直流调速控制系统

合集下载

直流电动机调速系统

直流电动机调速系统

直流电动机调速系统的能耗分析
能效比
直流电动机的能效比通常较高,可以在较高的效率下运行,减少 能源浪费。
功率因数
直流电动机的功率因数较高,可以减少无功损耗,提高电网效率。
热效率
直流电动机的热效率也较高,可以在长时间运行下保持稳定的性 能。
直流电动机调速系统的稳定性分析
抗干扰能力
直流电动机的调速系统通常具有较强的抗干扰能力,可以在复杂 的工作环境下稳定运行。
直流电动机调速系统的调速性能
调速范围
直流电动机的调速范围通常较大,可以在较 宽的转速范围内实现平滑调节,满足不同工 况下的需求。
调速精度
直流电动机的调速精度较高,可以通过精确的控制 算法实现转速的精确控制,提高生产过程的稳定性 和产品质量。
动态响应
直流电动机的动态响应较快,可以在短时间 内达到稳定转速,满足动态负载变化的需求 。
输标02入题
调压调速是通过改变电枢电压来控制电动机的转速, 具有调节方便、平滑性好等优点,但调速过程中能量 损失较大。
01
03
串级调速是通过改变转子回路的电阻来控制电动机的 转速,具有调节方便、能量损失较小等优点,但调节
范围较小且对电机结构有特殊要求。
04
调磁调速是通过改变励磁电流来控制电动机的转速, 具有调节方便、能量损失较小等优点,但调节范围较 小。
系统调试
在系统集成完成后,进行全面的 调试,确保各部分工作正常,满 足设计要求。
性能测试
对系统的性能进行测试,包括调 速范围、动态响应、稳态精度等 指标,确保系统性能达标。
优化改进
根据测试结果和实际应用情况, 对系统进行必要的优化和改进, 提高系统的稳定性和可靠性。
04

交直流调速系统

交直流调速系统

交直流调速系统•引言•交直流调速系统基本原理•交直流调速系统组成与结构目录•交直流调速系统控制策略•交直流调速系统性能分析•交直流调速系统设计与实践•交直流调速系统应用与展望引言01CATALOGUE调速系统概述调速系统的定义调速系统是一种能够改变电动机转速的控制系统,通过调整电动机的输入电压、频率等参数,实现对电动机转速的精确控制。

调速系统的分类根据电动机类型不同,调速系统可分为直流调速系统和交流调速系统两大类。

其中,直流调速系统具有调速范围广、静差率小等优点,而交流调速系统则具有结构简单、维护方便等特点。

交直流调速系统的发展与应用发展历程交直流调速系统经历了从模拟控制到数字控制的发展历程。

早期的调速系统主要采用模拟控制技术,随着计算机技术的发展,数字控制技术逐渐取代了模拟控制技术,使得调速系统的性能得到了显著提升。

应用领域交直流调速系统广泛应用于工业生产的各个领域,如机械制造、冶金、化工、纺织等。

在现代化生产线中,交直流调速系统是实现自动化生产的关键技术之一,对于提高生产效率、降低能耗具有重要意义。

交直流调速系统基本原理02CATALOGUE直流电机通过电枢电流和磁通量的相互作用产生转矩,实现电机的旋转运动。

直流电机原理调速方式控制策略直流调速系统通过改变电枢电压、电枢电阻或磁通量来调节电机的转速。

直流调速系统常采用PID 控制、模糊控制等策略,实现电机转速的精确控制。

030201交流电机通过定子电流产生的旋转磁场与转子电流的相互作用,实现电机的旋转运动。

交流电机原理交流调速系统通过改变定子电压、频率或改变电机结构等方式来调节电机的转速。

调速方式交流调速系统常采用矢量控制、直接转矩控制等策略,实现电机转速的精确控制。

控制策略交直流混合调速系统原理混合调速原理交直流混合调速系统结合了直流和交流调速系统的优点,通过交直流变换器实现能量的双向流动和转速的精确控制。

能量转换交直流混合调速系统通过交直流变换器将直流电能转换为交流电能,或将交流电能转换为直流电能,以满足不同负载的需求。

《直流调速控制系统》课件

《直流调速控制系统》课件
分,通过接收控制器的控制信号实现转速的调节。
02
直流调速控制系统的主要技术指标
调速范围与静差率
调速范围
指控制系统能够调节的最高和最低转速之比。例如,如果最高转速为1000转/分,最低转速为10转/分,则调速 范围为100:1。
静差率
指在给定的转速变化下,系统的输出转速变化与输入转速变化的比值。例如,如果输入转速变化1%,输出转速 变化2%,则静差率为2%。
03
控制器选择
选择合适的控制器,如单片机、 DSP等,用于实现控制算法和控 制逻辑。
04
软件设计
控制算法选择
选择合适的控制算法,如PID控制、模糊控制 等。
控制逻辑设计
设计合适的人机界面,方便用户对系统进行 操作和控制。
人机界面设计
根据控制算法和控制需求,设计控制逻辑, 实现系统的自动控制。
数据处理程序设计
调速平滑性
调速平滑性
指系统在调节过程中,输出转速变化的连续性和平滑程度。平滑性好的系统, 输出转速变化连续、无突变,对被控对象的振动和冲击小。
调节时间
指系统从某一转速调节到另一转速所需的时间。调节时间越短,系统的响应速 度越快。
动态响应时间与超调量
动态响应时间
指系统在阶跃输入下,达到稳态值的 90%所需的时间。动态响应时间越短 ,系统的快速性越好。
选择合适的仿真软件,如MATLAB/Simulink等,用于建立直流调速控制系统的仿真模 型。
仿真模型建立
根据直流调速控制系统的原理,建立仿真模型的各个模块,包括电机模型、控制器模型 、测速模型等。
仿真结果分析
对仿真结果进行分析,验证仿真模型的正确性和有效性。同时,通过对比实验结果和仿 真结果,进一步理解直流调速控制系统的性能特点和控制效果。

第4章 直流电动机调速控制系统

第4章 直流电动机调速控制系统

调速指标

静态调速指标
• 调速范围 • 静差率 • 调速范围与静差率的关系

动态调速指标
• 跟随性能指标 • 抗扰性能指标
单闭环直流调速系统

单闭环有静差调速系统 单闭环无静差调速系统

单闭环有静差调速系统

系统的组成及原理 系统的静特性及静态结构图
系统的反馈控制规律 单闭环调速系统的动态特性

电动机转速与转矩的关系


如果把E =Cen代入式(4-8) ,便可得出电枢电流I的表达式 Ia=(U- Cen )/Ra (4-9) 由上式可见,直流电动机和一般的直流电路不一样,它的电流不仅 取决于外加电压和自身电阻,并且还取决于与转速成正比的反电动 势(当φ为常数) 。将式(4-1) 代入(4-9) 式,可得 n=U/Ce-R Te/ Ce Cm (4-10) 其中Cm=Kmφ,式(4-10)称为电动机的机械特性,它描述了电 动机的转速与转矩之间的关系。 图4-5是机械特性曲线族。在这一曲线族中,不同的电枢电压对应于 不同的曲线,各曲线是彼此平行的。n0( U/Ce)称为“理想空载转 速” ,而⊿n(R Te/ Ce Cm) 称为转速降落。


脉宽调制器是一个电压—脉冲变换装置。由控制 电压Uct进行控制,为PWM变换器提供所需的脉 冲信号。 脉宽调制器的基本原理是将直流信号和一个调制 信号比较,调制信号可以是三角波,也可以是锯 齿波。锯齿波脉宽调制器电路如图4-42所示, 由锯齿波发生器和电压比较器组成。锯齿波发生 器采用最简单的单结晶体管多谐振荡器4-42a), 为了控制锯齿波的线性度,使电容器C充电电流 恒定,由晶体管VT1和稳压管VST构成恒流源。

电流截止负反馈环节 带电流截止负反馈环节的单闭环无静差调 速系统

直流电机调速系统的设计

直流电机调速系统的设计

直流电机调速系统的设计直流电机调速系统是控制直流电机转速的一个重要工程应用领域。

在很多工业领域中,直流电机的转速控制是非常重要的,因为直流电机的转速对于机械设备的运行效率和稳定性有着重要影响。

本文将详细介绍直流电机调速系统的设计原理和步骤。

一、直流电机调速系统的基本原理直流电机调速系统的基本原理是通过改变电机的电压和电流来控制电机的转速。

一般来说,直流电机的转速与电机的电压和负载有关,转速随电压增加而增加,转速随负载增加而减小。

因此,当我们需要调节直流电机的转速时,可以通过改变电机的电压和负载来实现。

二、直流电机调速系统的设计步骤1.确定设计要求:在设计直流电机调速系统之前,首先需要确定系统的设计要求,包括所需的转速范围、响应速度、控制精度和负载要求等。

这些设计要求将指导系统的设计和选择适当的控制器。

2.选择控制器:根据设计要求,选择适当的控制器。

常见的直流电机调速控制器有PID控制器、模糊控制器和自适应控制器等。

根据实际情况,选择最合适的控制器来实现转速调节。

3.选择传感器:为了实时监测电机的转速和位置,需要选择合适的传感器来进行测量。

常见的传感器有光电编码器、霍尔效应传感器和转速传感器等。

根据实际需求,选择合适的传感器进行安装和测量。

4.搭建电路:根据控制器的要求,搭建合适的电路来实现控制和测量功能。

通常需要安装电压和电流传感器来实时监测电机的电压和电流,并将测量结果反馈给控制器。

5.调试和测试:在电路搭建完成后,需要进行调试和测试来验证系统的性能。

首先调整控制器的参数,使得系统能够按照设计要求进行转速调节。

然后进行负载试验,测试系统在不同负载下的转速调节性能。

对系统进行调试和测试,可以发现问题并及时解决,确保系统能够正常工作。

6.性能优化:根据测试结果,对系统进行性能优化。

根据实际需求,调整控制器的参数和传感器的位置,改善系统的转速调节性能和响应速度。

优化后的系统将更好地满足设计要求。

三、直流电机调速系统的工程应用总结:本文详细介绍了直流电机调速系统的设计原理和步骤。

交直流调速系统之直流调速简介介绍课件

交直流调速系统之直流调速简介介绍课件

机的转速和电流, 机的转速和电流,
实现转速和电流 实现转速和电流
的闭环控制
的闭环控制
直流调速系统的工作过程
01
输入信号:接收来 自控制器的指令信

02
信号处理:将指令 信号转换为控制信

03
驱动控制:控制直 流电机的转速和转

04
反馈控制:根据直 流电机的运行状态, 调整控制信号,实
现闭环控制
05
直流调速系统的挑战与机遇
挑战:提高调速系统的效 率和稳定性,降低能耗和 成本
挑战:提高直流调速系统 的智能化水平,实现对复 杂工况的适应性
机遇:随着新能源技术的 发展,直流调速系统在电 动汽车、轨道交通等领域 的应用前景广阔
机遇:随着物联网技术的 发展,直流调速系统可以 实现远程监控和诊断,提 高系统的可靠性和维护性
直流伺服调 速系统:通 过控制直流 伺服电机的 位置和速度 来控制速度
04
直流变频调 速系统:通 过改变直流 变频器的输 出频率来控 制速度
直流调速系统的基本组成
整流器:将交 流电转换为直
流电
滤波器:滤除 直流电中的交
流成分
逆变器:将直 流电转换为交
流电
控制器:控制 逆变器的输出 频率和电压, 实现调速控制
电机的转矩
03
电压控制:通过控制电压的大小来控制
电机的转速
04
速度-电流双闭环控制:通过速度环和电
流环的协调控制来实现对电机的精确控制
直流调速系统的性能指标
0 1
调速范围:指直流调速系统能够实现的最
高转速和最低转速之间的差值
0 2
调速精度:指直流调速系统能够实现的转

7第七章直流调速系统ppt课件

7第七章直流调速系统ppt课件
第7章 直流调速系统
7.1 直流调速系统概述 7.2 单闭环直流调速系统 7.3 带电流截止负反馈的闭环调速系统 7.4 闭环调速系统设计实例 7.5 多环直流调速系统
精选2021版课件
1
7.1 直流调速系统概述
7.1.1.直流调速系统的基本概念
在自动控制系统中,电力拖动系统是最重要的应用系统之一,
而电动机又是电力拖动系统的核心部件,它是将电能转化为机械能
的一种有力工具。根据电动机供电方式的不同,它可分为直流电动
机和交流电动机。由于直流电动机具有良好的启、制动性能,而且
可以在较大范围内平滑的调速,因此,在轧钢设备、矿井升降设备、
挖掘钻探设备、金属切削设备、造纸设备、电梯等需要高性能可控
制电力拖动的场合得到了广泛的应用。但直流电动机本身有着一些
7.1 直流调速系统概述
转速下限受低速时运转不稳定性的限制。对于要求在一定范围 内无级平滑调速的系统来说,此调速方式较好。改变电枢电压调速 (简称调压调速)是直流调速系统的主要调速方式。
2.改变励磁电流调速方式
改变电动机励磁回路的励磁电压大小,可改变励磁电流大小, 从而改变励磁磁通大小而实现调速,此种调速方式称为改变励磁电 流调速方式。其机械特性如图7-2所示。
这种调速方案属于恒功率调速。调磁调速的调速范围不大,一
般只是配合调压调速方式,在电动机额定转速之上作小范围的升速。
将调压调速和调磁调速复合起来则构成调压调磁复合调速系统,
精选2021版课件
上一页 下一页 返6 回
7.1 直流调速系统概述
可得到更大的调速范围,额定转速以下采用调压调速,额定转 速以上采用调磁调速。 3.电枢回路串电阻调速方式 在电动机电枢回路串接附加电阻,改变串接电阻的阻值,也可 调节转速,此种调速方式称为电枢回路串电阻调速方式。 这种调速方式只能进行有级调速,且串接电阻有较大能量损耗, 电动机的机械特性较软,转速受负载影响大,轻载和重载时转速不 同。另外,该调速方式中的调速电阻损耗大,经济性差,一般只应 用于少数性能要求不高的小功率场合。其机械特性如图7-3所示。

直流电机调速系统设计与实现

直流电机调速系统设计与实现

直流电机调速系统设计与实现直流电机调速系统是一种常见的电机控制系统,通过调节电机的转速和输出功率,可以实现对机械设备的精准控制。

在工业生产和机械设备中得到广泛应用。

本文将介绍直流电机调速系统的设计和实现过程。

一、系统设计1. 电机选择:首先需要选择适合的直流电机作为调速系统的执行器。

根据需要的输出功率和转速范围,选择合适的电机型号和规格。

2. 电机驱动器选择:电机驱动器是控制电机转速的核心设备。

根据电机的额定电流和电压,选择合适的电机驱动器。

常见的电机驱动器包括PWM调速器、直流电机驱动模块等。

3. 控制器选择:控制器是调速系统的大脑,负责接收输入信号,并输出控制信号来调节电机转速。

常见的控制器包括单片机、PLC等。

4. 传感器选择:为了实现闭环控制,通常需要使用传感器来检测电机的转速和位置。

根据具体的需求选择合适的传感器,如编码器、霍尔传感器等。

5. 调速算法设计:根据应用需求,设计合适的调速算法。

常见的调速算法包括PID控制、模糊控制等。

二、系统实现1. 硬件连接:根据设计需求,将电机、电机驱动器、控制器和传感器等硬件设备连接起来。

确保电气连接正确无误。

2. 软件编程:根据设计的调速算法,编写控制程序。

在控制器上实现信号的采集、处理和输出,实现电机的闭环控制。

3. 参数调试:在系统搭建完成后,进行参数调试。

根据实际效果,调节PID参数等,使电机能够稳定运行并达到设计要求的转速和功率输出。

4. 性能测试:进行系统的性能测试,包括转速稳定性、响应速度等。

根据测试结果对系统进行优化和改进。

5. 系统应用:将设计好的直流电机调速系统应用到具体的机械设备中,实现精准的控制和调节。

根据实际应用情况,对系统进行进一步调优和改进。

通过以上设计和实现过程,可以建立一个稳定可靠的直流电机调速系统,实现对电机转速和功率的精确控制。

在工业生产和机械领域中得到广泛应用,提高了生产效率和设备的精度。

希望本文对直流电机调速系统的设计和实现有所帮助,让读者对这一领域有更深入的了解。

直流电机调速控制系统的设计

直流电机调速控制系统的设计

直流电机调速控制系统的设计首先,硬件设计是直流电机调速控制系统的基础。

设计者需要选择合适的电机驱动器,通常选择的是直流驱动器。

直流驱动器的选型要考虑到电机的额定功率、额定电流和额定电压等因素。

此外,还需要选择适合的控制电路,如电流反馈回路、速度反馈回路和位置反馈回路等。

其次,软件编程是直流电机调速控制系统的核心。

控制系统的编程部分需要涉及到控制算法的实现,通常采用PID控制算法。

PID控制算法是一种经典的控制算法,可以实现较好的调速性能。

在编程中,需要考虑到控制系统的响应速度、稳定性和抗干扰性等因素。

同时,还需要编写界面程序,实现与上位机的通信和数据传输等功能。

第三,传感器的选择也是直流电机调速控制系统的关键。

常见的传感器包括光电编码器、霍尔传感器和磁编码器等。

传感器的种类和参数选择要根据具体的应用需求确定。

例如,如果需要测量电机的转速,可以选择光电编码器;如果需要测量电机的位置,可以选择磁编码器。

最后,控制算法是直流电机调速控制系统的核心。

常用的控制算法包括开环控制和闭环控制。

开环控制是指通过事先设定的输入信号来控制电机转速,不考虑反馈信息。

闭环控制则是通过传感器测量的反馈信号来实时调节输入信号,以实现需要的转速。

对于直流电机调速控制系统的设计,可以按照以下步骤进行:1.确定应用需求,包括所需转速范围、转速精度要求等。

2.根据应用需求选择适合的电机、驱动器和传感器。

3.进行硬件设计,包括电路布局、传感器连接和驱动器安装等。

4.进行软件编程,包括控制算法的设计和实现、数据通信和界面设计等。

5.进行系统联调,包括对系统的各个组件进行测试和调试,确保系统工作正常。

6.进行性能测试,包括对系统的转速响应、稳定性和抗干扰性进行测试。

7.最后,进行系统的优化和调试,以达到最好的调速控制效果。

综上所述,直流电机调速控制系统的设计涉及到硬件选型、软件编程、传感器选择和控制算法等多个方面。

设计者需要综合考虑各个因素,根据实际应用需求进行系统设计,以实现最佳的调速控制效果。

自动控制技术第三章 直流调速系统

自动控制技术第三章  直流调速系统
晶闸管可控整流器供电的直流调速系统(V-M系统)
第三章 直流调速系统
与旋转变流机组及离子拖动变流装置相比, 晶闸管整流装置不仅在经济性和可靠性上都有 很大提高,而且在技术性能上也显示出较大的 优越性。由图可见,晶闸管可控整流器的功率 放大倍数在104以上,其门极电流可以直接用晶 体三极管来控制,不再像直流电动机那样需要 较大功率放大装置。在控制作用的快速性方面, 变流机组是秒级,而晶闸管整流器是毫秒级, 这将会大大提高系统的动态性能。
直流斩波器的控制方式 b)脉冲频率调制
第三章 直流调速系统
用全控式器件实行开关控制时,多用脉冲宽度调制的控制方式,形成近年来 应用日益广泛的PWM装置—电动机系统,简称PWM调速系统或脉宽调速系统。
直流斩波器的控制方式 c)两点式控制
第三章 直流调速系统
与V-M系统相比,PWM调速系统有下列优点: (1)由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就足以 获得脉动很小的直流电流,电枢电流容量连续,系统的低速运行平稳,调速范围 较宽,可达1∶10 000左右。又由于电流波形比V-M系统好,在相同的平均电流即 相同的输出转矩下,电动机的损耗和发热都较小。 (2)同样由于开关频率高,若与快速响应的电动机相配合,系统可以获得很 宽的频带,因此快速响应性能好。动态抗干扰能力强。 (3)由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率较高。 因受到器件容量的限制,直流PWM调速系统目前只用于中、小功率的系统。
在静止可控整流方面,离子拖动系统是最早应用的静止变流装置供电的直流 调速系统。它虽然克服了旋转变流机组的许多缺点,而且还缩短了响应时间,但 汞弧整流器造价较高,维护麻烦,特别是水银如果泄漏,将会污染环境,危害人 体健康。

直流调速控制系统的分析及仿真

直流调速控制系统的分析及仿真

当电流负反馈环节起主导作用时的自动调节过程如图7-1-8所示。
7.1.4系统的性能分析
代入图7-1-5中,由图可见,它是一个二阶系统,已知 二阶系统总是稳定的。但若考虑到晶闸管有延迟,晶 闸管整流装置的传递函数便为
相反。
5.电流截止负反馈环节
当 时,(亦即 ),则二极管VD截止,电流截止负反馈不起作用。当 时,(亦即 ),则二极管VD导通, [此处略去二极管的死区电压],电流截止负反馈环节起作用,它将使整流输出电压 下降,使整流电流下降到允许最大电流。 的数值称为截止电流,以 表示。调节电位器RP3即可整定 ,亦即整定 的数值。一般取 〔 为额定电流〕。 由于电流截止负反馈环节在正常工作状况下不起作用,所以系统框图上可以省去。
在图7-1-1中,主电路中串联了一个阻值很小的取样电阻
(零点几欧)。电阻
上的电压

成正比。比 较阈值电压
是由一个辅助电源经电位器RP3提供的。电 流反馈信号(
图7-1-7调速系统的“挖土机”机械特性
当电流负反馈环节起主导作用时的自动调节过程如图7-1-8所示。 机械特性很陡下垂还意味着,堵转时(或起动时)电流不是很大。 这是因为在堵转时,虽然转速n=0,反电动势E=0,但由于电流 截止负反馈的作用,使
大大下降,从而
不致过大。此时 电流称为堵转电流
⑥ 晶闸管整流电路的调节特性为输出的 平均电压
与触发电路的控制电压
之间的关系,即
图7-1-4为晶闸管整流装置的调节特性。
由图可见,它既有死区,又会饱和。 (当全导通以后,
再增加, 也不会再 上升了),且低压段还有弯曲段。面对 这非线性特性,常用的办法是讲它“看 作”一条直线,即处理成

第一讲 单闭环直流调速系统

第一讲 单闭环直流调速系统

Id Id
-
-
Un ∆Un
Un n
+
A Uc
GT
UPE Ud d
-
M
-
+ -
+
n
Utg tg
TG
-
图3-2 采用转速负反馈的闭环调速系统

调节原理
在反馈控制的闭环直流调速系统中,与 电动机同轴安装一台测速发电机 TG ,从 而引出与被调量转速成正比的负反馈电压 Un ,与给定电压 U*n 相比较后,得到转速 偏差电压 Un ,经过放大器 A,产生电力 电子变换器UPE的控制电压Uc ,用以控制 电动机转速 n。
第 一 讲
单闭环直流调速控制系统
内容提要
直流调速方法 直流调速电源 单闭环直流调速控制系统
引 言
直流电动机具有良好的起、制动性能, 宜于在大范围内平滑调速,在许多需要调 速和快速正反向的电力拖动领域中得到了 广泛的应用。 由于直流拖动控制系统在理论上和实 践上都比较成熟,而且从控制的角度来看, 它又是交流拖动控制系统的基础。因此, 应该首先很好地掌握直流拖动控制系统。

UPE的组成
图中,UPE是由电力电子器件组成的变 换器,其输入接三组(或单相)交流电源, 输出为可控的直流电压,控制电压为Uc 。
~
u
AC
DC
Ud0 d0
Uc c

UPE的组成(续)
目前,组成UPE的电力电子器件有如 下几种选择方案: 对于中、小容量系统,多采用由IGBT或 P-MOSFET组成的PWM变换器; 对于较大容量的系统,可采用其他电力 电子开关器件,如GTO、IGCT等; 对于特大容量的系统,则常用晶闸管触 发与整流装置。

PWM直流电机调速系统设计

PWM直流电机调速系统设计

PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。

本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。

一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。

2.传感器:传感器主要用于检测电机转速和转速反馈。

常用的传感器有霍尔传感器和编码器。

3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。

控制器一般包括比较器、计数器、时钟和PWM 发生器。

4.功率电源:功率电源负责提供PWM信号的电源。

PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。

二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。

2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。

3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。

4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。

5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。

三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。

2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。

3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。

根据测试结果进行参数调整。

4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。

为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。

PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。

本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。

二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。

在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。

2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。

在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。

三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。

该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。

2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。

常用的PWM信号发生电路有555定时器电路和单片机控制电路等。

3、驱动电路驱动电路用于控制电机的供电电压。

常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。

通过改变驱动电路的控制信号,可以改变电机的转速。

四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。

常见的控制算法有PID控制算法等。

PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。

在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。

五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。

直流电机调速控制系统设计

直流电机调速控制系统设计

直流电机调速控制系统设计1.引言直流电机调速控制系统是一种广泛应用于工业生产与生活中的电气控制系统。

通过对直流电机进行调速控制,可以实现对机械设备的精确控制,提高生产效率和能源利用率。

本文将介绍直流电机调速控制系统的设计原理、控制策略以及相关技术。

2.设计原理直流电机调速控制系统的基本原理是通过调整电压或电流来改变电机的转速。

在直流电机中,电压和电流与转速之间存在一定的关系。

通过改变电压或电流的大小,可以实现对电机转速的调节。

为了实现精确的调速控制,通常采用反馈控制的方式,通过测量电机转速,并与设定值进行比较,控制输出电压或电流,以达到期望的转速。

3.控制策略开环控制是指在没有反馈的情况下,直接控制输出电压或电流的大小,来实现对电机转速的调节。

开环控制的优点是简单、成本低,但缺点是无法考虑到外界的扰动和电机的非线性特性,使得控制精度较低。

闭环控制是指在有反馈的情况下,测量电机转速,并与设定值进行比较,控制输出电压或电流。

闭环控制的优点是能够考虑到外界的扰动和电机的非线性特性,提高控制精度。

常用的闭环控制策略有PID控制、模糊控制和神经网络控制等。

其中,PID控制是最为常用的一种控制策略,具有调节速度快、控制精度高的优点。

4.相关技术在直流电机调速控制系统的设计中,还需要用到一些相关的技术,如编码器、传感器和驱动器等。

编码器是一种测量旋转角度和速度的装置,可以用来测量电机的转速。

根据编码器的测量结果,可以对电机进行控制。

传感器可以用来检测电机的电流、电压和转速等参数,以获得电机的实时状态。

通过对这些参数的测量和分析,可以实现对电机转速的控制。

驱动器是将控制信号转换为电机运行的电路,可以根据输入的电压或电流信号控制电机的运行状态。

5.总结直流电机调速控制系统是一种重要的电气控制系统,可以实现对机械设备的精确控制。

在设计过程中,需要合理选择控制策略和相关技术,以实现期望的控制效果。

通过不断的研究和实践,可以进一步提高直流电机调速控制系统的性能和稳定性,满足不同领域的需求。

第五章 直流电动机调速控制系统

第五章 直流电动机调速控制系统

结论:调速系统只要在调速范围的最低 工作转速时满足静差率要求,则其在整个调 速范围内都会满足静差率要求。
图5-5 不同转速下的静差率
3. 调速范围与静差率的关系 静差率和调速范围必须同时考虑才有意义,由各自的 定义式可知:提调速范围时,任何系统的调速范围都可以 很大;而单提静差率,大多数系统也会较容易满足。 对同一个系统 ,有:
nnom S n0nin
nnom (1 S )nnom nmin n0 min nnom nnom S S
由调速范围(对于调压调速
nmax nnom ),
n D max nmin
nnom nmin
将上页的 nmin 表达式代入本式,得
nnomS D nnom(1 S )
其中,调速范围D、静差率S取决于生产加工工艺要求 ,是无法变更的。为使上式成立,只能设法减少额定负载下 的转速降落。 无反馈控制的开环调速系统,额定负载下的转速降落值为:
n nom I dnom R Ce
其中,R是电枢回路总电阻,为系统固有参数, Idnom是对 应额定负载时的电流,也是固定的。所以,一般开环系统无 法满足一定调速范围和静差率性能指标要求。
如果在负载增加的同时设法增大系统的给定电压 Un,就会使电动机电枢两端的 电压Ud增大,电动机的转速就会升高。若Un增加量大小适度,就可以使因负载增加 而产生的 n被Ud升高而产生的速升所弥补,结果会使转速n接近保持在负载增加前 的值上。 这样,既能使系统有调速能力,又能减少稳态速降,使系统具有满足要求的调 速范围和静差率。 系统组成如图 我们可以在与调速电动机 同轴接一测速发电机TG,这 样就可以将电动机转速 n 的大 小转换成与其成正比的电压信 号Un,把Un与Un相比较后, 去控制晶闸管整流装置以控制 电动机电枢两端的电压Ud就 可以达到控制电动机转速 n 的 目的。

直流电机调速控制系统设计

直流电机调速控制系统设计

成绩电气控制与PLC课程设计说明书直流电机调速控制系统设计.Translate DC motor speed Control system design学生王杰学号学院班级信电工程学院13自动化专业名称电气工程及其自动化指导教师肖理庆2016年6月14日目录1 ××11.1 ××××××11.1.1 ××××错误!未定义书签。

1.1.2 ××××1……1.2 ××××××11.2.1 ××××8……2 ×××××82.1 ××××××102.1.1 ××××10……3 ×××××123.1 ××××××123.1.1 ××××12……参考文献13附录14附录114附录2141 直流电机调速控制系统模型1.1 直流调速系统的主导调速方法根据直流电动机的基础知识可知,直流电动机的电枢电压的平衡方程为:R I E U a +=式(1.1)公式中:U 为电枢电压;E 为电枢电动势;R I a 为电枢电流与电阻乘积。

由于电枢反电势为电路感应电动势,故:n C E φe =式(1.2)式中:e C 为电动势常数;φ为磁通势;n 为转速。

由此得到转速特性方程如下:φe a C R I U /)(n -=式(1.3)由式(1.3)可以看出,调节直流电动机的转速有以下三种方法:1.改变电枢回路的电阻R ——电枢回路串电阻调速。

直流电机调速控制和测速系统设计

直流电机调速控制和测速系统设计

直流电机调速控制和测速系统设计摘要:直流型的电机得性能在电机结构中有着较好的优势,由于时代的持续进步,与直流电机相关的使用频率也变得更高。

然而,以往的直流电机工作性质与所面临得运转问题息息相关,怎样对转速进行合理管控就变成了直流电机发展和应用期间存在的困难。

而直流电机控制系统的产生,可以较好的处理该方面的情况,不仅能够增强直流电机的平稳程度和精准程度,还可以合理管控直流电机的运行速度,从而达到我国对相关设备的应用标准。

基于此,本文重点分析了直流电机调速控制的方式,进一步对测速系统进行设计,以供相关人员参考。

关键词:直流电机;调速控制;测速系统目前,直流发电机的应用非常广泛,在自动化装备领域中,其内蓄电池内部都配置有相应的直流发电机,保证在断电的情况下起到一定的发电机组的润滑作用。

而直流电动机在启动时,其所用的电流量会增大很多,造成一定的冲击力,这种冲击力会造成一定的影响,比如充电器出现损坏、短路等,这些故障的产生都会使得发电设备无法正常运转。

因此,为了解决我国在有关这方面的控制技术上存在的问题,需要对调速与测速系统进行控制与设计,以此来确保整个电机设备的稳定性与安全性。

1电机调速原理及其实现电机调速原理主要是指对电机两端所存在的电压进行数据上的更改,以此来完成对电机转速的调节工作,对于电机而言,当自身的电压方向出现改变,那么电机的旋转变化发生改变。

而PWM在调速原理方面则是以脉冲信号为主,利用脉冲信号的输出特性来进行传输,并改变原本存在于电机内部空间的脉冲信号,通过间接或速度按钮来完成有关电机电压的更改工作,从而来确保电机的转速能够因此发生改变。

在这一过程中,电机内部的脉冲占比越大,转速也就越慢。

整个电路主要是以H桥为主,为了确保整个驱动电机能够得到有效控制,将三极管进行单片机的引脚安装,将基极部分分别安装,从而来确保当电机处于运行状态时,能够利用垫片机来对其自身的转速内容进行控制。

当脉冲信号输送工作时,另一端会通过开展低电平的模式来进行应用,这时的直流电机会呈现为正转状态,反之亦然。

小直流电机调速控制系统1

小直流电机调速控制系统1
注意事项:在设计人机交互子程序时,应充分考虑用户需求和使用习惯,确保界面友好、操作简便、响应迅速。
PART FIVE
测试目的:验证系统的性能和稳定性
测试环境:模拟实际运行环境,包括电机、电源、负载等
测试方法:按照测试计划进行各项性能指标的测试,如调速范围、响应时间、稳 定性等
测试结果分析:对测试数据进行分析,找出系统存在的问题和优化方向
XX,a click to unlimited possibilities
汇报人:XX
CONTENTS
PART ONE
小直流电机调速控制系统是一种用于控制小直流电机速度的电子系统。 它通过改变电机的输入电压或电流,实现电机的无级调速。 系统主要由电源、控制器、电机和反馈装置等组成。 控制器是系统的核心,负责接收调速指令并控制电机的输入电压或电流。
PART TWO
调压调速:通过 改变电机输入电 压实现调速
弱磁调速:通过 改变电机励磁强 度实现调速
串级调速:通过在 电机转子回路中串 入电阻实现调速
脉冲宽度调制 (PWM)调速:通 过调节电机输入电压 的脉冲宽度实现调速
调速原理:通过改变电机的输入电 压或电流,调节电机的输入功率, 实现电机的调速。
测试环境:实验室环境,温度、湿度等参数稳定 测试方法:采用恒流电源进行测试,记录数据并进行分析 测试结果:电机在不同转速下的效率、功率、电流等参数 结果分析:对测试结果进行数据分析,找出优缺点并提出改进方案
优化控制算法:采用更精确的数学模型和控制算法,提高系统的动态性能和稳态精度。
硬件升级:更换更高性能的元件,如采用更精确的传感器、更高品质的电机等,提升系统硬件性能。
调速原理:通过 改变电机的输入 电压或电流,实 现对电机转速的 调节
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n3
n0
nn12 nN
N
减小励磁 N
1
n , n0
调速特性: 转速上升,机械特性
O
TL
2 3
Te
曲线变软。
调磁调速特性曲线
▪ 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速的 系统来说,以调节电枢供电电压的方式为 最好。改变电阻只能有级调速;减弱磁通 虽然能够平滑调速,但调速范围不大,往 往只是配合调压方案,在基速(即电机额 定转速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往以调 压调速为主。
目前调速系统分交流和直流调速系统,由于直流调速 系统的调速范围广,静差率小、稳定性好以及具有良 好的动态性能。因此在相当长的时期内,高性能的调 速系统几乎都采用了直流调速系统。但近年来,随着 电子工业与技术的发展,高性的交流调速系统的应用 范围逐扩大并大有取代直流调速系统发展趋势。但作 为一个延用了近百年的调速系统,了解其基本的工作 原理,并加深对自动控制原理的理解还是有必要的。
直流调速方法
根据直流电机转速方程 n U IR
Ke
(1-1)
n
式中 — 转速(r/min);
U
— 电枢电压(V);
Iபைடு நூலகம்
— 电枢电流(A);
R
— 电枢回路总电阻( );
— 励磁磁通(Wb);
Ke
— 由电机结构决定的电动势常数。
直流调速方法
由式(1-1)可以看出,有三种方法调 节电动机的转速:
直流斩波器或脉宽调制变换器——用恒定 直流电源或不控整流电源供电,利用电力 电子开关器件斩波或进行脉宽调制,以产 生可变的平均电压。
1、旋转变流机组
图9-1旋转变流机组供电的直流调速系统(G-M系统)
• G-M系统工作原理
由原动机(柴油机、交流异步或同步电 动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调 节G 的励磁电流 if 即可改变其输出电压 U,从而调节电动机的转速 n 。
• V-M系统的特点
与G-M系统相比较:
晶闸管整流装置不仅在经济性和可靠性上都有 很大提高,而且在技术性能上也显示出较大的 优越性。晶闸管可控整流器的功率放大倍数在 10 4 以上,其门极电流可以直接用晶体管来控 制,不再像直流发电机那样需要较大功率的放 大器。
在控制作用的快速性上,变流机组是秒级,而 晶闸管整流器是毫秒级,这将大大提高系统的 动态性能。
直流调速系统用的可控直流电源
根据前面分析,调压调速是直流 调速系统的主要方法,而调节电枢 电压需要有专门向电动机供电的可 控直流电源。
本节介绍几种主要的可控直流电 源。
常用的可控直流电源有以下三种
旋转变流机组——用交流电动机和直流发 电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整 流器,以获得可调的直流电压。
t
T
b)电压波形图
直流斩波器-电动机系统的原理图和电压波形
2. 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器 件,VD 表示续流二极管。当VT 导通时, 直流电源电压 Us 加到电动机上;当VT 关 断时,直流电源与电机脱开,电动机电枢 经 VD 续流,两端电压接近于零。如此反 复,电枢端电压波形如图1-5b ,好像是电 源电压Us在ton 时间内被接上,又在 T – ton 时间内被斩断,故称“斩波”。
(2)调阻调速
工作条件:
n
保持励磁 = N ; 保持电压 U =UN ;
n0
调节过程:
增加电阻 Ra R
nN
n1
Ra
n2 n3
R1
R2
R n ,n0不变;
R3
调速特性:
O
IL
I
转速下降,机械特性
曲线变软。
调阻调速特性曲线
(3)调磁调速
工作条件:
n
保持电压 U =UN ; 保持电阻 R = R a ; 调节过程:
第九章 直流调速系统
9.1直流调速系统性能指标 9.2 有静差直流调速系统 9.3 无静差直流调速系统 9.4 转速电流双闭环直流调速系统 9.5 直流脉宽调制调速系统 9.6 数字控制直流调速系统
一、什么是调速
电动机是用来拖动某种生产机械的动力设备,所以需 要根据工艺要求调节其转速。比如:在加工毛坯工件 时,为了防止工件表面对生产刀具的磨损,因此加工 时要求电机低速运行;而在对工件进行精加工时,为 了要缩短工加时间,提高产品的成本效益,因此加工 时要求电机高速运行。所以,我们就将调节电动机转 速,以适应生产要求的过程就称之为调速;而用于完 成这一功能的自动控制系统就被称为是调速系统。
(1)调节电枢供电电压 U; (2)减弱励磁磁通 ; (3)改变电枢回路电阻 R。
(1)调压调速
工作条件:
n
保持励磁 = N ;
n0
保持电阻 R = Ra
调节过程:
改变电压 UN U
U n , n0
调速特性:
O
转速下降,机械特性
曲线平行下移。
nN
n1
UN
n2
U1
n3
U2
U3
IL
I
调压调速特性曲线
在干线铁道电力机车、工矿电力机车、 城市有轨和无轨电车和地铁电机车等电 力牵引设备上,常采用直流串励或复励 电动机,由恒压直流电网供电,过去用 切换电枢回路电阻来控制电机的起动、 制动和调速,在电阻中耗电很大。
1. 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton Ud
M
_O
这样的调速系统简称G-M系统,国际 上通称Ward-Leonard系统。
• G-M系统特性
第II象限 -TL
n
第I象限
n0
n1
n2
O
TL
Te
第III象限
第IV象限
图1-2 G-M系统机械特性
2 静止式可控整流器
图9.2 晶闸管可控整流器供电的直流调速系统(V-M系统)
• V-M系统工作原理
晶闸管-电动机调速系统(简称V-M系 统,又称静止的Ward-Leonard系统), 图中VT是晶闸管可控整流器,通过调节 触发装置 GT 的控制电压 Uc 来移动触发 脉冲的相位,即可改变整流电压Ud ,从 而实现平滑调速。
• V-M系统的问题
由于晶闸管的单向导电性,它不允许电 流反向,给系统的可逆运行造成困难。
晶闸管对过电压、过电流和过高的dV/dt 与di/dt 都十分敏感,若超过允许值会在 很短的时间内损坏器件。
由谐波与无功功率引起电网电压波形畸 变,殃及附近的用电设备,造成“电力 公害”。
3 直流斩波器或脉宽调制变换器
相关文档
最新文档