《计算机图形学基础》第三次大作业实验报告共3页文档

合集下载

计算机图形学实验报告3 - Bresenham画线

计算机图形学实验报告3 - Bresenham画线
}
在大括号内填入以下代码
CDC *pDC=GetDC();
int k;
double x1=10,y1=10,x2=200,y2=150;
double x,y,deltx,delty,E;
deltx=x2-x1;delty=y2-y1;
x=x1;y=y1;k=1;
if(deltx>0&&delty>0)
3.Object IDs选择ID_Bresenham,Messages选择COMMAND
4.点击Add Function,点击OK,点击Edit Code,进入编辑函数的界面([项目名]View.cpp)
void C[项目名]View::OnBresenham()
{
// TODO: Add your command handler code here
实验要求:
掌握Bresenham画线算法
实验仪器:
软件:VC++6.0,windows XP
硬件:计算机
实验步骤、内容:
一、新建MFC工程
1.开始所有程序Microsoft Visual C++ 6.0Microsoft Visual C++ 6.0
2.文件-->新建-->工程,工程名称填[项目名],左边的类型选择MFC AppWizard [exe],点击确定
{
if(fabs(deltx)>fabs(dfor(k=1;k<=fabs((int)deltx);k++)
{
pDC->SetPixel((int)x,(int)y,RGB(0,0,0));
E+=(2*delty);

计算机图形学 实验报告(3)

计算机图形学 实验报告(3)

(2)绘制一个由上述顶点所描绘的三角形,实现该三角形进行下列 的几何变化:首先使三角形沿着其中心的x轴,y轴方向缩小50%;然后沿 着初始中心旋转90度;最后沿着y轴平移100个单位。 四、实验结果与数据处理
1、矩形在窗口内沿着水平线匀速移动
代码如下:
实验结果如图示:
2、对一个三角形分别实现平移、缩放、旋转等变化 代码如下:
三、实验内容与步骤 本实验要求完成: 1、实现矩形在窗口内沿着水平线匀速移动; 2、已知某三角形的三顶点坐标为{50.0,25.0},{150.0,25.0},
{100.0,100.0}。 要求:(1)创建一个长宽分别为600、600的窗口,窗口的左上角位于 屏幕坐标(100,100)处。(提示:请试着修改gluOrtho2D函数参数, 使得绘制的三角形尽可能居中显示)
怀化学院数学实验中心
《计算机图形学》 实验报告
学 号实验Biblioteka 点姓 名指导教 师
年级、班 实验时间
实验三 二维图形的几何变换
一、实验目的 1、掌握二维图形的基本几何变换,如平移、旋转、缩放、对称、错
切变换; 2、掌握OpenGL中模型变换函数,实现简单的动画技术。
二、实验设备(环境)及要求 硬件:普通PC386以上微机; 软件:操作系统:Windows XP,Window7; 开发语言: Turbo C 、Visual C++ 6.0、OpenGl,或其它学生掌握 的高级语言。
结果如图示:
五、分析与讨论 通过本实验的学习,我了解了二维图形的基本几何变换,如平移、
旋转、缩放、对称、错切变换;了解了OpenGL中模型变换函数,实现
简单的动画技术,在老师同学的帮助下运用OpenGL实现了矩形在窗口 内沿着水平线匀速移动。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
在计算机图形学课程中,实验是不可或缺的一部分。

通过实验,我们可以更好地理解课程中所学的知识,并且在实践中掌握这些
知识。

在本次实验中,我学习了如何使用OpenGL绘制三维图形,并了解了一些基本的图形变换和视图变换。

首先,我们需要通过OpenGL的基本命令来绘制基本图形,例
如线段、矩形、圆等。

这些基本的绘制命令需要首先设置OpenGL 的状态,例如绘制颜色、线段宽度等,才能正确地绘制出所需的
图形。

然后,在实验中我们学习了图形的变换。

变换是指通过一定的
规则将图形的形状、位置、大小等进行改变。

我们可以通过平移、旋转、缩放等变换来改变图形。

变换需要按照一定的顺序进行,
例如先进行旋转再进行平移等。

在OpenGL中,我们可以通过设
置变换矩阵来完成图形的变换。

变换矩阵包含了平移、旋转、缩
放等信息,通过矩阵乘法可以完成图形的复合变换。

最后,视图变换是指将三维场景中的图形投影到二维平面上,
成为我们所见到的图形。

在实验中,我们学习了透视投影和正交
投影两种方式。

透视投影是指将场景中的图形按照视点不同而产
生不同的远近缩放,使得图形呈现出三维感。

而正交投影则是简单地将场景中的图形按照平行投影的方式呈现在屏幕上。

在OpenGL中,我们可以通过设置视图矩阵和投影矩阵来完成视图变换。

通过本次实验,我对于计算机图形学有了更深入的了解,并掌握了一些基本的图形绘制和变换知识。

在今后的学习中,我将继续学习更高级的图形绘制技术,并应用于实际的项目中。

计算机图形学实验报告三

计算机图形学实验报告三

西安工程大学实验报告课程__计算机图形学_实验名称__Bezier曲线_第页共页系别__计算机科学学院___________ 实验日期 2016 年 6 月 28 日专业班级___数字媒体技术__组别_____________ 实验报告日期年月日姓名___ _____学号____ 报告退发 ( 订正、重做 )E_mail:_________________________________ 教师审批评分___________________实验名称一、实验目的和任务(1)掌握直线的参数表示法。

(2)掌握德卡斯特里奥算法的几何意义。

(3)掌握绘制二维Bezier曲线的方法。

(4)使用鼠标左键绘制个数为10以内的任意控制点,使用直线连接构成控制多边形。

(5)使用鼠标右键绘制Bezier曲线。

(6)在状态栏显示鼠标的位置坐标。

(7) Bezier曲线使用德卡斯特里奥算法绘制。

二、实验环境和设备(关于实验或者开发环境的描述,包括机器类型、内存、cpu主频、操作系统、网络环境、开发语言、开发平台等)机器类型:Dell pc内存:4GBCpu主频:3.2Ghz操作系统:windows10开发语言:C++开发平台:microsoft visual C++6.0三、实验步骤和过程// BezierView.cpp : implementation of the CBezierView class//#include "stdafx.h"#include "Bezier.h"#include "BezierDoc.h"#include "BezierView.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif///////////////////////////////////////////////////////////////////////////// // CBezierViewIMPLEMENT_DYNCREATE(CBezierView, CView)BEGIN_MESSAGE_MAP(CBezierView, CView)//{{AFX_MSG_MAP(CBezierView)// NOTE - the ClassWizard will add and remove mapping macros here.// DO NOT EDIT what you see in these blocks of generated code!//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CBezierView construction/destructionCBezierView::CBezierView(){// TODO: add construction code here}CBezierView::~CBezierView(){}BOOL CBezierView::PreCreateWindow(CREATESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying// the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}///////////////////////////////////////////////////////////////////////////// // CBezierView drawingvoid CBezierView::OnDraw(CDC* pDC){CBezierDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data herepDC->MoveTo(CPoint(100,350));pDC->LineTo(CPoint(190,100));pDC->LineTo(CPoint(300,60));pDC->LineTo(CPoint(500,300));BezierCurve(CPoint(100,350),CPoint(190,100),CPoint(300,60),CPoint(500,300), 100,pDC);}///////////////////////////////////////////////////////////////////////////// // CBezierView printingBOOL CBezierView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CBezierView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CBezierView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}///////////////////////////////////////////////////////////////////////////// // CBezierView diagnostics#ifdef _DEBUGvoid CBezierView::AssertValid() const{CView::AssertValid();}void CBezierView::Dump(CDumpContext& dc) const{CView::Dump(dc);}CBezierDoc* CBezierView::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CBezierDoc)));return (CBezierDoc*)m_pDocument;}#endif //_DEBUG///////////////////////////////////////////////////////////////////////////// // CBezierView message handlersvoid CBezierView::BezierCurve(CPoint p0, CPoint p1, CPoint p2, CPoint p3, int count,CDC *dc){double t = 0.0;double dt = 1.0/count;dc->MoveTo(p0.x,p0.y);CPen pen(PS_SOLID,2,RGB(255,0,0));CPen *OldPen = dc->SelectObject(&pen);t = t + dt;for(int i=0;i<count+1;++i){double F1,F2,F3,F4,x,y;double u = 1.0-t;F1 = u * u * u;F2 = 3 * t * u * u;F3 = 3 * t *t * u;F4 = t * t * t;x = p0.x*F1 + p1.x*F2 + p2.x*F3 + p3.x*F4;y = p0.y*F1 + p1.y*F2 + p2.y*F3 + p3.y*F4;dc->LineTo((int)x,(int)y);t += dt;}dc->SelectObject(OldPen);}四、结果五、总结通过这次实验,让我对计算机生成曲线图形有了一个形象且深刻的了解,同时,通过自己动手实验,我也更加清晰的认识及理解了计算机图形学的含义。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
实验目的:通过本次实验,深入了解并掌握计算机图形学的基本原理和相关技术,培养对图形处理的理解和能力。

实验内容:
1. 图像的基本属性
- 图像的本质及表示方法
- 像素和分辨率的概念
- 灰度图像和彩色图像的区别
2. 图像的处理技术
- 图像的采集和处理
- 图像的变换和增强
- 图像的压缩和存储
3. 计算机图形学的应用
- 图像处理在生活中的应用
- 计算机辅助设计中的图形学应用
- 三维建模和渲染技术
实验步骤和结果:
1. 在计算机图形学实验平台上加载一张测试图像,分析其像素构成
和基本属性。

2. 运用图像处理技术,对测试图像进行模糊、锐化、色彩调整等操作,观察处理后的效果并记录。

3. 学习并掌握计算机图形学中常用的处理算法,如卷积、滤波等,
尝试应用到测试图像上并进行实验验证。

4. 探讨计算机图形学在数字媒体制作、虚拟现实、计算机辅助设计
等领域的应用案例,并总结其在实践中的重要性和价值。

结论:
通过本次实验,我对计算机图形学有了更深入的了解,掌握了图像
处理技术的基本原理和应用方法。

计算机图形学作为一门重要的学科,对多个领域有着广泛的应用前景,有助于提高数字媒体技术、虚拟现
实技术等领域的发展水平。

希望在未来的学习和工作中能进一步深化
对计算机图形学理论和实践的研究,不断提升自己在这一领域的专业
能力和创新意识。

《计算机图形学》实验报告

《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。

三维变换类似于二维,在画图时,把三维坐标转换为二维即可。

三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。

计算机图形学实习报告

计算机图形学实习报告

计算机图形学实习报告计算机图形学课程设计实验报告姓名:学号:专业:地理信息系统⼀、课程设计⽬的在掌握图形学的基本原理、算法和实现技术基础上,通过编程实践学会基本的图形软件开发技术。

⼆、课程设计内容仿照Windows的附件程序“画图”, ⽤C++语⾔编制⼀个具有交互式绘制和编辑多种图元功能的程序“Mini-Painter”,实现以下功能对应的设计内容:(1) 能够以交互⽅式在图形绘制区绘制点、直线(折线)、圆(椭圆)、圆弧、多边形、Beizer曲线、封闭区域填充、⽂字等基本图元;(2) 设置线条的颜⾊、线型和线条宽度,对绘制的图元进⾏线条和填充属性的修改;(3) ⽀持图元的点选和基于橡⽪筋技术的圈选;(4) 对选中的图元进⾏平移、缩放、旋转和对称等变换;三、实验步骤1.新建MFC应⽤程序1.1新建⼯程。

运⾏VC++6.0,新建⼀个MFC AppWizard[exe]⼯程,并命名为“0710070118”,选择保存路径,确定。

1.2选择应⽤程序的类型,选择“单⽂档”,则可以通过菜单打开对话框2.建⽴单⽂档应⽤程序,在其中调⽤对话框2.1 查看⼯程资源在单击完成之后,即建⽴了⼀个⼯程,在⼯程的左侧资源视图可以看到MFC向导为该程序提供的⼀些资源。

分别如下所⽰:2.2插⼊对话框资源想在⽂档应⽤程序中,通过单击菜单来打开⼀个对话框,⾸先要建⽴该对话框的资源。

右击“resources ”中的“dialog ”项,在弹出的菜单中选择“插⼊”,打开插⼊菜单对话框,如图所⽰:对话框资源插⼊后,可修改⼀些属性,⽐如标题、字体等等。

在对话框空⽩处右击,选择属性就可打开资源的属性对话框,按照要求设置对话框的属性。

2.3布置对话框界⾯对话框资源插⼊后,即可在该对话框上布置各种需要的控件,并可通过编排菜单的各种命令或“对话”⼯具条调整各控件的⼤⼩,位置,对齐⽅式等,还可以单击对话⼯具条上第⼀个按钮“测试”按钮,看到对话框运⾏时的界⾯。

计算机图形学-实验报告3-透视投影算法

计算机图形学-实验报告3-透视投影算法
七.实验结果及分析:
实验地点
软件实验室
指导教师
李丽亚
在屏幕客户区中心绘制立方体的透视投影线框模型使用工具栏的动画图标按钮或键盘上的方向键旋转视点观察立方体生成立方体的旋转动画
实验报告
课ห้องสมุดไป่ตู้名称
班级
班级学号
姓名
实验日期
成绩
实验题目
透视投影算法
一、实验目的:
观察变换矩阵
透视投影变换矩阵
一点透视
二点透视
三点透视
二、实验内容:
在屏幕客户区中心绘制立方体的透视投影线框模型,使用工具栏的“动画”图标按钮或键盘上的方向键旋转视点观察立方体,生成立方体的旋转动画。选择工具栏的123图标按钮分别绘制立方体线框模型的一点透视图,二点透视图,三点透视图。
三、实验步骤:
(1)读入立方体8个顶点构成的顶点表与6个表面构成的表面表。
(2)使用透视投影矩阵在屏幕坐标系绘制立方体的透视投影。
(3)旋转视点观察立方体的透视投影。
(4)使用鼠标左键增加视径,缩小立方体的透视投影。
(5)使用鼠标左键减小视径,放大立方体的透视投影。
(6)使用双缓冲技术绘制立方体旋转动画。

《计算机图形学》实验报告

《计算机图形学》实验报告

《计算机图形学》实验报告一、实验目的计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。

通过本次实验,旨在深入理解计算机图形学的基本原理和算法,掌握图形的生成、变换、渲染等技术,并能够运用所学知识解决实际问题,提高对图形学的应用能力和编程实践能力。

二、实验环境本次实验使用的编程语言为 Python,使用的图形库为 Pygame。

开发环境为 PyCharm。

三、实验内容1、直线的生成算法DDA 算法(Digital Differential Analyzer)Bresenham 算法DDA 算法是通过计算直线的斜率来确定每个像素点的位置。

它的基本思想是根据直线的斜率和起始点的坐标,逐步计算出直线上的每个像素点的坐标。

Bresenham 算法则是一种基于误差的直线生成算法。

它通过比较误差值来决定下一个像素点的位置,从而减少了计算量,提高了效率。

在实验中,我们分别实现了这两种算法,并比较了它们的性能和效果。

2、圆的生成算法中点画圆算法中点画圆算法的核心思想是通过判断中点的位置来确定圆上的像素点。

通过不断迭代计算中点的位置,逐步生成整个圆。

在实现过程中,需要注意边界条件的处理和误差的计算。

3、图形的变换平移变换旋转变换缩放变换平移变换是将图形在平面上沿着指定的方向移动一定的距离。

旋转变换是围绕一个中心点将图形旋转一定的角度。

缩放变换则是改变图形的大小。

通过矩阵运算来实现这些变换,可以方便地对图形进行各种操作。

4、图形的填充种子填充算法扫描线填充算法种子填充算法是从指定的种子点开始,将相邻的具有相同颜色或属性的像素点填充为指定的颜色。

扫描线填充算法则是通过扫描图形的每一行,确定需要填充的区间,然后进行填充。

在实验中,我们对不同形状的图形进行了填充,并比较了两种算法的适用情况。

四、实验步骤1、直线生成算法的实现定义直线的起点和终点坐标。

根据所选的算法(DDA 或Bresenham)计算直线上的像素点坐标。

计算机图形学实验报告

计算机图形学实验报告

实验结果与结论
• 在本次实验中,我们成功地实现了复杂场景的渲染,得到了具有较高真实感和视觉效果的图像。通过对比 实验前后的效果,我们发现光线追踪和着色器的运用对于提高渲染质量和效率具有重要作用。同时,我们 也发现场景图的构建和渲染脚本的编写对于实现复杂场景的渲染至关重要。此次实验不仅提高了我们对计 算机图形学原理的理解和实践能力,也为我们后续深入研究渲染引擎的实现提供了宝贵经验。
2. 通过属性设置和变换操作,实现了对图形的定 制和调整,加深了对图形属性的理解。
4. 实验的不足之处:由于时间限制,实验只涉及 了基本图形的绘制和变换,未涉及更复杂的图形 处理算法和技术,如光照、纹理映射等。需要在 后续实验中进一步学习和探索。
02
实验二:实现动画效果
实验目的
掌握动画的基本原 理和实现方法
04
实验四:渲染复杂场景
实验目的
掌握渲染复杂场景的基本流程和方法 理解光线追踪和着色器在渲染过程中的作用
熟悉渲染引擎的实现原理和技巧 提高解决实际问题的能力
实验步骤
• 准备场景文件 • 使用3D建模软件(如Blender)创建或导入场景模型,导出为常用的3D格式(如.obj或.fbx)。 • 导入场景文件 • 在渲染引擎(如Unity或Unreal Engine)中导入准备好的场景文件。 • 构建场景图 • 根据场景的层次结构和光照需求,构建场景图(Scene Graph)。 • 设置光照和材质属性 • 为场景中的物体设置光照和材质属性(如漫反射、镜面反射、透明度等)。 • 编写渲染脚本 • 使用编程语言(如C或JavaScript)编写渲染脚本,控制场景中物体的渲染顺序和逻辑。 • 运行渲染程序 • 运行渲染程序,观察渲染结果。根据效果调整光照、材质和渲染逻辑。 • 导出渲染图像 • 将渲染结果导出为图像文件(如JPEG或PNG),进行后续分析和展示。

计算机图形学课程综合实习实习报告

计算机图形学课程综合实习实习报告

计算机图形学课程综合实习实习报告1.实习目的(1)熟练掌握计算机图形学的基本原理和方法。

(2)熟练掌握计算机图形学的算法的程序实现,增强理论联系实际的能力(3)学习和掌握图形系统的设计和开发方法。

(4)学习使用VC++编写计算机图形学基础程序。

2.实习内容2.1程序结构说明2.1.1新建类的说明根据实习要求,对于二维算法的实现主要涉及到的图形有直线、圆形和多边形,因此新建三个类Cline,CCircle和CPolygon,其成员变量分别记录生成图形的参数,包括图形的几何参数(比如直线的端点坐标,圆的圆心坐标和半径)和图形显示效果的一些参数,比如线宽,使用何种方法绘制有一定线宽的直线,线的颜色等,类的成员函数主要作用是用于生成图形(主要是构建函数)、绘制图形(使用图形生成算法而不使用VC++自带的一些图形生成函数)和执行图形编辑操作。

同时由于添加一个对话框资源用于设置线宽和绘制时处理方法的一个对话框,生成对应的对话框处理类CSetWidthDialog,它从CDialog继承来,并添加相应的处理函数用于获得控件中相应的数据。

另外在裁剪时为了使程序的操作性更强,需要有一个临时的裁剪框,而使用MFC的函数或者是我已经写好的程序都没有办法达到理想的效果,因此我又添加一个新的类,叫做CCutRect专门用于处理图形裁剪时的操作。

2.1.2图形信息存储在文档类中添加三个动态文档类数组分别用于存储直线对象,圆对象和多边形对象,同时添加相应的函数,用于向数组中添加新的对象、获得数组长度和获得指定位置的对象,数组声明如下在绘制图形时,每绘制一个图形,就像相应的数组中添加相应的对象,在程序视图刷新时,输出所有图形。

2.1.3图形显示的优化如果在绘制图形及进行图形填充等操作时,直接在屏幕上输出结果,会因为整个I/O 操作拖慢程序的运行效率,具体反映就是图形填充操作时能够明显看出从上到下、逐行输出地过程,而在刷新视图时也可以看到类似的过程,在极端条件下(比如待填充区域很大或是非常复杂)会由于I/O操作不断刷新视图,导致程序永远进行填充,进入死循环。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告引言计算机图形学是计算机科学中一个重要的研究领域,它涉及了计算机图像的生成、处理和显示等方面的技术。

本次实验旨在通过实际操作学习计算机图形学的相关知识,并利用图形学算法实现一些有趣的效果。

实验目的1. 了解计算机图形学的基本概念和发展历程;2. 掌握图形学中的基本几何变换,如平移、旋转和缩放等;3. 实现一些常见的图形学算法,如光照模型、三角形剪裁和绘制等。

实验准备在开始实验之前,我们需要准备一些实验所需的工具和环境。

首先,确保计算机上安装了图形学相关的软件,如OpenGL或DirectX等。

其次,为了编写和运行图形学程序,我们需要掌握基本的编程技巧,如C++或Python语言,并了解相关的图形库和API。

实验过程1. 实现平移、旋转和缩放首先,我们需要掌握图形学中的基本几何变换,如平移、旋转和缩放。

通过矩阵运算,我们可以很方便地实现这些变换。

例如,对于一个二维点P(x, y),我们可以通过以下公式实现平移:P' = T * P其中,P'是平移后的点,T是平移矩阵。

类似地,我们可以用旋转矩阵和缩放矩阵来实现旋转和缩放效果。

2. 实现光照模型光照模型是指在计算机图形学中模拟现实光照效果的一种方法。

它可以提供更真实的视觉效果,让计算机生成的图像更加逼真。

其中,常用的光照模型有环境光照、漫反射光照和镜面光照等。

通过计算每个像素的光照强度,我们可以实现阴影效果和光源反射等功能。

3. 实现三角形剪裁三角形剪裁是计算机图形学中一种常用的几何算法,用于确定哪些像素需要绘制,哪些像素需要剔除。

通过对三角形的边界和视口进行比较,我们可以快速计算出剪裁后的三角形顶点,以提高图形渲染的效率。

4. 实现图形绘制图形绘制是计算机图形学中的核心内容,它包括了点、线和面的绘制等。

通过设定顶点坐标和属性(如颜色、纹理等),我们可以使用算法绘制出各种形状的图像。

其中,常用的绘制算法有Bresenham算法和扫描线算法等。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告计算机图形学实验报告引言计算机图形学是研究计算机生成和处理图像的学科,它在现代科技和娱乐产业中扮演着重要的角色。

本实验报告旨在总结和分享我在计算机图形学实验中的经验和收获。

一、实验背景计算机图形学实验是计算机科学与技术专业的一门重要课程,通过实践操作和编程,学生可以深入了解图形学的基本原理和算法。

本次实验主要涉及三维图形的建模、渲染和动画。

二、实验内容1. 三维图形建模在实验中,我们学习了三维图形的表示和建模方法。

通过使用OpenGL或其他图形库,我们可以创建基本的几何体,如立方体、球体和圆柱体,并进行变换操作,如平移、旋转和缩放。

这些基本操作为后续的图形处理和渲染打下了基础。

2. 光照和着色光照和着色是图形学中重要的概念。

我们学习了不同的光照模型,如环境光、漫反射和镜面反射,并了解了如何在三维场景中模拟光照效果。

通过设置材质属性和光源参数,我们可以实现逼真的光照效果,使物体看起来更加真实。

3. 纹理映射纹理映射是一种将二维图像映射到三维物体表面的技术。

通过将纹理图像与物体的顶点坐标相对应,我们可以实现更加细致的渲染效果。

在实验中,我们学习了纹理坐标的计算和纹理映射的应用,使物体表面呈现出具有纹理和细节的效果。

4. 动画和交互动画和交互是计算机图形学的重要应用领域。

在实验中,我们学习了基本的动画原理和算法,如关键帧动画和插值技术。

通过设置动画参数和交互控制,我们可以实现物体的平滑移动和变形效果,提升用户体验。

三、实验过程在实验过程中,我们首先熟悉了图形库的使用和基本的编程技巧。

然后,我们按照实验指导书的要求,逐步完成了三维图形建模、光照和着色、纹理映射以及动画和交互等任务。

在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,最终成功实现了预期的效果。

四、实验结果通过实验,我们成功实现了三维图形的建模、渲染和动画效果。

我们可以通过键盘和鼠标控制物体的移动和变形,同时观察到真实的光照效果和纹理映射效果。

(完整word版)计算机图形学实验报告.docx

(完整word版)计算机图形学实验报告.docx

一、实验目的1、掌握中点 Bresenham直线扫描转换算法的思想。

2 掌握边标志算法或有效边表算法进行多边形填充的基本设计思想。

3掌握透视投影变换的数学原理和三维坐标系中几何图形到二维图形的观察流程。

4掌握三维形体在计算机中的构造及表示方法二、实验环境Windows 系统 , VC6.0。

三、实验步骤1、给定两个点的坐标P0(x0,y0),P1(x1,y1),使用中点 Bresenham直线扫描转换算法画出连接两点的直线。

实验基本步骤首先、使用 MFC AppWizard(exe)向导生成一个单文档视图程序框架。

其次、使用中点 Bresenham直线扫描转换算法实现自己的画线函数,函数原型可表示如下:void DrawLine(CDC *pDC, int p0x, int p0y, int p1x, int p1y);在函数中,可通过调用 CDC 成员函数 SetPixel 来画出扫描转换过程中的每个点。

COLORREF SetPixel(int x, int y, COLORREF crColor );再次、找到文档视图程序框架视图类的OnDraw 成员函数,调用 DrawLine 函数画出不同斜率情况的直线,如下图:最后、程序直至正确画出直。

2、定多形的点的坐P0(x0,y0),P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4 )⋯使用志算法或有效表算法行多形填充。

基本步首先、使用 MFC AppWizard(exe)向生成一个文档程序框架。

其次、志算法或有效表算法函数,如下:void FillPolygon(CDC *pDC, int px[], int py[], int ptnumb);px:数用来表示每个点的x 坐py :数用来表示每个点的 y 坐ptnumb:表示点个数注意函数FillPolygon可以直接通窗口的DC(描述符)来行多形填充,不需要使用冲存。

计算机图形学实验报告

计算机图形学实验报告
等领域。
实验内容:通 过实验掌握光 照模型的原理 和实现方法, 了解不同光照 模型对物体表 面光照效果的
影响。
纹理映射
定义:将纹理图像映射到三维物 体表面的过程
方法:根据物体表面的几何形状, 将纹理图像按照一定的规则和算 法进行拉伸、扭曲和拼接等操作, 最终覆盖在物体表面
添加标题
添加标题
添加标题
添加标题
提高编程能力
熟练使用相关编程语言和工 具
掌握计算机图形学的基本原 理和算法
学会分析和解决图形学中的 问题
提高编程技巧和解决问题的 能力
02
实验内容
图形渲染流程
加载场景和模型 设置相机和光源 几何着色器处理顶点数据 光栅化着色器生成像素数据
OpenGL基本操作
创建窗口:使用OpenGL创建 窗口,设置渲染上下文
熟悉图形渲染流程
了解图形渲染的 基本原理和流程
掌握图形渲染的 关键技术和技巧
熟悉图形渲染的 应用场景和优势
Hale Waihona Puke 掌握图形渲染的 未来发展方向和 趋势
掌握OpenGL的使用
学习OpenGL的基本概念和原理 掌握OpenGL的编程接口和开发流程 理解OpenGL在计算机图形学中的应用和优势 学会使用OpenGL进行基本的图形渲染和交互操作
目的:增加物体的表面细节和真 实感
应用:游戏开发、电影制作、虚 拟现实等领域
03
实验过程
实验环境搭建
安装操作系统: 选择适合的操
作系统,如 Windows或
Linux
安装开发工具: 安装所需的集
成开发环境 (IDE)和编
译器
安装图形库: 安装OpenGL、
DirectX或其 他的图形库

计算机图形学实验报告三

计算机图形学实验报告三

《计算机图形学》实验报告glClear(GL_COLOR_BUFFER_BIT);//glEnable(GL_SCISSOR_TEST);//glScissor(0.0f,0.0f,500,300);glutWireTeapot(0.4);glFlush();}//窗口调整子程序void myReshape(int w, int h){glViewport(500, -300, (GLsizei)w, (GLsizei)h);glMatrixMode(GL_PROJECTION);glLoadIdentity();if (w <= h)glOrtho(-1, 1, -(float)h / w, (float)h / w, -1, 1);elseglOrtho(-(float)w / h, (float)w / h, -1, 1, -1, 0.5);}2,使用opengl函数写一个图形程序,要求分别使用三个光源从一个茶壶的前右上方(偏红色),正左侧(偏绿色)和前左下方(偏蓝色)对于其进行照射,完成程序并观察效果。

}//绘图子程序void display(void){glColor3f(1.0, 1.0, 0.0);glClear(GL_COLOR_BUFFER_BIT);//glMatrixMode(GL_MODELVIEW);//glLoadIdentity();//设置光源的属性1GLfloat LightAmbient1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; //环境光参数 ( 新增 )GLfloat LightDiffuse1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; // 漫射光参数 ( 新增 )GLfloat Lightspecular1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; // 镜面反射GLfloat LightPosition1[] = { 500.0f, 500.0f, 500.0f, 1.0f }; // 光源位置 ( 新增 ) glLightfv(GL_LIGHT0, GL_POSITION, LightPosition1);glViewport(0, 0, (GLsizei)w, (GLsizei)h);glMatrixMode(GL_PROJECTION);glLoadIdentity();3,使用opengl函数完成一个图形动画程序,显示一个球沿正弦曲线运动的过程,同时显示一个立方体沿抛物线运动过程。

《计算机图形学》实验3实验报告

《计算机图形学》实验3实验报告

实验3实验报告格式《计算机图形学》实验3实验报告实验题目:直线(光栅化)实数型Bresenham 算法在用户坐标系和Java AWT 坐标系下显示图像实验内容:1 直线(光栅化)实数型Bresenham 算法原理及程序。

2 直线(光栅化)DDA 算法原理及程序。

3 在用户坐标系和Java AWT 坐标系下显示图像的算法原理及实现。

写程序调用验证之。

参考资料:1 课件:光栅图形生成算法.PP T2 Bresenham 算法演示程序已经在MyCanvas 包里,DDA 算法applet 演示程序DDA.java3 有一个示范程序imageDrawApplet.java基本概念:(详细叙述自己对实验内容的理解) 直线(光栅化):画一条从(x1, y1)到(x2, y2)的直线,实质上是一个发现最佳逼近直线的像素序列、并填入色彩数据的过程。

这过程称为直线光栅化。

Bresenham 算法:Bresenham 直线算法是用来描绘由两点所决定的直线的算法,它会算出一条线段在 n 维光栅上最接近的点。

这个算法只会用到较为快速的整数加法、减法和位元移位,常用于绘制电脑画面中的直线。

DDA 算法:DDA 算法(Digital Differential Analyzer ),又称数值微分法,是计算机图形学中一种基于直线的微分方程来生成直线的方法。

算法设计:(详细叙述自己设计的Bresenham 算法以及程序的功能、不同坐标系下图像显示的算法)程序功能:用DDA 算法画出直线,在不同的坐标系下显示图像。

Bresenham 算法:用坐标为(xi ,yi,r)的象素来表示直线上的点,则第i+1个点只能在C 和D 中选取。

令d1=BC ,d2=DBd1-d2=(yi+1–yi,r)-( yi,r+1-yi+1)=2yi+1–yi,r –(yi,r+1)= 2yi+1–2yi,r –1x i x i+1令ε(xi+1)= yi+1–yi,r–0.5=BC-AC=BA=B-A= yi+1–(yi,r+ yi,r+1)/2当ε(xi+1)≥0时,yi+1,r= yi,r+1,即选D点,即下个点(xi+1,yi+1 )对应的象素(xi +1,yi+1,r )为(xi+1,yi,r+1 )当ε(xi+1)<0时,yi+1,r= yi,r,即选C点,即下个点(xi+1,yi+1 )对应的象素(xi +1,yi+1,r )为(xi+1,yi,r )ε(xi+1)= yi+1–yi,r–0.5ε(xi+1)≥0时,yi+1,r= yi,r+1ε(xi+1)<0时,yi+1,r= yi,r用户坐标系下图像显示算法:定义自己的坐标系,将用户坐标系转换为Java awt坐标,调用Graphics类的drawImage方法即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三次实验
1. 实验目的
实现用 Phong 光照明模型显示网格模型(*.smf)。

分别实现不使用/使用增量式光强/法
向插值算法,比较三种不同的显示效果和效率。

Phong模型中各参数可调,观察它们的作用。

与用户的交互方式为图形用户界面,操作简单,界面友好。

2. 算法描述
2.1. 基于扫描线算法的Phong 模型实现
上一次大作业中我没有完成扫描线 ZBuffer 算法,使得程序的效率很低,这次作业考虑
到各种计算对时间的消耗会更大,所以我首先完成了扫描线算法再进行这次作业代码的编写。

对扫描线Z-Buffer算法这里不作详细描述,主要介绍 Phong模型的实现。

基于扫描线算
法的 Phong 模型实现是非常方便的,因为最基本的 Phong 模型中每个面的颜色是法向量的
函数,因此每个面的颜色是相同的,这样在扫描线算法之前我首先初始化了一个数组,将各
个面的颜色根据用户提供的参数以及 Phong 模型公式计算出来保存在这个数组里,每一项
对应一个面,这样在具体扫描线算法的执行过程中每一个点颜色的获取
都仅仅是对数组的读
取操作,是O(1)的复杂度,不会消耗太多时间。

算法如下:
1.对物体表面上的每个点P,均需计算光线L的反射方向R,
R=2N(N·L)-L。

为了减少计算量,假设:
2.光源在无穷远处,L为常向量
3.视点在无穷远处,V为常向量
4.用(H•N)近似(R•V),H为L与V的平分向量
5.Phong光照明模型的RGB颜色模型形式
2.2. 双线性光强差值算法
考虑到双线性光强差值算法的核心思想是由顶点的光强插值计算各边的光强,然后由各
边的光强插值计算出多边形内部点的光强,结合之前实现的扫描线ZBuffer 算法,我使用了
增量的方式实现这个算法,也就是将它和扫描线算法结合起来,在扫描线算法每个面的边表
中多加几个个域来表示当前的光强、光强在X 方向的单位增量和光强在 Y 方向的单位增量,
这样在扫描到每个点的时候就可以根据前一个点的光强以及光强增量获得该点的光强,另外
在扫描线改变的时候光强也需要根据Y方向的增量来进行相应的修改。

2.3. 双线性法向差值算法
基本思想和双线性光强差值算法相同,也是利用扫描线 ZBuffer 算法作为基础,将一些
数据结构做一些相应修改即可方便实现这个算法。

3. 体会:两种差值算法的比较
双线性差值光强算法和双线性法向算法得到的结果差别不是很大,相对而言比较明显的
区别是法向算法得到的模型镜面反射效果比较会聚,区域没有光强算法那么大。

5. 交互方式
Model——模型选项,可以进行缩放和旋转;
Illuminant——光源选项,可以选择光源的颜色和位置;
Ambient——环境光选项,可以选择环境光的颜色;
Reflectance——反射参数,可以设置各种参数;
Rendering Algorithm——渲染算法,可以选择三种算法中的一种。

希望以上资料对你有所帮助,附励志名言3条::
1、世事忙忙如水流,休将名利挂心头。

粗茶淡饭随缘过,富贵荣华莫强求。

2、“我欲”是贫穷的标志。

事能常足,心常惬,人到无求品自高。

3、人生至恶是善谈人过;人生至愚恶闻己过。

相关文档
最新文档