(整理)高考真题答案与解析
2024年高考全国甲卷(语文)科目(真题卷及答案解析版)
2024年普通高等学校招生全国统一考试(全国甲卷)语文使用地区:四川、宁夏、内蒙古、青海、陕西本试卷满分150分,考试时间150分钟。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成下面小题。
2019年4月23日,习近平主席在会见应邀出席中国人民解放军海军成立70周年多国海军活动的外方代表团团长时指出:“海洋对于人类社会生存和发展具有重要意义。
海洋孕育了生命、联通了世界、促进了发展。
我们人类居住的这个蓝色星球,不是被海洋分割成了各个孤岛,而是被海洋连结成了命运共同体,各国人民安危与共。
”作为“人类命运共同体”的重要组成部分,海洋命运共同体的建设目标是打造一个持久和平、普遍安全、共同繁荣、开放包容、清洁美丽的海洋环境。
要实现海洋的持久和平与普遍安全,各国必须摒弃传统的大国争霸思路,充分照顾彼此的安全关切和合理利益,联合起来打击海盗、人口走私、贩毒等海上犯罪行为,在涉及海洋权益争端时通过友好协商的方式来解决问题,短期内无法协商的问题可以考虑搁置争议。
共同繁荣、开放包容和清洁美丽的愿景意味着,我们要坚持开放的自由贸易体系,同时共同应对气候变化、海洋环境保护等问题,发挥海洋作为国际贸易大通道的积极作用,关注发展中国家的发展诉求。
随着人类技术水平的提升和各国经济发展对资源需求的日益增加,各国都希望开发利用更多的海洋资源。
如何才能在更好地利用海洋资源的同时又促进可持续发展、构建海洋命运共同体?习近平总书记提出海洋发展的“四个转变”:“要提高海洋资源开发能力,着力推动海洋经济向质量效益型转变”;“要保护海洋生态环境,着力推动海洋开发方式向循环利用型转变”;“要发展海洋科学技术,着力推动海洋科技向创新引领型转变”;“要维护国家海洋权益,着力推动海洋维权向统筹兼顾型转变”。
这为海洋开发利用指明了方向。
具体到全球、地区和双边层面,构建海洋命运共同体应该着眼于不同的路径,这样才更具有可行性。
2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)
2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1 .答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一个选项是正确的・请把正确的选项填涂在答题卡相应的位置上.1. 已知z = —1 —i,则()A. 0B. 1C. V2D. 22. 已知命题p : Vx e R , x +11> 1 ;命题 q : > 0 , x 3 = x ,贝I ( )A. p 和q 都是真命题B. ~^P 和q 都是真命题C. p 和「0都是真命题D. F 和「0都是真命题3. 已知向量口,直满足|4 = 1J q + 2,= 2,且— 则料=()A. |B. —C.匝D. 12 2 24. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表据表中数据,结论中正确的是()亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410A. 100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(歹>0),从。
历年高考数学真题答案
历年高考数学真题答案【篇一:新课标数学历年高考试题汇总及详细答案解析】/p> 第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合m={0,1,2},n=?x|x2?3x?2≤0?,则m?n=() a. {1}【答案】db. {2}c. {0,1}d. {1,2}把m={0,1,2}中的数,代入不等式x2-3x+2≤0,经检验x=1,2满足。
所以选d.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1?2?i,则z1z2?() a. - 5 【答案】bb.5c. - 4+ id. - 4 - iz1=2+i,z1与z2关于虚轴对称,∴z2=-2+i,∴z1z2=-1-4=-5,故选b.3.设向量a,b满足|a+b|a-ba?b = () a. 1 【答案】ab. 222c. 322d. 5|a+b|=,|a-b|=6,,∴a+b+2ab=10,a+b-2ab=6,联立方程解得=1,故选a.4.钝角三角形abc的面积是,ab=1,,则ac=()2a. 5【答案】bb.c. 2d. 11112∴b=,使用余弦定理,b2=a2+c2-2accosb,解得b=.故选b.5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()a. 0.8b. 0.75c. 0.6d. 0.45【答案】a设某天空气质量优良,则随后一个空气质量也优良的概率为p,则据题有0.6=0.75?p,解得p=0.8,故选a.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()a. b. c. d.279273【答案】c7.执行右图程序框图,如果输入的x,t均为2,则输出的s= () a.4 b. 5c. 6 d. 7【答案】cx=2,t=2,变量变化情况如下: m s k 13 125 2 27 3 故选c.8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= a. 0b. 1c. 2d. 3【答案】df(x)=ax-ln(x+1),∴f′(x)=a-1.x+1∴f(0)=0,且f′(0)=2.联立解得a=3.故选d.?x?y?7≤0?9.设x,y满足约束条件?x?3y?1≤0,则z?2x?y的最大值为()?3x?y?5≥0?a. 10b. 8c. 3d. 2【答案】b画出区域,可知区域为三角形,经比较斜率,可知目标函数z=2x-y 在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,取得最大值z=8.故选b.a.c. d.b.324 【答案】d设点a、b分别在第一和第四象限,af=2m,bf=2n,则由抛物线的定义和直角三角形知识可得,33332m=2?+m,2n=2?-3n,解得m=(2+),n=(2-3),∴m+n=6.4422139244c.d.【答案】c0-1+4=.故选c.106f?x0m2,则m的12.设函数f?x??.若存在f?x?的极值点x0满足x02m2取值范围是()a.,?66,??b.,?44,??c.,?22,??d.,?14,?? 【答案】cf(x)=sin22mm2∴x0+[f(x0)]2+3,∴+3m2,解得|m|2.故选c.44第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.?x?a?的展开式中,x7的系数为15,则a=________.(用数字填写答案)101【答案】21137333c10xa=15x7∴c10a=15,a=.故a=.2214.函数f?x??sin?x?22sin?cos?x的最大值为_________. 【答案】115.已知偶函数f?x?在?0,单调递减,f?2??0.若f?x?1??0,则x的取值范围是__________.,-1)∪(3,+∞)【答案】(-∞偶函数y=f(x)在[0,+∞)上单增,且f(2)=0∴f(x)0的解集为|x|2.故解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).∴f(x-1)0的解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).在坐标系中画出圆o和直线y=1,其中m(x0,1)在直线上.由圆的切线相等及三角形外角知识,可得x0∈[-1,1].故x0∈[-1,1].已知数列?an?满足a1=1,an?1?3an?1.(Ⅰ)证明an?是等比数列,并求?an?的通项公式;(Ⅱ)证明:??…+?.12n【答案】(1) 无(1)(2)无a1=1,an+1=3an+1.n∈n*.111=3an+1+=3(an+). 222113∴{an+是首项为a1+=,公比为3的等比数列。
2022年全国新高考I卷数学真题及答案解析
又 A1C 平面 A1B1C ,所以 BC1 CA1 ,故 B 正确;
连接 A1C1 ,设 A1C1 B1D1 O ,连接 BO ,
因为 BB1 平面 A1B1C1D1 , C1O 平面 A1B1C1D1 ,则 C1O B1B ,
因为 C1O B1D1 , B1D1 B1B B1 ,所以 C1O 平面 BB1D1D ,
C. 1.4109 m3
D.
1.6109 m3
【参考答案】C
【参考解析】本题的解答过程如下:
依题意可知棱台的高为 MN 157.5 148.5 9 (m),所以增加的水量即为棱台的体积V .
棱台上底面积 S 140.0km2 140106m2 ,下底面积 S 180.0km2 180106m2 ,
库水位为海拔148.5m 时,相应水面的面积为140.0km2 ;水位为海拔157.5m 时,相应水面
的面积为180.0km2 ,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔
148.5m 上升到157.5m 时,增加的水量约为( 7 2.65 )( )
A. 1.0109 m3
B. 1.2109 m3
所成的角,
因为四边形 BB1C1C 为正方形,则 B1C BC1 ,故直线 BC1 与 DA1 所成的角为 90 ,A 正确;
连接 A1C ,因为 A1B1 平面 BB1C1C , BC1 平面 BB1C1C ,则 A1B1 BC1 ,
因为 B1C BC1 , A1B1 B1C B1 ,所以 BC1 平面 A1B1C ,
交 C 于 P,Q 两点,则( )
A. C 的准线为 y 1
B. 直线 AB 与 C 相切
C. OP OQ | OA 2
2022年新高考全国Ⅰ卷语文真题(含答案和解析)
2022年新高考全国Ⅰ卷语文真题(含答案、解析)(一)现代文阅读Ⅰ(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一:中华民族有着深厚文化传统,形成了富有特色的思想体系,体现了中国人几千年来积累的知识智慧和理性思辨。
这是我国的独特优势。
中华文明延续着我们国家和民族的精神血脉,既需要薪火相传、代代守护,也需要与时俱进、推陈出新。
要加强对中华优秀传统文化的挖掘与阐发,使中华民族最基本的文化基因与当代文化相适应、与现代社会相协调,把跨越时空、超越国界、富有永恒魅力、具有当代价值的文化精神弘扬起来。
要推动中华文明创造性转化、创新性发展,激活其生命力,让中华文明同各国人民创造的多彩文明一道,为人类提供正确精神指引。
要围绕我国和世界发展面临的重大问题,着力提出能够体现中国立场、中国智慧、中国价值的理念、主张、方案。
我们不仅要让世界知道“舌尖上的中国”,还要让世界知道“学术中的中国”“理论中的中国”“哲学社会科学中的中国”,让世界知道“发展中的中国”“开放中的中国”“为人类文明作贡献的中国”。
强调民族性并不是要排斥其他国家的学术研究成果,而是要在比较、对照、批判、吸收、升华的基础上,使民族性更加符合当代中国和当今世界的发展要求,越是民族的越是世界的。
解决好民族性问题,就有更强能力去解决世界性问题;把中国实践总结好,就有更强能力为解决世界性问题提供思路和办法。
这是由特殊性到普遍性的发展规律。
(摘自习近平《加快构建中国特色哲学社会科学》)材料二:不少评论家、诗人和诗歌读者都感觉到当代新诗创作与理论进入了一种停滞不前、缺乏生命力的状态。
由于古老的东方文化传统与汉语都不可能向西方文化和语言转化,而西方诗歌文化与语言又不可能被缺乏本民族传统意识的诗歌作者与理论家自然吸收,食洋不化的积食病就明显地出现在诗歌创作和理论中。
人们逐渐意识到对“他文化”吸收力的强弱与自己本民族文化传统的强弱成正比,唐代之所以能广泛吸取西域民族、北方民族及佛教的文化,正因为它拥有一个秦汉以来建立的强大的中华文化传统,这传统如一个消化力极强的胃,吸收了四方异域的文化,借以繁荣本民族文化。
解析几何历年高考真题试卷--带详细答案
解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
2023年全国高考试题及答案解析汇总(完整版)整理
2023年全国高考试题及答案解析汇总(完整版)整理为了关心大家找到完整的2023高考试题及答案资源,特为大家整理了2023年高考真题及答案解析(完整版),通过本文大家就能了解到31个省区市2023年高考试卷类型、各科真题及答案解析,今日我在这给大家整理了一些2023年全国高考试题及答案解析汇总(完整版)!2023年全国高考试题及答案解析汇总(完整版)2023年高考全国甲卷适用地区:四川、云南、广西、贵州、西藏语文数学(文科)数学(理科)英语文科综合理科综合2023年高考全国乙卷适用地区:甘肃、青海、河南、吉林、黑龙江、宁夏、内蒙古、安徽、江西、山西、陕西语文数学(文科)数学(理科)英语文科综合理科综合2023年新高考全国一卷适用地区:湖北、山东、广东、江苏、河北、湖南、福建语文数学英语(外语)物理化同学物政治历史地理2023年新高考全国二卷适用地区:辽宁、海南、重庆语文数学英语(外语)物理化同学物政治历史地理2023年高考北京卷适用地区:北京语文数学英语(外语)物理化同学物政治历史地理2023年高考上海卷适用地区:上海语文数学英语物理化同学物政治历史地理2023年高考天津卷适用地区:天津语文数学英语物理化同学物政治历史地理2023年高考浙江卷适用地区:浙江语文数学英语物理化同学物政治历史地理如何模拟填报志愿(一)登录1.打开扫瞄器后,考生在地址栏输入网址进入模拟志愿填报登录界面。
2.输入考生报考卡上的卡号、密码和验证码后,点击“登录”按钮进入系统,进入后,查看“报志愿须知”。
勾选“已阅读”复选框,点击“志愿填报”按钮,即可进入填报志愿类型选择界面。
(二)填报志愿1.选择要填报的志愿类型,点击“志愿填报”按钮,进入填报界面。
2.选择要报考的学校和专业。
点击院校输入框,在弹出院校选择界面点击“全部”或省份名称,将列出院校名称,点击院校名称,将自动填入该院校志愿。
选择院校后,点击专业代码输入框,系统会弹出专业选择框,点击专业名称,自动选择该专业,按此方法依次填报其它专业志愿。
2024年高考数学试题(新课标I卷)解析版
2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。
江西高考生物真题及答案解析(word版 )
2022年江西高考生物真题及答案解析(word版)今年份高考考试已经在万众瞩目的目光下结束了,跟随高考的脚步,出国留学网我为大家将江西省2022年高考生物题目和答案解析整理编辑成了文字版,便利大家参考、阅读,快来看看吧!全国乙卷适用地区:河南、安徽、江西、山西、陕西、黑龙江、吉林、甘肃、内蒙古、青海、宁夏、新疆2022 年一般高等学校招生全国统一考试(乙卷)生物一、单选题1. 有丝分裂和减数分裂是哺乳动物细胞分裂的两种形式。
某动物的基因型是Aa,若该动物的某细胞在四分体时期一条染色单体上的A和另一条染色单体上的a发生了互换,则通常状况下姐妹染色单体分别导致等位基因A和a进入不同细胞的时期是()A. 有丝分裂的后期B. 有丝分裂的末期C. 减数第一次分裂D. 减数其次次分裂【答案】D【解析】【分析】减数分裂过程包括减数第一次分裂和减数其次次分裂;主要特点是减数第一次分裂前期同源染色体联会,可能发生同源染色体非姐妹单体之间的交叉互换,后期同源染色体分开,同时非同源染色体自由组合,实现基因的重组,减数其次次分裂则为姐妹染色单体的分别。
【详解】AB、有丝分裂过程中不会发生同源染色体联会形成四分体的过程,这样就不会发生姐妹染色单体分别导致等位基因A和a进入不同细胞的现象,A、B错误;C、D、依据题意,某动物基因型是Aa,经过间期复制,初级性母细胞中有AAaa四个基因,该动物的某细胞在四分体时期发生交叉互换,涉及A 和a的交换,交换后两条同源染色的姐妹染色单体上均分别具有A和a基因,减数第一次分裂时,同源染色体分开,两组Aa彼此分开进入次级性母细胞,但不会发生姐妹染色单体分别导致等位基因A和a的现象,而在减数其次次分裂时,姐妹染色单体分别,其上的A和a分开进入两个子细胞,C错误,D正确。
故选D。
2. 某同学将一株生长正常的小麦置于密闭容器中,在相宜且恒定的温度和光照条件下培育,发觉容器内CO2含量初期渐渐降低,之后保持相对稳定。
2024年上海市高考化学真题卷(含答案与解析)
2024年上海市普通高中学业水平等级性考试化学试卷(考试时间60分钟,满分100分)注意事项:1.答题前,考生务必将自己的姓名和座位号填写在答题卡和试卷上。
2.作答选择题时,选出每小题答案后,用铅笔将答题卡上对应题目的答案选项涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案选项。
作答非选择题时,将答案写在答题卡上对应区域。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、氟及其化合物氟元素及其化合物具有广泛用途。
1. 下列关于氟元素的性质说法正确的是 A. 原子半径最小 B. 原子第一电离能最大 C. 元素的电负性最强D. 最高正化合价为+72. 下列关于18F 与19F 说法正确的是 A. 是同种核素 B. 是同素异形体 C.19F 比18F 多一个电子 D.19F 比18F 多一个中子3. 萤石(2CaF )与浓硫酸共热可制备HF 气体,写出该反应的化学方程式:_______,该反应中体现浓硫酸的性质是_______。
A .强氧化性B .难挥发性C .吸水性D .脱水性4. 液态氟化氢(HF)的电离方式为:23HF X HF +ƒ,其中X 为_______。
2HF 的结构为F-H F -L ,其中F -与HF 依靠_______相连接。
5. 回答下列问题:(1)氟单质常温下能腐蚀Fe Ag 、等金属,但工业上却可用Cu 制容器储存,其原因是_______。
6PtF 是极强的氧化剂,用Xe 和6PtF 可制备稀有气体离子化合物,六氟合铂氙[]211[XeF]Pt F -+的制备方式如图所示(2)上述反应中的催化剂为_______。
A. 6PtFB. 7PtF -C. F -D. XeF +(3)上述过程中属于氧化还原反应的是_______。
A. ②B. ③C. ④D. ⑤(4)氟气通入氙(Xe)会产生246XeF XeF XeF 、、三种氟化物气体。
现将1mol 的Xe 和9mol 的2F 同时通入50L 的容器中,反应10min 后,测得容器内共有8.9mol 气体,且三种氟化物的比例为246XeF :XeF :XeF 1:6:3=,则l0min 内4XeF 的速率()4v XeF = _______。
成人高考数学真题与详细答案
成人高考数学真题与详细答案成人高考作为许多成年人提升学历的重要途径,数学科目一直是考生们关注的重点。
以下为大家带来一套成人高考数学真题,并附上详细答案及解析。
一、选择题(本大题共 17 小题,每小题 5 分,共 85 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、设集合 A ={1, 2, 3},B ={2, 3, 4},则 A ∪ B =()A {1, 2, 3, 4}B {2, 3}C {1, 4}D {1}答案:A解析:A ∪ B 表示集合 A 和集合 B 中所有元素组成的集合,所以A ∪B ={1, 2, 3, 4}。
2、函数 y =√(x 1) 的定义域是()A (∞, 1B 1, +∞)C (∞,+∞)D (-1, +∞)答案:B解析:要使函数有意义,根号下的数必须大于等于 0,即x 1 ≥ 0,解得x ≥ 1,所以定义域为 1, +∞)。
3、若函数 f(x) = 2x + 1,则 f(2) =()A 5B 4C 3D 2答案:A解析:将 x = 2 代入函数 f(x) = 2x + 1 中,得到 f(2) = 2×2 + 1 = 5。
4、已知直线的斜率为 2,且过点(1, 3),则该直线的方程为()A y = 2x + 1B y = 2x 1C y = 2x + 5D y = 2x 5答案:A解析:直线的点斜式方程为 y y₁= k(x x₁),其中 k 为斜率,(x₁, y₁)为直线上一点。
将 k = 2,x₁= 1,y₁= 3 代入,得到 y 3 = 2(x 1),化简得 y = 2x + 1。
5、不等式 x² 3x + 2 < 0 的解集是()A (1, 2)B (∞, 1)∪(2, +∞)C (∞, 1∪2, +∞)D (-1, -2)答案:A解析:x² 3x + 2 < 0 可化为(x 1)(x 2) < 0,解得 1 < x < 2,所以解集为(1, 2)。
甘肃省2022年高考[文数]考试真题与答案解析
甘肃省2022年高考[文科数学]考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合,则( ){}{}2,4,6,8,10,16M N x x ==-<<M N = A. B. C. D. {2,4}{2,4,6}{2,4,6,8}{2,4,6,8,10}【答案】A 【解析】【分析】根据集合的交集运算即可解出.【详解】因为,,所以.{}2,4,6,8,10M ={}|16N x x =-<<{}2,4M N = 故选:A.2. 设,其中为实数,则( )(12i)2i a b ++=,a b A. B. C. D. 1,1a b ==-1,1a b ==1,1a b =-=1,1a b =-=-【答案】A 【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【详解】因为R ,,所以,解得:.,a b Î()2i 2i a b a ++=0,22a b a +==1,1a b ==-故选:A.3. 已知向量,则( )(2,1)(2,4)a b ==-,a b -r r A. 2 B. 3C. 4D. 5【答案】D 【解析】【分析】先求得,然后求得.a b -a b -r r【详解】因为,所以.()()()2,12,44,3a b -=--=- 5-== a b 故选:D4. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是( )A. 甲同学周课外体育运动时长的样本中位数为7.4B. 乙同学周课外体育运动时长的样本平均数大于8C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C 【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A 选项,甲同学周课外体育运动时长的样本中位数为,A 选项结7.37.57.42+=论正确.对于B 选项,乙同学课外体育运动时长的样本平均数为:,6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于的概率的估计值,860.3750.416=<C 选项结论错误.对于D 选项,乙同学周课外体育运动时长大于的概率的估计值,8130.81250.616=>D 选项结论正确.故选:C5. 若x ,y 满足约束条件则的最大值是( )2,24,0,x y x y y +⎧⎪+⎨⎪⎩………2z x y =-A. B. 4 C. 8 D. 122-【答案】C 【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数为,2z x y =-2y x z =-上下平移直线,可得当直线过点时,直线截距最小,z 最大,2y x z =-()4,0所以.故选:C.max 2408z =⨯-=6. 设F 为抛物线的焦点,点A 在C 上,点,若,则()2:4C y x =(3,0)B AF BF =AB =A. 2B.C. 3D. 【答案】B【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点A A 坐标,即可得到答案.【详解】由题意得,,则,()1,0F 2AF BF ==即点到准线的距离为2,所以点的横坐标为,A 1x =-A 121-+=不妨设点在轴上方,代入得,,A x ()1,2A所以.故选:BAB ==7. 执行下边的程序框图,输出的()n =A. 3B. 4C. 5D. 6【答案】B 【解析】【分析】根据框图循环计算即可.【详解】执行第一次循环,,2123b b a =+=+=,312,12a b a n n =-=-==+=;222231220.0124b a -=-=>执行第二次循环,,2347b b a =+=+=,725,13a b a n n =-=-==+=;222271220.01525b a -=-=>执行第三次循环,,271017b b a =+=+=,17512,14a b a n n =-=-==+=,此时输出.2222171220.0112144b a -=-=<4n =故选:B8. 如图是下列四个函数中的某个函数在区间的大致图像,则该函数是()[3,3]-A. B. C. D. 3231x xy x -+=+321x xy x -=+22cos 1x x y x =+22sin 1x y x =+【答案】A 【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;()321x xf x x -=+()10f =设,当时,,()22cos 1x x h x x =+π0,2x ⎛⎫∈ ⎪⎝⎭0cos 1x <<所以,故排除C;()222cos 2111x x xh x x x =<≤++设,则,故排除D.()22sin 1x g x x =+()2sin 33010g =>故选:A.9. 在正方体中,E ,F 分别为的中点,则( )1111ABCD A B C D -,AB BC A. 平面平面 B. 平面平面1B EF ⊥1BDD 1B EF ⊥1A BD C. 平面平面 D. 平面平面1//B EF 1A AC 1//B EF 11AC D【答案】A 【解析】【分析】证明平面,即可判断A ;如图,以点为原点,建立空间直角坐标系,设EF ⊥1BDD D ,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.2AB =1B EF 1A BD 11AC D 【详解】解:在正方体中,1111ABCD A B C D -且平面,AC BD ⊥1DD ⊥ABCD 又平面,所以,EF ⊂ABCD 1EF DD ⊥因为分别为的中点,,E F ,AB BC 所以,所以,EF AC EF BD ⊥又,1BD DD D = 所以平面,EF ⊥1BDD 又平面,EF ⊂1B EF 所以平面平面,故A 正确;1B EF ⊥1BDD 如图,以点为原点,建立空间直角坐标系,设,D 2AB =则,()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C 则,,()()11,1,0,0,1,2EF EB =-= ()()12,2,0,2,0,2DB DA ==()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=-设平面的法向量为, 1B EF ()111,,m x y z =则有,可取,11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩()2,2,1m =- 同理可得平面的法向量为,1A BD ()11,1,1n =--平面的法向量为,1A AC ()21,1,0n =平面的法向量为,11AC D ()31,1,1n =-则,122110m n ⋅=-+=≠所以平面与平面不垂直,故B 错误;1B EF 1A BD 因为与不平行,m 2n uu r 所以平面与平面不平行,故C 错误;1B EF 1A AC 因为与不平行,m 3n所以平面与平面不平行,故D 错误,1B EF 11AC D 故选:A.10. 已知等比数列的前3项和为168,,则( ){}n a 2542a a -=6a =A. 14 B. 12C. 6D. 3【答案】D 【解析】【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等{}n a ,0q q ≠1q ≠比数列的通项即可得解.【详解】解:设等比数列的公比为,{}n a ,0q q ≠若,则,与题意矛盾,1q =250a a -=所以,1q ≠则,解得,()31123425111168142a q a a a q a a a q a q ⎧-⎪++==⎨-⎪-=-=⎩19612a q =⎧⎪⎨=⎪⎩所以.5613a a q ==故选:D.11. 函数在区间的最小值、最大值分别为()()()cos 1sin 1f x x x x =+++[]0,2πA.B. C.D. ππ22-,3ππ22-,ππ222-+,3ππ222-+,【答案】D【解析】【分析】利用导数求得的单调区间,从而判断出在区间上的最小值和最大值.()f x ()f x []0,2π【详解】,()()()sin sin 1cos 1cos f x x x x x x x '=-+++=+所以在区间和上,即单调递增;()f x π0,2⎛⎫ ⎪⎝⎭3π,2π2⎛⎫ ⎪⎝⎭()0f x '>()f x 在区间上,即单调递减,π3π,22⎛⎫⎪⎝⎭()0f x '<()f x 又,,,()()02π2f f ==ππ222f ⎛⎫=+ ⎪⎝⎭3π3π3π11222f ⎛⎫⎛⎫=-++=- ⎪ ⎪⎝⎭⎝⎭所以在区间上的最小值为,最大值为.()f x []0,2π3π2-π22+故选:D12. 已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.B.C.D.1312【答案】C 【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到22r 当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为,α则2111sin 222222ABCD S AC BD AC BD r r rα=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则2123O ABCDV r h -=⋅⋅=≤=当且仅当即时等号成立,222r h =h 故选:C二、填空题本题共4小题,每小题5分,共20分.13. 记为等差数列的前n 项和.若,则公差_______.n S {}n a 32236S S =+d =【答案】2【解析】【分析】转化条件为,即可得解.()112+226a d a d =++【详解】由可得,化简得,32236S S =+()()123122+36a a a a a +=++31226a a a =++即,解得.()112+226a d a d =++2d =故答案为:2.14. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】##0.3310【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为,所以甲、乙都入选的概率,故答案为:13C 3=310P =31015. 过四点中的三点的一个圆的方程为____________.(0,0),(4,0),(1,1),(4,2)-【答案】或或或()()222313x y -+-=()()22215x y -+-=224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;()2281691525x y ⎛⎫-+-= ⎪⎝⎭【分析】设圆的方程为,根据所选点的坐标,得到方程组,解得即可;220x y Dx Ey F ++++=【详解】解:依题意设圆的方程为,220x y Dx Ey F ++++=若过,,,则,解得,()0,0()4,0()1,1-01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩046F D E =⎧⎪=-⎨⎪=-⎩所以圆的方程为,即;22460x y x y +--=()()222313x y -+-=若过,,,则,解得,()0,0()4,0()4,201640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩042F D E =⎧⎪=-⎨⎪=-⎩所以圆的方程为,即;22420x y x y +--=()()22215x y -+-=若过,,,则,解得,()0,0()4,2()1,1-0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩所以圆的方程为,即;22814033x y x y +--=224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭若过,,,则,解得,()1,1-()4,0()4,21101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩所以圆的方程为,即;2216162055x y x y +---=()2281691525x y ⎛⎫-+-= ⎪⎝⎭故答案为:或或或()()222313x y -+-=()()22215x y -+-=224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;()2281691525x y ⎛⎫-+-= ⎪⎝⎭16. 若是奇函数,则_____,______.()1ln 1f x a b x++-==a b =【答案】 ①. ;②. .12-ln 2【解析】【分析】根据奇函数的定义即可求出.【详解】因为函数为奇函数,所以其定义域关于原点对称.()1ln 1f x a b x++-=由可得,,所以,解得:,即函数的定义101a x +≠-()()110x a ax -+-≠11a x a +==-12a =-域为,再由可得,.即()()(),11,11,-∞-⋃-⋃+∞()00f =ln 2b =,在定义域内满足,符合题意.()111ln ln 2ln 211x f x x x+=-++=--()()f x f x -=-故答案为:;.12-ln 2三、解答题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 记的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知ABC .()()sin sin sin sin C A B B C A -=-(1)若,求C ;2A B =(2)证明:2222a b c =+【答案】(1); 5π8(2)证明见解析.【解析】【分析】(1)根据题意可得,,再结合三角形内角和定理即可解出; ()sin sin C C A =-(2)由题意利用两角差的正弦公式展开得,再根据正弦定理,余弦定理化简()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-即可证出.【小问1详解】由,可得,,而,2A B =()()sin sin sin sin C A B B C A -=-()sin sin sin sin C B B C A =-π02B <<所以,即有,而,显然,所()sin 0,1B ∈()sin sin 0C C A =->0π,0πC C A <<<-<C C A ≠-以,,而,,所以.πC C A +-=2A B =πA B C ++=5π8C =【小问2详解】由可得,()()sin sin sin sin C A B B C A -=-,再由正弦定理可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,然后根据余弦定理可知,cos cos cos cos ac B bc A bc A ab C -=-,化简得:()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,故原等式成立.2222a b c =+18. 如图,四面体中,,E 为AC 的中点.ABCD ,,AD CD AD CD ADB BDC ⊥=∠=∠(1)证明:平面平面ACD ;BED ⊥(2)设,点F 在BD 上,当的面积最小时,求三棱锥2,60AB BD ACB ==∠=︒AFC △F ABC -的体积.【答案】(1)证明详见解析(2)【解析】【分析】(1)通过证明平面来证得平面平面.AC ⊥BED BED ⊥ACD (2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从AFC F F ABC 而求得三棱锥的体积.F ABC -【小问1详解】由于,是的中点,所以.AD CD =E AC AC DE ⊥由于,所以,AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩ADB CDB ≅△△所以,故,AB CB =AC BD ⊥由于,平面,DE BD D ⋂=,DE BD ÌBED 所以平面,AC ⊥BED 由于平面,所以平面平面.AC ⊂ACD BED ⊥ACD 【小问2详解】依题意,,三角形是等边三角形,2AB BD BC ===60ACB ∠=︒ABC 所以2,1,AC AE CE BE ====由于,所以三角形是等腰直角三角形,所以.,AD CD AD CD =⊥ACD 1DE =,所以,222DE BE BD +=DE BE ⊥由于,平面,所以平面.AC BE E ⋂=,AC BE ⊂ABC DE ⊥ABC 由于,所以,ADB CDB ≅△△FBA FBC ∠=∠由于,所以,BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩FBA FBC ≅ 所以,所以,AF CF =EF AC ⊥由于,所以当最短时,三角形的面积最小值.12AFC S AC EF =⋅⋅ EF AFC 过作,垂足为,E EF BD ⊥F 在中,,解得Rt BED △1122BE DE BD EF ⋅⋅=⋅⋅EF =所以,13,222DF BF DF ===-=所以.34BF BD =过作,垂足为,则,所以平面,且,F FH BE ⊥H //FH DE FH ⊥ABC 34FH BF DE BD ==所以,所以34FH =111323324F ABC ABC V S FH -=⋅⋅=⨯⨯= 19. 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:2m ),得到如下数据:3m 样本号i12345678910总和根部横截面积i x 0.040.060.040.080.080.050.050.070.070.060.6材积量iy 0.250.400.220.540.510.340.360.460.420.403.9并计算得.10101022iii i i=1i=1i=10.038, 1.6158,0.2474x y x y ===∑∑∑(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种2186m 树木的总材积量的估计值.附:相关系数.1.377r =≈【答案】(1); (2) (3)20.06m 30.39m 0.9731209m 【解析】【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值.【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x ==样本中10棵这种树木的材积量的平均值 3.90.3910y ==据此可估计该林区这种树木平均一棵的根部横截面积为,20.06m 平均一棵的材积量为30.39m 【小问2详解】101010x x y y x y xyr ---==0.01340.970.01377==≈≈则0.97r ≈【小问3详解】设该林区这种树木的总材积量的估计值为,3m Y 又已知树木的材积量与其根部横截面积近似成正比,可得,解之得.则该林区这种树木的总材积量估计为0.06186=0.39Y3=1209m Y 31209m 20. 已知函数.1()(1)ln f x ax a x x=--+(1)当时,求的最大值;0a =()f x(2)若恰有一个零点,求a 的取值范围.()f x 【答案】(1) 1-(2)()0,+∞【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得,按照、及结合导数讨论函数的单调性,求()()()211ax x f x x--'=0a ≤01a <<1a >得函数的极值,即可得解.【小问1详解】当时,,则,0a =()1ln ,0f x x x x =-->()22111x f x x x x-'=-=当时,,单调递增;()0,1∈x ()0f x ¢>()f x 当时,,单调递减;()1,x ∈+∞()0f x ¢<()f x 所以;()()max 11f x f ==-【小问2详解】,则,()()11ln ,0f x ax a x x x =--+>()()()221111ax x a f x a x x x --+'=+-=当时,,所以当时,,单调递增;0a ≤10-≤ax ()0,1∈x ()0f x ¢>()f x 当时,,单调递减;()1,x ∈+∞()0f x ¢<()f x 所以,此时函数无零点,不合题意;()()max 110f x f a ==-<当时,,在上,,单调递增;01a <<11a >()10,1,,a ⎛⎫+∞ ⎪⎝⎭()0f x ¢>()f x 在上,,单调递减;11,a ⎛⎫⎪⎝⎭()0f x ¢<()f x 又,当x 趋近正无穷大时,趋近于正无穷大,()110f a =-<()f x 所以仅在有唯一零点,符合题意;()f x 1,a ⎛⎫+∞ ⎪⎝⎭当时,,所以单调递增,又,1a =()()2210x f x x-'=≥()f x ()110f a =-=所以有唯一零点,符合题意;()f x 当时,,在上,,单调递增;1a >11a <()10,,1,a ⎛⎫+∞ ⎪⎝⎭()0f x ¢>()f x 在上,,单调递减;此时,1,1a ⎛⎫⎪⎝⎭()0f x ¢<()f x ()110f a =->又,当n 趋近正无穷大时,趋近负无穷,()1111ln n n n f a n a a aa-⎛⎫=-++ ⎪⎝⎭1n f a ⎛⎫⎪⎝⎭所以在有一个零点,在无零点,()f x 10,a ⎛⎫⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭所以有唯一零点,符合题意;()f x 综上,a 的取值范围为.()0,+∞【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.21. 已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过两点.()30,2,,12A B ⎛--⎫ ⎪⎝⎭(1)求E 的方程;(2)设过点的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点()1,2P -T ,点H 满足.证明:直线HN 过定点.MT TH =【答案】(1) (2)22143y x +=(0,2)-【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.【小问1详解】解:设椭圆E 的方程为,过,221mx ny +=()30,2,,12A B ⎛--⎫ ⎪⎝⎭则,解得,,41914n m n =⎧⎪⎨+=⎪⎩13m =14n =所以椭圆E 的方程为:.22143y x +=【小问2详解】,所以,3(0,2),(,1)2A B --2:23+=AB y x ①若过点的直线斜率不存在,直线.代入,(1,2)P -1x =22134x y+=可得,,代入AB 方程,可得M (1,N 223y x =-,由得到.求得HN方程:T MTTH =H +,过点.(22y x =--(0,2)-②若过点的直线斜率存在,设.(1,2)P -1122(2)0,(,),(,)kx y k M x y N x y --+=联立得,22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩22(34)6(2)3(4)0k x k k x k k +-+++=可得,,1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩且1221224(*)34kx y x y k -+=+联立可得1,223y y y x =⎧⎪⎨=-⎪⎩111113(3,),(36,).2y T y H y x y ++-可求得此时,1222112:()36y y HN y y x x y x x --=-+--将,代入整理得,(0,2)-12121221122()6()3120x x y y x y x y y y +-+++--=将代入,得(*)222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(二)选考题共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.22. 在直角坐标系中,曲线C 的参数方程为,(t 为参数),以坐标原点为极xOy 22sin x ty t ⎧=⎪⎨=⎪⎩点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为.sin 03m πρθ⎛⎫⎪⎝+⎭+=(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.【答案】(1 20++=y m (2)195122-≤≤m 【小问1详解】因为l :,所以,sin 03m πρθ⎛⎫⎪⎝+⎭+=1sin cos 02ρθρθ⋅+⋅+=m又因为,所以化简为,sin ,cos y x ρθρθ⋅=⋅=102+=y x m整理得l 20++=y m 【小问2详解】联立l 与C 的方程,即将,代入2=x t 2sin y t =中,可得,20++=y m 3cos 22sin 20++=t t m 所以,23(12sin )2sin 20-++=t t m 化简为,26sin 2sin 320-+++=t t m 要使l 与C 有公共点,则有解,226sin 2sin 3=--m t t 令,则,令,,sin =t a []1,1a ∈-2()623=--f a a a (11)a -≤≤对称轴为,开口向上,16a =所以,(1)623()5=-=+-=max f f a,所以min 11219(()36666==--=-f f a 19256-≤≤m m 的取值范围为.195122-≤≤m 23. 已知a ,b ,c 都是正数,且,证明:3332221a b c ++=(1);19abc ≤(2);a b c b c a c a b ++≤+++【答案】(1)证明见解析 (2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.【小问1详解】证明:因为,,,则,,,0a >0b >0c >320a >320b >320c >所以,3332223a b c ++≥即,所以,当且仅当,即时取等号.()1213abc ≤19abc ≤333222a b c ==a b c ===【小问2详解】证明:因为,,,0a >0b >0c >所以,,,b c +≥a c +≥a b +≥所以,ab c ≤=+ba c ≤=+c a b≤=+a b c b c a c a b ++≤==+++当且仅当时取等号.a b c ==。
高考病句真题整理(附答案)
全国高考语病题汇编与答案解析1、下列各句中,没有病句的一句是()A.人才培养的质量是衡量一所大学办得好不好的重要因素,大力提升人才培养水平是高等教育改革发展的战略课题。
B.为了更好地提高服务质量,我们必须坚持以人为本,最大限度地为旅客创造和谐的候车环境、快乐的人性化服务。
C.这种感冒新药经过在北京、上海、南京、杭州、开封等地医院的400多个病例中临床试用,80%反映确实有疗效。
D.校庆在即,学校要求全体师生注重礼仪,热情待客,以带给从全国各地回母校参加庆祝活动的校友感到宾至如归。
答案:A 解析:B搭配不当,应在“快乐的人性化服务”前补出谓语“并提供”;C介词赘余,去掉“在……中”;D、结构混乱,改为“以带给从全国各地回母校参加庆祝活动的校友宾至如归的感觉”或者“让从全国各地回母校参加庆祝活动的校友感到宾至如归”。
2、下列各句中,没有语病的一句是()A、不同的生活习俗、自然条件以及地理环境,使各地的民居在平面布局、结构方法、造型等方面呈现出淳朴自然,而又有着各自的特色。
B、历时三年的第六次全国人口普查是一次成功的国情大盘点,其数据将为我国社会经济发展规划的制定和政府的相关决策提供重要参考。
C、失眠是指因睡眠时间不足、质量不佳对身体产生损害而出现的不舒服的感觉,应对失眠需要了解相关的睡眠卫生知识,进行自我调护。
D、学校开展经典诵读活动有利于教风和学风建设,而中小学是人生品格形成的重要时期,所以这样的活动应着力于中小学就要抓紧抓好。
答案:B 解析:A项缺宾语,“呈现出淳朴自然,而又有着各自特色的风格”;C项主宾搭配不当,“失眠是感觉”改为“失眠是现象”;D项语序不当,改为“于中小学就要着力抓紧抓好”。
3、下列各句中,没有语病的一句是()A、他在英语国家工作一年,不但进一步提高了英语交际能力,还参加过相关机构组织的阿拉伯语培训,掌握了阿拉伯语的基础应用。
B、建立监督机制非常重要,企业对制度的决策、出台、执行到取得成效的每个环节都纳入监督的范围,就能切实有效地增强执行力。
2024年北京市高考化学真题卷(含答案与解析)_6407
绝密★本科目考试启用前2024年普通高中学业水平等级性考试(北京卷)化 学本试卷满分100分,考试时间90分钟。
可能用到的相对原子质量:H-1 C-12 N-14 O-16第一部分本部分共14题,每题3分,共42分。
在每题列出的四个选项中,选出最符合题目要求的一项。
1. 我国科研人员利用激光操控方法,从Ca 原子束流中直接俘获41Ca 原子,实现了对同位素41Ca 的灵敏检测。
41Ca 的半衰期(放射性元素的原子核有半数发生衰变所需的时间)长达10万年,是14C 的17倍,可应用于地球科学与考古学。
下列说法正确的是A. 41Ca 的原子核内有21个中子B. 41Ca 半衰期长,说明41Ca 难以失去电子C.41Ca 衰变一半所需的时间小于14C 衰变一半所需的时间D. 从Ca 原子束流中直接俘获41Ca 原子的过程属于化学变化 2. 下列化学用语或图示表达不正确的是A. 22H O 的电子式:B. 4CH 分子的球棍模型:C. 3+Al 的结构示意图:D. 乙炔的结构式:H C C H ——的3. 酸性锌锰干电池的构造示意图如下。
关于该电池及其工作原理,下列说法正确的是A. 石墨作电池的负极材料B. 电池工作时,+4NH 向负极方向移动 C. 2MnO 发生氧化反应 D. 锌筒发生的电极反应为-2+Zn-2e Zn =4. 下列说法不正确的是A. 葡萄糖氧化生成2CO 和2H O 的反应是放热反应B. 核酸可看作磷酸、戊糖和碱基通过一定方式结合而成的生物大分子C. 由氨基乙酸形成的二肽中存在两个氨基和两个羧基D. 向饱和的NaCl 溶液中加入少量鸡蛋清溶液会发生盐析 5. 下列方程式与所给事实不相符的是A. 海水提溴过程中,用氯气氧化苦卤得到溴单质:--222Br +Cl Br +2Cl =B. 用绿矾(42FeSO 7H O ⋅)将酸性工业废水中的2-27Cr O 转化为3+2+2-+3+3+272Cr :6Fe +Cr O +14H 6Fe +2Cr +7H O =C. 用245% Na SO 溶液能有效除去误食的2+2-2+44Ba :SO +BaBaSO =↓D. 用23Na CO 溶液将水垢中的4CaSO 转化为溶于酸的3CaCO :2+2-33Ca +CO CaCO =↓ 6. 下列实验的对应操作中,不合理的是眼睛注视锥形瓶中溶液A .用HCl 标准溶液滴定NaOH 溶液B .稀释浓硫酸C .从提纯后的NaCl 溶液获得NaCl 晶体D .配制一定物质的量浓度的KCl 溶液A. AB. BC. CD. D7. 硫酸是重要化工原料,工业生产制取硫酸的原理示意图如下。
全国卷Ⅰ2023年新高考数学真题及答案解析(多解版)
绝密★启用前2023年普通高等学校招生全国统一考试数学一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N = ()A.{}2,1,0,1-- B.{}0,1,2 C.{}2- D.2【答案】C 【解析】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .2.已知1i22iz -=+,则z z -=()A.i -B.iC.0D.1【答案】A 【解析】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .3.已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A.1λμ+=B.1λμ+=-C.1λμ= D.1λμ=-【答案】D 【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .4.设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A.(],2-∞- B.[)2,0- C.(]0,2 D.[)2,+∞【答案】D 【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D5.设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ()A.3B.C.D.【答案】A 【解析】由21e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以233a =.故选:A 6.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【答案】B 【解析】方法一:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC ==,则PA ==可得106sin44APC APC ∠==∠=,则10615sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22226101cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎛∠=∠=∠-∠=-=-< ⎪ ⎪ ⎝⎭⎝⎭,即APB ∠为钝角,所以()15sin sin πsin 4APB APB =-∠=∠=α;法二:圆22410x y x +--=的圆心()2,0C,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,连接AB ,可得PC ==,则PA PB ===,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB +-⋅∠=+-⋅∠且πACB APB ∠=-∠,则()336cos 5510cos πAPB APB +-∠=+--∠,即3cos 55cos APB APB -∠=+∠,解得1cos 04APB ∠=-<,即APB ∠为钝角,则()1cos cos πcos 4APB APB =-∠=-∠=α,且α为锐角,所以15sin 4α==;方法三:圆22410x y x +--=的圆心()2,0C ,半径r =,若切线斜率不存在,则切线方程为0y =,则圆心到切点的距离2d r =>,不合题意;若切线斜率存在,设切线方程为2y kx =-,即20kx y --=,=,整理得2810k k ++=,且644600∆=-=>设两切线斜率分别为12,k k ,则12128,1k k k k +=-=,可得12k k -==所以1212tan 1k k k k -==+α,即sin cos αα=,可得cos =α,则2222sin sin cos sin 115+=+=αααα,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0α>,解得15sin 4α=.故选:B.7.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C 【解析】方法一,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.方法二,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+,则11(1)222n S n d d a d n a n -=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+,即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立,于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C 8.已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79 B.19C.19-D.79-【答案】B 【解析】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A.2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B.2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C.2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D.2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差【答案】BD 【解析】对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n ,则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=,因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小,例如:1,2,3,4,5,6,可得 3.5m n ==;例如1,1,1,1,1,7,可得1,2m n ==;例如1,2,2,2,2,2,可得112,6m n ==;故A 错误;对于选项B :不妨设123456x x x x x x ≤≤≤≤≤,可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确;对于选项C :因为1x 是最小值,6x 是最大值,则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差,例如:2,4,6,8,10,12,则平均数()12468101276n =+++++=,标准差13s =,4,6,8,10,则平均数()14681074m =+++=,标准差2s =,显然53>,即12s s >;故C 错误;对于选项D :不妨设123456x x x x x x ≤≤≤≤≤,则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确;故选:BD.10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A.12p p ≥B.2310p p >C.30100p p =D.12100p p ≤【答案】ACD 【解析】由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥,所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p⨯≥,即231lg 2p p ≥,所以23p p ≥23,0p p >,可得23p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =,可得3100p p =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lgp p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.11.已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A.()00f =B.()10f =C.()f x 是偶函数 D.0x =为()f x 的极小值点【答案】ABC 【解析】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+,故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+',令()0f x '<,得120ex -<<;令()0f x ¢>,得12e x ->;故()f x 在120,e -⎛⎫⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e -⎛⎫- ⎪⎝⎭上单调递增,在12,e -⎛⎫ ⎪⎝∞⎭-上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .12.下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体【答案】ABD 【解析】对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A 正确;对于选项B 1.4>,所以能够被整体放入正方体内,故B 正确;对于选项C 1.8<,所以不能够被整体放入正方体内,故C 正确;对于选项D :因为1.2m 1m >,可知底面正方形不能包含圆柱的底面圆,如图,过1AC 的中点O 作1OE AC ⊥,设OE AC E =I ,可知1131,=2AC CC AC ===,则11tan CC OE CAC AC AO ∠==,=,解得64OE =,且2263990.6482425⎛==>= ⎝⎭,即0.64>,故以1AC 为轴可能对称放置底面直径为1.2m 圆柱,若底面直径为1.2m 的圆柱与正方体的上下底面均相切,设圆柱的底面圆心1O ,与正方体的下底面的切点为M ,可知:111,0.6AC O M O M ⊥=,则1111tan CC O MCAC AC AO ∠==,10.6AO =,解得1AO =,根据对称性可知圆柱的高为2 1.732 1.21.4140.03520.01-⨯≈-⨯=>,所以能够被整体放入正方体内,故D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【解析】(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.14.在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===的体积为________.【答案】6【解析】【分析】结合图像,依次求得111,,AO AO A M ,从而利用棱台的体积公式即可得解.【详解】如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高,因为1112,1,AB A B AA ===则1111111111222222A O A C B AO AC ==⨯⨯====故()111222AM AC A C =-=,则162A M ===,所以所求体积为1676(41326V =⨯++⨯=.故答案为:766.15.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[)2,3【解析】【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[)2,3.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________.【答案】355【解析】方法一:依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a ==.方法二:依题意,得12(,0),(,0)F c F c -,令()00),,(0,A x y B t ,因为2223F A F B =- ,所以()()002,,3x c y c t -=--,则00235,3x c y t ==-,又11F A F B ⊥ ,所以()1182,,33F A F B c t c t ⎛⎫⋅=-⎪⎝⎭ 2282033c t =-=,则224t c =,又点A 在C 上,则2222254991c t a b -=,整理得2222254199c t a b -=,则22222516199c c a b-=,所以22222225169c b c a a b -=,即()()2222222225169cca a c a c a --=-,整理得424255090c c a -+=,则()()22225950c a ca --=,解得2259c a =或225c a =,又1e >,所以5e =或5e =(舍去),故5e =.故答案为:355.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6【解析】【小问1详解】3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,sin10A∴==.【小问2详解】由(1)知,10cos10A==,由sin sin()B A C=+sin cos cos sin)210105A C A C=+==,由正弦定理,sin sinc bC B=,可得255522b⨯==,11sin22AB h AB AC A∴⋅=⋅⋅,sin610h b A∴=⋅==.18.如图,在正四棱柱1111ABCD A B C D-中,12,4AB AA==.点2222,,,A B C D分别在棱111,,AA BB CC,1DD上,22221,2,3AA BB DD CC====.(1)证明:2222B C A D∥;(2)点P在棱1BB上,当二面角222P A C D--为150︒时,求2B P.【答案】(1)证明见解析;(2)1【解析】【小问1详解】以C为坐标原点,1,,CD CB CC所在直线为,,x y z轴建立空间直角坐标系,如图,则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=-,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.【小问2详解】设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z =,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ ,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c =,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,令1a =,得1,2==b c ,(1,1,2)m ∴=,2263cos ,cos150264(1)(3)n m n m n m λλ⋅∴==︒=+-+- ,化简可得,2430λλ-+=,解得1λ=或3λ=,(0,2,1)P ∴或(0,2,3)P ,21B P ∴=.19.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【小问1详解】因为()()e xf x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:(函数最值)由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则202a <<;令()0g a '>,则22a >;所以()g a 在20,2⎛⎫⎪ ⎪⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 2212ln ln 02222g a g ⎛⎫⎛==--=⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:(切线放缩1x e x ≥+)令()e 1xh x x =--,则()e 1xh x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e eln 1xx x af x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在20,2⎛⎫⎪ ⎪⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法三:(切线放缩ln 1x x ≤-)由(1)得,()()()ln min 2ln ln ln e1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,又因为221110224a a a ⎛⎫-+=-+> ⎪⎝⎭,所以2112a a ->-,而ln 1a a ≤-,所以21ln 2a a ->,故3()2ln 2f x a >+成立,得证明.方法四:(同构+切线放缩)当0a >时,要证3()2ln 2f x a >+,即证明()32ln 2x a e a x a +->+,只需证:232ln 02x ae x a a -+-->,即证()()ln 22211ln 11ln 022x a e x a a a a +-+++--+>,因为1x e x ≥+,故()ln ln 10x a e x a +-++≥,因为ln 1x x ≤-,故()2211ln 02a a --≥,又2102a >,故()()ln 22211ln 11ln 022x a e x a a a a +-+++--+>成立,即3()2ln 2f x a >+成立,得证明.20.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【答案】(1)3n a n =(2)5150d =【解析】【小问1详解】21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d=++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=+ ⎪ ⎪⎝⎭⎝⎭.【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nnnn n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【答案】(1)214y x =+(2)见解析【解析】【小问1详解】设(,)P x y ,则y =,两边同平方化简得214y x =+,故21:4W y x =+.【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0,则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<-,同理令0BC k b c n =+=>,且1mn =-,则1m n=-,设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+,则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()0f x '=,解得22x =,当0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增,则min 227()24f x f ⎛⎫== ⎪⎪⎝⎭,故122C ≥=,即C ≥.当C =时,2,2n m ==,且((b a b a -=-m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥,依题意可设21,4A a a ⎛⎫+⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0,则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤,直线AB 的方程为21()4y k x a a =-++,则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=,()()222420k ka a k a ∆=--=->,则2k a≠则||2|AB k a =-,同理||2AD a =,||||2|2AB AD k a a ∴+=-1122k a ak k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m +==+++,则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =,当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减,当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增,则min 127()24f m f ⎛⎫==⎪⎝⎭,||||2AB AD ∴+≥,12|2|2|2k a a k a a k ⎫-≥-++⎪⎭,此处取等条件为1k =,与最终取等时22k =不一致,故332AB AD +>.法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设()()()222001122,,,,,B t t A t t C t t ''',根据对称性不妨设00t ≥.则1020,A B B C k t t k t t ''''=+=+,由于A B B C ''''⊥,则()()10201t t t t ++=-.由于1020,A B t B C t ''''=-=-,且0t 介于12,t t 之间,则1020A B B C t t ''''+=-+-.令20tan t t θ+=,10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时,332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥②当ππ,42θ⎛⎫∈⎪⎝⎭时,由于102t t t <<,从而000cot tan t t t θθ--<<-,从而0cot tan 22t θθ-<<又00t ≥,故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥,当且仅当cos 3θ=时等号成立,故332A B B C''''+>,故矩形周长大于..。
(2022年)高考化学真题试卷(江苏卷)带答案解析
2022 年高考化学真题试卷〔江苏卷〕一、单项选择题〔共 10 题;共 20 分〕1. 糖类是人体所需的重要养分物质。
淀粉分子中不含的元素是〔〕【答案】 C【考点】多糖的性质和用途【解析】【解答】淀粉的化学式为(C 6H 10O 5)n , 故淀粉中含有碳元素、氢元素和氧元素,不含有氮元素,C 符合题意; 故答案为:C【分析】依据淀粉的化学式确定淀粉中所含和不含的元素。
2. 反响 NH 4Cl+NaNO 2=NaCl+N 2↑+2H 2O 放热且产生气体,可用于冬天石油开采。
以下表示反响中相关微粒的化学用语正确的选项是〔 〕【答案】 D【考点】原子中的数量关系,电子式、化学式或化学符号及名称的综合3. 以下有关物质的性质与用途具有对应关系的是〔 〕【答案】 BA. 氢B. 碳C. 氮D. 氧A. 中子数为 18 的氯原子: 18Cl 17B. N 2 的构造式:N=NC. Na +的构造示意图:D. H 2O 的电子式:【解析】【解答】A 、中子数为 18 的氯原子,其质量数=质子数+中子数=17+18=35,因此该原子的表示方 法为:35C l 17, A 不符合题意;B 、N 2 的构造式为 N≡N ,B 不符合题意;C 、Na 的最外层电子数为11,失去一个电子后形成Na+,其离子构造示意图为 , C 不符合题意;D 、H 2O 中存在两个氢氧共价键,其电子式为 故答案为:D, D 符合题意;【分析】A 、标在元素符号左上角的数字表示的是质量数,质量数=质子数+中子数; B 、N 2 分子中存在 N≡N ;C 、Na +是在 Na 原子的根底上失去最外层一个电子形成的;D 、H 2O 中存在着氢氧共价键;A. NH 4HCO 3 受热易分解,可用作化肥 C. SO 2 具有氧化性,可用于纸浆漂白B. 稀硫酸具有酸性,可用于除去铁锈 D. Al 2O 3 具有两性,可用于电解冶炼铝3 42 44 3 3 434 33【考点】镁、铝的重要化合物,化肥、农药及其合理利用,二氧化硫的漂白作用【解析】【解答】A 、NH4HCO 3 中含有氮元素,可作氮肥,做氮肥与其受热易分解的性质无关,A 不符合题意;B 、铁锈的主要成分是 Fe 2O 3 , 属于金属氧化物,金属氧化物能与酸反响,二者具有对应关系,B 符合题意;C 、SO 2 漂白纸浆的过程,是与纸浆中的有色物质发生化合反响形成无色物质,过程中没有涉及氧化复原反响,不表达 SO 2 的氧化性,该过程表达了 SO 2 的漂白性,C 不符合题意;D 、Al 2O 3 具有两性,既能与强酸溶液反响,也能与强碱溶液反响,该性质与电解冶炼铝的用途无关,D 不符合题意; 故答案为:B【分析】A 、受热易分解与做化肥无关; B 、金属氧化物能与酸反响;C 、SO 2 漂白纸浆表达了 SO 2 的漂白性;D 、Al 2O 3 具有两性,既能与强酸溶液反响,也能与强碱溶液反响; 4.室温下,以下各组离子在指定溶液中能大量共存的是〔 〕 A. 0.1 mol·L −1NaOH 溶液:Na +、K +、 CO 2− B. 0.1 mol·L −1FeCl 2 溶液:K +、Mg 2+、 SO 2− 、 AlO − 、 MnO − C. 0.1 mol·L −1K 2CO 3 溶液:Na +、Ba 2+、Cl −、OH −D. 0.1 mol·L −1H 2SO 4 溶液:K +、 NH + 、 NO − 、 HSO − 【答案】 A 【考点】离子共存【解析】【解答】A 、溶液中各离子相互间不形成难溶物〔或微溶物〕、不形成弱电解质、不形成易挥发性物质、不发生络合反响和氧化复原反响,可大量共存,A 符合题意;B 、溶液中的 MnO -具有氧化性,Fe 2+具有复原性,二者可发生氧化复原反响,不行大量共存,B 不符合题意;C 、溶液中的 Ba 2+能与 CO 2-形成 BaCO 3沉淀,不行大量共存,C 不符合题意; D 、溶液中 NO -在酸性条件下具有氧化性,能将HSO -氧化成 SO 2- , 同时H +能与 HSO -反响生成 SO 和33432H 2O ,不行大量共存,D 不符合题意; 故答案为:A【分析】A 、溶液中各离子相互间不发生反响; B 、MnO -具有氧化性,可将 Fe 2+氧化;C 、Ba 2+能与 CO 2-形成 BaCO 沉淀;D 、H +能与 HSO 3-反响形成 SO 2 和 H 2O ,NO 3-在酸性条件下具有氧化性; 5.以下试验操作能到达试验目的的是〔 〕A. 用经水潮湿的 pH 试纸测量溶液的 pHB. 将 4.0 g NaOH 固体置于 100 mL 容量瓶中,加水至刻度,配制1.000 mol·L −1NaOH 溶液C. 用装置甲蒸干 AlCl 3 溶液制无水 AlCl 3 固体D. 用装置乙除去试验室所制乙烯中的少量SO 2 【答案】 D【考点】溶液酸碱性的推断及相关计算,二氧化硫的性质,蒸发和结晶、重结晶,配制肯定物质的量浓度的溶液【解析】【解答】A 、测溶液的 pH 值时,应用枯燥干净的玻璃棒蘸取待测液滴在pH 试纸上,显色后与标准比色卡比照,得出溶液的pH 值;假设pH 试纸润湿,则相当于对溶液进展了稀释操作,对于酸性溶液,会使得结果偏大,对于碱性溶液,会的结果偏小,对于中性溶液,则无影响,A 不符合题意;B 、配制肯定物质的量浓度的溶液时,应先将固体在烧杯中溶解,恢复至室温后,再转移到容量瓶中, 不行在容量瓶内进展溶解操作,B 不符合题意;C 、AlCl 3 在水中易水解,产生 Al(OH)3 和具有挥发性的 HCl ,直接加热蒸发 AlCl 3 溶液,最终得到的是Al(OH)3 , 欲得到 AlCl 3 晶体,应在 HCl 气流中加热蒸发,以抑制 AlCl 3 的水解,C 不符合题意;D 、SO 2 能与NaOH 溶液反响,乙烯不能,故将混合气体通过NaOH 溶液,可除去乙烯中混有的SO 2 , D符合题意; 故答案为:D【分析】A 、依据测溶液 pH 的试验操作分析; B 、不能在容量瓶内进展溶解;C 、AlCl 3 在水中易水解,产生 Al(OH)3 和具有挥发性的 HCl ;D 、SO 2 能与 NaOH 溶液反响,乙烯不能;6. 以下有关化学反响的表达正确的选项是〔 〕【答案】 C【考点】氯气的试验室制法,硝酸的化学性质,二氧化硫的性质,钠的化学性质【解析】【解答】A 、常温下,浓硝酸能使铁钝化,稀硝酸不能使铁钝化,A 不符合题意; B 、试验室制取 Cl 2 所用的试剂为 MnO 2 和浓盐酸,MnO 2 与稀盐酸不反响,B 不符合题意; C 、氨水过量,则 SO 2 反响,反响生成(NH 4)2SO 3 , C 符合题意;D 、室温下,Na 与空气中的O 2 反响生成 Na 2O ,在加热条件下, 反响生成 Na 2O 2 , D 不符合题意; 故答案为:C【分析】A 、常温下,浓硝酸能使铁钝化;A. Fe 在稀硝酸中发生钝化C. SO 2 与过量氨水反响生成(NH 4)2SO 3 B. MnO 2 和稀盐酸反响制取 Cl 2D. 室温下 Na 与空气中O 2 反响制取 Na 2O 2A. 原子半径:r (W)> r (Z)> r (Y)> r (X)B. 由X 、Y 组成的化合物是离子化合物C. Z 的最高价氧化物对应水化物的酸性比W 的强D. W 的简洁气态氢化物的热稳定性比X 的强 32 2 2223B 、依据试验室制取 Cl 2 的原理分析;C 、氨水过量,则 SO 2 少量,反响生成 SO 2-;D 、室温下, Na 与O 2 反响生成 Na 2O ;7. 以下指定反响的离子方程式正确的选项是〔 〕A. 室温下用稀 NaOH 溶液吸取 Cl :Cl +2OH −=ClO −+Cl −+H OB. 用铝粉和 NaOH 溶液反响制取少量H :Al+2OH −= AlO − +H ↑ 2 22 C. 室温下用稀 HNO溶解铜:Cu+2NO − +2H +=Cu 2++2NO ↑+H O33 2 2D. 向 Na 2SiO 3 溶液中滴加稀盐酸:Na 2SiO 3+2H +=H 2SiO 3↓+2Na + 【答案】 A【考点】离子方程式的书写【解析】【解答】A 、Cl 2 与 NaOH 溶液反响生成 NaCl 、NaClO 和H 2O ,该反响的离子方程式为: Cl 2+2OH −=ClO −+Cl −+H 2O ,A 符合题意;B 、Al 与 NaOH 溶液反响的离子方程式为:2Al+2OH -+2H 2O=2AlO -+3H ↑,B 不符合题意;C 、铜与稀硝酸反响的离子方程式为:3Cu+8H ++2NO -=3Cu 2++2NO↑+4H O ,C 不符合题意;32D 、盐酸与 Na 2SiO 3 溶液反响的离子方程式为:SiO 2-+2H +=H 2SiO 3↓,D 不符合题意; 故答案为:A【分析】A 、Cl 2 与 NaOH 溶液反响生成 NaCl 、NaClO 和 H 2O ; B 、不满足电荷守恒; C 、左右两边电荷不守恒;D 、Na 2SiO 3 是可溶性盐,在离子方程式中可以拆解成离子形式;8. 短周期主族元素X 、Y 、Z 、W 的原子序数依次增大,X 是地壳中含量最多的元素,Y 原子的最外层有2 个电子,Z 的单质晶体是应用最广泛的半导体材料,W 与X 位于同一主族。
2024年全国甲卷理科综合高考真题卷(含答案与解析)_3386
机密★启用前2024年普通高等学校招生全国统一考试(全国甲卷)理科综合注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题(每小题6分,共78分)1. 细胞是生物体结构和功能的基本单位。
下列叙述正确的是()A. 病毒通常是由蛋白质外壳和核酸构成的单细胞生物B. 原核生物因为没有线粒体所以都不能进行有氧呼吸C. 哺乳动物同一个体中细胞的染色体数目有可能不同D. 小麦根细胞吸收离子消耗的ATP主要由叶绿体产生2. ATP可为代谢提供能量,也参与RNA的合成,ATP结构如图所示,图中~表示高能磷酸键,下列叙述错误的是()A. ATP转化为ADP可为离子的主动运输提供能量B. 用α位32P标记的ATP可以合成带有32P的RNAC. β和γ位磷酸基团之间的高能磷酸键不能在细胞核中断裂D. 光合作用可将光能转化为化学能储存于β和γ位磷酸基团之间的高能磷酸键3. 植物生长发育受植物激素的调控。
下列叙述错误的是()A. 赤霉素可以诱导某些酶的合成促进种子萌发B. 单侧光下生长素的极性运输不需要载体蛋白C. 植物激素可与特异性受体结合调节基因表达D. 一种激素可通过诱导其他激素的合成发挥作用4. 甲状腺激素在人体生命活动的调节中发挥重要作用。
下列叙述错误的是()A. 甲状腺激素受体分布于人体内几乎所有细胞B. 甲状腺激素可以提高机体神经系统的兴奋性C. 甲状腺激素分泌增加可使细胞代谢速率加快D. 甲状腺激素分泌不足会使血中TSH含量减少5. 某生态系统中捕食者与被捕食者种群数量变化的关系如图所示,图中→表示种群之间数量变化的关系,如甲数量增加导致乙数量增加。
下列叙述正确的是()A. 甲数量的变化不会对丙数量产生影响B. 乙在该生态系统中既是捕食者又是被捕食者C. 丙可能是初级消费者,也可能是次级消费者D. 能量流动方向可能是甲→乙→丙,也可能是丙→乙→甲6. 果蝇翅型、体色和眼色性状各由1对独立遗传的等位基因控制,其中弯翅、黄体和紫眼均为隐性性状,控制灰体、黄体性状的基因位于X染色体上。
2024年全国统一考试化学高考真题甲卷理综(含答案及详细解析)
2024年全国统一考试高考化学真题甲卷理综一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2024·甲卷)人类对能源的利用经历了柴薪、煤炭和石油时期,现正向新能源方向高质量发展。
下列有关能源的叙述错误的是()A.木材与煤均含有碳元素B.石油裂化可生产汽油C.燃料电池将热能转化为电能D.太阳能光解水可制氢2.(2024·甲卷)下列过程对应的离子方程式正确的是()A.用氢氟酸刻蚀玻璃:SiO32−+4F−+6H+=SiF4↑+3H2OB.用三氯化铁溶液刻制覆铜电路板:2Fe3++3Cu=3Cu2++2FeC.用硫代硫酸钠溶液脱氯:S2O32−+2Cl2+3H2O=2SO32−+4Cl−+6H+D.用碳酸钠溶液浸泡锅炉水垢中的硫酸钙:CaSO4+CO32−=CaCO3+SO42−3.(2024·甲卷)我国化学工作者开发了一种回收利用聚乳酸(PLA)高分子材料的方法,其转化路线如下所示。
下列叙述错误的是()A.PLA在碱性条件下可发生降解反应B.MP的化学名称是丙酸甲酯C.MP的同分异构体中含羧基的有3种D.MMA可加聚生成高分子4.(2024·甲卷)四瓶无色溶液NH4NO3、Na2CO3、Ba(OH)2、AlCl3,它们之间的反应关系如图所示。
其中a、b、c、d代表四种溶液,e和g为无色气体,f为白色沉淀。
下列叙述正确的是()A.a呈弱碱性B.f可溶于过量的b中C.c中通入过量的e可得到无色溶液D.b和d反应生成的沉淀不溶于稀硝酸5.(2024·甲卷)W、X、Y、Z为原子序数依次增大的短周期元素。
W和X原子序数之和等于Y−的核外电子数,化合物W+[ZY6]−可用作化学电源的电解质。
下列叙述正确的是()A.X和Z属于同一主族B.非属性:X>Y>ZC.气态氢化物的稳定性:Z>Y D.原子半径:Y>X>W6.(2024·甲卷)科学家使用δ−MnO2研制了一种MnO2−Zn可充电电池(如图所示)。
2023年高考真题及答案解析《数学理》(全国甲卷)
甲卷理科2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A =x x =3k +1,k ∈Z ,B =x x =3k +2,k ∈Z ,U 为整数集,则∁U A ∪B =()A.x x =3k ,k ∈ZB.x x =3k -1,k ∈ZC.x x =3k -2,k ∈ZD.∅2.若复数(a +i )(1-a i )=2,则a =()A.-1B.0C.1D.23.执行下面的程序框图,输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.894.向量a =b =1,c =2,且a +b +c =0,则cos a -c ,b -c =()A.-15B.-25C.25D.455.已知等比数列a n 中,a 1=1,S n 为a n 前n 项和,S 5=5S 3-4,则S 4=()A.7B.9C.15D.306.有50人报名报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”()A.充分条件但不是必要条件 B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,其中一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则AB =()A.15B.55C.255D.4559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有一人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知f (x )为函数y =cos 2x +π6 向左平移π6个单位所得函数,则y =f (x )与y =12x -12的交点个数为()A.1B.2C.3D.411.在四棱锥P -ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.5212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则OP =()A.25B.302C.35D.352二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年3月年高口真题答案与解析SECTION 1: LISTENING TESTPartA: Spot Dictation【答案】1. spent talking 1. works of subordinates and their superiors2. 1/3 and 90% 2. five universal rules3.Working relationships 13. Respect the other’s privacy4. informal contacts 18. in confidence with5. cooperation at work 15. favors or compliments6. job satisfaction and well-being 28. nobody breaks these rules7. as general markers 29. good social skills8. Through interviews with 30. never or hardly ever9. ask others to rate 31. monitor their reactions10. relationships with spouses 20. look quite frequently at the personPart B: Listening ComprehensionQuestions 1 to 5【原文】M: Yes, talking about illnesses, I’m quite surprised to see that in the UK, illnesses are very different from those in Algeria, to some extent. For instance, in the UK people seem tosuffer from heart disease and stress quite a lot, whereas in Algeria, they seem to suffer from bowel problems more often than in Britain by the sound of it. The reason for the being, I think, is diet, is connected with diet, in the way people eat. In Algeria, they tend to eat hot, spicy food, peppery things, very hot things, which I can’t take myself. But the tendency is toeat hot food, and it seems to result in that. If you look at the pace of life in Algeria and in Britain, you’d find that this explains quite a bit of differences in terms of illnesses. In Algeria, people I think, lead a much slower pace, because life is less hectic, less industrialfor a start. And so they don’t tend to get this type of il lnesses that are related to stress, suchas heart attacks.W: Do you get … What else do you get here? You get quite a bit of cancer.M: Cancer? Well, cancer exists there as well. But I think it’s more frequent in Britain than it is there. The reason for it, I think, is mainly to do with pollution, the levels of pollution that Britain has. It goes again with industry, and of course, stress. Algeria is slightly developed in the north, and that’s where we record, I think, I’m not an expert in the matter, most cancers, whereas the south is pretty healthy. So there is that kind of illness that is recorded there, butnot very frequent. Other types of illnesses that people suffer from, especially young children here is asthma. There’s a lot of asthma. When it comes to other types of illnesses, like psychological disturbances and psychiatric related problems, it appears to me that in Britain people are more mad than in Algeria.W: Really?M: It seems to be so. In the sense that less people go to the psychiatrist in Algeria than here. Is it a fashion? Is it a true reflection of the state of the society? I’m not sure.W: Are there more psychiatrists here?M: Oh, far more psychiatrist here than in Algeria. Yes. And people in Algeria would resort to apsychiatrist almost as a last resort for mental illnesses. They tend to rely on the family, because the family structure is again very different from that one in Britain.W: Much stronger.M: It’s much stronger. So the family would tend to support, or even hide, in some cases, they’re mentally ill. And try to help them within the family, often by ignoring their illness. Sayingyou are normal, therefore behave normally. And that’s what expected from you. And itseems to work. But when you move away from these cases or psychological problems, you176end up… you fall into the category of normal medicine. Like, if you have a broken limb,you end up in hospital. And you find hundreds of people with broken limbs being treated the same way as they would be treated in Britain. Really. 99% of the cases will be treated the same way as in Britain. Yes, perhaps one thing to mention is that people use herbal medicine,or used to use herbal medicine more than in Britain. But I think now Britain uses it quite alot as well.W:Well, it certainly has developed, yes.M: It has developed, hasn’t it? The recipes may differ. People there, you know, they all seem to have their secret recipes coming down from their granny, whatever. But if you analyze them, you’d find that the same ingredients for the same cures come and crop up in the books of herbal medicine.【大意】本文有关阿尔及利亚和英国医疗情况的对比,及导致各种区别的原因。
得出的结论是,工业的发展与人们所患的疾病密切相关。
同时,文化的差异也使不同国家的人们对病人及治病手段持有不同态度。
【解析】1. What are the man and the woman mainly talking about?答案为C)。
文章在第一句话就开宗明义,点明题旨,talking about illnesses。
2. According to the conversation, there are several factors which can explain why people contract different illnesses. Which of the following is not one of these factors?答案为D)。