,进行简便计算。
例如:99×7 =(100 1)×7 = 700 7 = 693二、数论类1、奇数和偶数奇数不能被 2 整除,偶数能被 2 整除。
奇数加奇数等于偶数,偶数加偶数等于偶数,奇数加偶数等于奇数。
2、质数与合数质数只有 1 和它本身两个因数,合数除了 1 和它本身还有其他因数。
要记住 20 以内的质数:2、3、5、7、11、13、17、193、整除特征能被 2 整除的数末尾是偶数;能被 3 整除的数各位数字之和能被 3整除;能被 5 整除的数末尾是 0 或 5 等。
三、图形类1、平面图形(1)三角形三角形的内角和是 180 度,三角形按角分为锐角三角形、直角三角形和钝角三角形;按边分为等边三角形、等腰三角形和不等边三角形。
(2)四边形包括平行四边形、长方形、正方形和梯形。
平行四边形两组对边分别平行且相等;长方形和正方形是特殊的平行四边形,正方形又是特殊的长方形。
(3)圆形圆的周长公式 C =2πr (r 是半径,π 通常取 314),面积公式 S =πr²2、立体图形(1)正方体有 6 个面,每个面都是正方形,12 条棱,8 个顶点。
小学奥数知识点梳理【完整版】
一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧 一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化 ⑷繁分数的化简 2. 简便计算⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分 ⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序① 运算定律的综合运用 ② 连减的性质 ③ 连除的性质④ 同级运算移项的性质 ⑤ 增减括号的性质 ⑥ 变式提取公因数 形如:1212......(......)n n a b a b a b a a a b÷±÷±±÷=±±±÷ 3. 估算求某式的整数部分:扩缩法 4. 比较大小① 通分a. 通分母b. 通分子 ② 跟“中介”比 ③ 利用倒数性质若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n nm m m <<。
5. 定义新运算 6. 特殊数列求和运用相关公式:①()21321+=++n n n②()()612121222++=+++n n n n③()21n a n n n n =+=+ ④()()412121222333+=++=+++n n n n⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇 奇±偶=奇 奇×偶=偶 偶±偶=偶 偶×偶=偶2. 位值原则形如:abc =100a+10b+c① 如果c|a 、c|b ,那么c|(a ±b)。
② 如果bc|a ,那么b|a ,c|a 。
小学奥数的所有知识点总结
小学奥数的所有知识点总结第一章数学基础知识一、数字的认识1.自然数、整数、有理数、小数、分数2.有关数的表示和认识3.大小比较二、数的四则运算1.加法、减法、乘法、除法2.运算规律3.运算技巧三、数的倍数和约数1.倍数的概念和判断2.约数的概念和判断3.倍数和约数的性质四、数的整除1.整除的概念和性质2.质数和合数3.分解质因数4.最小公倍数和最大公约数五、分数1.分数的概念和表示2.化简、通分3.分数的加减乘除4.分数的比较5.带分数第二章几何基础知识一、点、线、面1.点的概念2.直线和线段的概念3.射线和角的概念4.平行线和垂直线的关系二、线段和角1.线段的长度2.角的度量3.相交线的性质三、三角形1.三角形的分类2.三角形的性质3.三角形的周长和面积四、四边形1.四边形的分类2.四边形的性质3.四边形的周长和面积五、多边形1.多边形的分类和性质2.多边形的内角和外角和3.多边形的周长和面积六、相似和全等1.相似和全等的概念2.相似和全等的判断3.相似和全等的性质第三章综合应用一、尺规作图1.用图形工具画简单图形2.用尺规作出平行线、垂直线等二、平面图形的变化1.旋转和平移2.镜面反射3.放大、缩小三、数学应用题1.通过故事和实际问题引出运算2.建立方程和不等式3.奥数问题解题技巧四、数学启发题1.奇妙的数学问题2.趣味的数学游戏3.数学思维培养第四章奥数竞赛技巧一、备战奥数竞赛1.理解奥数竞赛2.奥数竞赛的特点3.比赛常见题型二、解题技巧1.快速计算技巧2.巧妙应用数学知识解题3.发散性思维和逻辑推理三、比赛心态1.放松心态2.临场发挥3.全面准备总结:小学奥数的知识点总结包括了数学基础知识、几何基础知识、综合应用和奥数竞赛技巧四个部分。
在数学基础知识中,包括了数字的认识、数的四则运算、数的倍数和约数、数的整除和分数等内容。
在几何基础知识中,包括了点、线、面、线段和角、三角形、四边形、多边形、相似和全等等内容。
小学奥数奥数知识点汇总(全)
小学奥数重要知识点整理汇总资料目录数论知识点…………………………………………2~6计算知识点…………………………………………7~14应用题知识点…………………………………………15~23几何知识点…………………………………………24~27组合专题…………………………………………28~35数论知识点整除,奇数偶数,质数,合数,分解质因数,约数,倍数。
\r\n余数问题:完全平方数,数的进制,数的综合,周期性问题,数的拆分。
数的整除性1、整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a。
2、整除的性质:性质1.如果c|a,c|b,则c|(a±b)。
性质2.如果bc|a,则b|a,c|a。
性质3.如果c|b,b|a,则c|a。
3、整除问题的解决方法:整除特征法;补9、补0试除法。
4、涉及极值的整除问题:逐步调整法。
5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。
小学数学奥数知识点
小学数学奥数知识点数学奥数作为一门重要的学科竞赛,对学生的数学能力和思维训练起到了很大的促进作用。
在小学阶段,学习奥数并不仅仅是为了应对竞赛,更是为了培养学生的逻辑思维和问题解决能力。
以下是小学数学奥数的一些重要知识点:1. 数和运算:1.1. 自然数:小学奥数的基础,包括正整数和零。
1.2. 数的读法:学生要掌握从个位到千位数的正确读法,能够正确理解数的大小。
1.3. 加法和减法:掌握加法和减法的运算规则,尤其是进位和借位的概念。
1.4. 乘法和除法:理解乘法和除法的意义和运算法则,掌握基础的口诀和计算技巧。
2. 算式的变形和简化:2.1. 分配律和结合律:运用分配律和结合律简化算式,加快计算速度。
2.2. 等式和不等式:理解等式和不等式的概念,并能够运用它们进行简单的推理和计算。
3. 分数和小数:3.1. 分数的基本概念:掌握分数的表示方法和意义,理解分子、分母的含义。
3.2. 分数的大小比较和运算:学会比较分数的大小,能够进行分数的加减乘除运算。
3.3. 小数和分数的转换:掌握小数和分数的相互转换方法,灵活运用。
4. 平方和立方:4.1. 平方数和立方数:了解平方数和立方数的概念,能够计算小范围内的平方和立方。
4.2. 平方根和立方根:初步了解平方根和立方根的概念,能够进行简单的开方运算。
5. 图形和几何:5.1. 平面图形:认识并能够画出常见的平面图形,如正方形、长方形、三角形、圆等。
5.2. 空间几何体:了解并能够画出常见的空间几何体,如球体、立方体、长方体等。
5.3. 图形的特征:掌握图形的周长、面积和体积的计算方法,能够解决相关问题。
5.4. 坐标系和直角坐标:初步了解二维坐标系和直角坐标表示,能够进行简单的点的定位和图形的移动。
6. 数据和统计:6.1. 数据的收集和整理:掌握数据的收集和整理方法,能够制作简单的统计图表。
6.2. 数据的分析和推理:能够对数据进行分析,提炼有用信息,并进行简单的推理和判断。
小学奥数所有的知识点归纳
小学奥数所有的知识点归纳对于小学生来说,参加奥数是提高数学能力和思维能力的绝佳途径。
小学奥数涉及的知识点广泛而深入,涵盖了数学的各个方面。
下面将对小学奥数的知识点进行归纳总结。
一、基础知识点1.1 数的认识和比较小学奥数的基础知识点之一是数的认识和比较。
包括数的读写、数的加减法运算、数的大小比较等。
1.2 整数的四则运算整数的四则运算是小学奥数必备的基础知识点,包括整数的加减乘除运算、负数的加减乘除运算等。
1.3 分数和小数的基本运算分数和小数的基本运算也是小学奥数的核心知识点之一。
包括分数的加减乘除运算、分数与整数的混合运算、小数的加减乘除运算等。
1.4 平方根和立方根的计算平方根和立方根的计算是小学奥数的一项重要知识点。
要求学生能够计算非负整数的平方根和立方根,并应用于实际问题中。
二、应用问题2.1 算术题小学奥数中,包含了各类应用算术题,如速算、面积体积计算、运算顺序等。
此类问题要求学生具备计算能力和分析解决问题的能力。
2.2 类比题类比题是小学奥数中的经典题型之一,它要求学生能够发现和分析事物之间的相似关系,并运用到具体问题中。
2.3 推理与判断题推理与判断题是小学奥数中较为复杂的类型,它要求学生通过逻辑思维和推理能力来解答问题。
这类题目既考察了学生的思维能力,又培养了他们的逻辑思维能力。
三、数学思维3.1 抽象思维小学奥数培养学生的数学抽象思维能力,使学生能够将数学问题具象化,提高解决问题的能力。
3.2 推理思维推理思维是解决数学问题的重要能力之一。
小学奥数中的推理题要求学生能够发现问题的规律,并运用推理能力进行解答。
3.3 分析思维分析思维是解决复杂数学问题的关键能力。
小学奥数中的分析题要求学生能够分析问题的结构和关系,并找出解题的关键点。
以上是小学奥数知识点的简要归纳。
通过学习这些知识点,可以提高小学生的数学能力和思维能力,为他们将来更高阶段的数学学习打下坚实基础。
希望同学们能够充分利用好奥数学习的机会,努力提高自己的数学水平!。
小学奥数知识点归纳和总结
小学奥数知识点归纳和总结小学奥数是指小学生参与的奥林匹克数学竞赛。
小学奥数的目的是培养学生的数学兴趣、创造力和解决问题的能力。
在小学奥数的学习过程中,有一些重要的知识点需要掌握。
下面我将对这些知识点进行归纳和总结。
1.数的认识与应用:小学奥数中,首先需要掌握自然数、整数、有理数和逻辑推理的基础。
还需要学会数的位数、十进制和分数的基本概念,以及运用数来解决实际问题。
2.整数的性质与运算:整数组成了一条数轴,并学会在数轴上表示整数。
需要掌握整数的比较、绝对值、加减乘除等基本运算。
同时还需要学会利用整数的性质解决简单的代数方程。
3.分数的应用:小学奥数中,分数是一个十分重要的知识点。
学生需要掌握分数的读法、表示方法和运算法则。
还需要学会将分数转化为小数和百分数,并能够运用分数解决实际问题。
4.几何与图形:小学奥数中,几何与图形是一个重要的知识点。
学生需要认识各种图形的名称、性质和特点,并学会计算图形的面积、周长和体积。
同时还需要了解一些几何的基本定理,如平行线的性质、三角形的性质等。
5.概率与统计:学生需要了解概率和统计的基本概念,学会利用概率和统计的知识解决实际问题。
例如,学生需要学会计算事件的概率、众数、中位数、平均数等。
6.数据与图表:小学奥数中,学生还需要学会认识和运用数据和图表。
例如,学生需要学会读懂表格、柱状图、折线图等,并从中获取有用的信息。
7.进制与数制:学生需要学会认识和运用不同的进制和数制。
例如,学生需要了解二进制、八进制和十六进制,并学会运用它们进行计算。
8.数论与整除性质:学生需要学会运用数论中的整除性质解决问题。
例如,学生需要学会判断一个数是否为素数,以及学会找出一个数的因数和倍数。
9.方程与不等式:学生需要学会解一元一次方程和一元一次不等式。
例如,学生需要学会用代数方法解方程和不等式,并在实际问题中应用。
10.排列与组合:学生需要学会计算排列和组合的数量。
例如,学生需要学会利用排列和组合的知识解决排队、抽签等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数的知识点汇总1、年龄问题的三大特征年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。
例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?⑴父子年龄的差是多少?54 – 18 = 36(岁)⑵几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶几年前儿子多少岁?36÷6 = 6(岁)⑷几年前父亲年龄是儿子年龄的7倍?18 – 6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。
2、归一问题特点归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。
由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
3、植树问题总结植树问题基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式:棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系4、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
5、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
6、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;7、平均数问题平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②8、周期循环数周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9、抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
10、定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
11、数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;12、二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。
十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。
13、加法原理加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数14、质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。