FSK调制与解调实验
FSK调制解调原理实验
FSK调制解调原理实验一、实验目的1.了解FSK调制解调的基本原理;2.了解FSK调制解调器的实现过程;3.学习使用软件工具进行FSK调制解调实验。
二、实验原理FSK(Frequency Shift Keying)调制解调是一种常用的数字调制解调技术,它通过改变信号的调制频率来表示不同的数字信号。
FSK调制解调一般分为两个部分:调制器(Modulator)和解调器(Demodulator)。
(一)FSK调制器原理FSK调制器的任务是根据输入信息信号的不同,产生两个不同频率的载波信号。
当输入是数字"0"时,调制器选择低频率载波信号进行调制;当输入是数字"1"时,调制器选择高频率载波信号进行调制。
调制可采用线性调制或非线性调制两种方式。
线性调制实质是将低频调制信号与载波信号作直接叠加得到调制信号。
设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t) = \cos(2\pi f_c t) + A_0 \cos(2\pi f_0 t)$$非线性调制利用逻辑电路切换不同频率的载波信号,常采用矩形脉冲函数进行调制。
设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t)= \begin{cases}\cos(2\pi f_1 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"0"时}\\\cos(2\pi f_2 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"1"时}\end{cases}$$其中$T_b$为每个码元(bit)的时间长度,$f_1$和$f_2$为两个不同频率的载波频率。
(二)FSK解调器原理FSK解调器的任务是对调制信号进行解调,即还原出原始的数字信号。
FSK-调制与解调-通信报告
实验九FSK调制解调原理实验一、实验目的1、掌握FSK调制的工作原理及电路组成;2、掌握锁相解调FSK的原理和实现方法。
二、实验电路工作原理32K选频输出时钟图9-1 FSK调制解调电原理框图数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。
数字调频又可称作移频键控(FSK),它是利用载频频率变化来传递数字信息。
(一)FSK调制电路工作原理FSK调制解调电原理框图,如图9-1所示;图9-2是它的调制电路电原理图。
输入的基带信号分成两路,一路控制f1=64KHz的载频,另一路经倒相去控制f2=128KHz的载频。
当基带信号为“1”时,模拟开关1打开,模拟开关2关闭,此时输出f1=64KHz,当基带信号为“0”时,模拟开关1关闭,模拟开关2开通。
此时输出f2=128KHz,于是可在输出端得到已调的FSK信号。
图9-2 FSK调制电路电原理图图9-3 FSK解调电路电原理图(二)FSK 解调电路工作原理FSK 集成电路模拟锁相环解调器由于性能优越,价格低廉,体积小,所以得到了越来越广泛的应用。
解调电路电原理图如图9-3所示。
FSK 集成电路模拟锁相环解调器的工作原理是十分简单的,只要在设计锁相环时,使它锁定在FSK 的一个载频如f1上,对应输出高电平,而对另一载频f2失锁,对应输出低电平,那末在锁相环路滤波器输出端就可以得到解调的基带信号序列。
FSK 锁相环解调器中的集成锁相环选用了HEF4046。
压控振荡器的中心频率设计在128KHz 。
其参数选择要满足环路性能指标的要求。
从要求环路能快速捕捉、迅速锁定来看,低通滤波器的通带要宽些;从提高环路的跟踪特性来看,低通滤波器的通带又要窄些。
因此电路设计应在满足捕捉时间前提下,尽量减小环路低通滤波器的带宽。
当输入信号为64KHz 时,环路失锁。
此时环路对64KHz 载频的跟踪破坏。
FSK调制及解调实验报告
FSK调制及解调实验报告FSK调制及解调实验报告一、实验目的1.深入理解频移键控(FSK)调制的基本原理和特点;2.掌握FSK调制和解调的实验方法和技能;3.通过实验观察和分析FSK调制解调的性能和应用。
二、实验原理频移键控(Frequency Shift Keying,FSK)是一种常见的数字调制方法,它利用不同频率的信号代表二进制数据中的“0”和“1”。
在FSK调制中,输入信号被分为两种频率,通常表示为f1和f2,分别对应二进制数据中的“0”和“1”。
FSK调制的基本原理是将输入的二进制数据序列通过频率切换的方式转换为高频信号序列。
具体来说,当输入数据为“0”时,选择频率为f1的信号进行传输;当输入数据为“1”时,选择频率为f2的信号进行传输。
解调过程中,接收端将收到的混合信号进行滤波处理,根据不同的频率将其分离,再通过低通滤波器恢复出原始的二进制数据序列。
三、实验步骤1.FSK调制过程(1) 将输入的二进制数据序列通过串并转换器转换为并行数据序列;(2) 利用FSK调制器将并行数据序列转换为FSK信号;(3) 通过高频信道发送FSK信号。
2.FSK解调过程(1) 通过高频信道接收FSK信号;(2) 利用FSK解调器将FSK信号转换为并行数据序列;(3) 通过并串转换器将并行数据序列转换为原始的二进制数据序列。
四、实验结果与分析1.FSK调制结果与分析在FSK调制实验中,我们选择了两种不同的频率f1和f2分别表示二进制数据中的“0”和“1”。
通过对输入的二进制数据进行FSK调制,我们成功地将原始的二进制数据转换为FSK信号,并可以通过高频信道进行传输。
在调制过程中,我们需要注意信号转换的准确性和稳定性,以确保传输的可靠性。
2.FSK解调结果与分析在FSK解调实验中,我们首先接收到了通过高频信道传输过来的FSK信号,然后利用FSK解调器将信号转换为并行数据序列。
最后,通过并串转换器将并行数据序列恢复为原始的二进制数据序列。
FSK调制及解调实验报告
FSK调制及解调实验报告
实验背景和目的:
FSK调制及解调是一种常用的数字调制和解调技术。
FSK调制和解调
主要用于数字通信系统中,通过改变载波频率来表示数字信号的不同符号。
本实验旨在通过对FSK调制和解调技术的实际操作,加深对该技术原理和
应用的理解和掌握。
实验原理:
实验步骤:
1.搭建FSK调制电路:根据实验要求,搭建FSK调制电路,包括信号源、载波发生器、混频器等组成部分。
2.设置调制参数:根据实验要求,设置信号源的频率、调制信号的频
率等参数。
3.进行调制实验:将调制信号通过混频器与频率稳定的载波信号相乘,得到FSK调制信号。
4.搭建FSK解调电路:根据实验要求,搭建FSK解调电路,包括滤波器、频率判决电路等组成部分。
5.进行解调实验:将接收到的FSK信号输入解调电路,通过滤波器滤
除不需要的频率成分,再经过频率判决电路,判断接收到的信号是低频率
还是高频率,从而还原原始数字信号。
6.记录实验结果:记录调制信号和解调信号的波形图,并进行分析。
实验结果和分析:
经过实验操作和数据记录,得到了调制信号和解调信号的波形图。
通
过对比波形图可以看出,解调信号与调制信号基本一致,表明调制和解调
过程基本无误。
实验结果验证了FSK调制和解调技术的可行性和有效性。
结论:
通过本次实验,我们深入了解了FSK调制和解调技术的原理和应用。
通过实际操作和数据记录,我们掌握了FSK调制和解调的实验步骤和方法。
实验结果验证了FSK调制和解调技术的可行性和有效性,对今后的数字通
信系统的设计和实现具有重要的参考价值。
实验八 移频键控 FSK 调制与解调实验
实验八FSK移频键控调制与解调实验一、实验目的1、掌握用键控法产生 FSK 信号的方法。
2、掌握 FSK 过零检测解调的原理。
二、实验内容1、观察 FSK 调制信号波形。
2、观察 FSK 解调信号波形。
3、观察 FSK 过零检测解调器各点波形。
三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、⑦号模块一块5、 20M 双踪示波器一台6、连接线若干四、实验原理1、 2FSK 调制原理。
2FSK 信号是用载波频率的变化来表征被传信息的状态的,被调载波的频率随二进制序列0、1 状态而变化,即载频为 f0 时代表传 0,载频为 f1 时代表传 1。
显然,2FSK 信号完全可以看成两个分别以f0 和 f1 为载频、以 an 和 an 为被传二进制序列的两种 2ASK 信号的合成。
2FSK 信号的典型时域波形如图 8-1 所示.2FSK 信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。
由于频率选择法产生的 2FSK 信号为两个彼此独立的载波振荡器输出信号之和,在二进制码元状态转换(01 或10)时刻,2FSK载波调频法是在一个直接调频器中产生 2FSK信号出自同一个振荡器,信号相位在载频变化时始终是连续的,这将有利于已调信号功率谱旁瓣分量的收敛,使信号功率更集中于信号带宽内。
在这里,我们采用的是频率选择法,其调制原理框图 8-2 所示:图 8-2 2FSK 调制原理框图由图可知,从“FSK-NRZ”输入的基带信号分成两路,1 路经 U5(LM339)反相后接至 U4B(4066)的控制端,另 1 路直接接至 U4A (4066)的控制端。
从“FSK 载波 A”和“FSK 载波 B”输入的载波信号分别接至 U4A 和 U4B 的输入端。
当基带信号为“1”时,模拟开关 U4A 打开,U4B 关闭,输出第一路载波;当基带信号为“0”时,U405A 关闭,U405B 打开,此时输出第二路载波,再通过相加器就可以得到 FSK 调制信号。
实验四 FSK调制与解调
FSK 调制解调一、实验目的1. 掌握FSK 调制器的工作原理及性能测试;2. 学习基于软件无线电技术实现FSK 调制、解调的实现方法。
二、 实验仪器1. RZ9681实验平台 2. 实验模块: ● 主控模块● 基带信号产生与码型变换模块-A2 ● 信道编码与频带调制模块-A4 ● 纠错译码与频带解调模块-A5 3. 信号连接线 4. 100M 四通道示波器三、实验原理3.1 FSK 调制电路工作原理2FSK (二进制频移键控,Frequency Shift Keying )信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0、1状态而变化。
2FSK 信号的产生方法主要有两种:一种采用模拟调频电路来实现;另一种采用键控法来实现,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元期间输出0f 或1f 两个载波之一。
FSK 调制和ASK 调制比较相似,只是把ASK 没有载波的一路修改为了不同频率的载波,如下图所示。
图3.3.2.1 FSK 调制电路原理框图上图中,将基带时钟和基带数据通过两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
-A图3.3.2.2 2FSK 调制信号波形示意图在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1和0)。
通常,FSK 信号的 表达式为:bc bbFSK T t t f f T E S ≤≤∆+=0)22cos(2ππ(二进制1)bc bbFSK T t t f f T E S ≤≤∆-=0)22cos(2ππ(二进制0)其中Δf 代表信号载波的恒定偏移。
FSK调制解调实验报告
FSK调制解调实验报告实验报告:FSK调制解调实验一、实验目的FSK调制解调是数字通信中常用的调制解调方式之一,通过本次实验,我们学习FSK调制解调的原理、实现方法和实验技巧,理解其在数字通信中的应用。
同时,通过实验验证FSK调制解调的正确性和稳定性,并掌握实验数据的分析和处理方法。
二、实验原理FSK调制在信号传输中广泛应用,其原理是将数字信号调制成两个不同的频率信号,通常用0和1两个数字分别对应两个不同的频率。
在调制端,通过将0和1信号分别转换成相应的频率信号,并通过切换不同的载波波形来实现不同频率信号的调制。
在解调端,通过将接收到的调制信号分别和两个对应的参考频率信号进行相关运算,从而还原出原始的0和1信号。
实验所需材料:1.FSK调制解调器2.函数发生器3.示波器4.电缆和连接线实验步骤:1.将函数发生器的输出信号接入FSK调制器的MOD输入端,调整函数发生器的频率和幅度,使其适配FSK调制器的输入端。
2.调整FSK调制器的MOD输入切换开关,选择合适的调制波形(常用的有正弦波和方波两种)。
3.通过示波器观察和记录已调制的FSK信号波形。
4.将已调制的信号通过电缆传输到解调器端。
5.调整解调器的参考频率和解调器的解调方式。
6.通过示波器观察和记录解调器输出的数字信号波形。
7.将解调输出与调制前的原始信号进行比较,验证FSK调制解调的正确性。
三、实验结果和数据分析根据实验步骤的指导,我们依次完成了FSK调制解调的实验,在观察示波器上的波形时,我们发现调制波形的频率随着输入数据的0和1的变化而变化,已达到我们的预期效果。
在解调端,我们观察到解调输出的数字信号与调制前的原始信号一致,由此可验证FSK调制解调的正确性。
对于实验数据的分析和处理,我们应注意以下几点:1.频率的选择:合适的调制频率和解调频率能够保证调制解调的稳定和正确性,应根据具体情况进行选择。
2.调制波形的选择:正弦波和方波是常见的调制波形,两者各有优缺点,可根据实际需要进行选择。
FSK调制及解调实验报告
FSK调制及解调实验报告1. 实验目的本次实验旨在了解FSK调制及解调原理,并通过实践掌握其实现方法。
主要内容包括:1.了解FSK调制及解调原理;2.掌握FSK调制解调的实现方法;3.验证FSK调制解调的正确性。
2. 实验原理2.1 FSK调制原理FSK调制就是将待传输的信息信号通过在不同的频率上进行调制,从而使信号能够在载波上传输的调制方式。
其基本原理如下:将准备发送的低频信号(m(t))的幅度等效为模拟式数字信号,通过频率劈裂产生两个频率分别为f1和f2的载波信号,然后将m(t)信号加到其中一个载波上,m(t)信号经过调制后,就可传送该信号f1载波的频段。
同理,m(t)信号也可以加到另一个载波上,这个信号就可以传送f2载波的频段。
具体的数学描述为:s(t)=Acos(2πf1t), (m(t)>=0);s(t)=Acos(2πf2t), (m(t)<0);其中,m(t)为信号的幅度,f1和f2分别是两个载波频率,A是使用的载波偏移量。
将传输的差分FSK信号转换为基频(F0)的正弦波信号,通过一个鉴频器(包括一个本振发生器、一个四象限乘法器和一个低通滤波器)将接收到的信号解调为原来的信号。
其基本原理如下:传输的信息被调制后后,接收的信号采用同样的方法分成两个部分,对每个部分分别进行解调,然后通过比较解调出来的两个信号的幅度大小即可得到原来发送的信息。
模块分为两个模块的组成,一个是FSK激励信号的发射模块,一个是FSK解调信号的接收模块。
fsk调制模块,由信号源、两路解调模块、FSK调制器和混频器组成, fsk解调模块,由前置放大、两路鉴频器、差分比较器、计数器等组成。
3. 实验装置及材料(1)信号发生器(2)示波器(3)功率放大器(4)低通滤波器(5)鉴频器(包括本振发生器、乘法器和低通滤波器)4. 实验过程及结果首先,对于fsk调制信号,我们搭建了一个基于ad654的fSK调制器,并通过示波器观察到了调制前后fsk波形的变化,确认了fsk信号的调制正确。
FSK调制解调实验报告实验报告
FSK调制解调实验报告实验概述本次实验通过实际操作与测量,掌握FSK(频移键控)调制解调技术,理解如何在数字通信中实现数据的调制与解调。
实验原理FSK调制和解调是一种数字调制和解调技术,它采用离散值表示数据点,而不是模拟连续波形。
FSK调制是将比特流(0和1)编码成符号,通过改变载波频率发送给接收端。
在接收端,可以通过检测频率来恢复数据比特流。
在FSK调制中,使用两个不同的载波频率来表示“0”和“1”。
例如,我们可以使用频率f1代表“0”,使用频率f2代表“1”。
为了将比特编码成符号进行FSK调制,使用以下公式:$$s(t)={Acos(2\\pi f_1t), 0<t<T_b}$$$$s(t)={Acos(2\\pi f_2t), T_b<t<2T_b}$$其中,$T_b=\\frac{1}{R_b}$是一个码元的持续时间,R b是码元速率。
A是振幅,通常设置为1。
调制后的波形如下所示:FSK Modulation WaveformFSK Modulation Waveform在接收端,可以通过检测频率来恢复数据比特流。
实验步骤实验仪器准备1.两个信号发生器 AG3381B2.示波器DS 1054Z3.多用表实验操作步骤1.按照下图所示连接两个信号发生器以及示波器,具体如下:FSK Modulation Circuit DiagramFSK Modulation Circuit Diagram2.设置信号发生器1,调整以下参数,频率f1为2kHz 或 3kHz,振幅为2V。
3.设置信号发生器2,调整以下参数,频率f2为4kHz 或 6kHz,振幅为2V。
4.在示波器上显示两个信号波形,波形如下图所示:FSK Modulation Waveform SettingFSK Modulation Waveform Setting5.再次调整示波器参数,使得两个波形共同出现在示波器上,如下图所示:FSK Modulation Waveform DisplayFSK Modulation Waveform Display6.对实验数据进行记录和分析。
移频键控FSK调制与解调实验
移频键控FSK调制与解调实验简介移频键控频移键控 (FSK) 是数字通信中一种重要的调制方式,它将数字信息信号调制成由两种不同频率的正弦波组成的高频信号,其中一个频率表示二进制 0,另一个频率则表示二进制 1,然后将这个高频信号传输到接收端,通过解调还原出原始数据。
FSK 可以用于无线电、音频甚至光学信号的传输。
在本文档中,将介绍如何进行移频键控 FSK 调制与解调的实验,通过实验理解FSK 调制与解调原理,并掌握 FSK 信号的产生、发送和解调过程。
实验步骤步骤1:准备工作首先,需要准备一台 FSK 调制解调器和一台示波器,并连接起来。
电源供应和示波器探针的连接应当正确无误。
步骤2:FSK 调制信号产生在第一阶段,需要产生一个双音调信号,即表示二进制 0 和 1 的两种频率。
在此实验中,我们选择使用两个正弦波。
这两个频率theta1 和theta2 需要合理选择,可以根据具体实验需要而定。
在产生双音调信号的输出端,通过移频键控 FSK 调制模块进行调制。
由于移频键控 FSK 调制方案较简单,因此可以使用简单通用的运算放大器组成移频键控 FSK 调制电路。
步骤3:传送 FSK 调制信号通过 FSK 调制的信号输出端,将信号输入到示波器中进行观测,用示波器观测检验 FSK 调制信号的准确性。
步骤4:接收 FSK 调制信号并解调使用 FSK 解调器,并将 FSK 调制信号输入演示信号输入端,将解调信号传输至演示信号输出端,观察解调的准确性。
步骤5:验证解调正确性将演示信号输出端与示波器探针连接,观察解调的准确性。
通过移频键控 FSK 调制与解调的实验,我们深入理解了 FSK 调制与解调原理,并掌握了 FSK 信号的产生、发送和解调过程。
通过本次实验,我们巩固了数字通信学习的基础,为进一步的深入研究奠定了坚实的基础。
FSK调制解调实验报告_实验报告_
FSK调制解调实验报告一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器:1.信道编码与 ASK.FSK.PSK.QPSK 调制模块,位号: A,B 位2. FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号: G 位4. 100M 双踪示波器三、实验内容:观测m序列(1,0, 0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。
观测基带数字和FSK(ASK)调制信号的频谱。
改变信噪比(S/N),观察解调信号波形。
四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。
(一) FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK, OQPSK 等调制方式。
不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。
在学习 ASK, FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。
下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。
基带数据时钟和数据,通过 JCLK 和 JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成 ASK 或FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
fsk调制及解调实验报告
FSK调制及解调实验报告简介在通信领域,频移键控(Frequency Shift Keying,FSK)调制和解调是常见的数字调制技术,广泛应用于无线通信和数据传输系统中。
本实验报告将详细介绍FSK调制和解调的原理、实验步骤和结果分析。
原理FSK调制是利用不同频率的载波信号来表示数字信息。
在FSK调制中,两个不同频率的载波信号代表了两个不同的数字信号。
例如,在二进制数字通信中,0可以用低频率表示,而1可以用高频率表示。
FSK调制的原理是通过将数字信号转化为频率信息并将其叠加到载波信号上。
通过调整载波频率来传输数字信号的不同值。
FSK解调是将接收到的FSK信号恢复为原始数字信号。
解调过程包括接收信号的滤波和判决两个主要步骤。
滤波用于消除噪声和非目标频率分量,而判决用于确定接收信号所代表的数字信号的值。
实验步骤1.搭建实验电路–使用信号发生器生成两个不同频率的正弦波,分别作为两个载波信号。
–将数字信号源与信号发生器连接,使得数字信号源能够控制载波信号的频率。
–将两个载波信号叠加,并将叠加后的信号送入模拟调制电路。
–将模拟调制电路的输出连接到示波器,以便观察FSK调制后的信号波形。
2.观察和分析调制波形–调整信号发生器的频率和数字信号源的输入,观察调制后的波形特征。
–分析不同数字信号输入时,调制波形的频率变化情况。
–根据调制波形的特点,判断FSK调制是否正确实现。
3.进行FSK解调实验–将调制后的信号输入到解调电路中。
–使用合适的滤波器,滤除噪声和非目标频率分量。
–通过判决电路,将解调后的信号恢复为原始数字信号。
4.观察和分析解调结果–使用示波器观察解调后信号的波形特征。
–将解调后的信号与原始数字信号进行比较,分析解调的准确性和误差情况。
实验结果和分析经过搭建实验电路、观察、分析和解调实验,我们得到了以下实验结果和分析:1.根据观察得知,调制后的波形在不同数字信号输入时,频率发生了明显的变化。
这表明FSK调制成功。
FSK调制解调综合实验
❖ D、眼图、奈奎斯特准则实验(全做) ❖ 1.观察并画出开启度较大时眼图。
五、实验注意事项
❖ 按实验板标示电压调准电源,然后关闭电源,接好并检查电源与实验板的 正负极连接线是否正确,正确无误才能开启电源。开启电源时观察电流表, 保证+I<200mA,-I<60mA,否则迅速关机检查。
形为基准,画一个周期即可) ❖ 3.测量1.6的频率: ❖ a) K1接0时,1. 6输出l25KHZ方波载频,即0码时,发送l25KHZ载频; ❖ b) K1接1时,1.6输出100KHZ方波载频,即1码时,发送100KHZ载频;
c) K1接M,用示波器A线接l.5,并用A线触发,B线接1.6,观察记录调 制的FSK方波输出信号。(画一个“0”和一个“1”对应的波形输出即可)数字通信原ຫໍສະໝຸດ 实验FSK调制解调综合实验
一、实验目的
❖ 加深对FSK调制原理的理解及其硬件实现方法的了解 ❖ 加深对FSK信号过零点检测法解调原理的理解及其硬件实现方法 ❖ 加深对位同步提取原理的理解及其硬件实现方法 ❖ 了解码再生原理 ❖ 了解锁相环对消除相位抖动的作用
二、基本原理
定义:移频键控(FSK):利用载波的频率变化来传递数字信息的数字调制 方式,在二进制系统中可用两个不同的载频来传递数字信息。
生 …001111010
FSK发送原理图
FSK接收原理图
2FSK
限幅 (过
零检
测)
P2.1
过微整零分流 检P2测.2 法窄冲解成脉形调P基2.3带信低滤通波号
P2.4 P2.5
整形 (过
FSK调制及解调实验报告
实验四FSK调制及解调实验一、实验目的1、掌握用键控法产生FSK信号的方法。
2、掌握FSK非相干解调的原理。
二、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图FSK调制及解调实验原理框图2、实验框图说明基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。
四、实验步骤实验项目一FSK调制概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。
本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。
将9号模块的S1拨为0000。
调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。
3、此时系统初始状态为:PN序列输出频率32KH。
4、实验操作及波形观测。
(1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。
(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。
实验项目二FSK解调概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。
实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。
观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。
1、保持实验项目一中的连线及初始状态。
2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、TH8(FSK解调输出),验证FSK 解调原理。
通信原理FSK调制解调实验报告
通信原理FSK调制解调实验报告一、实验目的1.学习并掌握FSK调制解调的原理和方法;2.掌握FSK信号的频谱特性;3.搭建FSK调制解调电路,了解FSK调制解调的实际应用。
二、实验仪器1.示波器、信号发生器、示例开关等。
三、实验原理FSK(Frequency Shift Keying)调制即频移键控调制,是一种常用的数字调制方式之一、它通过改变载波频率的方式来表示数字信号的不同状态。
在FSK调制中,有两个不同的频率用于表示两种不同的数字。
在FSK调制中,若数字“0”对应的频率为f1,数字“1”对应的频率为f2,则它们可以分别用sin(2π f1 t)和sin(2π f2 t)的信号波形来表示。
四、实验步骤1.搭建FSK调制解调电路;2.输入数字信号源,调整信号发生器的频率控制,设置f1和f2的值;3.进行调制解调实验,观察示波器波形。
五、实验结果及分析1.频谱特性:FSK调制信号的频谱特性是两个频率与余弦正弦信号的卷积。
2.示波器波形:通过示波器可以观察到模拟信号在调制解调过程中的波形变化。
六、实验总结本次实验中,我们通过搭建FSK调制解调电路,了解了FSK调制解调的原理和方法。
通过实验,我们对FSK调制解调的频谱特性和波形变化有了更加深入的理解。
FSK调制解调在实际应用中具有广泛的用途,可以用于通信系统中的数据传输、调幅解调等方面。
在实验过程中,我们还发现了一些问题,例如调试电路的过程中可能出现信号干扰、波形失真等情况,需要进行相应的调整和优化。
通过本次实验,我们掌握了FSK调制解调的原理和方法,并对其实际应用有了更加深入的了解。
希望今后能够进一步应用所学的知识,不断提高实际操作的能力。
FSK调制解调原理实验
FSK调制解调原理实验FSK(频移键控)调制解调是一种常见的数字调制解调技术,其原理是通过改变载波的频率来表示数字信号。
在FSK调制中,低频信号的频率表示逻辑“0”,高频信号的频率表示逻辑“1”。
在本文中,我们将介绍FSK调制解调的原理以及如何进行实验。
实验设备和步骤:实验设备:1.函数信号发生器2.幅度调制解调器3.示波器4.模拟信号发生器5.低通滤波器6.计算机实验步骤:1.准备工作:(1)将函数信号发生器连接到幅度调制解调器的输入端口。
(2)将幅度调制解调器的输出端口连接到示波器的输入端口。
(3)将模拟信号发生器连接到低通滤波器的输入端口。
(4)将低通滤波器的输出端口连接到计算机的输入端口。
2.设置实验参数:(1)在函数信号发生器上设置两个频率,分别表示逻辑“0”和逻辑“1”。
(2)根据实验需求,调整幅度调制解调器的调制指数,以及模拟信号发生器的频率。
3.FSK调制实验:(1)使用函数信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器中。
(2)使用函数信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器中。
(3)观察示波器上的输出信号,验证FSK调制的效果。
4.FSK解调实验:(1)使用模拟信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器的解调端口。
(2)使用模拟信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器的解调端口。
(3)通过示波器观察解调器输出的信号,并通过低通滤波器对信号进行滤波。
(4)将滤波后的信号输入到计算机,并进行数字信号解调。
实验原理:FSK调制的原理是通过改变载波信号的频率来表示数字信号。
在调制过程中,将逻辑“0”映射为一个低频率信号,逻辑“1”映射为一个高频率信号。
在解调过程中,接收到的信号通过解调器解调后,通过低通滤波器滤除高频噪声,得到原始的数字信号。
实验结果:在进行FSK调制实验时,通过示波器观察可见,当输入逻辑“0”时,示波器输出的信号频率较低;当输入逻辑“1”时,示波器输出的信号频率较高。
实验4 FSK调制与解调实验报告
实验室名称:通信原理实验室实验日期:年月日
学院
班级、组号
姓名
实验项目名称
FSK调制与解调实验
指导
பைடு நூலகம்教师
一、实验目的
二、实验内容
三、实验仪器
四、实验原理
五、实验步骤
六、实验结果及分析
FSK基带输入:信号源测试点NRZ输出的15.625KHz方波
(SW04、SW05设置为00000001 00101000,128分频);
6、FSK—OUT输出的波形(FSK解调信号经电压比较器后的信号输出点,未经同步判决,与FSK判决电压调节的调节幅度有关)
7、FSK解调输出测试点输出的波形(经过同步判决,解调后的波形与FSK判决电压调节的调节幅度有关)
七、实验思考题解答
1、经过整型2后,得到与判决电压比较后的波形,它与最终输出的FSK解调波形一样,为什么我们还要在整型2后的抽样判决时引入位同步信号?(提示:只有引入位同步信号才能知道码元宽度,才知道是几个1,几个0)
FSK载波输入1:信号源测试点64K正弦波输出的正弦波;
FSK载波输入2:信号源测试点32K正弦波输出的正弦波;
1、FSK基带输入波形
2、FSK调频波波形
3、单稳态输出1波形(FSK已调信号经单稳1的信号输出)
4、单稳态输出2波形(FSK已调信号经单稳2的信号输出)
5、过零检测输出的波形(FSK已调信号经过零检测后的信号输出)
2、为什么位同步信号不直接从信号源的BS信号引入,而要经过同步信号提取模块提取?(提示:信号源是发送者,实际通信系统中不可能从发送方拉一条线到接收方传送同步信号,而是从接收信号中提取同步信号。)
八、调试中遇到的问题及解决方法
fsk调制及解调实验报告
fsk调制及解调实验报告一、实验目的本实验旨在了解FSK调制及解调的原理,掌握FSK调制及解调的方法,并通过实际操作验证其正确性。
二、实验原理1. FSK调制原理FSK是频移键控的缩写,是一种数字调制技术。
在FSK通信中,将数字信号转换成二进制码后,用两个不同的频率代表“0”和“1”,然后将这两个频率按照数字信号的顺序交替发送。
接收端根据接收到的信号频率来判断发送端发出了哪个二进制码。
2. FSK解调原理FSK解调器是将接收到的FSK信号转换成数字信号的电路。
它通过检测输入电压频率来确定发送方使用了哪个频率,并将其转换成对应的数字信号输出。
三、实验器材示波器、函数发生器、计算机四、实验步骤1. 连接电路:将函数发生器输出端连接至FSK模块输入端,再将示波器连接至模块输出端。
2. 设置函数发生器:设置函数发生器输出频率为1000Hz和2000Hz,并使它们交替输出。
3. 测量波形:使用示波器观察并记录模块输出端口上产生的波形。
4. 解调信号:将示波器连接至解调器的输入端,设置解调器参数,观察并记录输出端口上产生的波形。
五、实验结果1. FSK调制结果:通过示波器观察到了交替出现的1000Hz和2000Hz两种频率的正弦波。
2. FSK解调结果:通过示波器观察到了输出端口上产生的数字信号,与输入信号相同。
六、实验分析本实验通过对FSK调制及解调原理的了解和实际操作验证,进一步加深了我们对数字通信技术的认识。
在实验中,我们使用函数发生器产生两个不同频率的信号,并将它们交替发送。
在接收端,我们使用FSK解调器将接收到的信号转换成数字信号输出。
通过观察示波器上产生的波形和数字信号,可以验证FSK调制及解调技术的正确性。
七、实验总结本次实验主要学习了FSK调制及解调原理,并进行了实际操作验证。
在操作过程中,我们掌握了FSK电路连接方法、函数发生器设置方法以及示波器使用方法等技能。
同时,在观察并分析实验结果时,我们深入理解了数字通信技术中FSK调制及解调的应用场景和原理。
fsk调制及解调实验报告
fsk调制及解调实验报告FSK调制及解调实验报告引言:FSK调制(Frequency Shift Keying)是一种常见的数字调制技术,广泛应用于通信领域。
本实验旨在通过实际操作,深入了解FSK调制与解调的原理和过程,并通过实验结果验证理论分析。
一、实验目的通过实验深入了解FSK调制与解调的原理和过程,掌握实际操作技巧,并通过实验结果验证理论分析。
二、实验原理1. FSK调制原理:FSK调制是通过改变载波信号的频率来表示数字信号的一种调制技术。
在FSK 调制中,两个不同的频率分别代表二进制数字0和1,通过切换频率来表示数字信号的变化。
2. FSK解调原理:FSK解调是将调制后的信号恢复为原始数字信号的过程。
解调器通过检测接收信号的频率变化来区分数字信号的0和1。
三、实验步骤1. 准备工作:搭建实验电路,包括信号发生器、调制电路和解调电路。
确保电路连接正确并稳定。
2. FSK调制实验:将信号发生器的输出连接到调制电路的输入端,调制电路通过改变输入信号的频率来实现FSK调制。
调制电路输出的信号即为FSK调制信号。
3. FSK解调实验:将调制电路的输出连接到解调电路的输入端,解调电路通过检测输入信号的频率变化来恢复原始数字信号。
解调电路输出的信号即为解调后的数字信号。
4. 实验结果记录与分析:记录不同输入信号对应的调制信号和解调后的数字信号,并进行分析。
通过比较解调后的数字信号与原始数字信号的一致性,验证FSK调制与解调的准确性。
四、实验结果与讨论在实验中,我们选择了两个不同频率的输入信号,分别对应二进制数字0和1。
通过调制电路和解调电路的处理,成功实现了FSK调制与解调。
通过对比解调后的数字信号与原始数字信号,我们发现它们完全一致,验证了FSK调制与解调的准确性。
实验结果表明,FSK调制与解调是一种可靠有效的数字调制技术。
五、实验总结通过本次实验,我们深入了解了FSK调制与解调的原理和过程,并通过实际操作验证了理论分析的准确性。
FSK调制解调实验报告
FSK调制解调实验报告实验目的:通过实验,进一步了解FSK(ASK)调制和解调的基本原理和方法,掌握实验仪器的操作技巧,熟悉实验过程中的测量方法和数据处理,培养实验操作能力和数据分析能力。
实验仪器:1.双示波器:2.信号发生器:3.波特率计:4.时钟信号源:实验原理和流程:FSK(Frequency Shift Keying)调制是一种数字调制方法,根据发送信号的不同频率进行调制,接收端根据频率差异来识别不同的信号。
ASK(Amplitude Shift Keying)调制是将数字信号变换为模拟信号的过程,通过调整载波波形的幅度来表示数据的0和1FSK调制的基本原理是:将数字信号转换为频率序列,利用频率切换来表示0和1、在调制时,根据数字信号的0和1,选择不同频率的载波信号进行调制。
解调是将接收到的FSK信号变换为与FSK信号相同的数字信号,可以根据频率的变化判断原始数字信号的0和1实验步骤:1.连接实验电路,将信号发生器的输出接入EL1端,EL2端接入波特率计。
将示波器的两个通道分别接入EL1和EL22.调整信号发生器的频率为f1和f2,设置合适的幅度和起始相位。
3.打开示波器,设置观察模式为X-Y模式,并调整示波器的水平和垂直触发使波形恢复稳定。
4.通过调整信号发生器的频率和幅度,观察并记录调制信号波形。
5.使用示波器观察到的调制信号波形,利用该波形计算波特率。
6.通过信号发生器产生时钟信号,将时钟信号输入到解调电路中进行解调。
7.观察解调后信号的波形并进行比较,记录解调后的数据。
8.对比解调后的数据与原始数据,验证解调是否准确。
实验结果:通过实验观察和测量,得到了调制信号的波形,利用该波形计算出了波特率。
经过解调后,与原始数据进行对比发现解调准确无误。
实验总结:通过这次实验,我们深入了解了FSK(ASK)调制和解调的基本原理和方法。
通过实验操作,我们掌握了实验仪器的操作技巧,熟悉了实验过程中的测量方法和数据处理方法,提高了我们的实验操作能力和数据分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验结论与
思考
实验结论:
通过本次试验初步了解了2FSK信号的调制与解调过程,2FSK信号的过零点数随不同载频而异,故检出过零点数可以得到关于频率的差异,在实验中用来作比较的判决电压电平可通过“FSK判决电压调节”旋转电位器来调节。?
参考资料
《通信原理》实验指导书
(2)示波器观测“单稳输出1”、“单稳输出2”、“过零检测”、“滤波输出”测试点波形。?
(3)调节“ASK判决电压调节”旋转电位器,示波器双踪观测“滤波输出”与“判压输出”测试点波形,分析随判决电压值的不同,“判压输出”波形的变化。?
(4)示波器双踪观测信号源模块“NRZ”与数字解调模块FSK解调“解调输出”测试点码型,对比2FSK解调还原的效果。?
-384K 正弦载波----------载波1输入(数字键控法调制)
192K 正弦载波----------载波2输入(数字键控法调制)
(2)数字调制模块“键控调制类型选择”拨码开关拨成1010,即2FSK调制方式。?
(3)以数字调制模块“NRZ输入”的信号为内触发源,示波器双踪观测“NRZ输入”和“调制输出”测试点波形。?
(2)调节“384K调幅”旋转电位器,使“384K正弦载波”输出幅度与“192K正弦载波”输出幅度相等,为左右。?
说明:当“384K正弦载波”调节至与“192K正弦载波”幅度相等时,有下图所示相位对齐关系。
4、2FSK调制?
(1)实验连线如下:?
信号源模块 数字调制模块
NRZ------------------------NRZ输入(数字键控法调制)
“单稳输出1”测试点信号对应2FSK已调信号中所有的0相位有一个尖脉冲,“单稳输出2”测试点信号对应2FSK已调信号中所有的p相位有一个尖脉冲,过零脉冲的宽度由触发器集成电路外接的电阻和电容确定。?
“单稳输出1”和“单稳输出2”两波形相加,得“过零检测”信号,即对应2FSK已调信号全部的过零点有一个尖脉冲。?
实验
基本原理
1、2FSK调制?
图6-1是2FSK调制数字键控法原理框图。?
图6-1?2FSK调制数字键控法原理框图
为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz、192KHz正弦载波信号,载波1频率是数字信号码速率的整4倍关系,载波2频率是数字信号码速率的整2倍关系,即NRZ码为“1”的一个码元对应正弦载波的4个周期,NRZ码为“0”的一个码元对应正弦载波的2个周期。?
2、2FSK解调?
ቤተ መጻሕፍቲ ባይዱ我们采用过零检测法,其原理框图如图6-3所示。?
图6-3 2FSK解调过零检测法原理框图
2FSK信号的过零点数随不同载频而异,故检出过零点数可以得到关于频率的差异。
如上图6-3所示,2FSK已调信号从“调制输入”测试点送入可重触发单稳态触发器中,“单稳1”触发器和“单稳2”触发器分别被设置为上升沿触发和下降沿触发,即单稳态触发器分别检测出已调信号的0相位和p相位。
实验类型:□验证 □综合 □设计 □创新 实验日期:实验成绩:___________
实验名称
指导教师
实验目的
1、掌握2FSK调制的原理及实现方法。
2、掌握2FSK解调的原理及实现方法。
仪器设备
与耗材
1、信号源模块???? ?
2、数字调制模块????? ?
3、数字解调模块?????? ?
4、20M双踪示波器???
“过零检测”信号经二阶低通滤波器滤除高频分量,得“滤波输出”信号。?
“滤波输出”信号再经电压比较器判决,得“判压输出”信号。用来作比较的判决电压电平可通过“FSK判决电压调节”旋转电位器来调节。?
最后“判压输出”信号经位同步抽样判决,得“解调输出”信号。
解调过程中各测试点波形如下图6-4所示。
图6-4 2FSK解调各测试点波形
实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来控制门的通/断。当NRZ码为高电平时,模拟开关1导通,模拟开关2截止,正弦载波1通过门1输出;当NRZ码为低电平时,模拟开关2导通,模拟开关1截止,正弦载波2通过门2输出。门的输出即为2FSK调制信号,如下图6-2所示。
图6-2 2FSK调制信号波形
(5)改变信号源模块NRZ码的码型,重复上述实验步骤。
数据处理与
分析
1.“384K正弦载波”与“192K正弦载波”输出幅度相等波形。
2.“NRZ输入”和“调制输出”测试点波形。
改变NRZ码的码型
“单稳输出1”、“单稳输出2”测试点波形。
“过零检测”、“滤波输出”测试点波形。?
4.调节“ASK判决电压调节”旋转电位器,“滤波输出”与“判压输出”测试点波形。?
(4)改变信号源模块NRZ码的码型,观察2FSK调制信号波形的相应变化。?
5、2FSK解调?
(1)以上模块设置和连线均不变,增加连线如下:?
数字调制模块 数字解调模块
调制输出(数字键控法调制)--------ii制输入(FSK解调)
信号源模块 数字解调模块BS---------BS输入(FSK解调)
实验步骤
与
实验记录
1、将模块小心地固定在主机箱中,确保电源接触良好。?
2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的电源开关,对应的发光二极管灯亮,三个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
3、信号源模块设置?
(1)“码速率选择”拨码开关设置为8分频,即拨为00000000?00001000。24位“NRZ码型选择”拨码开关任意设置。?