离心泵的构造、工作原理以及它的特征曲线

合集下载

离心泵的构造、工作原理以及它的特征曲线

离心泵的构造、工作原理以及它的特征曲线

泵在自来水生产流水线上被广泛应用,品种规格繁多。

对它的分类方法也各不相同,按其工作原理可以分为三大类:叶片式水泵,容积式水泵,其他类型水泵。

在我厂生产中大部份使用的是单级双吸式离心泵,是叶片泵的一种,由于这种泵的工作是靠叶轮高速旋转时叶片拨动液体旋转,使液体获得离心力而完成水泵的输水过程所以这种泵称为离心泵。

离心泵的应用是很广泛的,在国民经济的许多部门要用到它。

在给水系统中几乎是不可缺少的一种设备,如若把自来水管网当做人身的血管系统,那末离心泵就是压送血液的心脏。

由于离心泵是一种重要的设备,而且它的运转要消耗大量的动力!为了合理,经济的选择和使用水泵,以保证水厂供水,就必须对离心泵的工作原理和基本性能等方面有所了解。

一、离心泵的基本构造是由六部份组成的离心泵的基本构造是由六部份组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。

1、叶轮是离心泵的核心部份,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。

叶轮上的内外表面要求光滑,以减少水流的磨擦损失。

2、泵体也称泵壳,它是水泵的主体。

起到支撑固定作用,并与安装轴承的托架相连接。

3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。

滚动轴承使用牛油作为润滑剂加油要适当普通为2/3~3/4 的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。

太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85 度普通运行在60 度摆布,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封环又称减漏环。

叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳磨擦产生磨损。

为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm 之间为宜。

离心泵的结构和工作原理

离心泵的结构和工作原理

离心式泵工作示意图
离心泵旳工作过程
• 离心泵旳工作过程,实际上是一种能量旳传 递和转换旳过程。它把电动机高速旋转旳机械能 转化为被抽升水旳动能和势能。
• 在这个转化过程中,必然伴伴随许多能量损 失,从而影响离心泵旳效率。这种能量损失越大, 离心泵旳性能就越差,工作效率就越低。
• 在泵起动时,假如泵内存在空气,则叶轮旋 转后空气产生旳离心力也小,使叶轮吸入口中心 处只能造成很小旳真空,液体不能进到叶轮中心, 泵就不能出水。
2.1.1 离心泵旳基本构造
• 兰孔,在
泵座旳横向槽底开有泄水螺孔,以随时排走由填 料盒内流出旳渗漏水。泵壳和泵座上旳这些螺孔, 假如在水泵运营中临时无用,能够用带螺纹旳丝 堵(闷头)拴紧。
2.1.1 离心泵旳基本构造
前向叶型旳泵所需要旳 轴功率随流量旳增长而增长 得不久。所以此类泵在运营 中增长流量时,原动机超载 旳可能性比径向叶型旳泵大 得多,而后向叶型旳叶轮一 般不会发生原动机旳超载现 象。这也是后向式叶型被离 心泵广泛采用旳原因之一。
2.3 叶轮叶型对离心泵性能旳影响
图2-20 叶轮叶型与出口安装角 a)后向叶型 b)径向叶型 c)前向叶型
H H ST h
H ST H ss H sd
h hs hd
图2-12 离心泵装置
离心泵旳有效功率
输入功率是由原动机(如电机等)传到泵轴上旳功率,
也称为轴功率,用符号N表达。
泵旳输出功率又称为有效功率,表达单位时 间内流体从泵中所得到旳实际能量,它等于重量 流量与扬程旳乘积。
有效功率用Ne表达
一般地,压盖旳松紧以水能经过填料缝隙呈滴状渗出 为宜(约每分钟泄漏60滴)。
水封管与水封环旳作用是将泵内旳压力水引入填料与 泵轴间旳缝隙,起到引水冷却与润滑旳作用(有旳水泵利 用在泵壳上制做旳沟槽来取代水封管,构造更为紧凑)。

1离心泵的基本构造及工作原理

1离心泵的基本构造及工作原理

1离心泵的基本构造及工作原理离心泵是一种常见的动力机械设备,它主要通过转子的旋转来将液体从一个位置输送到另一个位置。

本文将介绍离心泵的基本构造和工作原理。

离心泵的基本构造包括进口管道、泵体、转子、排水管道和驱动装置等。

进口管道用于将液体引入泵体,泵体是离心泵的主体结构,容纳转子和内衬。

转子是离心泵的核心部件,它通常由叶轮、轴和轴套组成。

叶轮是用于转动并推动液体的部分,它通常由数个叶片组成,有时还包括导流片。

排水管道用于排出泵体中的液体。

驱动装置则主要负责转动转子,使离心泵正常工作。

离心泵的工作原理是基于离心力的作用。

当驱动装置启动时,转子开始转动。

由于离心力的作用,液体被推入叶轮,叶轮将液体快速旋转,并产生离心力。

离心力使液体沿着叶轮的排水管道流出泵体。

在离心泵中,叶轮的旋转将动能转化为液体的动能,从而推动液体的流动。

由于离心泵的叶轮受到液体的抵抗和摩擦力的作用,所以离心泵在运行过程中需要消耗相应的功率。

离心泵还有一个重要的特性是其性能曲线。

离心泵的性能曲线是指在一定转速下,离心泵输送液体时所能提供的扬程和流量之间的关系曲线。

通常情况下,离心泵在正常工作条件下,其性能曲线呈倒U型曲线。

在这个曲线中,当流量增加时,扬程逐渐降低,反之亦然。

这是因为在较低的流量下,液体与叶轮的摩擦力较小,所以液体的扬程较高;而在较大的流量下,摩擦力增大,液体的扬程减小。

总结起来,离心泵的基本构造包括进口管道、泵体、转子、排水管道和驱动装置等。

其工作原理是通过转子旋转产生离心力,从而推动液体的流动。

离心泵的性能曲线描述了其在不同流量下的扬程。

离心泵在许多工业领域中广泛应用,如供水系统、冷却系统和污水处理系统等。

第一节离心泵的工作原理和性能特点

第一节离心泵的工作原理和性能特点
➢ 用于H变动又不希望Q 变化的场合(舱底水泵 压载泵等)
➢ 平坦形(中低比转数泵)
➢ 叶片出口角稍大,H 变化时Q变化较大
➢ 用于那些经常需要调 节Q而又不希望节流 损失太大的场合(凝水 泵、锅炉给水泵)
3-1-3实测的定速特性曲线
➢ 驼峰形
➢ 叶片出口角较大
➢ 其Q一H曲线就比 较平坦,而在小Q 时撞击损失又大, 于是Q—H曲线就 会出现驼峰
➢ 静压头Hu是一条水平线 ➢ 管路阻力h=Q2,是一
条二次抛物线
➢ 倾斜程度取决于阻力 ➢ 纵坐标起点位置取决于
管路的静压头 ➢ 当管路阻力变化,如K值
增加,曲线变陡 ➢ 如静压头变化,管路曲
线相应向上平移
3-1-4 管道特性曲线和泵的工况点
➢ 将特性曲线和管路的特 性曲线画在一张图上
➢ Q—H曲线与管路特性曲 线的交点即泵的工况点
3-1-1 离心泵的工作原理
➢ 充满在泵中的液体随叶轮回转, 产生离心力,向四周甩出
➢ 在叶轮中心形成低压,液体便 在液面压力作用下被吸进叶轮。
➢ 从叶轮流出的液体,压力和速 度增大。
➢ 蜗壳-汇聚并导流。扩压管A增 大,流速降低,大部分动能变 为压力能,然后排出。
➢ 叶轮不停回转,吸排就连续地 进行
过了其它类型泵。
3-1-6离心泵的缺点
4.本身没有自吸能力
➢ 为扩大使用范围
➢ 在结构上采取特殊措施制造各种自吸式离心泵 ➢ 在离心泵上附设抽气引水装置。
5.泵的Q随工作扬程而变
➢ H升高,Q减小 ➢ 达到封闭扬程时,泵即空转而不排液 ➢ 不宜作滑油泵、燃油泵等要求Q不随H而变的
场合
3-1-6离心泵的缺点
➢ 液体通过泵时所增加的能量, 是原动机通过叶轮对液体作功 的结果。

离心泵的工作原理及主要部件性能参数

离心泵的工作原理及主要部件性能参数

离心泵的工作原理及主要部件性能参数往复泵 旋转泵I 漩涡泵离心泵一一生产中应用最为广泛,着重介绍。

(Cen trifugal Pumps )离心泵的工作原理及主要部件1.工作原理附 E I < ; t Ifc > pi .11I 1 亠划帀,・=t Vn #— ■丄磨1 甩=—凯H -—ftp- flN如左图所示,离心泵体内的叶轮固定在泵轴上, 叶轮上有若干弯曲的叶片, 泵轴在外力带动下旋转,叶轮同时旋转,泵壳中央的吸入口与吸入管相连接,侧旁的排出口和排出管路9相连接。

启动前,须灌液,即向壳体内灌满被输送的液体。

启动电机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着旋转,在惯性离心力的作用下液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提 高,同时也增大了流速,一般可达液体离开叶轮进入泵壳后, 由于泵壳中流道逐渐加宽, 分动能转变为静压能, 使泵出口处液体的压强进一步提高。

口进入排出管路,输送至所需的场所。

当泵内液体从叶轮中心被抛向外缘时, 在中心处形成了低压区, 由于贮槽内液面上方的压强大于泵吸入口处的压强,在此压差的作用下,液体便经吸入管路连续地被吸入泵内, 以 补充被排出的液体,只要叶轮不停的转动,液体便不断的被吸入和排出。

§ 2.1.1离心泵15〜25m/s 。

液体的流速逐渐降低, 又将一部 液体以较高的压强, 从泵的排出由此可见,离心泵之所以能输送液体, 主要是依靠高速旋转的叶轮, 用下获得了能量以提高压强。

气缚现象:不灌液,则泵体内存有空气,由于 P 空气<<p 液, 很小,因而叶轮中心处所形成的低压不足以将贮槽内的液体吸入泵内,达不到输液目的。

通常在吸入管路的进口处装有一单向底阀, 以截留灌入泵体内的液体。

另外,在单向阀F 面装有滤网,其作用是拦阻液体中的固体物质被吸入而堵塞管道和泵壳。

启动与停泵:灌液完毕后,此时应关闭出口阀后启动泵,这时所需的泵的轴功率最小, 启动电流较小,以保护电机。

离心泵的工作原理

离心泵的工作原理
承和滑动轴承两种。
• 5、密封环又称减漏环 • 6、填料盒主要由填料、水封环、填料筒、填料压
盖,水封管构成 。
单级单吸式离心泵旳分解图
离心泵旳叶轮种类及功用
• 叶轮有开式、半闭式和闭式三种。 • 如图:
• 闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,合用于输送不含杂质旳
清洁液体。一般旳离心泵叶轮多为此类。
• 2. 汽蚀旳主要原因 • 造成叶轮进口处旳压力过分降低旳原因可能有:吸入高度过高;所输送旳液
体温度过高;气压太低;泵内流道设计不完善而引起液流速度过大等
• 3. 汽蚀对离心泵工作旳影响 • 1)引起噪音和振动 • 2)引起泵工作效率下降 • 3)引起泵叶轮旳破坏
六、离心泵旳操作、保养、检修
• 离心泵旳操作主要涉及开启、运营、倒泵与停泵等
• 1.离心泵旳开启
• (1) 开启前旳检验与准备
• ① 检验联轴器、地脚螺栓等各紧固件是否松动;
• ② 用手或专用工具转动转子数圈,看转动是否均匀,有无异常声音,检验转是

否灵活;
• ③ 检验润滑、冷却系统是否完好;油箱加入润滑油,油杯油位应为1/2以上。
• ④ 检验供电系统是否完好;
• ⑤ 打开泵旳进口阀,关闭泵旳出口阀;
部转化为热而使泵发烧,若时间较长,有可能将泵旳部分部件烧坏,所以,泵开启 后,出口阀旳关闭时间不得超出2-3min。若启泵后打不起压力,需停泵后重新灌泵 再开启。
• 2.离心泵旳日常检验 离心泵运营中旳检验主要涉及下列内容:
• (1)观察泵出口压力表、管线压力表、电流表、电压表等仪表,看其参数是

• ⑥ 灌泵,打开放气阀,排净泵内气体 。
• ⑦检验泵旳压力表是否安装、是否合乎要求。

离心泵的结构及工作原理

离心泵的结构及工作原理
多级离心泵除了具有单级离心泵的优点之外, 它最 大的优点就是扬程高。多级离心泵的用途十分广泛, 例如, 化肥生产中, 用多级泵将氨水打入碳化塔, 由氨 水吸收加压氮氢混合气中的二氧化碳, 生产出碳酸氢 铵;锅炉的给水;山区的深井提灌等。
(5)、屏蔽式离心泵 如图1-7所示
屏蔽式离心泵的特点
化工厂常用的屏蔽泵, 属于单级悬臂式离心泵, 其结构图如图1-7所示; 屏蔽泵又称无填料泵, 这种泵用于输送易燃、易爆、有毒、有放射性及
二、离心泵的工作原理、 分类、型号及结构
(一)、离心泵的装置及工 作原理
1.为了使离心泵能正常工作, 离心泵必须配备一定的管路 和管件,这种配备有一定管 路系统的离心泵称为离心泵 装置。图1—1所示为离心泵 的一般装置示意图,主要有 底阀、吸入管路、出口阀、 出口管线等。
2.离心泵的工作原理
(4)、多级离心泵 如图1-4所示;
人们把若干个叶轮安装在同一个泵轴上, 每个叶轮 与其外周的液体导流装置形成一个独立的工作室, 这 个工作室与叶轮组成的系统可以认为是一个单级离心 泵, 每个工作室前后串联, 就构成了多级泵。与多个单 级离心泵串联相比, 多级泵具有效率高、占地面积小、 操作费用低、便于维修等优点。该泵流量范围为5— 720m3/h, 扬程最高达2800m。
贵重液体, 也可选作高压设备的循环用泵。其结构特点使泵的叶轮与电 机的转子在同一根轴上, 装在同一格密封的壳体内, 没有联轴器和封装 置, 从根本上消除了液体外漏。为了防止输送液体昱电气部分接触, 电 机的定子和转子分别用金属薄壁圆筒(屏蔽套)于液体隔离。屏蔽套 的材料应能耐腐蚀, 并具有非磁性和高电阻率, 以减少电动机因屏蔽套 存在而产生额外功率消耗。为了不干扰电机的磁场, 这种金属薄臂圆筒 采用奥氏体系非磁性材料(1Gr18Ni9Ti)制成。由于有屏蔽套, 增加 了电机转子和定子的间隙, 使电机效率下降, 因此, 要求屏蔽套的壁要 很薄, 一般为0.3—0.8mm. 屏蔽泵具有结构简单紧凑, 零件少, 占地少, 操作可靠, 长期不要检修 等优点。缺点是效率低, 比一般离心泵低26%—50%。

离心泵的构造及工作原理

离心泵的构造及工作原理

离心泵的构造及工作原理离心泵是一种常见的流体机械,广泛应用于工业生产中。

本文将以离心泵的构造和工作原理为主题,详细介绍离心泵的工作原理和构造特点。

一、离心泵的构造离心泵由泵体、叶轮、轴、轴承和密封装置等部件组成。

1. 泵体:离心泵的泵体通常由铸铁、不锈钢等材料制成,其作用是容纳泵的各个部件,并通过进出口连接管道。

2. 叶轮:叶轮是离心泵的核心部件,通常由叶片和轮盘组成。

叶片的数量和形状决定了泵的性能,一般叶片数目为6-12片。

叶轮通过轴与电机连接,承受电机的驱动力,将电机输出的动能转化为流体的动能。

3. 轴:轴是连接电机和叶轮的部件,通常由不锈钢制成,具有一定的强度和刚性,能够承受叶轮的转动力矩。

4. 轴承:轴承用于支撑和定位轴,减小摩擦和振动,保证泵的正常运转。

常见的轴承有滚动轴承和滑动轴承两种。

5. 密封装置:离心泵的密封装置用于防止泵内的液体泄漏,常见的密封方式有填料密封和机械密封两种。

二、离心泵的工作原理离心泵利用叶轮的旋转产生离心力,将液体从进口抽入泵内,再通过叶轮的推力将液体排出。

1. 进口:当离心泵开始运转时,叶轮旋转产生离心力,使液体沿着进口管道流入泵体。

2. 吸入:液体通过进口管道进入泵体后,受到叶轮的旋转作用产生离心力,使液体沿着叶轮的叶片被吸入叶轮中心。

3. 推出:叶轮旋转后,将液体推出叶轮,产生一定的压力,使液体通过出口管道排出泵体。

4. 压力增加:随着叶轮的旋转速度增加,液体在离心力的作用下,压力逐渐增加,从而形成一定的流体压力。

5. 能量转换:离心泵将电机输出的机械能转化为流体的动能,使液体具有一定的流速和压力,从而实现液体的输送和增压。

离心泵的工作原理基于离心力的作用,通过旋转叶轮将液体吸入并推出,从而实现对液体的输送和增压。

离心泵具有结构简单、效率高、使用方便等特点,广泛应用于工业、建筑、农业和市政等领域。

浅析离心泵结构及工作原理

浅析离心泵结构及工作原理

离心泵结构及工作原理一、概述离心泵是一种流体机械,它的工作原理是利用离心力将液体从低压区域输送到高压区域。

具有高效、可靠、易于维护等优点,广泛应用于各种工业和民用领域。

二、组成构造离心泵的基本部件是高速旋转的叶轮和固定的蜗牛形泵壳。

具有若干个后弯叶片的叶轮紧固于泵轴上,并随泵轴由电机驱动作高速旋转。

叶轮是直接对泵内液体做功的部件,为离心泵的供能装置。

壳中央的吸入口与吸入管路相连接,吸入管路的底部装有单向底阀。

泵壳侧旁的排出口与装有调节阀门的排出管路相连接。

整体结构如下图:三、离心泵工作原理离心泵基于离心力原理,使用旋转叶轮产生离心力将流体加速并带入泵体内,然后通过出口将流体排出。

流体进入泵体后,在叶轮的旋转下形成高速旋转的涡流,使流体受到离心力和动能的作用,流体压力和速度均增加,从而达到输送流体的目的。

具体工作流程是:当离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在性离心力的作用下,液体自叶轮中心向外周作径向运动。

液体在流经叶轮的运动过程获得了能量,静压能增高,流速增大。

当液体离开叶轮进入泵壳后,由于壳内流道逐渐扩大而减速,部分动能转化为静压能,最后沿切向流入排出管路。

所以蜗形泵壳不仅是汇集由叶轮流出液体的部件,而且又是一个转能装置。

当液体自叶轮中心甩向外周的同时,叶轮中心形成低压区,在贮槽液面与叶轮中心总势能差的作用下,致使液体被吸进叶轮中心。

依靠叶轮的不断运转,液体便连续地被吸入和排出。

液体在离心泵中获得的机械能量最终表现为静压能的提高。

需要强调指出的是,若在离心泵启动前没向泵壳内灌满被输送的液体,由于空气密度低,叶轮旋转后产生的离心力小,叶轮中心区不足以形成吸入贮槽内液体的低压,因而虽启动离心泵也不能输送液体。

这表明离心泵无自吸能力,此现象称为气缚。

吸入管路安装单向底阀是为了防止启动前灌入泵壳内的液体从壳内流出。

空气从吸入管道进到泵壳中都会造成气缚。

四、离心泵的种类离心泵一般按照其结构特点划分,有多种划分方式,包括按工作压力、按工作叶轮数目、按叶轮进水方式等六种分类方式。

离心泵特性曲线实验报告

离心泵特性曲线实验报告

化工原理实验报告实验名称:离心泵特性曲线实验报告姓名:***专业:化学工程与工艺(石油炼制)班级:化工11203学号:*********离心泵特性曲线实验报告一、 实验目的1. 了解离心泵的结构与特征,熟悉离心泵的使用。

2. 测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作范围。

3. 熟悉孔板流量计的构造与性能以及安装方法。

4. 测量孔板流量计的孔流系数C 岁雷诺数R e 变化的规律。

5. 测量管路特性曲线。

二、 基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒 定转速下泵的扬程H 、功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

2.1扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z 1+P 1ρg +U 122g+H=z 2+P 2ρg+U 222g+∑h f (1-1)由于两截面间的管子较短,通常可忽略阻力项∑h f ,速度平方差也很小,故也可忽略,则有H=(z 1-z 2)+p 1−p 2ρg=H 1+H 2(表值)+H 3 (1-2)由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.2轴功率N 的测量与计算N=N电k(w) (1-3)其中,N电为电功率表显示值,k代表电机传动效率,可取0.902.3效率η的计算泵的效率η是泵的有效功率Ne与轴功率N的比值。

有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne可用下式计算:N e=HQρg (1-4)η=HQρgN×100%(1-5)2.4 转速改变时各参数的换算泵的特性曲线是在定转速下的实验测定所得。

离心泵知识性能参数及特性曲线

离心泵知识性能参数及特性曲线

离心泵知识、性能参数与特征曲线要正确地选择和使用离心泵,就必要认识泵的性能和它们之间的互相关系。

离心泵的主要性能参数有流量、压头、轴功率、效率等。

离心泵性能间的关系通常用特征曲线来表示。

一、离心泵的概念?:水泵是把 ?动机的机械能变换成抽送液体能量的机器。

来增添液体的位能、压能、动能。

动机经过泵轴带动叶轮旋转,对液体作功,使其能量增添,进而使需要数目的液体,由吸进口经水泵的过流零件输送到要求的高处或要求压力的地方。

二、离心泵的?本结构离心泵的本结构是由六部分构成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封置,础等?。

1、叶轮是离心泵的中心部分,它转速高输卖力大,叶轮上的叶片又起到主要作用,叶轮在配前要经过静均衡实验。

叶轮上的的表?要求圆滑,以减少水流的摩擦损失。

2、泵壳,它是水泵的主体。

起到支撑固定作用,并与安轴承的托架相连结。

3、转轴的作用 ?是借联轴器和电动机相连结,将电动机的转距传给叶轮,所以它是传达机械能的主要零件。

4、轴承是套在泵轴上支撑泵轴的构件,有转动轴承和滑动轴承两种。

轴承的托?为轴承箱。

转动轴承使用牛油作为润滑剂加油要适合一般为 2/3 ~3/4 的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的, 加油到油位线。

太多油要沿泵轴溢出,利热 ?;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在 85 度一般运行在 0 度左右,假如高了就要查找因(能否有杂质,油质能否发黑,能否进水)并实时办理!5、密封置。

叶轮进口与泵壳间的间隙过大会造成泵高压区的水经此空隙流向低压区,影响泵的出水量,效率降低!空隙过小会造成叶轮与泵壳摩擦产生磨损。

为了增添回流阻力减少漏,延缓叶轮和泵壳的所使用寿命,在泵壳缘和叶轮援联合处有密封置,密封的空隙保持在~之间为宜。

三、泵的分类泵的种类很多,可按其各样特色加以分类,见表 1-1 。

四、离心泵的主要性能参数1、流量:离心泵的流量 Q--- 离心泵在单位时间排送到管路系统的液体3体积,常用单位为 L/s 或 m/h 。

第3章第2-3节离心式水泵曲线构造

第3章第2-3节离心式水泵曲线构造

第三章离心式水泵第二节离心式水泵的特征曲线一、离心式水泵的基本方程式1、欧拉方程研究的条件是离心式水泵的基本方程式,它是反映离心泵理论压头(扬程)与液体运动状况变化的关系式。

由于液体在叶轮内的运动很复杂,为了便于研究,对液体性质和在叶轮内的运动状况作如下假设:○1液体为理想液体,即不考虑叶轮内液体运动的能量损失。

○2液体运动是均匀一致的,即认为叶轮的叶片为无限多而又无限薄,液体的流动与叶片的表面形状完全一致。

○3液体在叶轮内处于稳定的流动状态。

水泵工作时,水在叶轮内的运动是一种复合运动。

当水流进入叶轮以后,其水流质点一方面随着旋转的叶轮做旋转运动,称为圆周运动,又称牵连运动。

其运动速度称圆周速度,也称牵连速度。

用符号u表示,其方向为圆周的切线方向。

另一方面,同一水流质点沿着叶轮的槽道做相对叶轮的运动,称为相对运动。

其相对速度用符号w表示,方向为运动轨迹的切线方向。

水流质点相对于静坐标系的运动称绝对运动。

绝对运动的速度用符号c表示。

绝对运动速度c是圆周速度u与相对速度w的矢量和。

c=u+w u—圆周速度,方向与叶轮圆周相切;w—相对速度,方向与叶片相切。

2、欧拉方程绝对运动速度c可分解为两个互相垂直的分速度:一个是与圆周速度方向相同的分速度,另一个是与圆周速度方向相互垂直的分速度,称为轴面分速度,用符号 cm表示;速度三角形中,α是绝对运动速度c与圆周速度u的夹角,β是相对运动速度w与圆周速度u的夹角。

如下图,一般只计算叶轮进口和出口的速度三角形,称进口速度三角形和出口速度三角形。

叶轮入口运动的几何参数值和性能参数值加下标“1”,叶轮出口运动的几何度,称为圆周分速度,用符号“u”表示;参数值和性能参数值加下标“2”,以作为同名参数的区别。

欧拉方程H T=(u2c2cosα2-u1c1cosα1)/g H T=(u2c2u-u1c1u)/g为改善吸水性能和提高扬程,大多数离心泵液体直接沿径向流入叶轮,即α1=90°,c1u=0,于是欧拉方程变为H T=u2c2u/g由欧拉方程可知,离心泵的理论压头只与液体在叶片进、出口的速度大小和方向有关,而与液体的种类和性质无关。

离心泵工作原理与结构形式

离心泵工作原理与结构形式

离心泵工作原理与结构形式一、工作原理工作原理离心泵结构示意2-1-11—吸入室;2—叶轮;3—轴;4—轴封;5—蜗室;6—压出室被送液体经吸入室进入泵内,并充满泵腔,原动机驱动轴带动叶轮旋转,叶轮的叶片带动被送液体与叶轮一起旋转,在离心力的作用下,被送液体由叶轮中心向叶轮边缘流动,其速度(动能)逐渐增大,在流出叶轮的瞬间其速度最大,然后进入蜗室,被送液体速度逐步降低,将大部分动能转换为压力能,再经压出管进一步降低速度,被送液体的压力继续升高,达到需要的压力后将液体压入泵的排出管路。

当液体由叶轮中心流向叶轮边缘后,叶轮中心呈现低压状态,泵外的液体在泵外与叶轮中心部分的压差作用下进入泵内,再由叶轮中心流向液轮边缘。

如此叶轮连续旋转,泵连续地吸入和压出被送液体,完成对液体输送。

只有在泵腔内充满液体时,液体从叶轮中心流向边缘后,在叶轮中心部分才能形成低压区,泵才正常和连续地输送液体。

为此离心泵启动前,必须将泵内充满液体,排净空气,称作灌泵。

二、结构(一)主要结构型式1.卧式单级单吸离心泵卧式单级单吸离心泵在炼油化工生产装置中应用的数量最多,一般用于炼油化工生产的进料泵、回流泵、循环泵和产品泵等。

2.卧式单级双吸离心泵在炼油化工生产中常用作回流泵、塔底泵及冷却塔水泵等。

图2-1-2卧式单级单吸离心泵图2-1-3 卧式单级双吸离心泵1—支撑;2—泵轴;3—托架;4—轴封;5—泵盖;6—叶轮;7—泵壳3.卧式多级离心泵在炼油化工生产中主要用于锅炉和废热锅炉给水泵,高压液氨输送泵, 高压甲铵泵和铜氨液泵等。

4.立式离心泵立式离心泵其安装基础的顶面为 NPSH 计算准面,故可得到较大的NPSHA值,有利于防止汽蚀。

炼油化工生产中,立式离心泵主要用于输送液氨、液态烃( 甲烷、乙烷、乙烯、丙烯等 ),以及液氧、液氮等物料的产品泵、给料泵、塔底泵和回流泵等。

图2-1-4 分段式多级离心泵图2-1-5水平剖分式多级离心泵图2-1-6 筒式多级离心泵5.液下泵液下泵属于立式离心泵的一种(见图2-1-8)。

离心泵的组成及工作原理

离心泵的组成及工作原理

离心泵的组成及工作原理
离心泵是一种常用的液体输送设备,通常由以下几个部分组成:
1. 泵体:离心泵的主体部分,由一段曲线形的管道组成。

泵体常用的材质有铸铁、不锈钢等,具有良好的耐腐蚀性和强度。

2. 叶轮:离心泵的核心部件,由一系列的叶片组成,通常叶轮外缘有弯曲状,叶轮内部通道形状呈箕斗状。

叶轮的作用是将泵入口处的液体带动并加速,形成离心力。

3. 泵轴:连接电动机和叶轮的部件,传递电动机的动力给叶轮,使其转动。

4. 密封装置:用于保持泵体与泵轴之间的封闭,并防止液体泄漏。

常见的密封方式有填料密封和机械密封。

离心泵的工作原理如下:
1. 在泵的进口处,液体进入泵体,经过泵体的吸力作用,形成一定的真空区域。

2. 根据泵体内部的曲线形状,液体会沿着曲线逐渐加速,并将动能转化为离心力,使液体产生向外的压力。

3. 经过叶轮的张力作用,液体被扔到泵壳和泵体之间的泵壳和泵体间隙。

在此之后,液体经过排液管道被输送到需要的地方。

4. 对于多级离心泵,液体在经过第一级叶轮后,会进入第二级叶轮,继续加速,压力进一步增大。

如此类推,液体可以在多个级别上提升压力和流量。

需要注意的是,离心泵需要通过电动机等不同的驱动装置来提供动力,使得流体能够被输送。

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

一、实验名称:离心泵特征曲线的测定二、实验目的:1、认识水泵的构造;2、熟习离心泵的机械构造和操作方法;3、测定离心泵在必定转速下的流量和压头、功率及总效率的关系,并绘制泵的特征曲线。

三、实验原理:离心泵的特征曲线是指在必定转速下,流量和压头、流量和轴功率、流量和总效率之间的变化关系,因为流体在泵内运动的复杂性,泵的特征曲线只好用实验的方法来测定。

泵的性能和管路的布局没关,前者在必定转速下是固定的,后者老是安装在一定的管路上工作,泵所供给的压头和流量一定和管路所需的压头和流量一致,为此目的,人们是用管路的特征去选择合用的泵。

管路特征曲线和泵特征曲线的交点叫工作点,现测定离心泵性能是用改变管路特征曲线(即改变工作点)的方法而获取。

改变管路特征曲线最简单的手段是调理管路上的流量控制阀,流量改变,管路特征曲线即变,用改变泵特征曲线的方法(改变泵转速或把叶轮削小可实现)去改变工作点,在理论上是讲得通,但生产实质不可以使用(为何?)。

1、流量 V 的测定本实验室甲乙二套泵的流量用孔板流量计测定,第三四套用文氏流量计测定,五、六套用涡轮番量计测定,由流量计的压差计读数去查流量曲线或公式计算即得流量 V[m 3/h] 。

2、泵压头(扬程)H 的测定以离心泵吸进口中心线水平为基准面。

并顺着流向,以泵吸入管安装真空表处管截面为 1 截面,以泵压出管安装压力表处管截面为 2 截面,在两截面之间列柏努利方程并整理得:H (Z2p2 p1 u22 u12( 1)Z1 ) hg 2 g令: h0=(Z 2—Z 1)——两测压截面之间的垂直距离,约0.1[m]p 1—— 1 截面处的真空度 [MPa] p 2—— 2 截面处的表压强 [MPa]ρ ——水的密度,以 1000[kg/m 3] 计算g=9.8[N/kg] ——重力加快度3、轴功率 N e 的测定轴功率为水泵运行时泵所耗功率,测电机功率,再乘上电机效率和传动效率而得:N e N 电 电 传 [ KW ]( 2)式中: N 电 ——输入给电动机的功率[kw] ,用功率表测定电 ——电机效率,可查电机手册,现使用以下近似值:以上电动机: 电以下电动机:电传——传动效率,本机用联轴节,其值:传4、水泵总效率的计算:H V100%( 3)3600 102 N e式中: 102—— [KW] 和 [kgm]的换算因数;其余符号同上s四、实验设施流程图:A BL=2m6 C119874 510312R1、水箱2、底阀3、离心泵4、联轴接5、电动机6、调理阀7、真空表8、压力表9、功率表10、流量计11、注水阀图 2-2-3-2离心泵实验装置图泵的实验装置如图2-2-3-2 所示,离心泵 3 为单吸悬臂式水泵,型号为11BA,2泵轴和电机 5 的轴由联轴节 4 相连。

离心泵的构造及工作原理

离心泵的构造及工作原理

离心泵的构造及工作原理离心泵的构造及工作原理一、离心泵的基本构造离心泵的种类有很多,图1—1所示为单级单吸式离心泵的基本构造,主要包括蜗壳形的泵壳、泵轴、叶轮、吸水管、压水管、底阀、控制阀门、灌水漏斗和泵座。

图1—1 单级单吸式离心泵构造1一泵壳;2一泵轴;3叶轮;4一吸水管;5一压水管;6一底阎;7控制阀门;8灌水漏斗;9泵座离心泵的基础知识二、离心泵的工作原理:离心泵是利用叶轮旋转而使水产生的离心力来工作的。

离心泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水在离心力的作用下,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路。

水泵叶轮中心处,由于水在离心力的作用下被甩出后形成真空,吸水池中的水便在大气压力的作用下被压进泵壳内,叶轮通过不停地转动,使得水在叶轮的作用下不断流入与流出,达到了输送水的目的。

三、离心泵的主要零件:离心泵是由许多零件组成的,根据工作时各部件所处的工作状态,大致可以分成三大类型:转动部件、固定部件和交接部件。

1.叶轮叶轮是泵的核心组成部分,它可使水获得动能而产生流动。

叶轮由叶片、盖板和轮毂组成,见图l-2。

选择叶轮材料时,除了要考虑离心力作用下的机械强度以外,还要考虑材料的耐磨和耐腐蚀性能。

目前多数叶轮采用铸铁、铸钢和青铜制成。

叶轮一般可分为单吸式叶轮与双吸式叶轮两种。

单吸式叶轮如图l-2所示,它是单边吸水,叶轮的前盖板与后盖板呈不对称状。

双吸式叶轮如图1—3所示两边吸水,叶轮盖板呈对称状,一般大流量离心泵多数采用双吸式叶轮。

图1 2单吸式叶轮图l—3双吸式叶轮1一前盖板;2一后盖板;3一叶片;4叶槽;1一吸人口;2一轮盖;3一叶片5一吸水口;6一轮毂;7一泵轴4一轮毂;5一轴孔叶轮按其盖板情况又可分为封闭式、敞开式和半开式三种,如图l—4所示。

离心泵往往采用封闭式叶轮单槽道或双槽道结构,以防止杂物堵塞;砂泵则往往采用半开式及敞开式结构,以防止砂粒对叶轮的磨损及堵塞。

离心泵理论及特性曲线课件

离心泵理论及特性曲线课件
离心泵广泛应用于化工、石油、医药、食品等领域,用于输送各种不同性质的液 体。
离心泵的工作原理
离心泵主要由叶轮、泵壳、泵轴和轴承等部分组成。当叶轮 旋转时,叶片间的液体受到叶片的推动而产生离心力,离心 力使液体从叶轮中心被甩向边缘,并沿着泵壳的流道流出。
离心泵的流量、扬程和功率等特性参数与转速、叶轮直径和 叶片数目等因素有关。
离心泵的维护与保养
离心泵的日常维护
每日检查
检查离心泵的润滑情况、轴承温 度、密封件是否泄漏等,确保 泵
正常运行。
清洁和清洁
定期清洁离心泵的外部表面和内部 部件,以防止污垢和杂质堆积。
紧固和调整
检查并紧固离心泵的各个连接部件, 确保其牢固可靠,同时调整泵的运 行参数,使其在最佳状态下运行。
离心泵的定期保养
离心泵的应用
离心泵在工业领域的应用
离心泵在工业领域的应用非常广泛,主要用于输送液体介 质,如水、油、酸碱液等。在化工、石油、制药等行业中, 离心泵被用于各种工艺流程中的液体输送、增压和循环。
在工业领域中,离心泵的特性曲线可以帮助我们了解泵的 性能,选择合适的泵型,以及优化泵的运行参数,从而提 高生产效率和降低能耗。
离心泵在农业领域的应用
离心泵在农业领域主要用于灌溉、排 水和喷灌等。通过离心泵的输送,可 以将水源输送到农田进行灌溉,或者 将农田中的积水排出。
在农业领域中,离心泵的特性曲线可 以帮助我们了解泵的扬程、流量和功 率等性能参数,从而选择合适的泵型 和匹配电机,提高灌溉和排水的效果。
离心泵在市政领域的应用
离心泵的分类ቤተ መጻሕፍቲ ባይዱ
根据输送液体的性质,离心泵可 分为清水泵、杂质泵、耐腐蚀泵等。
根据输送液体的流量和扬程,离 心泵可分为大流量泵和小流量泵、 高扬程泵和低扬程泵等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泵在自来水生产流水线上被广泛应用,品种规格繁多。

对它的分类方法也各不相同,按其工作原理可以分为三大类:叶片式水泵,容积式水泵,其他类型水泵。

在我厂生产中大部分使用的是单级双吸式离心泵,是叶片泵的一种,由于这种泵的工作是靠叶轮高速旋转时叶片拨动液体旋转,使液体获得离心力而完成水泵的输水过程所以这种泵称为离心泵。

离心泵的应用是很广泛的,在国民经济的许多部门要用到它。

在给水系统中几乎是不可缺少的一种设备,如若把自来水管网当作人身的血管系统,那么离心泵就是压送血液的心脏。

由于离心泵是一种重要的设备,而且它的运转要消耗大量的动力!为了合理,经济的选择和使用水泵,以保证水厂供水,就必须对离心泵的工作原理和基本性能等方面有所了解。

一、离心泵的基本构造是由六部分组成的离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。

1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。

叶轮上的内外表面要求光滑,以减少水流的摩擦损失。

2、泵体也称泵壳,它是水泵的主体。

起到支撑固定作用,并与安装轴承的托架相连接。

3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。

滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。

太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封环又称减漏环。

叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。

为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。

6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。

填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。

始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。

所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。

二、离心泵的过流部件离心泵的过流部件有:吸入室,叶轮,压出室三个部分。

叶轮室是泵的核心,也是流部件的核心。

泵通过叶轮对液体的作功,使其能量增加。

叶轮按液体流出的方向分为三类:(1)径流式叶轮(离心式叶轮)液体是沿着与轴线垂直的方向流出叶轮。

(2)斜流式叶轮(混流式叶轮)液体是沿着轴线倾斜的方向流出叶轮。

(3)轴流式叶轮液体流动的方向与轴线平行的。

叶轮按吸入的方式分为二类:(1)单吸叶轮(即叶轮从一侧吸入液体)。

(2)双吸叶轮(即叶轮从两侧吸入液体)。

叶轮按盖板形式分为三类:(1)封闭式叶轮。

(2)敞开式叶轮。

(3)半开式叶轮。

其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶轮均属于这种形式。

三、离心泵的工作原理离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。

水泵在工作前,泵体和进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。

水原的水在大气压力(或水压)的作用下通过管网压到了进水管内。

这样循环不已,就可以实现连续抽水。

在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故!离心泵的种类很多,分类方法常见的有以下几种方式1按叶轮吸入方式分:单吸式离心泵双吸式离心泵。

2按叶轮数目分:单级离心泵多级离心泵。

3按叶轮结构分:敞开式叶轮离心泵半开式叶轮离心泵封闭式叶轮离心泵。

4按工作压力分:低压离心泵中压离心泵高压离心泵。

5按泵轴位置分:卧式离心泵边立式离心泵。

四、下面介绍离心泵的几条重要的性能曲线。

水泵的性能参数如流量Q扬程H轴功率N转速n效率η之间存在的一定的关系。

他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的性能曲线。

水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

A、流量—扬程特性曲线它是离心泵的基本的性能曲线。

比转速小于80的离心泵具有上升和下降的特点(既中间凸起,两边下弯),称驼峰性能曲线。

比转速在80~150之间的离心泵具有平坦的性能曲线。

比转数在150以上的离心泵具有陡降性能曲线。

一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

B、流量—功率曲线轴功率是随着流量而增加的,当流量Q=0时,相应的轴功率并不等于零,而为一定值(约正常运行的60%左右)。

这个功率主要消耗于机械损失上。

此时水泵里是充满水的,如果长时间的运行,会导致泵内温度不断升高,泵壳,轴承会发热,严重时可能使泵体热力变形,我们称为“闷水头”,此时扬程为最大值,当出水阀逐渐打开时,流量就会逐渐增加,轴功率亦缓慢的增加。

C、流量—效率曲线它的曲线象山头形状,当流量为零时,效率也等于零,随着流量的增大,效率也逐渐的增加,但增加到一定数值之后效率就下降了,效率有一个最高值,在最高效率点附近,效率都比较高,这个区域称为高效率区。

五、合理配置、安全运行、优质供水以上四个方面了解了离心泵构造,工作原理、特性曲线以后,如何合理配置电机水泵的功率,是保证水泵的安全运行,优质供水,降低生产成本的关键,合理配置水泵功率,发挥水泵最佳工作区域的安全运行,我厂供水的实际情况,足已说明设备合理配置的重要性、可靠性和经济性。

1、机泵设备合理配置的重要性。

水厂的主要任务是保证全市人民的生产和生活用水,南厂原来日最大供水量90万吨,进水量、出水量能满足地区压力,但最近十年时间,随着市政动迁,用水大户的迁移,供水量日趋减少,随着人民生活质量提高,对水质的需求越来越高,出厂水达到0.3NTU,如何确保优质供水,企业采取了一系列措施:(a)调整机泵设备的合理配置,实行人机最佳组合。

(b)加大科技创新,投入大量的资金改造原来落后的净水设备。

(C)投入资金、改造旧设备、老管网,提高水力条件,安装静态混合器等。

(D)安装四十台仪表,运用现代化监测系统,对水质进行全过程的监测和控制,确保优质水。

这些措施充分说明了机泵设备和净水设备合理配置的重要性。

2、机泵设备安全运行的可靠性。

为了确保机泵设备安全运行,企业对机泵设备管理更加规范,每年一次的大检修,每月一次的二级保养,每日一次的一级保养制度,这些ISO9002质量管理,是保证机泵设备安全运行的各项措施,为了保证安全运行的可靠性,操作工人的技术素质的培训、提高,安全操作规程执行都要严格执行,这些安全操作制度的落实,是确保机泵设备运行的可靠性的保证。

3、机泵设备安全运行的经济性。

一谈到经济性就是企业制水的成本,包括电、矾、氯、氨,要以最安全的运行方式,最佳的调度模式,最低的制水成本,来控制企业的经济活动,提高经济效益,在这方面企业已经积累了一定经验。

如:最安全的运行方式,上海的城市供水管网是互通的,有公司中心调度室来控制地区的供水压力,过高容易造成爆管,给人民、国家造成财产损失,水压过低,影响部分用户的用水,造成企业的不良形象。

因此,白天保持地区的压力是30—35千帕左右,夜间地区压力保持在30以下千帕。

根据管网压力的要求,白天开高扬程机泵,夜间开高、低扬程组合,有效地控制了出厂水压力,保证了地区管网和宾馆高楼的用水,采用这些最佳的机泵组合,既节约了电耗,又合理地控制了压力,这些方法保证了机泵设备安全运行的经济性。

随着科技的不断发展,水泵的现代化程度也不断提高,减少了许多的人为管理操作。

现在大多采用计算机监控的自动操作模式,这也就对操作人员的自身素质提出了更高的要求。

因为一台水泵的异常状况会影响到整各供水系统的网络,造成严重的后果。

经过几年的实际工作和理论的学习,把所学的知识运用到实践工作中去,合理安排好水量的分配和调度,利用各台水泵的特性使用最少的功率达到水泵的最大出水量,达到最佳运行状态。

并做到安全,优质,低耗供水!(1)检查离心泵管路及结合处有无松动现象。

用手转动离心泵,试看离心泵是否灵活。

2)向轴承体内加入轴承润滑机油,观察油位应在油标的中心线处,润滑油应及时更换或补充。

(3)拧下离心泵泵体的引水螺塞,灌注引水。

(4)关好出水管路的闸阀和出口压力表。

(5)点动电机,试看电机转向是否正确。

6)开动电机,当离心泵正常运转后,打开出口压力表视其显示出适当压力后,逐渐打开闸阀,同时检查电机负荷情况。

(7)尽量控制离心泵的流量和扬程在标牌上注明的范围内,以保证离心泵在最高效率点运转,才能获得最大的节能效果。

(8)离心泵在运行过程中,轴承温度不能超过环境温度35℃,最高温度不得超过80℃。

(9)如发现离心泵有异常声音应立即停车检查原因。

(10)离心泵要停止使用时,先关闭闸阀、压力表,然后停止电机。

(11)离心泵在工作第一个月内,经100小时更换润滑油,以后每个500小时,换油一次。

(12)经常调整填料压盖,保证填料室内的滴漏情况正常。

(13)定期检查轴套的磨损情况,磨损较大后应及时更换。

(14)离心泵在寒冬季节使用时,停车后,需将泵体下部放水螺塞拧开将介质放净。

防止冻裂。

(15)离心泵长期停用,需将泵全部拆开,擦干水分,将转动部位及结合处涂以油脂装好,妥善保管。

相关文档
最新文档