平面一般力系.ppt
合集下载
《工程力学》第三章 平面一般力系
• 运用解析法:在力系所在平面上取坐标系 O -xy(图3-3(a)),应用合力投影定理, 则由(3-2)式得
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力
《建筑力学》第三章平面一般力系
VS
产生条件
摩擦力的产生需要满足三个条件,即接触 面粗糙、接触面间有正压力和物体间有相 对运动或相对运动趋势。
考虑摩擦时物体平衡问题解决方法
01
02
03
静力学方法
通过受力分析,列出平衡 方程,考虑摩擦力对物体 平衡的影响。
动力学方法
分析物体的运动状态,根 据牛顿第二定律列出动力 学方程,考虑摩擦力对物 体运动的影响。
静定结构特性分析
1 2 3
内力与外力关系
静定结构的内力与外力之间存在一一对应的关系, 即外力的变化会直接导致内力的变化。
变形与位移
在荷载作用下,静定结构会产生变形和位移,但 变形和位移的大小与材料的力学性质有关,与结 构的超静定性无关。
稳定性分析
静定结构在受到微小扰动后,能够自动恢复到原 来的平衡状态,具有良好的稳定性。
求解未知数
通过解平衡方程,求解出未知 的力或力矩。
确定研究对象
根据问题要求,确定需要研究 的物体或物体系统。
列平衡方程
根据平面任意力系的平衡条件, 列出物体系统的平衡方程。
校验结果
将求解结果代入原方程进行校 验,确保结果的正确性。
05 静定结构内力计算
静定结构基本概念和分类
静定结构定义
静定结构是指在外力作用下,其反力和内力都可以用静力学平衡方程求解,且解答唯一确定的结构。
02 平面汇交力系分析
汇交力系几何法求解合力
几何法概念
利用力的平行四边形法则或三角形法则求解汇交力系的合 力。
求解步骤
首先确定各分力的方向和大小,然后选择合适的几何图形 (如平行四边形或三角形)进行力的合成,最后根据图形 求解合力的大小和方向。
注意事项
第四章 平面一般力系
点O的力
, ,
(平面汇交力系)
附加力偶
(平面力偶系)
分别合成 这两个力系
(原来各力的矢量和)
(原来各力对点一 个力和一个力偶。
这个力等于该力系的主矢,即平面一般力系中所有各力的矢量 和
作用线通过简化中心O; 这个力偶的矩等了该力系对于点O的主矩,即这些力对于任选简 化中心O的矩的代数和
方程只是前三个方程的线性组合,因而不是独立的。我们 可以利用这个方程来校核计算的结果。
§4-6 平面平行力系的平衡方程
平面平行力系:各力的作用线在同一平面内且相互平行的力系。 如图所示,设物体受平面平行力系 的作用。
平行力系的独立平衡方程的数目 只有两个,即:
或
注:其中A、B两点的连线不得与各力平行。
平面一般力系平衡的必要和充分条件
平面一般力系平衡的充要条件是:所有各力在两个任选的坐 标轴上的投影的代数和分别等于零.以及各力对于任意点的 矩的代数和也等于零。
平面一般力系 的平衡方程 (一矩式)
(三个方程, 求解三个未知数)
支架的横梁AB与斜杆DC彼此以铰链C相联接,并各 以铰链A、D连接于铅直墙上。如图所示。已知AC=CB;杆 DC与水平线成 角;载荷P=10kN,作用于B处。设梁和杆 的重量忽略不计,求铰链A的约束反力和杆DC所受的力。 解:(1)取AB梁为研究对象。 (2)画受力图。 (3)列平衡方程。 (a) (b)
解: (1)当满载时,为使起重机不 绕点B翻倒。在临界情况下 。
当空载时,为使起重机不绕点 A翻倒。在临界情况下 。
(2)当平衡荷重 的反力?
时,求满载时轨道A、B给起重机轮子
解:(2)根据平面平行力系的平衡方程,有:
解得
利用多余的不独立方程 来校验以上计算结果是否正确。
第4章:平面一般力系
一个作用在简化中心的主矢;和一个对简化中心 的主矩。
§4–1 平面一般力系的简化•主矢与主矩
§4–1 平面一般力系的简化•主矢与主矩
三、主矢、主矩的求法:
1、主矢可接力多边形规则作图求得,或用解析
法计算。
R Rx2 Ry2
Fx 2
Fy 2
方向余弦:
cosR, x Fx R
cosR, y Fy R
② 求主矩:
L O
m o
F
2F cos60 2F 3F sin30 0.5
2
3
4
(2)、求合成结果:合成为
一个合力R,R的大小、方向与 R’相同。其作用线与O点的垂
2m
y
F2
60°
A
F1
O
3m
y A
B
F3
F4 C 30° x
B
直距离为: d Lo 0.51m R
Lo
R/ R
O d
C
x
§4–3 平面一般力系的平衡条件和平衡方程
4、联立求解:
MA=-38.6 kN•m (顺时针) NAy
NAx= 0
A
NAx
C
T
B
NAy=-19.2 kN (向下)
MA Q
§4–4 平面平行力系的平衡
平面平行力系平衡的充要条件:
力系中各力的代数和等于零 ,以这些力对 任一点的矩的代数和也等于零。
平面平行力系的平衡方程:
一矩式: Fy 0 , mOF 0
Fx 0 :
N Ax 0
Fy 0 :
N Ay Q ND 0
mAF 0 :
3 2 Q 2ND M 0
4、联立求解:
y
§4–1 平面一般力系的简化•主矢与主矩
§4–1 平面一般力系的简化•主矢与主矩
三、主矢、主矩的求法:
1、主矢可接力多边形规则作图求得,或用解析
法计算。
R Rx2 Ry2
Fx 2
Fy 2
方向余弦:
cosR, x Fx R
cosR, y Fy R
② 求主矩:
L O
m o
F
2F cos60 2F 3F sin30 0.5
2
3
4
(2)、求合成结果:合成为
一个合力R,R的大小、方向与 R’相同。其作用线与O点的垂
2m
y
F2
60°
A
F1
O
3m
y A
B
F3
F4 C 30° x
B
直距离为: d Lo 0.51m R
Lo
R/ R
O d
C
x
§4–3 平面一般力系的平衡条件和平衡方程
4、联立求解:
MA=-38.6 kN•m (顺时针) NAy
NAx= 0
A
NAx
C
T
B
NAy=-19.2 kN (向下)
MA Q
§4–4 平面平行力系的平衡
平面平行力系平衡的充要条件:
力系中各力的代数和等于零 ,以这些力对 任一点的矩的代数和也等于零。
平面平行力系的平衡方程:
一矩式: Fy 0 , mOF 0
Fx 0 :
N Ax 0
Fy 0 :
N Ay Q ND 0
mAF 0 :
3 2 Q 2ND M 0
4、联立求解:
y
工程力学第三章平面一般力系
5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Wednesday, May 26, 2021May 21Wednesday, May 26, 20215/26/2021
α=4°4°30ˊ
知识拓展
二、槽面摩擦
滑块与导槽的槽面接触
平带传动与V带传动
槽面接触
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.6.2521.6.2 509:01:4809:01 :48Jun e 25, 2021
14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年6月 25日星 期五上 午9时1 分48秒 09:01:4 821.6.2 5
17、儿童是中心,教育的措施便围绕 他们而 组织起 来。上 午9时1 分48秒 上午9时 1分09:01:4821 .6.25
June 2021
ቤተ መጻሕፍቲ ባይዱ
1、Genius only means hard-working all one's life. (Mendeleyer, Russian Chemist)
各力在任意两个相互垂直的坐标轴上的分量的代数和均为零且力系中各力对平面内任意点的力矩的代数和也等于形式基本形式二力矩式三力矩式方程说明两个方程投影式方程一个力矩式方程一个投影式方程两个力矩式方程使用条件
第三章 平面一般力系
§3-1 平面一般力系的简化 §3-2 平面一般力系的平衡和应用 *知识拓展
工程力学第四章平面一般力系
详细描述
平面一般力系简化的目的是将复杂的力系简化为更简单的形式,以便分析刚体的平衡状 态。通过力的平移定理,我们可以将平面一般力系简化为一个合力和一个力矩,或者一 组力和力矩的代数和。这个合力或力和力矩的代数和代表了原力系对刚体的作用效果。
简化后的力系更易于理解和分析,有助于解决工程实际问题。
Part
平衡条件的推导
根据力的平移定理,将平面力系中的所有力平移到同一点, 然后根据合力矩为零和合力为零的条件,推导出平面力系的 平衡条件。
Part
04
平面力系的平衡方程
平衡方程的推导
01
02
03
力的合成与分解
根据力的平行四边形法则, 将力进行合成或分解为多 个分力。
力的投影
将力投影到坐标轴上,得 到力在x轴和y轴上的分量。
STEP 01
分析受力情况
解决静力学问题
利用平衡方程,求解平面 内物体的受力情况,解决 静力学问题。
STEP 03
验证结构稳定性
利用平衡方程,验证结构 的稳定性,确保结构在各 种工况下的安全可靠。
通过平衡方程,分析物体 在平面内的受力情况,判 断物体的运动状态。
Part
03
平面力系的平衡条件
平衡条件的概念
平衡条件是一个物理概念,描述的是物 体在力系作用下保持静止的状态,而平 衡方程是一个数学表达式,用于描述这
一状态。
平衡条件是定性描述,而平衡方程则是 定量描述。平衡方程通过数学符号和运 算,将平衡条件的定性描述转化为可求
解的定量关系。
平衡条件是解决平衡问题的前提,而平 衡方程则是解决问题的工具。通过建立 平衡方程,可以求解未知量,得出物体
平衡条件与平衡方程的联系
平面一般力系简化的目的是将复杂的力系简化为更简单的形式,以便分析刚体的平衡状 态。通过力的平移定理,我们可以将平面一般力系简化为一个合力和一个力矩,或者一 组力和力矩的代数和。这个合力或力和力矩的代数和代表了原力系对刚体的作用效果。
简化后的力系更易于理解和分析,有助于解决工程实际问题。
Part
平衡条件的推导
根据力的平移定理,将平面力系中的所有力平移到同一点, 然后根据合力矩为零和合力为零的条件,推导出平面力系的 平衡条件。
Part
04
平面力系的平衡方程
平衡方程的推导
01
02
03
力的合成与分解
根据力的平行四边形法则, 将力进行合成或分解为多 个分力。
力的投影
将力投影到坐标轴上,得 到力在x轴和y轴上的分量。
STEP 01
分析受力情况
解决静力学问题
利用平衡方程,求解平面 内物体的受力情况,解决 静力学问题。
STEP 03
验证结构稳定性
利用平衡方程,验证结构 的稳定性,确保结构在各 种工况下的安全可靠。
通过平衡方程,分析物体 在平面内的受力情况,判 断物体的运动状态。
Part
03
平面力系的平衡条件
平衡条件的概念
平衡条件是一个物理概念,描述的是物 体在力系作用下保持静止的状态,而平 衡方程是一个数学表达式,用于描述这
一状态。
平衡条件是定性描述,而平衡方程则是 定量描述。平衡方程通过数学符号和运 算,将平衡条件的定性描述转化为可求
解的定量关系。
平衡条件是解决平衡问题的前提,而平 衡方程则是解决问题的工具。通过建立 平衡方程,可以求解未知量,得出物体
平衡条件与平衡方程的联系
《平面一般力系》课件
04
平面一般力系中的重心和 重心矩
重心和重心矩的定义
重心
一个物体的各部分所受重力的合作用 点,也是物体相对于地球的质心。
重心矩
以重心为矩点的力矩,即力系对重心 的力矩。
重心和重心矩的计算方法
重心计算方法
通过物体各部分的质量分布和对应的 坐标,利用数学公式计算出物体的重 心位置。
重心矩计算方法
根据物体上各点的力或力矩和对应的 坐标,利用数学公式计算出以重心为 矩点的力矩。
02
平面一般力系的平衡方程
平面一般力系的平衡方程的建立
1 2
确定研究对象
选择需要平衡的物体作为研究对象,可以是单个 物体或多个物体组成的系统。
列出所有作用在物体上的力
包括主动力和约束反力,确保不遗漏任何力。
3
建立平衡方程
根据平面力系的平衡条件,列出平衡方程,平衡 方程的形式为∑X=0和∑Y=0。
动摩擦力的大小可以根据动摩 擦因数源自正压力来求解。方向判断动摩擦力的方向与相对运动的 方向相反。
摩擦力的计算方法
平衡法
当物体处于平衡状态时,可以根据平衡条件来计算摩 擦力的大小和方向。
牛顿第二定律法
当物体有加速度时,可以根据牛顿第二定律来计算摩 擦力的大小和方向。
动摩擦因数法
当物体在另一个物体表面上已经开始运动时,可以根 据动摩擦因数和正压力来计算动摩擦力的大小。
应用场景
在分析力学问题时,常常 需要将力的作用点平移到 其他位置,以便于分析力 的作用效果。
注意事项
平移定理只适用于力,不 适用于力矩。
平面一般力系的简化
平面一般力系的简化
将多个力合成为一个合力或一组力矩,以便于分析问题。
工程力学课件 第四章 平面一般力系
第4章 平面一般力系
14
3. 力系平衡
0, MO 0 FR
FR′
O
MO
合力矩定理 平面一般力系如果有合力,则合力对该力系 作用面内任一点之矩等于力系中各分力对该点之 矩的代数和。
课程:工程力学
第4章 平面一般力系
15
证明: 如下图所示,显然有
M O ( FR ) FR d M O , M O M O ( F ), M O ( FR ) M O ( F )
课程:工程力学
第4章 平面一般力系
1
第4章 平面一般力系
前言 §4-1 力线平移定理 §4-2 平面一般力系向一点简化 §4-3 分布荷载 §4-4 平面一般力系的平衡条件
§4-5 平面平行力系的平衡条件 §4-6 物体系统的平衡问题 §4-7 滑动摩擦
课程:工程力学
第4章 平面一般力系
2
前言
平面一般力系是指位于同一平面内的诸力其作 用线既不汇交于一点,也不互相平行的力系。 工程计算中的很多实际问题都可以简化为平 面一般力系来处理。
FAx A D
B x
arctan
FA y FA x
E F
FAy
P
思考题 4-4 如果例题4-3中的荷载F可以沿AB梁移动,问: 荷载F在什么位置时杆BC所受的拉力(FT)最大? 其值为多少?
课程:工程力学
第4章 平面一般力系
33
思考题 4-5 (1) 由右图所示的受力图,试按
M A (F ) 0 M B (F ) 0 F
22
(2) 非均布荷载:荷载集度不是常数。 如坝体所受的水压力等。
A qy y
B C
课程:工程力学
工程力学第3节 平面一般力系
• 2)力偶 M 对平面上任意一点的矩为常量。
• 3)应尽量选择各未知力作用线的交点为力矩方 程的矩心,使力矩方程中未知量的个数尽量少。
例2-10 如图所示一可 沿轨道移动的塔式起重 机,机身重G=200kN, 作用线通过塔架中心。 最大起重量FP=80kN。 为防止起重机在满载时 向右倾倒,在离中心线 x 处附加一平衡重FQ, 但又必须防止起重机在 空载时向左边倾倒。试 确定平衡重FQ以及离左 边轨道的距离 x 的值。
i 1 i 1 n i 1 n
n
• 二力矩式:A、B 两点的联线 AB 不能与 x 轴垂直。 • 三力矩式:A、B﹑C 三点不能共线。 • 选用基本式﹑二力矩式还是三力矩式,完全决定于 计算是否方便。不论何种形式,独立的平衡方程只 有三个。
四
平面平行力系的平衡方程
平面平行力系平衡的充分 必要条件是:力系中各力的代 数和等于零,以及各力对任一 点的矩的代数和等于零。 平衡方程 的解析式 (基本式) 注意
Fiy 0 M O ( Fi ) 0
i 1 M A ( Fi ) 0 M B ( Fi ) 0
i 1 i 1 n
n
二力矩式中A、B 两点的联线不能与 x 轴垂直。
例2-7 如图所示,数控车床一齿轮转动轴自重 G = 900N,水平安装在向心轴承A和向心推力轴承B 之间。齿轮受一水平推力F 的作用。已知 a = 0.4m, b = 0.6m,c = 0.25m,F = 160N。当不计轴承的宽度 和摩擦时,试求轴上A、B处所受的约束反力。
Fiy 0 M O ( Fi ) 0
i 1 i 1 n
i 1 n
二 力 矩 式 注意
Fix 0 M A ( Fi ) 0 M B ( Fi ) 0
02 平面一般力系
y O
这是平面任意力系平衡方程的基本形式,也称为一 力矩式方程。
二、平面任意力系平衡问题的解题步骤
定。确定研究对象。 画。画出分离体受力图。 列。列平衡方程。 校。利用所学知识检查结果的正确性。
§4-3 平面平行力系的平衡方程及其应用
在平面平行力系中,若选择直角坐标轴的y(或x)轴与 力系各力作用线平行,则每个力在x(或y)轴上的投影 均为零,即∑Fx≡0(或∑Fy≡0)。于是平行力系只有两 个独立的平衡方程, 即 Fy 或 Fx 0
(a)
(b)
(c)
平面任意力系的简化,主矢与主矩 力系的主矢
y A1 F1 O A2 F2 An (a) Fn Mn MO
1
y
Fn FR
=
F1
M2 F2
x
=
O
O MO
FR
x
d
O
FR
O
d
O
FR (d)
FR (e)
(b)
(c)
平移力组成的平面汇交力系的合力, 称为原平面任意 力系的主矢。 作用点在简化中心O点,大小等于 各分力的矢量和,即
y a E1
a
F2
O
x
F3
F4
2.5 如练习2.5图所示三角支架的铰链A处销钉上悬挂一 重物G,各杆自重不计,已知G=10kN,试求杆AB、 AC所受的力。
B 6 0° G 3 0° C (a) A A B 6 0° 6 0° C
G (b )
2.6 构件的支承和载荷情况如练习2.6图所示,l=4m, 求支座A、B的约束反力。
一、平面一般力系的平衡方程 平面一般力系平衡的必要与充分条件为: FR′=0, MO=0。即
这是平面任意力系平衡方程的基本形式,也称为一 力矩式方程。
二、平面任意力系平衡问题的解题步骤
定。确定研究对象。 画。画出分离体受力图。 列。列平衡方程。 校。利用所学知识检查结果的正确性。
§4-3 平面平行力系的平衡方程及其应用
在平面平行力系中,若选择直角坐标轴的y(或x)轴与 力系各力作用线平行,则每个力在x(或y)轴上的投影 均为零,即∑Fx≡0(或∑Fy≡0)。于是平行力系只有两 个独立的平衡方程, 即 Fy 或 Fx 0
(a)
(b)
(c)
平面任意力系的简化,主矢与主矩 力系的主矢
y A1 F1 O A2 F2 An (a) Fn Mn MO
1
y
Fn FR
=
F1
M2 F2
x
=
O
O MO
FR
x
d
O
FR
O
d
O
FR (d)
FR (e)
(b)
(c)
平移力组成的平面汇交力系的合力, 称为原平面任意 力系的主矢。 作用点在简化中心O点,大小等于 各分力的矢量和,即
y a E1
a
F2
O
x
F3
F4
2.5 如练习2.5图所示三角支架的铰链A处销钉上悬挂一 重物G,各杆自重不计,已知G=10kN,试求杆AB、 AC所受的力。
B 6 0° G 3 0° C (a) A A B 6 0° 6 0° C
G (b )
2.6 构件的支承和载荷情况如练习2.6图所示,l=4m, 求支座A、B的约束反力。
一、平面一般力系的平衡方程 平面一般力系平衡的必要与充分条件为: FR′=0, MO=0。即
第四章平面一般力系
雨棚
RA MA
雨棚
XA A
MA YA
§4-2 平面一般力系向作用面内任一点的简化
简化结果分析
1. R 0 , MO 0
即原力系与一合力偶等效,其
MO
矩为 M=MO。故只有在此时主矩与
O
“O”的位置 无关。
2. R 0 , MO 0
即原力系与R′等效,所以称R′为原 力系的合力,且过点“O ” 。
平面 汇交 力系
R´( 过“O” 但与“O” 无关)
体转动效果的 物理量
主矢 + 主矩
意 向“O” 简化 力 系
平面 力偶 系
MO (与“O” 有关)
描述力系 对物体移 动效果的
物理量
§4-2 平面一般力系向作用面内任一点的简化
固定端约束力 固定端约束 —— 物体受约束的一端既不能沿 任何方向移动,也不能转动。如深埋在地底下 的电线杆、牢固浇筑在基础上的水泥柱及车站 的雨棚等。
MO (Fi )
即:平面任意力系的主矩MO 为力系中各个力对 点“O”力矩的代数和。
很明显,一旦“O ”的位置改变,各力偶矩的 大小和转向也随之而变,因此,MO 与“O ”有关。
§4-2 平面一般力系向作用面内任一点的简化
二、 主矢和主矩
r
大小:MO mO(Fi )
主矩 MO 方向:方向规定 +
合力矩定理
R 0 , MO 0
R´
MO
O
R´
= Od R
R" O'
=
R Od
O'
R R R d MO
R
合力矩定理 Rd MO (R) MO (F )
§4-2 平面一般力系向作用面内任一点的简化
第2章平面一般力系
11
主矢作用在简化中心O点,与简化中心位置无关(为什么?)。 (3)将平面力偶系合成:
F'1 m1
R'
F' 2
=
m2
=
MO
mn
得到作用于力系平面内的一力偶,其力偶矩为: MO =m1+m2+…+mn
F' n
mO (F1 ) mO (F 2 ) ... mO (F n ) mO ( F i )
F'1 m1
R'
F' 2
=
m2
mn
F' n
(1)将各力平移至点O , 得一平面汇交力系和一平面力偶系。 (2)将平面汇交力系合成: R' F'1 F'2 ... F'n F 1 F 2 ... F n Fi 原力系中各力的矢量和称为力系的主矢量,简称主矢( 它是不是原力系的合力?),用 R' 表示,即 R' F i
1
第二章
系。
平面一般力系
平面一般力系:各力的作用线都在同一平面内且任意分布的力
平面一般力系包含以下几种特殊力系: (1)平面汇交力系:各力的作用线都在同一平面内且汇交于 一点的力系。
(2)平面平行力系:各力的作用线都在同一平面内且相互平 行的力系。
(3)平面力偶系:各力偶作用面共面。
2
第二章
平面一般力系
原力系中各力对简化中心之矩的代数和称为力系对简化中心 的主矩 (它是不是合力偶?) 主矩一般与简化中心的位置有关(why?)。
12
过O点建立直角坐标系,由矢量和投影定理,得主矢在x、y轴
上的投影为:
R'x X 1 X 2 X n X i ' Ry Y1 Y2 Yn Yi 则主矢的大小:
主矢作用在简化中心O点,与简化中心位置无关(为什么?)。 (3)将平面力偶系合成:
F'1 m1
R'
F' 2
=
m2
=
MO
mn
得到作用于力系平面内的一力偶,其力偶矩为: MO =m1+m2+…+mn
F' n
mO (F1 ) mO (F 2 ) ... mO (F n ) mO ( F i )
F'1 m1
R'
F' 2
=
m2
mn
F' n
(1)将各力平移至点O , 得一平面汇交力系和一平面力偶系。 (2)将平面汇交力系合成: R' F'1 F'2 ... F'n F 1 F 2 ... F n Fi 原力系中各力的矢量和称为力系的主矢量,简称主矢( 它是不是原力系的合力?),用 R' 表示,即 R' F i
1
第二章
系。
平面一般力系
平面一般力系:各力的作用线都在同一平面内且任意分布的力
平面一般力系包含以下几种特殊力系: (1)平面汇交力系:各力的作用线都在同一平面内且汇交于 一点的力系。
(2)平面平行力系:各力的作用线都在同一平面内且相互平 行的力系。
(3)平面力偶系:各力偶作用面共面。
2
第二章
平面一般力系
原力系中各力对简化中心之矩的代数和称为力系对简化中心 的主矩 (它是不是合力偶?) 主矩一般与简化中心的位置有关(why?)。
12
过O点建立直角坐标系,由矢量和投影定理,得主矢在x、y轴
上的投影为:
R'x X 1 X 2 X n X i ' Ry Y1 Y2 Yn Yi 则主矢的大小:
第四章 平面一般力系
刚体上的全部力在y轴上的投影代数和等于0
刚体上的全部力对任意点的力矩代数和等于0
X 0, Y 0, mo ( F ) 0.
3、左边平衡方程是从平衡条件直接推 出的,是平衡方程的基本形式。 称为“一矩式”
4、二力矩方程
X 0 (或 Y 0) , m A ( F ) 0, mB ( F ) 0.
主矩:
M0
M 0 ( Fi )
F1 1 F3 3 M F3 sin 30 2 2kNm
3.4 d 2
M 0 2kNm d 0.59m FR 3.4kN
例、 三角形分布载荷.计算其合力作用线的位置 关于载荷(主动力)分类
集中力:当载荷分布面积较小, 近似认为载荷作用与一个“点”, 这种力称为“集中力” 单位是:N, kN 分布力:当载荷分布面积较大,而不能 简化为集中力,就称分布力 分布力又分为“面分布力”和“线分布 力” 面分布力:分布在一定面积上, 又有均匀和不均匀分布 单位:
M (F ) 0 F y 0,
A
Q(6 2) P 2 W (12 2) FB 4 0
Q P W FA FB 0
解得:
FA 210 kN, FB 870 kN
FA FB
33
(2)当P1=0.5P1时,求轨道A、B给起重机轮子的反力?
所以:
M M O ( F1 ) M O ( F2 ) M O ( Fi )
与简化中心的选择有关
固定端(插入端)约束
雨搭
车刀
固定端约束限制了物体的移动和转动。因而完全被固定
12
固定端(插入端)约束的约束反力:
理论力学4 平面一般力系
力F ′+ 力偶( F , F ′′)
3
说明: 说明 力线平移定理揭示了力与力偶的关系: ①力线平移定理揭示了力与力偶的关系:力 (例断丝锥) 例断丝锥)
力+力偶 力偶
有关, ②力平移的条件是附加一个力偶m,且m与d有关,m=F•d 力平移的条件是附加一个力偶 , 与 有关 ③力线平移定理是力系简化的理论基础。 力线平移定理是力系简化的理论基础。
Fx = 0, FAx − FT cos 30 0 = 0 ∑
Fy = 0, FAy + FT sin300 − P −Q = 0 ∑
1 ∑ M A = 0, FT 2 ⋅ 6a − P ⋅ 3a − Q ⋅ 4a = 0 F T = 17 . 33 kN 解得: F Ax = 15 . 01 kN 解得: F 22 Ay = 5 . 33 kN
a a 两力作用线过x1 = 和x2 = 3 2
17
§3-4
平面一般力系的平衡条件与平衡方程
一 平面任意力系的平衡方程 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零
r ′ 即 FR = 0
Mo = 0
FR′ = (∑ Fx )2 + (∑ Fy )2
MO = ∑MO (Fi )
∑ F = 0, F = 0 ∑ Fy = 0, FAy + FBy − P − q ⋅ 2a = 0
9
固定端(插入端) 固定端(插入端)约束 说明 ① 认为Fi这群力在同一平面内; 雨搭 ② 将Fi向A点简化得一力和一力偶; ③ FA方向不定可用正交分力FAX, FAY 表示; ④ FAX, FAY, MA为固定端约束反力;
FR FYA FXA
平面一般力系的简化.ppt
F1
cosβ=12/13
θ
O M (0,-4) F3
x
sinβ=5/13
F/Rx = FiX=F1cosβ -F2cos45o + F3 = 70N F/Ry= Fiy= F1sinβ + F2sin45o = 150N
FRx FRy 702 1502 165.53N 大小:FR FRy 150 方向: arctg arctg 650 FRx 70
三、 平面一般力系的简化
简化方法:
向一点简化 一般力系(任意力系) 汇交力系+力偶系
(未知力系)
汇交力系合力
(已知力系)
Ro F1 F2 Fn Fi F1 F2 Fn Fi R
附加力偶的合力偶矩 M o m1 m2 mn mi
F2 450 (-3,2) (2,1) O M (0,-4) F3 5 β 12
F1
cosβ=12/13
x
sinβ=5/13
解:1、取0点为简化中心,建立图示坐标系:
主矢: FR/= Fi
主矩: MA = mA(Fi)
2、求力系的主矢
y F2 450 (-3,2) (2,1)
F/R
5 β 12
⒊ 时简化结果与简化中心有关,换个简化中心,主矩不为零)
⒋
MO ≠0,为最一般的情况。此种情况还可以继续 R ≠0,
化为一个合力
R。
合力R 的大小等于原力系的主矢
MO 合力R 的作用线位置 d R
⒌ 结论 平面任意力系的简化结果 :①合力偶MO ; ②合力 (二)、合力矩定理
R
∵
(合力偶) M O mO ( Fi ) (主矩) mO ( R ) R d M O (合力偶)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
2m
2F2 cos60 2F3 3F4 sin30 0.5
(2)、求合成结果:合成为一个
合力R,R的大小、方向与R’相同。 其作用线与O点的垂直距离为:
F1
O
3m
y A
d Mo 0.51m R
Lo O d
R/ R
B
F3
F4 C 30° x
B
C
x
例题 4-2 P 75 (N) Q 100 (N) S 80 (N) M 50 (N m) 求:该力系的最后的合成结果。
§4–3 平面一般力系的平衡
平面任意力系平衡的充要条件: 力系的主矢等于零 ,又力系对任一点的主矩也等于零。
平衡方程:
Fx 0 , Fy 0 , mo F 0
平衡方程其他形式:
Fx 0 , mAF 0 , mB F 0
A、B 的连线不和x 轴相垂直。
mAF 0 , mB F 0 , mC F 0
A、B、C 三点不共线。
§4–3 平面一般力系的平衡
例题 4-3 伸臂式起重机如图所示,匀质伸臂AB 重P=2200N, 吊车D、E 连同吊起重物各重QD=QE=4000N。有关尺寸为:l = 4.3m,a = 1.5m,b = 0.9m,c = 0.15m, α=25°。试求铰链 A 对臂AB 的水平和垂直反力,以及拉索BF 的拉力。
4、 R=0,而M=0,原力系平衡。
综上所述,可见:
⑴、平面一般力系若不平衡,则当主矢主矩均不为零时, 则该力系可以合成为一个力。
⑵、平面一般力系若不平衡,则当主矢为零而主矩不为零 时,则该力系可以合成为一个力偶。
§4–2 平面任意力系简化结果
合力矩定理 平面任意力系的合力对作用面内任一点的矩,等于
二、几点说明: 1、平面任意力系的主矢的大小和方向与简化中心的位 置无关。
2、平面任意力系的主矩与简化中心O 的位置有关。因
此,在说到力系的主矩时,一定要指明简化中心。
§4–1 平面任意力系的简化
§4–1 平面任意力系的简化
三、主矢、主矩的求法:
1、主矢可接力多边形规则作图求得,或用解析
法计算。
简化中心位置而变。
2、M=0,而R≠0,原力系合成为一个力。作用于点O 的力R就
是原力系的合力。
3、R≠0,M≠0,原力系简化成一个力偶和一个作用于点O 的
力。这时力系也可合成为一个力。 说明如下:
R
R
LO
O
=
R
Lo
OR A
=
Lo R
O
R A
AO L0 m0 F
R
R
R
§4–2 平面任意力系简化结果
y
F2
60° A
2
2
2m
R Rx2 Ry2 0.794
cosR、x
R x
0.614
R
R , x 526'
cosR、y Ry 0.789
R
R , y 3754'
F1
O
3m
y A
R
O
B
F3
F4 C 30° x
B
C
x
§4–2 平面任意力系简化结果
② 求主矩:
MO mo F
y
F2
60°
第四章 平面一般力系
平面任意力系
各个力的作用线在同一平面内,但 不汇交于一点,也不都平行的力系称为 平面任意力系
第
四 §4–1 平面一般力系向一点简化
章
§4–2 平面一般力系的简化结果
平
§4–3 平面一般力系的平衡
面
一 §4–4 静不定问题、物体系的平衡
般
力 §4–5 平面桁架
系
§4–1 平面任意力系的简化
解:取坐标系Oxy。 1、求向O点简化结果:
①求主矢R:
2m
y
F2
60°
A
F1
O
3m
B
F3
F4 C 30° x
Rx Fx F2 cos 60 F3 F4 cos 30 0.598
§4–2 平面任意力系简化结果
Ry Fy F1 F2 sin 60 F4 sin 30
1 2 3 3 1 0.768
§4–1 平面任意力系的简化
推广: 平面任意力系对简化中心O 的简化结果
主矢:
主矩:
R F1 F2 Fn F
M mo F1 mo F2 mo Fn mo F
结论: 平面任意力系向面内任一点的简化结果,是一个作用
在简化中心的主矢;和一个对简化中心的主矩。
§4–1 平面任意力系的简化
QE
l
b T
cos
c
T
sin
l
0
y
4、联立求解,可得:
T = 12456 N FAx= 11290 N
FAy
A
FAx D
T
C
Eα
B x
FAy= 4936 N
QD P
QE
§4–3 平面一般力系的平衡
例题 4-4 梁AB上受到一个均布载荷和一个力偶作用,已知 载荷集度q = 100N/m,力偶矩大小M = 500 N•m。长度AB = 3m,DB=1m。求活动铰支D 和固定铰支A 的反力。
y
F
c
C
A
αB
QD
QE
a
b
l
FAy
A
FAx D
T
α
C
E
B
x
解:
QD P
QE
1、取伸臂AB为研究对象
2、受力分析如图
§4–3 平面一般力系的平衡
3、选列平衡方程:
Fx 0 :
F T cos 0 Ax
Fy 0 :
FAy QD P QE T sin 0
mAF 0 :
QD
a
P
l 2
R Rx2 Ry2
Fx 2
Fy 2
cosR, y Fy R
2、主矩M可由下式计算:
M mo F1 mo F2 mo Fn mo F
§4–2 平面任意力系简化结果
简化结果的讨论
1、R=0,而M≠0,原力系合成为力偶。这时力系主矩LO 不随
这个力系中的各个力对同一点的矩的代数和。
mo R mo F
mo F mo Fx mo Fy
mo Fx yFx
mo Fy xFy
y
Fy
A y Ox
B
F
Fx
x
§4–2 平面任意力系简化结果
例题 4-1 在长方形平板的O、A、B、C 点上分别作用着有四个 力:F1=1kN,F2=2kN,F3=F4=3kN(如图),试求以上四个力构 成的力系对点O 的简化结果,以及该力系的最后的合成结果。
共点力系F1、 F2、 F3的合成结果为一作用点在点O 的力R。 这个力矢R 称为原平面任意力系的主矢。
R F 1 F2 F 3 F1 F2 F3
附加力偶系的合成结果是作用在同平面内的力偶,这力
偶的矩用LO 代表,称为原平面任意力系对简化中心 O 的主
矩。
M m1 m2 m3
mo F1 mo F2 mo F3