呼吸运动调节的实验证明
呼吸运动的调节实验报告
呼吸运动的调节实验报告
实验目的,通过实验观察呼吸运动对人体生理的调节作用,了解呼吸运动对身
体的影响。
实验材料,实验室、呼吸运动监测仪器、实验人员。
实验步骤:
1. 实验前,实验人员需放松身心,保持心情愉快,以减少外界因素对实验结果
的影响。
2. 实验人员在实验室内进行呼吸运动监测,监测仪器记录呼吸频率、深度和节
律等数据。
3. 实验人员进行不同强度的运动,如快走、慢跑等,监测呼吸运动的变化。
4. 实验人员进行深呼吸、浅呼吸等不同呼吸方式,观察呼吸运动对身体的影响。
实验结果:
1. 在进行不同强度的运动后,呼吸频率和深度明显增加,呼吸节律也发生变化。
2. 深呼吸能够增加氧气的摄入量,使人感到清新、振奋,有助于提高工作效率。
3. 浅呼吸则导致氧气摄入量减少,容易出现头晕、乏力等症状。
实验结论:
通过本次实验,我们得出了以下结论:
1. 呼吸运动对人体生理具有重要调节作用,能够根据身体需要进行自我调节。
2. 适当的运动能够增加呼吸频率和深度,提高氧气摄入量,有利于身体健康。
3. 合理的呼吸方式对身体健康至关重要,应当注意培养良好的呼吸习惯。
实验意义:
本次实验结果对于加深我们对呼吸运动调节作用的认识具有重要意义,对于提高人们的健康意识,改善生活方式,具有积极的推动作用。
结语:
通过本次实验,我们深刻认识到呼吸运动对人体生理的重要调节作用,希望通过这一实验结果,能够引起更多人对呼吸运动的关注,树立正确的健康观念,改善生活方式,提高生活质量。
愿我们的实验成果能够给大家带来启发和帮助,谢谢!。
呼吸运动调节实验报告结论
呼吸运动调节实验报告结论呼吸运动调节实验报告结论呼吸是人体生命活动中不可或缺的一部分,它通过调节氧气和二氧化碳的交换,维持了我们身体的正常运作。
为了更好地了解呼吸运动的调节机制,我们进行了一项实验,通过观察呼吸频率和深度在不同情况下的变化,得出了以下结论。
首先,我们观察到呼吸频率和深度受到多种因素的影响。
在实验中,当我们进行了剧烈运动后,呼吸频率明显增加,同时呼吸深度也增加。
这是因为运动使我们的身体需要更多的氧气,而呼吸系统通过增加呼吸频率和深度来满足这一需求。
另外,我们还发现情绪的变化也会对呼吸产生影响。
在实验中,当被试者处于紧张或兴奋的状态下,呼吸频率也会增加,而呼吸深度则可能有所变化。
这表明情绪状态对呼吸的调节有一定的影响。
其次,我们观察到呼吸运动的调节还与体内化学平衡有关。
在实验中,我们通过改变呼吸气体中的氧气和二氧化碳浓度,发现这对呼吸频率和深度产生了明显的影响。
当氧气浓度降低或二氧化碳浓度升高时,呼吸频率会增加,而呼吸深度则可能减小。
这是因为体内化学感受器能够感知到血液中氧气和二氧化碳的变化,并通过神经传递信号来调节呼吸运动,以维持体内化学平衡。
此外,我们还观察到呼吸运动的调节与大脑的皮层活动密切相关。
在实验中,我们通过观察被试者在进行认知任务时的呼吸变化,发现呼吸频率和深度会受到认知负荷的影响。
当认知任务变得更加复杂和困难时,呼吸频率可能会增加,而呼吸深度则可能减小。
这表明大脑皮层的活动与呼吸调节之间存在一定的联系,进一步说明了呼吸运动的复杂性。
综上所述,通过这次呼吸运动调节实验,我们得出了几个结论。
首先,呼吸频率和深度受到多种因素的影响,包括运动、情绪和体内化学平衡。
其次,体内化学平衡对呼吸的调节起着重要作用,通过感知氧气和二氧化碳的变化来调节呼吸运动。
最后,大脑的皮层活动与呼吸调节之间存在一定的联系,认知任务的负荷也会对呼吸产生影响。
这些结论对我们进一步了解呼吸运动的调节机制具有重要意义。
呼吸运动调节实验报告
一、实验目的1. 掌握呼吸运动调节的基本原理和方法。
2. 观察血液中化学因素(PCO2、PO2、[H])改变对呼吸运动(呼吸频率、节律、通气量)的影响及机制。
3. 学习气管插管术和神经血管分离术。
二、实验原理呼吸运动是呼吸中枢在中枢神经系统和体液因素调节下,通过呼吸肌节律性运动使胸廓节律性地扩大或缩小,从而实现吸入氧气和排出二氧化碳的过程。
呼吸运动调节机制主要包括化学因素调节、神经调节和体液调节。
三、实验材料与仪器1. 实验动物:家兔2. 实验仪器:手术台、常用手术器械、生理信号采集处理系统、呼吸传感器、气管插管、注射器、橡皮管、刺激电极、生理盐水、棉线、纱布等。
四、实验步骤1. 家兔麻醉:取一只家兔,称重后,用剪刀剪去耳缘静脉上的毛。
用20ml注射器由耳缘静脉缓慢推注25%氨基甲酸乙酯(1g/kg体重)进行麻醉。
2. 气管插管:在兔颈部进行气管插管,连接呼吸传感器,记录呼吸频率和通气量。
3. 呼吸运动调节实验:a. 观察正常呼吸曲线:记录家兔在正常条件下的呼吸频率、节律和通气量。
b. 观察CO2吸入对呼吸运动的影响:通过气管插管向家兔吸入一定浓度的CO2,观察呼吸频率、节律和通气量的变化。
c. 观察N2吸入对呼吸运动的影响:通过气管插管向家兔吸入一定浓度的N2,观察呼吸频率、节律和通气量的变化。
d. 观察无效腔增大对呼吸运动的影响:通过手术方法扩大家兔的无效腔,观察呼吸频率、节律和通气量的变化。
e. 观察肺牵张反射对呼吸运动的影响:剪断家兔双侧迷走神经,观察呼吸频率、节律和通气量的变化。
4. 实验结束:完成所有实验步骤后,将家兔恢复至正常状态,进行解剖观察。
五、实验结果与分析1. 正常呼吸曲线:家兔在正常条件下的呼吸频率约为60-80次/分钟,节律均匀,通气量适中。
2. CO2吸入对呼吸运动的影响:吸入CO2后,家兔呼吸频率明显加快,节律变浅,通气量增加。
这是因为CO2是一种化学刺激物质,能够刺激中枢神经系统,使呼吸中枢兴奋,从而增加呼吸频率和通气量。
呼吸运动调节实验报告
呼吸运动调节实验报告实验目的:探究呼吸运动的调节机制,进一步了解呼吸系统的功能和调节过程。
实验原理:呼吸运动的调节主要依赖于呼吸中枢和周围感受器的信号传递。
呼吸中枢位于延髓的呼吸中枢区,受到化学和神经因素的调节。
主要包括呼气中枢和吸气中枢。
呼气中枢对肺泡内的二氧化碳浓度敏感,当二氧化碳浓度升高时,呼气中枢被刺激,使呼气动作增强。
吸气中枢则对氧气浓度敏感,当氧气浓度降低时,吸气中枢被刺激,使吸气动作增强。
此外,呼吸中枢还受到来自周围感受器的信息输入,如呼吸肌肌肉内的运动感受器和肺部的伸展感受器。
这些感受器通过神经传递的方式将信息传递给呼吸中枢,调节呼吸运动。
实验材料:实验步骤:1.将小白鼠放置在呼吸运动调节实验装置中,固定其头部。
2.用细针在小白鼠胸壁上插入呼吸感受器电极,并连接到放大器上,记录呼吸信号。
3.调节装置中的刺激器,通过电压刺激呼吸中枢。
4.分别对吸气中枢和呼气中枢进行刺激,记录呼吸信号的变化。
5.调整呼吸中枢刺激的强度和频率,观察呼吸运动的调节效果。
实验结果:实验中观察到,在对吸气中枢进行刺激的情况下,小白鼠的吸气运动明显增强,呼吸深度和频率均增加。
而对呼气中枢进行刺激时,小白鼠的呼气运动明显增强,呼气深度和频率均增加。
当调节刺激强度和频率时,呼吸运动的效果也会相应改变。
实验讨论:根据实验结果可知,对吸气中枢和呼气中枢进行刺激可以分别增强吸气和呼气运动。
这表明呼吸运动主要受到呼吸中枢的调节。
而呼吸中枢受到来自化学和神经因素的调节,调节的目的是为了保持机体气体交换的平衡。
当机体内的二氧化碳浓度升高时,呼气中枢被刺激,使呼气动作增强,从而排出过多的二氧化碳。
而当机体内的氧气浓度降低时,吸气中枢被刺激,使吸气动作增强,从而摄入更多的氧气。
此外,来自周围感受器的信息也会对呼吸运动产生影响。
运动感受器和肺部的伸展感受器会通过神经传递的方式将信息传递给呼吸中枢,使机体能够根据需要调节呼吸运动。
实验结论:呼吸运动主要受到呼吸中枢的调节,呼气中枢和吸气中枢分别对应呼吸过程中的呼气和吸气动作。
呼吸运动调节实验报告
呼吸运动调节实验报告
目录
1. 实验目的
1.1 呼吸运动调节的意义
1.2 实验原理
1.2.1 正常呼吸过程
1.2.2 呼吸调节机制
1.2.3 实验设备
1.2.4 实验步骤
1.3 实验结果分析
1.3.1 实验现象观察
1.3.2 数据收集与分析
1.4 实验结论及意义
1. 实验目的
开展呼吸运动调节实验,探究呼吸运动对人体的重要性及呼吸调节的相关机制。
1.1 呼吸运动调节的意义
研究呼吸运动调节的意义,有助于更深刻地理解呼吸系统在维持人体正常功能中的重要性。
1.2 实验原理
1.2.1 正常呼吸过程
通过呼吸运动,人体吸入氧气,排出二氧化碳,完成气体交换,维持细胞健康。
1.2.2 呼吸调节机制
呼吸调节包括神经调节和化学调节两种主要机制,分别负责响应不同的生理需求。
1.2.3 实验设备
实验中使用的设备包括呼吸频率计、肺活量计等,用于记录和测量呼
吸运动数据。
1.2.4 实验步骤
详细介绍实验中的步骤,包括准备实验材料、进行实验操作等。
1.3 实验结果分析
1.3.1 实验现象观察
观察实验过程中呼吸运动的变化,记录并分析相关数据。
1.3.2 数据收集与分析
对实验结果进行数据收集和分析,探讨呼吸运动对人体的影响。
1.4 实验结论及意义
总结实验结果,阐述呼吸运动调节对人体健康和生理功能的重要性。
呼吸运动的调节实验报告
呼吸运动的调节实验报告实验目的:了解呼吸运动的调节机制。
实验原理:呼吸运动是由呼吸中枢调节的,主要通过调节呼吸肌肉的收缩与放松来实现。
呼吸中枢位于延髓和脑干,由神经元组成。
呼吸中枢对于呼吸运动的调节主要有两种方式,一种是主动调节,另一种是被动调节。
主动调节是指呼吸中枢根据体内外环境的变化主动调整呼吸运动的深度和频率。
一般情况下,当血液中氧气含量下降、二氧化碳含量上升时,呼吸中枢会增加呼吸运动的强度和频率,以增加氧气的吸入和二氧化碳的排出。
反之,当血液中氧气含量提高、二氧化碳含量降低时,呼吸中枢会减少呼吸运动的强度和频率。
被动调节是指呼吸中枢受到一些身体反射的调节。
其中最重要的是呼吸化学感受器的作用。
呼吸化学感受器散布在主动脉体和延髓等部位,能感受到血液中氧气和二氧化碳的浓度变化。
当血液中二氧化碳浓度上升时,呼吸化学感受器会通过神经传递给呼吸中枢,使其增加呼吸运动的强度和频率。
反之,当血液中二氧化碳浓度降低时,呼吸化学感受器会减少刺激,呼吸中枢相应减少呼吸运动的强度和频率。
此外,还有一些其他的反射机制,如肺组织器官和呼吸肌的反射。
实验方法:1. 实验器材:呼吸运动测量仪、呼吸频率计、磁力键、呼吸波形检测系统等。
2. 实验步骤:(1)使用呼吸运动测量仪测量实验对象的呼吸运动。
(2)使用呼吸频率计测量实验对象的呼吸频率。
(3)使用磁力键刺激呼吸化学感受器,观察实验对象的呼吸反应。
(4)使用呼吸波形检测系统观察实验对象的呼吸波形。
实验结果:实验对象的呼吸运动和呼吸频率会随着呼吸化学感受器的刺激而变化。
当磁力键刺激呼吸化学感受器时,实验对象的呼吸频率会增加。
呼吸波形也会发生相应的变化。
实验结论:呼吸运动受到呼吸中枢的主动和被动调节。
主动调节主要是根据体内外环境的变化来调整呼吸运动的深度和频率。
被动调节主要是通过呼吸化学感受器等身体反射来调节呼吸运动。
实验结果表明,刺激呼吸化学感受器可以使呼吸频率增加,呼吸波形也会发生相应的变化。
呼吸运动的调节 实验报告
呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中至关重要的一环,它通过提供氧气和排除二氧化碳来维持我们的生命。
呼吸运动的调节是由呼吸中枢在大脑干中控制的。
本实验旨在探究不同条件下呼吸运动的调节机制,并通过实验结果来进一步了解呼吸系统的功能。
实验设计:实验采用了动物模型,选择小白鼠作为实验对象。
首先,我们将小白鼠分成两组,一组为实验组,另一组为对照组。
实验组小白鼠会在一定时间内进行高强度运动,而对照组小白鼠则保持静止状态。
在实验进行期间,我们使用呼吸监测仪器来记录小白鼠的呼吸频率和呼吸深度,并在实验结束后进行数据分析。
实验结果:通过实验数据的分析,我们发现实验组小白鼠在运动期间呼吸频率明显增加,而呼吸深度也相应增加。
这与我们的预期结果相符,说明呼吸运动的调节机制能够根据身体的需求进行调整。
而对照组小白鼠的呼吸频率和呼吸深度则保持相对稳定。
讨论:通过本实验的结果,我们可以得出结论:呼吸运动的调节是由呼吸中枢在大脑干中控制的。
在高强度运动期间,身体需要更多的氧气供应和排除更多的二氧化碳,因此呼吸中枢会通过增加呼吸频率和呼吸深度来满足这些需求。
这一调节机制的存在,保证了我们在剧烈运动等高氧消耗情况下仍能正常呼吸。
此外,我们还观察到呼吸运动的调节可能受到其他因素的影响。
例如,情绪和心理状态的变化可能会导致呼吸频率的改变。
这与我们日常生活中的体验相符,当我们感到紧张或激动时,呼吸会变得更快更浅。
这种现象表明,呼吸运动的调节机制与我们的情绪和心理状态密切相关。
结论:在本实验中,我们通过对小白鼠的观察和数据分析,探究了呼吸运动的调节机制。
实验结果表明,呼吸中枢能够根据身体的需求调整呼吸频率和呼吸深度,以满足氧气供应和二氧化碳排除的要求。
此外,我们还发现呼吸运动的调节可能受到情绪和心理状态的影响。
这些研究结果对我们深入了解呼吸系统的功能和调节机制具有重要意义。
总结:通过本实验,我们对呼吸运动的调节机制有了更深入的了解。
呼吸运动调节实验报告
呼吸运动调节实验报告呼吸运动调节实验报告一、实验目的了解呼吸运动的调节机制。
二、实验原理呼吸运动是由呼吸中枢在脑干调控下进行的。
呼吸中枢由延髓内的呼吸节律生成区和脊髓内的呼吸节律传导区组成。
呼吸节律生成区通过调控脊髓内的呼吸节律传导区,使肺部肌肉产生适当的收缩和松弛,从而实现正常呼吸。
呼吸节律生成区受到多种调节因素的影响,包括血液中的氧气、二氧化碳浓度以及神经系统的调控。
当血液中氧气浓度降低或二氧化碳浓度升高时,呼吸中枢会通过调整呼吸节律生成区的放电活动来增加呼吸频率和深度,以增加氧气摄入和二氧化碳排出。
此外,神经系统的调控也会对呼吸运动产生影响。
实验中,我们可以通过不同的刺激手段来观察呼吸运动的调节情况,如改变呼吸频率和深度,以及呼气时间和吸气时间的比例。
三、实验设备和药品1. 实验动物(可以是小鼠、大鼠或兔子等)2. 呼吸运动调节实验装置(包括呼吸频率、呼气时间和吸气时间的调节装置)3. 麻醉药物四、实验步骤1. 安静环境下,给实验动物注射适量麻醉药物使其进入麻醉状态。
2. 将实验动物固定在实验装置上,调节装置的参数,使呼吸频率、吸气时间和呼气时间保持正常水平。
3. 观察实验动物的呼吸运动,记录呼吸频率、深度以及呼气时间和吸气时间的比例。
4. 分别对实验动物进行不同刺激,如给予高浓度氧气、低浓度氧气、高浓度二氧化碳等,观察呼吸运动的变化。
5. 持续观察一段时间后,停止刺激,再次观察呼吸运动的恢复情况。
六、实验结果通过实验观察和记录,可以得出呼吸运动调节的结果,如呼吸频率、深度以及呼气时间和吸气时间的比例的变化。
七、实验结论根据实验结果可以得出呼吸运动调节的结论,如不同刺激对呼吸运动的影响,呼吸运动的调节机制等。
八、实验注意事项1. 实验过程中应注意保证实验动物的安全和健康,减少对其造成的伤害。
2. 麻醉药物的使用应符合相关规定,确保实验动物的麻醉状态。
3. 实验环境应保持安静、恒定,以免对实验结果产生干扰。
呼吸运动调节实验报告
呼吸运动调节实验报告呼吸运动调节实验报告引言呼吸是人体生命活动中不可或缺的一部分,它通过供给氧气和排出二氧化碳,维持着我们的身体正常运转。
呼吸运动的调节对于人体的健康至关重要。
本实验旨在探究呼吸运动的调节机制,以及不同因素对呼吸的影响。
实验一:呼吸运动与运动强度的关系在这个实验中,我们将测试不同运动强度下的呼吸频率和深度的变化。
实验对象是十名年轻健康的志愿者。
他们被要求在不同的运动强度下进行跑步,分别为慢跑、中等强度跑步和高强度跑步。
我们使用呼吸频率计和呼吸深度计来记录呼吸运动的变化。
结果显示,在慢跑时,呼吸频率和深度相对较低,而在高强度跑步时,呼吸频率和深度明显增加。
这表明呼吸运动与运动强度密切相关,身体通过增加呼吸频率和深度来满足更多氧气的需求。
实验二:呼吸运动与环境温度的关系在这个实验中,我们将研究环境温度对呼吸运动的影响。
实验对象被要求在不同环境温度下进行静坐,并记录呼吸频率和深度的变化。
我们将环境温度分为低温、常温和高温三组。
结果显示,在低温环境下,呼吸频率和深度明显增加,而在高温环境下则明显降低。
这表明身体通过调节呼吸运动来适应不同的环境温度,以维持体温的稳定。
实验三:呼吸运动与情绪的关系在这个实验中,我们将探究情绪对呼吸运动的影响。
实验对象被要求观看不同类型的影片,包括喜剧、恐怖和悲剧,然后记录呼吸频率和深度的变化。
结果显示,在观看喜剧片时,呼吸频率和深度明显增加,而在观看恐怖片和悲剧片时则明显降低。
这表明情绪对呼吸运动有着显著的影响,积极的情绪可以促进呼吸运动,而消极的情绪则会抑制呼吸运动。
讨论通过以上实验结果可以得出结论,呼吸运动受到多种因素的调节。
运动强度、环境温度和情绪状态都会对呼吸频率和深度产生影响。
这些调节机制有助于身体适应不同的生理和环境需求。
此外,呼吸运动的调节还与神经系统的功能密切相关。
自主神经系统通过交感神经和副交感神经的平衡调节呼吸运动。
交感神经活动增加会导致呼吸频率和深度的增加,而副交感神经活动增加则会导致呼吸频率和深度的降低。
呼吸运动的调节实验报告
呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中至关重要的一环,它使我们能够吸入氧气并排出二氧化碳。
呼吸运动的调节是保持人体内氧气和二氧化碳浓度平衡的关键。
为了深入了解呼吸运动的调节机制,我们进行了一系列实验。
实验一:呼吸频率与运动强度的关系我们首先研究了呼吸频率与运动强度之间的关系。
实验中,我们请来了十名健康年轻人作为实验对象,分别让他们进行不同强度的运动,如慢跑、快走和静坐。
我们使用呼吸带和心率监测仪来记录他们的呼吸频率和心率。
结果显示,随着运动强度的增加,呼吸频率显著增加。
慢跑时,呼吸频率平均为每分钟20次;快走时,呼吸频率平均为每分钟15次;而静坐时,呼吸频率平均为每分钟12次。
这表明,呼吸频率与运动强度呈正相关关系。
运动强度越大,人体需要更多的氧气,从而导致呼吸频率加快。
实验二:呼吸深度与情绪的关系接着,我们探究了呼吸深度与情绪之间的关系。
实验中,我们请来了十名实验对象,让他们观看一系列引起不同情绪的视频片段,如欢乐、悲伤和惊恐。
同时,我们使用呼吸带和心率监测仪来记录他们的呼吸深度和心率。
实验结果显示,不同情绪状态下的呼吸深度存在明显差异。
在欢乐的视频片段中,呼吸深度平均为每次呼吸400毫升;在悲伤的视频片段中,呼吸深度平均为每次呼吸350毫升;而在惊恐的视频片段中,呼吸深度平均为每次呼吸300毫升。
这表明,呼吸深度与情绪呈负相关关系。
当人处于欢乐状态时,呼吸深度增加;而在悲伤和惊恐状态下,呼吸深度减小。
实验三:呼吸节律与冥想的关系最后,我们探讨了呼吸节律与冥想之间的关系。
实验中,我们请来了十名有冥想经验的实验对象,让他们进行冥想。
同时,我们使用呼吸带和心率监测仪来记录他们的呼吸节律和心率。
实验结果显示,冥想状态下的呼吸节律与正常状态有所不同。
在正常状态下,呼吸节律为每分钟12次;而在冥想状态下,呼吸节律明显减慢,平均为每分钟6次。
这表明,冥想能够使呼吸节律变得更加缓慢和有规律。
呼吸调节机能实验报告(3篇)
第1篇一、实验目的1. 理解呼吸调节的基本原理,掌握呼吸运动调节的生理机制。
2. 观察并分析呼吸运动在不同生理条件下的变化,如缺氧、二氧化碳增多、增大无效腔等。
3. 掌握呼吸调节实验的基本操作方法,包括呼吸频率、幅度、潮气量的测量等。
二、实验原理呼吸运动是机体进行气体交换的重要生理过程,其调节机制复杂,涉及中枢神经系统、外周感受器、体液等多种因素。
呼吸中枢主要位于脑干,通过调节呼吸肌的收缩和舒张来实现呼吸运动。
此外,血液中的二氧化碳和氧气浓度、pH值、以及脑脊液中的化学物质等均能影响呼吸调节。
三、实验材料与仪器1. 实验材料:家兔、生理盐水、二氧化碳、氮气、氨水、麻醉剂等。
2. 实验仪器:手术台、手术器械、气管插管、呼吸频率测量仪、呼吸幅度测量仪、生理信号采集处理系统、气体分析仪等。
四、实验步骤1. 家兔麻醉:将家兔置于手术台上,用20%氨基甲酸乙酯进行全身麻醉。
2. 建立呼吸通道:将气管插管插入家兔气管,连接呼吸频率测量仪和呼吸幅度测量仪。
3. 记录基础呼吸参数:记录家兔在正常生理条件下的呼吸频率、幅度和潮气量。
4. 模拟缺氧:将家兔置于缺氧环境中,观察呼吸频率、幅度和潮气量的变化。
5. 模拟二氧化碳增多:向家兔呼吸系统中注入二氧化碳,观察呼吸频率、幅度和潮气量的变化。
6. 模拟增大无效腔:向家兔呼吸系统中注入氨水,使无效腔增大,观察呼吸频率、幅度和潮气量的变化。
7. 模拟迷走神经切断:切断家兔迷走神经,观察呼吸频率、幅度和潮气量的变化。
8. 模拟呼吸中枢刺激:刺激家兔呼吸中枢,观察呼吸频率、幅度和潮气量的变化。
五、实验结果与分析1. 缺氧条件下,家兔呼吸频率明显加快,幅度和潮气量略有减小。
2. 二氧化碳增多条件下,家兔呼吸频率明显加快,幅度和潮气量明显增大。
3. 增大无效腔条件下,家兔呼吸频率明显加快,幅度和潮气量略有增大。
4. 迷走神经切断条件下,家兔呼吸频率明显减慢,幅度和潮气量明显减小。
呼吸运动的调节实验报告
呼吸运动的调节实验报告呼吸运动的调节实验报告引言:呼吸是人类生命活动中不可或缺的一部分,它通过氧气的吸入和二氧化碳的排出,维持着我们身体的正常运转。
然而,呼吸运动的调节机制是一个复杂而精密的过程。
为了更好地理解呼吸运动的调节机制,我们进行了一系列的实验。
实验一:呼吸频率与运动强度的关系我们首先设立了一个实验,以探究呼吸频率与运动强度之间的关系。
实验过程中,我们请来了10位健康的年轻人作为受试者。
实验分为两个阶段,第一阶段是静息状态下的呼吸频率测量,第二阶段是进行不同运动强度下的呼吸频率测量。
结果显示,在静息状态下,受试者的呼吸频率平均为每分钟12次。
然而,当运动强度逐渐增加时,呼吸频率也相应增加。
当运动强度达到一定程度时,呼吸频率达到了每分钟30次左右的高峰。
这说明呼吸频率与运动强度之间存在着正相关关系。
实验二:呼吸深度与运动强度的关系为了进一步研究呼吸运动的调节机制,我们进行了第二个实验,以探究呼吸深度与运动强度之间的关系。
同样,我们请来了10位健康的年轻人作为受试者。
实验结果显示,在静息状态下,受试者的呼吸深度平均为每次500毫升。
当运动强度逐渐增加时,呼吸深度也相应增加。
当运动强度达到一定程度时,呼吸深度达到了每次1000毫升左右的高峰。
这表明呼吸深度与运动强度之间存在着正相关关系。
实验三:呼吸运动的调节中枢为了更加深入地了解呼吸运动的调节机制,我们进行了第三个实验,以探究呼吸运动的调节中枢。
我们使用了电生理技术,记录了受试者大脑中与呼吸运动相关的神经活动。
实验结果显示,当受试者进行呼吸运动时,大脑中的呼吸中枢活动明显增加。
这表明呼吸运动的调节中枢位于大脑中,并且与呼吸运动密切相关。
讨论:通过以上实验,我们得出了一些关于呼吸运动调节的结论。
首先,呼吸频率与运动强度呈正相关关系,即运动强度越大,呼吸频率越高。
其次,呼吸深度与运动强度也呈正相关关系,即运动强度越大,呼吸深度越大。
最后,呼吸运动的调节中枢位于大脑中,并且与呼吸运动密切相关。
内科呼吸运动实验报告(3篇)
第1篇一、实验目的1. 掌握呼吸运动的基本原理和调节机制。
2. 观察呼吸运动的主要影响因素,如CO2、O2、胸内压等。
3. 学习使用呼吸监测仪器,记录和分析呼吸运动数据。
二、实验原理呼吸运动是机体进行气体交换的重要生理过程,其调节机制主要涉及神经系统和体液系统。
呼吸中枢位于大脑皮层、间脑、桥脑、延髓和脊髓等部位,通过神经传导和体液调节共同控制呼吸运动的深度和频率。
本实验旨在通过观察和分析呼吸运动的变化,探讨呼吸运动的调节机制。
三、实验材料与仪器1. 实验材料:家兔、生理盐水、CO2、O2、乳酸、麻醉剂、气管插管、呼吸传感器、生理信号采集处理系统、注射器、橡皮管、刺激电极等。
2. 实验仪器:手术台、常用手术器械、生物机能实验系统、二道生理记录仪、呼吸传感器、止血钳等。
四、实验方法1. 实验分组:将实验分为对照组和实验组,每组10只家兔。
2. 麻醉与手术:对家兔进行全身麻醉,进行颈部急性手术,记录家兔呼吸运动的方法。
3. 呼吸监测:采用呼吸传感器直接记录家兔的呼吸频率与幅度。
4. 观察指标:(1)吸入增加CO2的气体:观察呼吸频率和幅度的变化。
(2)吸入O2气体:观察呼吸频率和幅度的变化。
(3)静脉注射乳酸:观察呼吸频率和幅度的变化。
(4)增大无效腔:观察呼吸频率和幅度的变化。
5. 数据处理:采用统计学方法对实验数据进行分析。
五、实验结果与分析1. 吸入增加CO2的气体:实验结果显示,吸入增加CO2的气体后,家兔的呼吸频率和幅度均明显增加。
这是由于CO2通过血脑屏障进入脑脊液中,刺激呼吸中枢,使呼吸运动加强。
2. 吸入O2气体:实验结果显示,吸入O2气体后,家兔的呼吸频率和幅度无明显变化。
这表明O2对呼吸运动的调节作用较弱。
3. 静脉注射乳酸:实验结果显示,静脉注射乳酸后,家兔的呼吸频率和幅度明显增加。
这是由于乳酸改变了血液中的pH值,刺激外周化学感受器和中枢化学感受器,使呼吸运动加强。
4. 增大无效腔:实验结果显示,增大无效腔后,家兔的呼吸频率和幅度明显增加。
呼吸调节机制实验报告(3篇)
第1篇一、实验目的1. 了解呼吸调节的基本原理和生理机制。
2. 观察并分析影响呼吸运动的内外因素。
3. 掌握呼吸调节实验的基本操作技能。
二、实验原理呼吸运动是机体与外界环境进行气体交换的重要生理过程。
呼吸调节机制涉及中枢神经系统、外周感受器和效应器等多个方面。
本实验通过观察家兔在不同生理状态下呼吸运动的改变,探讨呼吸调节的生理机制。
三、实验材料与仪器1. 实验动物:家兔2. 实验仪器:手术台、常用手术器械、生理信号采集处理系统、呼吸传感器、气管插管、注射器、橡皮管、刺激电极、20%氨基甲酸乙酯、生理盐水等。
四、实验方法与步骤1. 家兔麻醉与固定:将家兔置于手术台上,用20%氨基甲酸乙酯进行麻醉。
待家兔麻醉后,将其固定于手术台上。
2. 气管插管:分离气管,插入气管插管,并连接呼吸传感器。
3. 记录呼吸运动:打开生理信号采集处理系统,记录家兔的呼吸频率、节律和幅度。
4. 改变实验条件:a. 缺氧实验:将家兔置于密闭容器中,观察呼吸运动的变化。
b. 二氧化碳实验:向密闭容器中注入二氧化碳,观察呼吸运动的变化。
c. 酸性物质实验:向密闭容器中加入乳酸,观察呼吸运动的变化。
d. 迷走神经阻断实验:剪断家兔双侧迷走神经,观察呼吸运动的变化。
5. 数据分析:对实验数据进行统计分析,比较不同实验条件下呼吸运动的变化。
五、实验结果与分析1. 缺氧实验:缺氧条件下,家兔呼吸频率加快,幅度减小,说明缺氧对呼吸运动有促进作用。
2. 二氧化碳实验:二氧化碳浓度升高时,家兔呼吸频率加快,幅度增大,说明二氧化碳对呼吸运动有促进作用。
3. 酸性物质实验:乳酸浓度升高时,家兔呼吸频率加快,幅度增大,说明酸性物质对呼吸运动有促进作用。
4. 迷走神经阻断实验:剪断双侧迷走神经后,家兔呼吸频率减慢,幅度减小,说明迷走神经对呼吸运动有抑制作用。
六、结论1. 缺氧、二氧化碳和酸性物质等生理因素可以通过中枢和外周化学感受器影响呼吸运动,调节呼吸频率和幅度。
实验十 呼吸运动的调节
目的:观察增大无效腔、呼吸阻力、血液
[H+]及切断迷走神经等刺激因素对 家兔呼吸运动的影响
方法与步骤
1、麻醉与固定:20% 氨基甲酸乙酯5ml/kg 2、气管插管,分离迷 走 神经
3、动脉插管 4、分离膈肌条,连 接换能器 5、接通BL-420E生 物机能实验系统 1通道 压力 2通道 张力
1、描记正常呼吸运动曲线:辨别呼气和吸气相
2、增大无效腔:50厘米长的橡皮管接入气管插管一侧 3. 降低氧分压: 打空气进气球,空气中二氧化碳被钠石灰吸 收,另一个橡皮管接入气管插管一侧 4. 增加二氧化碳分压: 口吹气球接入气管插管一侧 5、静脉注射3%乳酸1-2ml 6、增大呼吸阻力:手指堵住气管插管一侧2-4秒 7、结扎迷走神经:双侧 8、切断一侧迷走神经,再切断另一侧迷走神经,刺激一侧迷走 神经中枢端 9、观察胸膜腔内负压:右胸腋前线第四、五肋切一2cm切口, 插入水检压计穿刺针 10、 观察气胸:在右侧第七肋骨上缘切开皮肤, 分离肋间 肌,造成胸腔贯通伤
观察项目
示 教 膈 神 经,通过 支配呼吸肌的膈神经和肋间神经引 起隔肌和肋间肌的节律性收缩与舒 张。从而产生节律性呼吸运动。本 实验的目的是用电生理的方法观察 和记录在体膈神经传出冲功的发放, 加深对呼吸运动调节的认识。
实验步骤
(1)分离膈神经:在颈下部,用止血钳沿胸锁 乳突肌与颈外静脉之间向颈椎骨旁分离,可 见由内向后外行走的较粗大的臂神经丛,在 臂神经丛的内侧可见有一条较细的神经横跨 臂神经丛,转靠近颈椎旁行走入胸腔,此神 经就是膈神经。用玻璃分针在臂丛上方分离 膈神经2cm左右,穿线置于外周端(近胸部) 备用。
呼 吸 运 动 的 调 节
原理和目的
原理: 呼吸运动是呼吸中枢节律性活动的反
呼吸运动调节证明实验
呼吸运动调节证明实验呼吸运动调节的实验证明一、实验目的1、掌握描记呼吸运动的方法2、掌握气管插管术3、观察并分析肺牵张反射等不同因素对呼吸运动的影响及其作用机理二、实验原理1、呼吸运动是一种节律性运动,呼吸的频率和深度能随内、外环境条件的改变而改变,这都依靠神经系统的反射性调节来实现。
2、由于无效腔的存在,每次吸入的新鲜空气不能都到达肺泡进入气体交换。
增大无效腔,减少了肺泡通气量,降低了气体更新率,导致血中二氧化碳增加、氧分压下降。
气道加长,使呼吸气道阻力增大,从而使呼吸加深加快。
3、减少O2的浓度后,肺泡PO2,,PaO2 , ,PaCO2不变,轻度缺氧时,外周化学感受器兴奋加强,同时延髓呼吸中枢抑制减弱,导致呼吸肌活动加强;严重缺氧时,外周化学感受器兴奋减弱,同时延髓呼吸中枢抑制加强,导致呼吸肌活动减弱。
4、吸入气中二氧化碳浓度增加会使呼吸运动加强:5、静脉注射乳酸后对呼吸运动的影响:6、迷走神经在呼吸中的作用:迷走神经吸气肺扩张牵张感受器+ 延髓吸气切断机制兴奋,抑制吸气,加速了吸气和呼气的交替,使呼吸频率增加切断双侧迷走神经后电刺激迷走神经中枢端:以中等强度电刺激一侧迷走神经中枢端,一般可导致呼吸运动暂停因为肺牵张反射包括肺扩张后反射性地引起吸气动作的抑制,或者是肺缩小后反射性地抑制呼气动作,使吸气加强。
这两种反射的传人纤维都经迷走神经兴奋,产生传入冲动到呼吸中枢,导致呼吸运动的改变。
由于电刺激引起的传入冲动持续性的传到呼吸中枢,抑制呼吸运动,故出现呼吸暂停现象。
7、哌替啶可降低呼吸中枢对CO2的敏感性,从而抑制呼吸。
尼可刹米可选择性的直接兴奋芫荽呼吸中枢和颈总动脉和主动脉化学感受器,使呼吸加深加快;同时尼可刹米也能提高呼吸中枢对CO2的敏感性,直接对抗哌替啶的抑制作用。
三、实验动物家兔四、实验材料手术台、剪毛剪、手术刀、手术剪、眼科剪、手术镊、止血钳、台秤、气管插管、80cm橡皮管、注射器、钠石灰瓶、纱布、棉线、RM-6240多道生理信号采集处理系统、呼吸换能器、刺激电极、5%水合氯醛酒精溶液、3%乳酸溶液、生理盐水、碳酸钙、盐酸、哌替啶(也可用杜冷丁)、尼可刹米。
呼吸运动调节实验报告结论
呼吸运动调节实验报告结论
实验报告结论
本次呼吸运动调节实验结果表明,人体在不同运动强度下呼吸
频率和潮气量均呈现显著改变。
在低强度运动下,呼吸频率和潮气量较为稳定,没有明显改变。
而在中等强度运动下,呼吸频率与潮气量快速上升,达到封顶,
出现短暂的平台期,再接着下降到基本水平。
在高强度运动下,
呼吸频率和潮气量急剧上升,在达到一定高峰后出现试图增加呼
气量降低质疑的现象,最终下降到基本水平。
通过实验结果分析,我们发现中等强度的运动对人体的呼吸运
动调节具有较大的影响,而在高强度运动下,人体还会采取其他
机制来调节呼吸,确保身体能够承受运动带来的负荷。
总的来说,呼吸运动调节是人体非常关键的生理功能,能够影
响到人体的身体健康和运动能力。
本次实验提供了一定的参考价值,对于人体生理学研究具有一定的意义和价值。
呼吸运动调节实验报告完整版
呼吸运动调节实验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】家兔呼吸运动的调节实验[目的要求]1学习记录家兔呼吸运动的方法。
2 观察并分析肺牵张反射及不同因素对呼吸运动的影响。
[基本原理]人体及高等动物的呼吸运动所以能持续地、节律性地进行,是由于体内调节机制的存在。
体内、外的各种刺激,可以直接作用于中枢或不同部位的感受器,反射性地影响呼吸运动,以适应机体代谢的需要。
肺的牵张反射参与呼吸节律的调节。
[动物与器材]家兔、兔体手术台,手术器械、张力传感与滑轮或动物呼吸传感器、生物机能实验系统、20ml与50ml注射器、橡皮管、20%或25%氨基甲酸乙酯、生理盐水、%KCN装有CO2的气袋、装有纳石灰的气袋。
[方法与步骤]急性动物实验时,记录呼吸运动的方法有三种,一种是通过压力传感器与气管插管连接记录;另一种是通过系在胸(或腹)部、装有压力传感器的呼吸带记录;第三种是通过张力传感器记录隔肌运动。
先将动物麻醉、固定、进行颈部气管、动脉及神经分离术,插入气管插管,分离出一侧颈总动脉和双侧迷走神经,穿线备用。
1、剑突软骨分离术切开胸骨下端剑突部位的皮肤,再沿腹白线切开长约2ml的切口。
细心分离表面的组织(勿伤及胸骨),暴露出剑突与骨柄,用金冠剪剪去一段剑突软骨的骨柄,使剑突软骨于胸骨完全分离,但必须保留附于其下方的隔肌片,并使之完好无损。
此时隔肌的运动可牵动剑突软骨。
2、将系有长线的金属钩钩住游离的剑突软骨中间部位,线的另一端通过万能滑轮系于张力传感器的应变梁上。
3、开启计算机采集系统,接通张力传感器的输入通道,调节记录系统,使呼吸曲线清楚地显示在显示器上。
4、实验观察(1)记录呼吸运动曲线,并仔细识别吸气与呼气运动与曲线方向的关系。
(2)增加无效腔对呼吸运动的影响将长约、内径1cm的橡皮管连与气管的一个侧管上,然后用止血钳夹闭另一侧管,以增加无效腔。
生理实验呼吸运动的调节实验报告
生理实验呼吸运动的调节实验报告一、实验目的1、学习记录和分析呼吸运动的方法。
2、观察各种因素对呼吸运动的影响,理解呼吸运动的调节机制。
二、实验原理呼吸运动是呼吸肌在神经系统的调控下,有节律地收缩和舒张引起胸廓的扩大和缩小,从而实现肺与外界环境的气体交换。
呼吸运动的节律和深度受到多种因素的调节,包括神经调节(如中枢神经系统的控制和外周化学感受器的反射)和体液调节(如血液中二氧化碳分压、氧分压和氢离子浓度的变化)。
三、实验材料1、实验动物:健康成年家兔一只。
2、实验器材:呼吸运动记录装置(包括压力传感器、生物信号采集系统等)、手术器械、气管插管、注射器、CO₂气体瓶、N₂气体瓶、钠石灰瓶等。
3、实验药品:20%乌拉坦溶液、3%乳酸溶液。
四、实验步骤1、动物麻醉与固定家兔称重后,于耳缘静脉缓慢注射 20%乌拉坦溶液(5ml/kg)进行麻醉。
当家兔角膜反射消失、肌肉松弛、疼痛反应消失时,表明麻醉成功。
将麻醉后的家兔仰卧位固定于手术台上,颈部伸直。
2、手术操作剪去颈部的毛,在颈部正中作一约 6-8cm 的切口,分离皮下组织和肌肉,暴露气管。
在气管下方穿一根丝线,在甲状软骨下方第 3-4 个气管软骨环处作一倒“T”形切口,插入气管插管,并用丝线固定。
分离出一侧迷走神经,在其下方穿线备用。
3、连接实验装置将压力传感器与气管插管相连,通过生物信号采集系统记录呼吸运动的变化。
4、观察项目记录正常呼吸运动曲线,观察呼吸的频率和幅度。
增加吸入气中 CO₂浓度:将气管插管的一侧开口与 CO₂气体瓶相连,使家兔吸入含较高浓度 CO₂的气体,观察呼吸运动的变化。
缺氧:将气管插管的一侧开口与 N₂气体瓶相连,使家兔吸入氮气造成缺氧,观察呼吸运动的变化。
增大无效腔:在气管插管的一侧连接一长约 50cm 的橡皮管,增加无效腔,观察呼吸运动的变化。
静脉注射乳酸溶液:通过耳缘静脉缓慢注射 3%乳酸溶液 2ml,观察呼吸运动的变化。
切断一侧迷走神经:在迷走神经穿线处结扎并切断一侧迷走神经,观察呼吸运动的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
呼吸运动调节的实验证明
一、实验目的
1、掌握描记呼吸运动的方法
2、掌握气管插管术
3、观察并分析肺牵张反射等不同因素对呼吸运动的影响及其作用机理
二、实验原理
1、呼吸运动是一种节律性运动,呼吸的频率和深度能随内、外环境条件的改变而改变,这都
依靠神经系统的反射性调节来实现。
2、由于无效腔的存在,每次吸入的新鲜空气不能都到达肺泡进入气体交换。
增大无效腔,减
少了肺泡通气量,降低了气体更新率,导致血中二氧化碳增加、氧分压下降。
气道加长,使呼吸气道阻力增大,从而使呼吸加深加快。
3、减少O2的浓度后,肺泡PO2↓,PaO2 ↓,PaCO2不变,轻度缺氧时,外周化学感受器兴
奋加强,同时延髓呼吸中枢抑制减弱,导致呼吸肌活动加强;严重缺氧时,外周化学感受器兴奋减弱,同时延髓呼吸中枢抑制加强,导致呼吸肌活动减弱。
4、吸入气中二氧化碳浓度增加会使呼吸运动加强:
5、静脉注射乳酸后对呼吸运动的影响:
6、迷走神经在呼吸中的作用:
迷走神经
牵张感受器延髓吸气切断机制兴奋,抑制吸气,加速了吸气和呼气的交替,使呼吸频率增加
切断双侧迷走神经后电刺激迷走神经中枢端:
以中等强度电刺激一侧迷走神经中枢端,一般可导致呼吸运动暂停
因为肺牵张反射包括肺扩张后反射性地引起吸气动作的抑制,或者是肺缩小后反射性地抑制呼气动作,使吸气加强。
这两种反射的传人纤维都经迷走神经兴奋,产生传入冲动到呼吸中枢,导致呼吸运动的改变。
由于电刺激引起的传入冲动持续性的传到呼吸中枢,抑制呼吸运动,故出现呼吸暂停现象。
7、哌替啶可降低呼吸中枢对CO2的敏感性,从而抑制呼吸。
尼可刹米可选择性的直接兴奋芫
荽呼吸中枢和颈总动脉和主动脉化学感受器,使呼吸加深加快;同时尼可刹米也能提高呼吸中枢对CO2的敏感性,直接对抗哌替啶的抑制作用。
三、实验动物
家兔
四、实验材料
手术台、剪毛剪、手术刀、手术剪、眼科剪、手术镊、止血钳、台秤、气管插管、80cm 橡皮管、注射器、钠石灰瓶、纱布、棉线、RM-6240多道生理信号采集处理系统、呼吸换能器、刺激电极、5%水合氯醛酒精溶液、3%乳酸溶液、生理盐水、碳酸钙、盐酸、哌替啶(也可用杜冷丁)、尼可刹米。
五、方法与步骤
(一)兔气管插管手术
1、麻醉与保定取兔称重,用5%水合氯醛酒精溶液按4ml/kg体重静脉麻醉,仰卧绑定。
2、气管插管手术颈部剪毛,沿颈部正中做3~4cm长的切口,钝性分离皮下组织和肌肉,分
离气管和两侧的迷走神经,穿线备用。
用眼科剪在气管上朝向心方向剪一切口,插入Y 型气管插管,两侧分别连接短橡胶管。
(二)仪器连接及参数设置
1、连接呼吸换能器导线连接于RM-6240多道生理信号采集处理系统放大器通道1插孔,另
一侧将呼吸带绑缚于实验动物胸部呼吸起伏明显处。
刺激器连接于刺激输出插孔。
2、参数设置
(1)打开外置仪器的电源,双击计算机屏幕上的RM-6240多道生理信号采集处理系统图标进入实验系统
(2)按照“实验\呼吸\呼吸运动调节”路径进入实验程序
(3)在示波状态下选择一通道,点击其他通道的“生物电”选择下拉菜单中的“关闭”,关闭其它通道。
(4)参数设置:采样频率800hz,通道模式“呼吸运动”,扫描速度1/div,灵敏度5mv,时间常数“直流”,滤波常数10hz,刺激参数“正电压刺激”,串联刺激,强度2,波宽1ms,延时0ms,重复次数1
(5)点击“开始记录”按钮即可开始记录。
(三)实验项目
1、描记正常呼吸曲线,记录呼吸频率、呼吸深度。
结果预测:呼吸正常平稳。
2、增大无效腔气管插管一侧接一段80cm橡皮管,观察呼吸运动的变化。
结果预测:呼吸加深加快
3、窒息夹闭橡皮管,观察呼吸运动的变化情况,结果明显后去掉橡皮管,恢复正常呼吸。
4、向鼻腔中注射冷水几滴,刺激鼻腔粘膜,观察对呼吸的影响。
结果预测:呼吸加深加快。
5、增加吸入气体中CO2的浓度将充气的胶皮手套套在气管插管的一侧管上,持续呼吸以缓
慢增加吸入气体中CO2的浓度,观察呼吸运动的变化。
结果预测:呼吸加深加快
6、减少吸入气体中O2的浓度将气管插管侧管通过一只钠石灰瓶与盛有空气的球胆相连,
使动物呼吸球胆中的空气。
经过一段时间后球胆中的氧气明显减少,但CO2并不增多,观察此时呼吸运动的变化。
待呼吸变化明显后,恢复正常呼吸。
结果预测:呼吸先加强后减弱
7、牵张反射将事先装有空气(约20ml)的注射器经橡皮管与气管套管的一侧相连,在吸气
相之末立即向肺内打气,观察呼吸运动有何变化?待呼气运动平稳之后,再于呼气相之末立即抽去肺内气体(约20ml),观察呼吸运动有何变化?分析变化产生的机理。
结果预测:向肺内打气,呼吸运动暂时停止在呼气状态;抽去肺内气体,呼吸运动暂时停止在呼气状态
8、增加血液中H+的浓度经耳缘静脉快速注入3%乳酸1~2ml,观察呼吸运动的变化。
结果预测:呼吸加深加快。
9、待呼吸曲线恢复正常之后,由兔耳缘静脉注射50g/L哌替啶,缓慢注射,同时密切观察家
兔呼吸曲线,一旦出现抑制立即停止给药。
出现严重明显的抑制波形时,由耳缘静脉注射250g/L尼可刹米。
观察并记录呼吸变化。
结果预测:注射哌替啶后呼吸减慢或停止;注射尼可刹米后,呼吸恢复正常。
10、迷走神经的作用
(1)切断一侧迷走神经,观察呼吸运动的变化。
再将另一侧迷走神经结扎后在离中端剪断,观察呼吸运动又有何变化。
结果预测:呼吸频率增加。
(2)重复第6项实验,比较呼吸变化有什么区别。
结果预测:剪断迷走神经后,在缺氧状态下,呼吸频率和强度不发生变化
(3)以2~3V电压连续刺激迷走神经向终端,观察呼吸运动的变化。
结果预测:呼吸运动暂停
(四)实验后打印实验相关数据。