离心泵的结构与工作原理

合集下载

离心式水泵结构、原理

离心式水泵结构、原理

一、离心泵的基本构造是由六部分组成的离心泵的基本构造是由六部分组成的分别是叶轮、泵体、泵轴、轴承、密封环、填料盒1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。

叶轮上的内外表面要求平滑,以减少水流的磨擦损失。

2、泵体也称泵壳,它是水泵的主体。

起到支撑固定作用,并与安装轴承的托架相连接。

3、泵轴的作用是借联轴器和电动机相连接,将电动机的转矩传给叶轮,所以它是传递机械能的主要部件。

4、轴承是套在泵轴上支撑泵轴的构件,有转动轴承和滑动轴承两种。

转动轴承使用牛油作为润滑剂加油要适当一般为2/3-3/4的体积太多会发热,太少又有响声并发热!滑动轴承是使用的是透明油作为润滑剂的,加油到油位线。

太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,假如高了就要查找原因(是否有杂质、油质是否发黑,是否进水)并及时处理!5、密封环又称减漏环。

叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳磨擦产生磨损。

为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外助结合处装有密封环,密封的间隙保持在0.25-1.10毫米之间为宜。

6、填料盒主要由填料、水封环、填料筒、填料压盖,水封管组成。

填料盒的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进进到泵内。

始终保持水泵内的真空!当泵轴与填料磨擦产生热量就要靠水封管住水到1水封圈内使填料冷却!保持水泵的正常运行。

所以在水泵的运行巡回检查过程中对填料盒的检查是特别要留意!在运行600个小时左右就要对填料进行更换。

二、离心泵的过流部件离心泵过流部件有:吸进室、叶轮、压出室三个部分。

叶轮室是泵的核心,也是流部件的核心。

泵通过叶轮对液体的作功,使其能量增加。

离心泵的结构和工作原理

离心泵的结构和工作原理

离心泵的结构和工作原理离心泵是一种流体泵,它基于离心力将液体从入口吸入泵内,经过离心运动,最终从出口处排出。

离心泵的主要工作方式是使用一个旋转的叶轮,通过离心力将液体推向泵的出口。

与其他类型的泵相比,离心泵的结构简单,易于维护和使用,并且在一些特定行业中被广泛应用,如水处理,油田开采,化工和建筑等领域。

下面将对离心泵的结构和工作原理进行详细介绍。

结构离心泵主要由以下几个部分组成:1. 泵轴:泵轴是和泵轴承配对的中心轴,同时也是连接泵壳和电机的组件。

2. 泵壳:泵壳是包裹叶轮和进口的静态部分,根据泵的类型和模型不同,泵壳也有不同的构造设计。

3. 叶轮:叶轮是离心泵的核心组件,其形状和大小取决于泵壳的大小和流量要求。

当叶轮旋转时,离心力会推动液体流向排出口。

4. 前盖和后盖:前盖和后盖是叶轮和泵轴之间的密封件,可以防止液体泄漏。

它们通常位于泵轴的一侧。

5. 轴承:轴承是支撑泵轴的组件,分为前后两个轴承。

前置轴承通常位于前盖与泵轴之间,后置轴承通常位于后盖与泵轴之间。

工作原理当电机启动时,泵轴开始旋转,叶轮随之旋转。

液体通过进口处进入泵壳,进入叶轮,并夹带叶轮的旋转动力。

绕着叶轮旋转的液体产生离心力,液体被推向泵壳的出口处。

在推进液体的时候,离心力会将液体压缩以增加流体压力。

压缩后的液体最终流出泵壳的排放口。

值得注意的是,在使用离心泵的过程中,流量和扬程是最重要的指标。

流量是指泵每单位时间内输送的液体体积,而扬程是指泵能提供的液位高度差。

泵的总扬程等于泵之前的高度差和泵内部的压力差。

总结离心泵是一种常见的机械泵,其结构简单,维护容易,在水处理、油田开采、化工和建筑等领域都有应用。

离心泵的工作原理是基于旋转的叶轮产生的离心力将液体推向泵的出口。

流量和扬程是离心泵运行的两个最重要的指标,对于离心泵的选择和使用至关重要。

离心泵的应用范围很广,适用于各种流体输送场合,如水、废水、油、化工品等。

以下是几个具体的应用场景:1. 水泵系统在自来水厂、工业用水和污水处理等场合,离心泵经常用于输送水或废水。

离心泵的结构及工作原理

离心泵的结构及工作原理

离心泵的结构及工作原理
离心泵是一种常用的流体机械设备,主要用于输送流体,具体工作原理如下:
1. 结构:
离心泵主要由以下几个部分组成:
a) 泵壳:由进口和出口两个端口组成,用于容纳并导向流体。

b) 叶轮:固定在泵轴上,其叶片以离散的方式排列,通过旋
转来产生离心力。

c) 泵轴:连接电机和叶轮的部分。

d) 密封件:用于防止泵内外流体泄漏。

2. 工作原理:
当离心泵启动后,电机带动泵轴旋转,叶轮也随之旋转。

流体通过进口进入泵壳,被叶轮的叶片迅速卷起,并随着叶轮的旋转产生离心力。

离心力使得流体获得能量,并形成一个高速旋转的涡流。

流体的动能转化为压力能,使得流体被推向泵壳的出口。

最后,流体从出口排出,完成泵的输送功能。

总结起来,离心泵的工作原理就是通过旋转的叶轮产生离心力,将流体加速并生成高速旋转的涡流,从而使流体获得能量并被推向出口。

离心泵的结构设计使其具有高效、可靠、稳定的性能,广泛应用于工业、农业、建筑等领域。

离心泵原理与结构

离心泵原理与结构

3. 离心泵结构
3.5 轴承箱
3.5.1 轴承箱作用 轴承的作用是对泵轴进行支撑,实质是能够承担径向载荷。 也可以理解为它是用来固定轴的,使轴只能实现转动,而控 制其轴向和径向的移动。 轴承箱则用来固定轴承,同时作为装载轴承润滑油的容器。
3. 离心泵结构
3.5.2 轴承润滑
离心泵大部分采用滚动轴承,而滚动轴承的元件(滚动 体、内外圈滚道及保持器)之间并非都是纯滚动的。由于在 外负荷作用下零件产生弹性变形,除个别点外,接触面上均 有相对滑动。滚动轴承各元件接触面积小,单位面积压力往 往很大,如果润滑不良,元件很容易胶合,或因摩擦升温过 高,引起滚动体回火,使轴承失效,所以轴承时刻都要处于 油膜的涂覆之中。 轴承润滑通常用油槽或油雾进行润滑,为了保证滚动体和 滚道接触面间形成一定厚度的油膜,采用中黏度的涡轮油 (国际标准化组织68级)较适宜。在油槽润滑中,轴承部分浸 在油中,油浸润高度以没过轴承底的50%为宜。如果超过50 %,过量的油涡流会使油温上升,油温升高会加速润滑荆的 氧化,从而降低润滑性能;如果低于50%,则油对轴承的冲 洗作用降低,润滑效果不好。
N:泵输入功率 (轴功率) Ne:液体得到功率(有效功率) 两者的差别在于损失,包括流动损失、泄漏、机械摩擦等。
2. 离心泵主要工作参数:
2.6 汽蚀余量
离心泵的汽蚀余量是表示泵的性能的主要参数,• 用符号Δhr 表示,单位为米液柱。

有效汽蚀余量
液体流自吸液罐,经吸入管路到达泵吸入口后• ,所富余的高出汽化压力 的那部分能头。用Δha表示。
1. 离心泵工作原理 1.3 离心泵工作动画演示
2. 离心泵主要工作参数:
流量 Q



扬程 H 转速 n 功率 N 效率η 气蚀余量(Δhr)

离心泵结构及工作原理

离心泵结构及工作原理

离心泵结构及工作原理离心泵是一种常见的动力机械设备,广泛应用于工业生产和市政建设中。

它的结构简单,工作原理清晰,具有高效、稳定和可靠的特点。

离心泵的结构主要由进口、出口、叶轮、泵壳和轴等组成。

进口是泵的入口,通常通过管道连接到液体源头,起到引导液体进入泵的作用;出口是泵的出口,通过管道将液体输送到指定的地方;叶轮是离心泵的核心部件,它由许多叶片组成,通过旋转来产生离心力,将液体从进口处吸入并排出到出口处;泵壳是叶轮的外壳,起到固定叶轮和导向液体的作用;轴是连接叶轮和电机的部件,通过电机的驱动使叶轮旋转。

离心泵的工作原理是基于离心力的作用。

当电机驱动轴旋转时,叶轮也随之旋转。

叶轮的旋转产生离心力,使液体从进口处被吸入叶轮内部,然后被离心力推动到泵壳内部,最终从出口处排出。

在液体通过叶轮的过程中,由于叶轮的旋转速度较高,液体受到离心力的作用,逐渐加速并获得较大的动能。

当液体从叶轮排出时,其速度逐渐减小,动能被转化为压力能,使液体能够达到一定的流量和压力。

离心泵的工作原理可以简单地用以下几个步骤来描述:首先,当电机启动时,轴开始旋转,叶轮也随之旋转;接着,液体通过进口进入泵壳,并被叶轮的叶片吸入叶轮内部;然后,由于叶轮的旋转,离心力作用下,液体被迅速推向泵壳的出口处;最后,液体从出口处排出,完成一次泵送过程。

离心泵的工作原理基于物质运动的基本原理,具有许多优点。

首先,离心泵的结构简单,易于制造和安装;其次,离心泵的工作效率高,能够快速输送大量的液体;此外,离心泵的运行稳定,噪音低,可靠性高,使用寿命长;最后,离心泵适用于各种介质,可以泵送液体、气体和固体颗粒。

离心泵是一种应用广泛的动力机械设备,其结构简单、工作原理清晰。

通过利用离心力的作用,离心泵能够高效、稳定地将液体从进口处吸入并排出到出口处。

离心泵具有许多优点,如结构简单、工作效率高、稳定可靠等,因此在工业生产和市政建设中得到了广泛的应用。

离心泵的工作原理

离心泵的工作原理

离心泵的工作原理离心泵是一种常见的动力机械设备,广泛应用于工业、建筑、农业等领域。

它通过离心力将液体从低压区域输送到高压区域,实现液体的输送和增压。

下面将详细介绍离心泵的工作原理。

1. 离心泵的结构组成离心泵主要由泵体、叶轮、轴、轴承、密封装置等组成。

泵体是离心泵的主要部件,通常由铸铁、不锈钢等材料制成,用于容纳液体和支撑其他部件。

叶轮是离心泵的核心部件,它通过旋转产生离心力,将液体推向出口。

轴是连接电机和叶轮的部件,承受着叶轮的转动力和液体的压力。

轴承则起到支撑轴的作用,减少摩擦和振动。

密封装置用于防止泵体和轴之间的液体泄漏。

2. 离心泵的工作原理离心泵的工作原理基于离心力的作用。

当离心泵启动时,电机带动轴旋转,进而带动叶轮旋转。

叶轮的旋转产生离心力,使液体在叶轮的作用下产生离心力推向出口。

液体在进口处进入泵体,经过叶轮的旋转,被推向出口处,同时叶轮的旋转也会产生负压,使进口处形成真空,从而吸入更多的液体。

离心泵的出口处通常连接管道,将液体输送到需要的位置。

3. 离心泵的工作过程离心泵的工作过程可以分为进口过程、压力增加过程和出口过程三个阶段。

(1)进口过程:当离心泵启动后,液体从进口处进入泵体。

由于叶轮的旋转,液体被吸入叶轮中心,并随着叶轮的旋转逐渐向外推移。

(2)压力增加过程:当液体被推向叶轮的外缘时,离心力的作用使液体的动能转化为压力能。

液体的压力逐渐增加,达到泵的额定压力。

(3)出口过程:当液体达到一定压力后,通过出口管道排出离心泵。

液体的压力和流量取决于泵的工作状态和设计参数。

4. 离心泵的特点和应用领域离心泵具有结构简单、体积小、重量轻、效率高等特点,广泛应用于工业、建筑、农业等领域。

它可以输送各种液体,如水、油、酸碱溶液等,并可根据不同的工况要求选择不同类型的离心泵。

离心泵的应用领域包括供水、排水、循环冷却水、化工输送、石油化工、农田灌溉等。

总结:离心泵通过离心力将液体从低压区域输送到高压区域,实现液体的输送和增压。

离心泵的结构及工作原理

离心泵的结构及工作原理
多级离心泵除了具有单级离心泵的优点之外, 它最 大的优点就是扬程高。多级离心泵的用途十分广泛, 例如, 化肥生产中, 用多级泵将氨水打入碳化塔, 由氨 水吸收加压氮氢混合气中的二氧化碳, 生产出碳酸氢 铵;锅炉的给水;山区的深井提灌等。
(5)、屏蔽式离心泵 如图1-7所示
屏蔽式离心泵的特点
化工厂常用的屏蔽泵, 属于单级悬臂式离心泵, 其结构图如图1-7所示; 屏蔽泵又称无填料泵, 这种泵用于输送易燃、易爆、有毒、有放射性及
二、离心泵的工作原理、 分类、型号及结构
(一)、离心泵的装置及工 作原理
1.为了使离心泵能正常工作, 离心泵必须配备一定的管路 和管件,这种配备有一定管 路系统的离心泵称为离心泵 装置。图1—1所示为离心泵 的一般装置示意图,主要有 底阀、吸入管路、出口阀、 出口管线等。
2.离心泵的工作原理
(4)、多级离心泵 如图1-4所示;
人们把若干个叶轮安装在同一个泵轴上, 每个叶轮 与其外周的液体导流装置形成一个独立的工作室, 这 个工作室与叶轮组成的系统可以认为是一个单级离心 泵, 每个工作室前后串联, 就构成了多级泵。与多个单 级离心泵串联相比, 多级泵具有效率高、占地面积小、 操作费用低、便于维修等优点。该泵流量范围为5— 720m3/h, 扬程最高达2800m。
贵重液体, 也可选作高压设备的循环用泵。其结构特点使泵的叶轮与电 机的转子在同一根轴上, 装在同一格密封的壳体内, 没有联轴器和封装 置, 从根本上消除了液体外漏。为了防止输送液体昱电气部分接触, 电 机的定子和转子分别用金属薄壁圆筒(屏蔽套)于液体隔离。屏蔽套 的材料应能耐腐蚀, 并具有非磁性和高电阻率, 以减少电动机因屏蔽套 存在而产生额外功率消耗。为了不干扰电机的磁场, 这种金属薄臂圆筒 采用奥氏体系非磁性材料(1Gr18Ni9Ti)制成。由于有屏蔽套, 增加 了电机转子和定子的间隙, 使电机效率下降, 因此, 要求屏蔽套的壁要 很薄, 一般为0.3—0.8mm. 屏蔽泵具有结构简单紧凑, 零件少, 占地少, 操作可靠, 长期不要检修 等优点。缺点是效率低, 比一般离心泵低26%—50%。

离心泵的构造及工作原理

离心泵的构造及工作原理

离心泵的构造及工作原理离心泵是一种常见且广泛应用于工业领域的泵类设备,其通过离心力将液体从一个地方运送到另一个地方。

离心泵的构造和工作原理相对简单,但却能够实现高效的输送液体的功能。

离心泵主要由以下几个部分构成:泵体、叶轮、轴、轴承和密封装置。

泵体是离心泵的主体部分,通常由铸铁或不锈钢制成,具有强度和耐腐蚀性。

泵体内设置有一个叶轮,叶轮上有多个叶片,利用叶片的旋转运动产生离心力。

轴是将电机的旋转动力传递给叶轮的关键部件,通常由不锈钢制成,具有足够的强度和刚性。

轴承则用于支撑和定位轴的运动,并减少由于轴的旋转而产生的摩擦和振动。

最后,密封装置用于防止液体泄漏到泵体外部,并保持较高的泵效率。

离心泵的工作原理基于离心力的作用。

当电机启动后,轴开始旋转,进而驱动叶轮一起旋转。

液体通过泵体的吸入口进入泵体内部,并被叶轮的叶片抛到叶轮的外缘。

叶片的旋转产生离心力,将液体从叶轮的外缘推向泵体的出口。

液体在泵体内部的压力增加,推动液体通过出口流出。

离心泵的性能受到多个因素影响。

其中,叶轮的几何形状和旋转速度是最主要的影响因素之一。

叶轮的几何形状会直接影响液体在泵内的流动特性和泵的压力效率。

叶轮旋转的速度越高,产生的离心力越大,从而能够推动更多液体通过泵体。

此外,离心泵的选型和安装也是影响泵性能的重要因素。

选型时需要根据所输送液体的性质、流量和扬程等参数来选择合适的泵型和规格。

安装过程中,要注意泵体与管道的连接密封、泵体的固定和轴的对中等细节问题,以确保泵能正常运行并发挥最佳效果。

离心泵的应用范围非常广泛,包括供水、排水、循环冷却、石油化工、化肥生产、冶金工业等。

离心泵不仅能够输送清水,还可以输送含有固体颗粒、高粘度液体、腐蚀性液体和高温液体等各种不同性质的介质。

总结起来,离心泵是一种通过离心力将液体从一个地方输送到另一个地方的设备。

其构造简单,包括泵体、叶轮、轴、轴承和密封装置等基本部件。

工作原理是利用叶轮的旋转产生离心力,推动液体从泵体的吸入口进入泵体内部,然后从出口流出。

离心泵工作原理

离心泵工作原理

离心泵工作原理离心泵是一种常见的机械设备,广泛应用于工业生产、建筑工程、水处理、农业灌溉等领域。

它通过离心力将液体从低压区域输送到高压区域,实现液体的输送和增压。

下面将详细介绍离心泵的工作原理。

一、离心泵的结构组成离心泵主要由以下几个部分组成:1. 泵壳:离心泵的外壳,用于容纳和固定其他部件。

2. 叶轮:位于泵壳内的旋转部件,由叶片和轮盘组成。

叶轮的旋转产生离心力,推动液体流动。

3. 泵轴:连接电机和叶轮的轴,传递电机的动力给叶轮。

4. 导叶环:位于叶轮周围的环形部件,用于引导流体进入叶轮。

5. 泵体:泵壳和叶轮的总称,也是液体流动的主要通道。

二、离心泵的工作原理离心泵的工作原理基于离心力的作用。

当电机启动后,通过泵轴将动力传递给叶轮,使叶轮高速旋转。

液体从进口管道进入泵体,经过导叶环的引导,进入叶轮。

在叶轮的作用下,液体被甩到离心泵壳内壁,并形成高速旋转的液体环流。

由于离心力的作用,液体的压力增加,同时叶轮的旋转也产生了一个低压区域。

液体在高压区域受到离心力的作用,被推向出口管道,流动到需要的位置。

同时,低压区域会吸引进口管道中的液体,实现液体的连续输送。

三、离心泵的特点和应用离心泵具有以下特点:1. 输送能力强:离心泵能够输送大量的液体,适用于大流量的工作场景。

2. 压力稳定:离心泵能够提供稳定的压力,适用于长距离输送和高压输送。

3. 结构简单:离心泵的结构相对简单,易于维护和操作。

4. 适应性强:离心泵适用于各种液体,包括清水、污水、化学液体等。

离心泵广泛应用于各个领域,包括但不限于以下几个方面:1. 工业生产:离心泵可用于输送原料、处理废水、增压供水等。

2. 建筑工程:离心泵可用于建筑物的给排水系统、消防系统等。

3. 水处理:离心泵可用于水处理厂的供水、排水和循环系统。

4. 农业灌溉:离心泵可用于农田灌溉、水源提取等。

总结:离心泵通过离心力将液体从低压区域推向高压区域,实现了液体的输送和增压。

离心泵的工作原理及主要部件性能参数

离心泵的工作原理及主要部件性能参数

离心泵的工作原理及主要部件性能参数离心泵是一种常见的工业设备,广泛应用于水处理、化工、石油、能源等领域。

它通过离心力将液体从低压区域输送到高压区域,实现液体的输送和增压。

下面将详细介绍离心泵的工作原理和主要部件的性能参数。

一、离心泵的工作原理离心泵的工作原理基于离心力的作用。

当电机驱动叶轮高速旋转时,液体被吸入泵的中心,并沿着叶轮的叶片被甩离。

这个过程中,液体受到离心力的作用,从而产生压力,推动液体流动。

离心泵通常由进口、叶轮、出口和密封装置等部件组成。

1. 进口:进口是离心泵的入口,用于吸入液体。

进口通常具有一定的尺寸和形状,以确保液体能够顺利进入泵体。

2. 叶轮:叶轮是离心泵的核心部件,也是产生离心力的关键。

叶轮通常由多个叶片组成,当电机驱动叶轮旋转时,液体被甩离叶轮,产生离心力。

3. 出口:出口是离心泵的出口,用于将液体排出。

出口通常具有一定的尺寸和形状,以确保液体能够顺利流出泵体。

4. 密封装置:密封装置用于防止液体泄漏。

常见的密封装置包括填料密封和机械密封。

填料密封通过填充密封材料来实现密封,而机械密封则通过机械装置来实现密封。

二、离心泵的主要部件性能参数离心泵的性能参数对于选择合适的泵型和使用情况非常重要。

以下是离心泵的主要部件性能参数的详细介绍:1. 流量:流量是指单位时间内通过泵的液体体积。

它通常以立方米每小时(m³/h)或加仑每分钟(GPM)为单位。

流量的大小决定了泵的输送能力,对于不同的应用场景,需要选择适当的流量。

2. 扬程:扬程是指液体从进口到出口所需的总能量。

它通常以米(m)或英尺(ft)为单位。

扬程的大小决定了泵的输送距离和输送高度,对于不同的应用场景,需要选择适当的扬程。

3. 功率:功率是指泵所需的能量。

它通常以千瓦(kW)或马力(HP)为单位。

功率的大小决定了泵的能耗和驱动能力,对于不同的应用场景,需要选择适当的功率。

4. 效率:效率是指泵的能量转化效率。

离心泵的工作原理和结构

离心泵的工作原理和结构

离心泵的工作原理和结构
离心泵是一种利用动能将液体向外循环的机械设备。

它有两个主要部分:旋转机械部件(转子)和固定机械部件(壳体),在外壳的内壁上设有多个进口,多个出口,以及吸入口和排出口。

液体被吸入容器内,并在外壁上转动而沿容器外壁向外流动,最后从出口处抽出,实现液体循环。

转子把机械能转换为流体内能,将压力转换成流动内力,即液体离心力,从而产生液体循环,并将液体带到较高位置。

离心泵的结构由外壳、转子、轴承、密封和叶轮等组成。

外壳是泵体,由最高处的排出口和最底部的吸入口以及中间的一系列出口和入口构成,多数时候外壳是可分离的,只有拆开外壳才能拆卸转子和叶轮。

转子是泵的核心部分,由轴头(轴心)、主轴筒、动叶片和定叶片组成,轴头上安装有衬套和轴承,以传递转子的转动动能。

转子的转动的转动能传到叶轮上,由叶轮向离心力传递,从而使液体产生流动。

轴承是传递转子转动能的重要组成部分,有滚动轴承和滑动轴承等,它不仅传递转动能,还支撑转子,密封用来密封转子和外壳之间的连接部位,防止机械污染物混入容器内,叶轮用来承受离心力的作用,它的结构有内渗式、外吐式、内浸式、外植柱式等,其形状也不同。

离心泵的结构与工作原理(文)

离心泵的结构与工作原理(文)
图l-18(b)为直角式,液体泄漏时通过一个90°的通道,密封 效果比平环式好,应用广泛。
图1—18(c)为迷宫式,密封效果好,但结构复杂,制造困难, 一般离心泵中很少采用。
密封环磨损后,使径向间隙增大,泵的排液量减少,效率降 低,当密封间隙超过规定值时应及时更换。
密封环应采用耐磨材料制造,常用的材料有铸铁、青铜等。
常用的轴封装置有填料密封和机械 密封两种。
(1)填料密封
填料密封指依靠填料和轴(轴套)的外圆表面接触 来实现密封的装置。它由填料箱(又称填料函)、填料、 液封环、填料压盖和双头螺栓等组成,如图1—19所示。
液封环安装时必须对准填料函上的入液口,通过 液封管与泵的出液管相通,引入压力液体形成液封, 并冷却润滑填料。
2. 单级双吸离心泵
单级双吸离心泵相当于两个单级单吸离心泵叶轮组合而成,液 体从叶轮左、右两侧进入叶轮,流量大。
转子为两端支承,泵壳为水平剖分的蜗壳形。两个呈半螺旋形 的吸液室与泵壳一起为中开式结构,共用一根吸液管,吸、排液管 均布在下半个泵壳的两侧,检查泵时,不必拆动与泵相连接的管路。
由于泵壳和吸液室均为蜗壳形,为了在灌泵时能将泵内气体排 出,在泵壳和吸液室的最高点处分别开有螺孔,灌泵完毕用螺栓封 住。
五、离心泵的结构
离心泵的品种很多,各种类型泵的结构虽然不同,但主要零部 件基本相同,主要有泵壳、泵盖、泵体、叶轮、密封环、泵轴、机 封或填料函、联轴器、轴承等。
1. 单级单吸离心泵
单级单吸离心泵结构简单,工作可靠,易于加工制和维护保 养,是目前应用最广泛的一种离心泵。
单级单吸离心泵有前开门式和后开门式两种。前开门式为叶 轮前面为泵盖,后面为泵壳;而后开门式与前开门式相反,叶轮 前面为泵壳,后面为泵盖。

离心泵工作原理

离心泵工作原理

离心泵工作原理离心泵是一种常见的流体输送设备,广泛应用于工业生产、建筑工程、农业灌溉等领域。

它通过离心力将液体从低压区域输送到高压区域,实现了液体的输送和增压。

下面将详细介绍离心泵的工作原理。

1. 离心泵的结构离心泵主要由泵体、叶轮、轴、轴承和密封装置等部分组成。

泵体是离心泵的主体部分,通常由铸铁、不锈钢等材料制成,具有良好的耐腐蚀性和强度。

叶轮是离心泵的核心部件,它通过高速旋转产生离心力,将液体从进口处吸入并向出口处排出。

2. 工作原理离心泵的工作原理基于离心力的作用。

当离心泵启动后,电机带动轴高速旋转,叶轮也随之旋转。

液体通过进口管道进入泵体,然后被叶轮的叶片吸入。

由于叶轮的旋转,液体被迫向外移动,产生了离心力。

离心力使得液体的压力增加,从而将液体推向出口管道,最终实现液体的输送和增压。

3. 叶轮的设计叶轮的设计是离心泵工作原理中的关键因素。

叶轮通常由多个叶片组成,叶片的形状和数量会影响离心泵的性能。

一般来说,叶片越多,离心泵的输送能力越大,但也会增加泵的阻力。

叶轮的形状通常是曲线形状,这样可以减小流体在叶轮上的冲击和损失,提高泵的效率。

4. 泵的启动和停止离心泵的启动通常需要通过电机来实现,电机带动轴和叶轮旋转。

在启动过程中,需要确保泵内没有空气,否则会影响泵的正常工作。

离心泵的停止通常是通过切断电源来实现,停止供电后,泵体内的液体会停止流动。

5. 注意事项在使用离心泵时,需要注意以下几点:- 确保离心泵的进口和出口管道畅通无阻,以免影响泵的工作效果。

- 定期检查离心泵的密封装置,确保泵体内的液体不会泄漏。

- 注意泵的工作温度范围,避免超过泵的承受能力。

- 定期检查泵的轴承和密封装置,确保其正常运转。

总结:离心泵通过离心力将液体从低压区域输送到高压区域,实现了液体的输送和增压。

其工作原理基于叶轮的旋转产生的离心力。

离心泵在工业生产、建筑工程、农业灌溉等领域有着广泛的应用。

在使用离心泵时,需要注意泵的结构、启动和停止方式,以及定期检查和维护等事项,以确保其正常运行和延长使用寿命。

离心泵的基本结构和工作原理、水泵的日常保养及维护

离心泵的基本结构和工作原理、水泵的日常保养及维护

离心泵的基本结构和工作原理,水泵的日常保养及维护一、离心泵的基本结构与工作原理1、离心泵水泵是依靠叶轮的高速旋转来使流体获得较大的动能,并依靠流道口的蜗壳断面变化使流体的动能转化为压力能,水流在叶轮中的流动主要是收到离心力的作用。

离心式泵工作示意图2、离心泵的基本结构主要部件包括:叶轮、泵轴、泵壳、泵座、填料盒(轴封装置)、轴承座等。

几种典型离心泵二、水泵的日常保养及维护1、经常检查轴承润滑的数量和质量,及时补充油量和变质的油,同时要按规程定期更换润滑油,及时清洗补油器内外。

2、检查填料(机封)磨损情况。

使填料的滴水在30-60m1∕min,机封无漏泄漏现场。

同时集水槽排水应畅通,不存在积水现象。

3、经常检查地脚螺栓和管道的连接螺栓有无松动现象,并及时紧固,处理不了应及时上报。

4、测量水泵机组震动情况和轴承温度。

5、检查阀门的密封,做到不漏水、不漏油、不漏气、无锈迹。

6、经常注意仪表的指示是否正确,发现仪表失灵或损坏应及时上报。

7、设备外观做到防腐有效,铜铁分明,无锈蚀,不漏水,不漏油,不漏电。

8、各部零件应完整,设备铭牌、标志牌应清洁明晰。

♦保持架断裂三、离心泵常见故障及处理方法1、启动后不出水的原因及排除方法3、水泵功率消耗过大的原因及排除方法故障摩因掉除方决I 水第、电机的地脚・桂松动拧素地,・母叶轮擅坏或局部堵东更排叶融,清K杂物泵”学■或轴承担坏校正累M,支典轴承取轴■的时中性Ie,新校∙收触・噢水水位大高.见水系统篇■,***<久性樊高发水池水位,幢鹿址水系统的承, _________________________ 1叶轮平皆性於"登速行♦平街送*叶轮螺母松动_______________ ——.5、轴承发热的原因及排除方法6、填料函发热或漏水过大的原因及排除方法7、运行中突然停止出水的原因及排除方法。

离心泵的结构和工作原理

离心泵的结构和工作原理

第二章流体输送机械流体输送机械——指向流体供给机械能的设备。

泵——输送液体的设备压缩机——输送气体的设备流体输送机械分类:1.叶轮式(动力式)—依靠高速旋转的叶轮给液体动能,后再转变为静压能;离心泵﹑轴流泵2.容积式(正位移式)—依靠机械密封的工作空间作周期性的变化,挤压流体,以增加流体的静压能;往复泵﹑旋转泵3.流体动力作用式—利用流体流动时,动能与静压能相互转换来吸送流体;喷射泵气体输送机械:通风机,鼓风机,压缩机,真空泵第一节离心泵一、离心泵的结构和工作原理离心泵具有结构简单、流量大且均匀,操作方便的优点。

1.结构——由一高速旋转的叶轮和蜗状泵壳所组成。

2.工作原理(1)离心泵的操作灌液——克服气缚现象启动——先关闭出口阀门,再合闸运转——逐步开启出口阀门,调节流量停车——先关闭出口阀门,再拉闸(2)工作原理:1)液体的排出2)液体的吸入离心泵能不断地输送液体,主要是依靠泵内叶轮的高速旋转和逐渐扩大的通道,液体在泵壳内因离心力作用而获得了能量(动能)以提高压强。

(3)气缚现象——若离心泵在启动前,未灌满液体,壳内存在空气,使密度减小,产生的离心力就小,此时在吸入口所形成的真空度不足以将液体吸入泵内。

所以尽管启动了离心泵,但不能输送液体。

二、离心泵的主要性能参数离心泵铭牌上标注的参数——1.流量qV(送液能力):指单位时间内泵能输送的液体量[L/s,m3/h]2.扬程He(泵的压头):指单位重量液体流径泵后所获得的流量。

[m液柱]测定压头的实验:在1-1与2-2截面间列伯努利方程注意:泵的扬程不能仅仅理解为升举高度。

3.功率和效率(1)有效功率:单位时间内液体由泵实际得到的功。

Pe=HeqVg [w](2)轴功率:泵轴从电动机得到的实际功率Pa(3)效率1)容积损失——由泵的泄漏所造成的。

a. 离开叶轮的高压液体,在吸入口与泵壳间的间隙回流到吸入口;b. 液体由轴套处,流出外界。

因此泵所排出的液体量小于泵的吸入量。

简述离心泵结构与工作原理

简述离心泵结构与工作原理

简述离心泵结构与工作原理
离心泵是一种常见的水泵类型,它的工作原理是利用离心力和动能转换来将液体送出。

离心泵的结构主要由以下几个部分组成:
1. 泵壳:离心泵通常具有一个圆筒形的泵壳,用于封装和支撑其他部件,并提供流体的进出口。

2. 叶轮:叶轮是离心泵的关键部件,它通过旋转产生离心力,并将液体向外抛出。

叶轮通常由多个弯曲的叶片组成,可以分为封闭式叶轮和开放式叶轮两种类型。

3. 泵轴:泵轴是叶轮的转动轴,将电机或其他动力源的转动力传递给叶轮。

4. 导叶:导叶位于叶轮后方,它的作用是将离心泵进口的流体引导到叶轮中,增加进口流速,提高叶轮的效率。

5. 泵座和机座:泵座和机座用于支撑泵壳和电机等其他部件,同时提供了组装和维修的方便。

离心泵的工作原理如下:
1. 进口压力:当液体从进口进入泵内时,由于进口管道较长,形成一定的进口压力。

如果进口液体的压力较高,可以降低泵的吸入高度,从而减少泵的功耗。

2. 离心力:电机或其他动力源带动泵轴旋转,使叶轮也随之旋转。

液体被叶轮的离心力挤压,同时叶轮的旋转还可以增加液体的流速和动能。

3. 出口压力:当液体被叶轮抛出后,由于叶轮的旋转和泵壳的形状,形成一定的出口压力。

出口管道的直径较小,可提高出口液体的压力。

4. 内部流动:液体在离心泵内部的流动主要由泵壳、叶轮、导叶和泵壳的封闭性等因素影响,使液体按照一定的流动路径通过离心泵的进出口。

通过上述工作原理,离心泵可以将液体从低压区域输送到高压区域,适用于各种水处理、供水和排水等领域。

离心泵的工作原理

离心泵的工作原理

离心泵的工作原理标题:离心泵的工作原理引言概述:离心泵是一种常见的水泵,通过离心力将液体送至出口处。

其工作原理基于离心力的作用,通过旋转叶轮产生离心力,从而将液体抛出泵体。

本文将详细介绍离心泵的工作原理。

一、离心泵的结构1.1 泵体:离心泵的主体部分,通常由金属或塑料制成,用于容纳叶轮和液体。

1.2 叶轮:离心泵的关键部件,通过旋转产生离心力,将液体送至出口处。

1.3 泵轴:连接电机和叶轮的部件,传递旋转动力。

二、离心泵的工作原理2.1 吸入液体:当离心泵启动时,叶轮开始旋转,产生负压,使液体从进口处被吸入泵体内。

2.2 旋转叶轮:叶轮旋转时,液体被抛出叶轮,形成离心力,加速液体流动。

2.3 排放液体:液体在叶轮作用下被送至出口处,完成液体输送的过程。

三、离心泵的性能参数3.1 流量:离心泵每单位时间内能输送的液体体积。

3.2 扬程:离心泵能够克服液体重力的高度。

3.3 效率:离心泵输送液体时的能量转化效率。

四、离心泵的应用领域4.1 工业:离心泵广泛应用于工业生产中,用于输送液体、冷却系统等。

4.2 农业:离心泵用于灌溉、排水等农业领域。

4.3 建筑:离心泵用于建筑排水、供水等领域。

五、离心泵的维护与保养5.1 定期检查:定期检查叶轮、泵体等部件是否磨损,及时更换。

5.2 清洗保养:定期清洗泵体内的杂质,保持泵的通畅。

5.3 润滑维护:保持泵轴的润滑,延长离心泵的使用寿命。

结语:离心泵作为一种常见的水泵,其工作原理简单明了,通过离心力将液体输送至出口处。

了解离心泵的结构和工作原理,有助于更好地应用和维护离心泵,确保其正常运行。

希望本文能够帮助读者更深入地了解离心泵的工作原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ne N
2.2.2 离心泵的特性曲线
离心泵的理论特性曲线
图2-16 离心泵的理论特性曲线
离心泵的实测特性曲线
图2-17 14SA型离心泵的特性曲线
2.3 叶轮叶型对离心泵性能的影响
前向叶型的泵所需要的 轴功率随流量的增加而增加 得很快。因此这类泵在运行 中增加流量时,原动机超载 的可能性比径向叶型的泵大 得多,而后向叶型的叶轮一 般不会发生原动机的超载现 象。这也是后向式叶型被离 心泵广泛采用的原因之一。
离心泵的有效功率
输入功率是由原动机(如电机等)传到泵轴上的功率, 也称为轴功率,用符号N表示。
泵的输出功率又称为有效功率,表示单位时 间内流体从泵中所得到的实际能量,它等于重量 流量与扬程的乘积。 有效功率用Ne表示
N e QH Qp
效率
离心泵的效率用来表示输入的轴功率N被流体 利用的程度,即用有效功率Ne与轴功率N之比来 表示效率。效率用符号η 表示。
填料式轴封
压盖填料盒示意图
填料盒 1—轴封套 2—填料 3—水封管
水封环 其中1为环圈空间示意图
2.1.1 离心泵的基本构造
填料又称“盘根”,在轴封装置中起阻水隔气的密封 作用。常用的填料是浸油、浸石墨的石棉绳填料。 填料压盖的作用是压紧填料,它对填料的压紧程度可 通过拧松或拧紧压盖上的螺栓来进行调节。使用时,压盖 的松紧要适宜,压得太松,则达不到密封效果;压得太紧, 则泵轴与填料的机械磨损大,消耗功率大,如果压得过紧, 则有可能造成抱轴现象,产生严重的发热和磨损。 一般地,压盖的松紧以水能通过填料缝隙呈滴状渗出 为宜(约每分钟泄漏60滴)。 水封管与水封环的作用是将泵内的压力水引入填料与 泵轴间的缝隙,起到引水冷却与润滑的作用(有的水泵利 用在泵壳上制做的沟槽来取代水封管,结构更为紧凑)。
2.1.1 离心泵的基本构造
• 3.泵壳(见图2-2中4) 泵壳通常铸成蜗壳形,是主要固定部件。它 收集来自叶轮的液体,并使液体的部分动能转换 为压力能,最后将液体均匀地导向排出口。 泵壳顶上设有充水和放气的螺孔,以便在水 泵起动前用来充水及排走泵壳内的空气。 在泵壳的底部设有放水螺孔,以便在水泵停 车检修时放空积水。
2.1.1 离心泵的基本构造
1—底阀 2— 压 水 室 3—叶轮 4—蜗壳 5—闸阀 6—接头 7—压水管 8—止回阀 9—压力表
图2-1离心泵工作状态示意图
2.1.1 离心泵的基本构造
• 图2-2是常用的单级单吸卧式离心泵的结构示 意图。 • 主要部件包括: ①叶轮 ②泵轴 ③泵壳 ④泵座 ⑤填料盒(轴封装置) ⑥减漏环 ⑦轴承座等
2.1.1 离心泵的基本构造
应用中,该间隙处容易发生叶轮与泵壳间的磨损现象, 影响叶轮和泵壳的使用寿命。 减漏环的外形与安装示意图如图2-7所示。 图2-8为3种不同形式的减漏环,其中,(c)为双环 迷宫形的减漏环,其水流回流时的阻力很大,减漏效果好, 但构造复杂。 减漏环的另一作用是承磨,水泵中有了减漏环,当摩 擦是间隙变大后,只须更换减漏环而避免使叶轮和泵壳报 废。 因此,减漏环又称承磨环,是一个易损件。
第2章
离心泵的结构与工作原理
离心泵的结构与工作原理
• 离心式水泵是制冷空调工程中用得最多的一 种,其特点是依靠叶轮的高速旋转来使流体获得 较大的动能,并依靠流道出口的蜗壳断面变化使 流体的动能转化为压力能,水流在叶轮中的流动 主要是受到离心力的作用。
几种典型离心泵
DL型立式多级离心泵
GDL型立式多级管道泵
本章要点

实训!
1)离心泵的基本构造与工作原理。 离心泵的基本构造中主要掌握各主要组成部件及其相 互位置、作用,离心泵的工作原理主要是要掌握液体获得 能量的过程及能量转换的过程。 • 2)离心泵的主要性能参数及其含义。 • 3)离心泵扬程的计算。 • 4)离心泵理论特性曲线与实际特性曲线的特点。 • 5)不同形式的叶轮叶型对泵的性能的影响。
2.1.1 离心泵的基本构造
• 4.泵座(见图2-2中5) 其作用是固定水泵。 泵座上有与底板或基础固定用的法兰孔,在 泵座的横向槽底开有泄水螺孔,以随时排走由填 料盒内流出的渗漏水。泵壳和泵座上的这些螺孔, 如果在水泵运行中暂时无用,可以用带螺纹的丝 堵(闷头)拴紧。
2.1.1 离心泵的基本构造
1—前盖板 2—后盖板 3—叶片 4—叶槽 5—吸水口 6—轮毂 7—泵轴
1—吸入口 2—轮盖 3—叶片 4—轮毂 5—轴孔
图2-3 单吸式叶轮示意图
图2-4 双吸式叶轮示意图
做功
叶轮的 作用是 什么?
图2-5 开式、半开式、封闭式叶轮示意图
a)为封闭式叶轮 b)为敞开式叶轮 c)为半开式叶轮
开式、半开式、封闭式叶轮原型
2.1.1 离心泵的基本构造
• 6.减漏环 位置:叶轮吸入口的外圆与泵壳内壁的接缝 处。 它是高低压交界面且具有相对运动的部位, 很容易发生泄漏,如图2-2中12所示。 为了减少泵壳内高压水向吸水口的回流量, 一般在水泵的构造上采用两种减漏方式: 1)减小接缝间隙(不超过0.1~0.5mm)。 2)增加泄漏通道中的阻力。
2.2 离心泵的性能
• 2.2.1离心泵的性能参数 流量Q :单位时间内由泵所输送的流体体积,即指的是体积流量, 单位为m3/s或m3/h 。 扬程H :即压头,指单位重量的流体通过泵之后所获得的有效能 量,也就是泵所输送的单位重量流体从泵进口到出口的能量增值。单 位为mH2O。 功率N :通常指输入功率,即由原动机传到泵轴上的功率,也称 为轴功率,单位为W或kW 效率η :有效功率Ne与轴功率N之比。 转速n :泵的叶轮每分钟的转数,单位是r/min。
1—叶轮 2—泵轴 3 —键 4—泵壳 5—泵座 6—灌水孔 7—放水孔 8—真空表接孔 9—压力表接孔 10—泄水孔 11—填料盒 12—减漏环 13—轴承座 14—填料压盖调节螺栓 15—传动轮
图2-2
单级单吸卧式离心泵结构示意图
离心泵结构剖切图
2.1.1 离心泵的基本构造
• 1.叶轮 叶轮是离心泵的主要零部件,是对液体做功 的主要元件。 叶轮一般由两个圆形盖板以及盖板之间若干 片弯曲的叶片和轮毂所组成,如图2-3所示。 叶轮按吸入口数量可分为单吸式与双吸式两 种,双吸式叶轮如图2-4所示 。 叶轮按其盖板情况可分为封闭式、开式和半 开式叶轮三种形式,如图2-5所示。
几种典型离心泵
IS、ISR、ISY型离心泵
单级单吸全不锈钢耐腐蚀离心泵
IS 单 级 离 心 泵
几种典型离心泵
ISG型系列管道泵
IS单级离心泵
几种典型离心泵
S型单级双吸中开泵
TSWA型卧式多级离心泵
2.1 离心泵的基本构造与工作原理
• • 图2-1是离心泵工作状态示意图 。 离心泵主要包括泵体(蜗壳,泵轴,叶轮 等)、吸水管路、压水管路及其附件等。 • 使用时,泵的吸水口与吸水管相连接,出水 口与压水管相连接,共同组成吸水——增压——排 水通道。
离心式泵工作示意图
离心泵的工作过程
• 离心泵的工作过程,实际上是一个能量的传 递和转换的过程。它把电动机高速旋转的机械能 转化为被抽升水的动能和势能。 • 在这个转化过程中,必然伴随着许多能量损 失,从而影响离心泵的效率。这种能量损失越大, 离心泵的性能就越差,工作效率就越低。 • 在泵起动时,如果泵内存在空气,则叶轮旋 转后空气产生的离心力也小,使叶轮吸入口中心 处只能造成很小的真空,液体不能进到叶轮中心, 泵就不能出水。
减漏环
图2-7 减漏环
减漏环类型示意图
图2-8 减漏环类型示意图 a)单环型b)双环型c)双环迷宫型 1—泵壳 2—镶在泵壳上的减漏环3—叶轮4-镶在叶轮上的减漏环
2.1.1 离心泵的基本构造
• 7.轴承座 轴承座是用来支承轴的。 轴承装于轴承座内作为转动体的支持部分。轴承座的 构造如图2-9所示。图中6为冷却水套,一般在轴承发热量 较大、单用空气冷却不足以将热量散发时,可采用这种水 冷套的形式来冷却,水套上要另接冷却水管。 轴承与轴是紧配合,装配前应先将轴承在机油中加热 到120℃左右,使轴承受热膨胀后再套在轴上,轴承的拆 卸一般要用专用工具。无论是安装还是拆卸轴承,都要注 意按规定操作,切忌野蛮作业,以防损坏轴和轴承。
2.3 叶轮叶型对离心泵性能的影响
图2-20 叶轮叶型与出口安装角 a)后向叶型 b)径向叶型 c)前向叶型
具有前向叶型的叶轮所获得的理论扬程最大,其次为径向 叶型,而后向叶型的叶轮的理论扬程最小。 前向叶型的泵虽然能提供较大的理论扬程,但由于流体在 前向叶型的叶轮中流动时流速较大,在扩压器中进行动、静压 转换时的损失也较大,因而总效率比较低。所以,离心式泵全 部采用后向叶型的叶轮,还可以避免发生电动机的超载现象 。
轴向力平衡措施
图2-10 轴向推力
1—排出压力 2—加装的减漏环 3—平衡孔 4—泵壳上的减漏环
2.1.2 离心泵的工作原理
• 离心泵在起动之前,应先用水灌满泵壳和吸水 管道。

3个问题:
1)水是怎样在叶轮里获得速度能(动能)的? 2)水的部分速度能是如何转化为出水口的压力能的? 3)水为什么会源源不断地流进叶轮,进而使水泵能 连续出水?
离心泵的扬程
H = Hd + Hv 只要把正在运行中的水泵装置的真 空表和压力表读数(按mH2O计)相加, 就可得出该水泵的工作扬程 。 水泵扬程也可以用管道中水头损失 及扬升液体高度来计算 :
H H ST h H ST H ss H sd
s
h h h
d
图2-12 离心泵装置
• 5.填料盒(见图2-2中11) 泵轴穿出泵壳时,在轴与壳之间存在间隙。 在单吸式离心泵中,该部位如不用轴封装置, 泵壳内高压水就会向外大量泄漏。 填料盒就是常用的一种轴封装置。图2-6 是较常见的压盖填料盒,是由轴封套、填料、水 封管、水封环和填料压盖5个部件组成。
相关文档
最新文档