线性代数讲义4_特征值与实对称矩阵的正交变换对角化(精简版)
线性代数 4-3实对称矩阵的相似对角化
(ii ) 对每一个重特征值λi,求出对应的ri 个线性无关的特 征向量ξ i1 , ξ i 2 , L , ξ iri ; = 1,2, L , m ),由性质知∑ ri = n. (i
i =1 m
(iii ) 用施密特正交化方法将每一个重特征值λi 所对应的 ri 个线性无关的特征向量ξ i1 , ξ i 2 , L , ξ iri ; = 1,2, L , m ) (i 先正交化再单位化为ηi1 ,ηi 2 , L ,ηiri ; = 1,2, L , m ), (i 它们仍为属于λi的特征向量。
Q A对称, A = AT ,
∴ λ1 p1 = (λ1 p1 ) = ( Ap1 ) = p1 T AT = p1 T A,
T T T
(λ 2 p2 ) = λ 2 p1T p2 , 于是 λ1 p p2 = p Ap2 = p
T 1 T 1 T 1
(λ1 λ 2 ) p1T p2 = 0.
Q λ1 ≠ λ2 , ∴ p p2 = 0. 即p1与p2正交.
x1 + x2 + x3 = 0 2 x1 + 2 x2 + x3 = 0 1 1 1 → 1 1 1 → 1 1 0 0 0 1 0 0 1 2 2 1
x2 = x1 α 3 = 1, 1, T ( 0) x3 = 0
对于一般矩阵, 对于一般矩阵,只能保证相异特征值所对应的特征向 量线性无关,但不一定是正交的; 量线性无关,但不一定是正交的;实对称矩阵相异特 征值所对应的特征向量不仅线性无关,而且彼此正交。 征值所对应的特征向量不仅线性无关,而且彼此正交。
T
P = (ξ1 ξ 2
1 2 2 ξ3 ) = 2 1 0 2 0 1
线性代数第三章第四节实对称矩阵的正交对角化
当 1 4 时 , 求 得 A 4 E x 0 的 基 础 解 系 为 1 1 .
1
2
当 2 1 时 , 求 得 A E x 0 的 基 础 解 系 2 1 .
2
1
当 3 2 时 , 求 得 A 2 E x 0 的 基 础 解 系 为 3 2 .
2
第三步 将特征向量正交化
由 于 1,2,3 是 属 于 A 的 3 个 不 同 特 征 值 1,2,3 的 特 征 向 量 ,故 它 们 必 两 两 正 交 .
第四步 将特征向量单位化
令 i
i i
,
i1,2,3.
2 3
23
1 3
得
1
2
3
,
2
1
3
,
3
2
3
.
1 3
2 3
则
P1AP0 0 0.
0 0 0
例 设 3阶 实 对 称 矩 阵 A的 特 征 值 为 5,1,1,且 A的
对 应 于 特 征 值 为 5的 特 征 向 量 为 1=1,1,1T,
试 求 矩 阵 A.
解 由对称矩阵不同特征值对应的特征向量是正交的知
若 = x 1 , x 2 , x 3 T 是 与 特 征 值 = - 1 对 应 的 特 征 向 量 , 则
2 3
2 2 1
命 P1,2,3132 1 2,
1 2 2
4 0 0
则
P1AP0 1 0 .
0 0 2
1 1 1 例 设A 1 1 1,求一个正交矩阵P,
1 1 1 使得P1AP为对角矩阵.
解 (1)第一步 求 A的特征值
1 1 1
AE 1 1 1 230
第四章 矩阵的对角化
第四章 矩阵的对角化矩阵的特征值、特征向量和方阵的对角化理论与方法是矩阵理论的重要组成部分, 它们不仅在数学的各个分支有着重要的应用, 而且在其他学科、工程技术以及数量经济分析等领域有着极其广泛的应用. 本章主要讨论方阵的特征值与特征向量理论及方阵的相似对角化问题, 并应用这些理论和方法解决一些实际问题.§4.1 矩阵的特征值与特征向量工程技术中的振动问题和稳定性问题, 往往可归结为求一个方阵的特征值和特征向量的问题. 特征值和特征向量的概念不仅在理论上很重要, 而且也可直接用来解决实际问题.一、特征值和特征向量的基本概念 先看一个例子设31,51⎛⎫= ⎪-⎝⎭A 取1,1α⎛⎫= ⎪⎝⎭可验证31144.5114αα⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭A这说明矩阵A 作用在向量α上变成了常数倍. 我们把具有这种性质的非零向量α称为矩阵A 的特征向量, 数4称为对应于α的特征值.对于一般的n 阶矩阵, 引入如下概念:定义1. 1 设A 是n 阶矩阵, 如果存在数λ和n 维非零向量,α使得,αλα=A则称数λ为矩阵A 的特征值,α是A 的属于(或对应于)特征值λ的特征向量.根据定义, n 阶矩阵A 的特征值, 就是使齐次线性方程组()λ0E A x -= 有非零解的λ的值, 即满足方程0-=E A λ的λ都是矩阵A 的特征值. 在复数域上n 次方程有n 个根(重根按重数计算), 因此n 阶矩阵A 在复数域上有n 个特征值.方阵A 的对应于特征值λ的特征向量就是齐次线性方程组()λ0E A x -=的非零解.定义1. 2 设n 阶矩阵(),⨯=ij n n A a 则()f =λ-E A λ111212122212n n n n nna a a a aa a a a λλλ------=---称为矩阵A 的特征多项式, -E A λ称为A 的特征矩阵, 0-=E A λ称为A 的特征方程.根据上述定义, 求n 阶A 的特征值与特征向量的求法可按如下步骤进行: (1)由()0f E A λλ=-=求出矩阵A 的全部特征值12,,,,n λλλ 其中0)(=λf 的t重根, 对应A 的t 个数值相同的特征值.(2)对于A 的每一个特征值,i λ求解齐次线性方程组(),λ-=0i E A x 设它的一个基础解系为12,,,n r ξξξ- (其中()i r R E A λ=-, 则A 的属于i λ的全部特征向量为1122,n r n r k k k ξξξ--+++其中12,,,n r k k k - 是不全为零的任意实数. 例1. 1 求1124-⎛⎫=⎪⎝⎭A 的特征值和特征向量.解 A 的特征多项式为-=E A λ11(2)(3),24λλλλ-=---- 故A 的特征值为122,3λλ==.对特征值12λ=, 解方程(2)-=0E A x , 由(2)-E A 1111,2200⎛⎫⎛⎫=→ ⎪ ⎪--⎝⎭⎝⎭求得(2)-=0E A x 基础解系为11,1ξ-⎛⎫=⎪⎝⎭故111(0)k k ξ≠是对应于12λ=的全部特征值向量.对特征值23λ=, 解方程(3)-=0E A x , 由2121(3),2100⎛⎫⎛⎫=→ ⎪ ⎪--⎝⎭⎝⎭E -A求得(3)-=0E A x 基础解系21,21ξ⎛⎫- ⎪= ⎪⎝⎭所以222(0)k k ξ≠是对应于23λ=的全部特征向量.例1. 2 设211020413A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 求A 的特征值和特征向量.解 A 的特征多项式为221120(2)(1)413E A λλλλλλ+---=-=-+--, 所以A 的特征值为1232, 1.λλλ===-对特征值122λλ==, 解方程(2)-=0E A x , 即41100000,4110x --⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭得其基础解系为12114,0,04ξξ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故对应于122λλ==的全部特征向量为112212(,k k k k ξξ+不同时为0).对特征值31λ=-, 解方程()--=0E A x , 即11100300,4140x --⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭得其基础解系为310,1ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭故对应于31λ=-的全部特征向量为333(0)k k ξ≠.例1. 3 求n 阶数量矩阵a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A 的特征值和特征向量. 解()0,n aaa aλλλλλ---==-=-E A故A 的特征值为12.n a λλλ====把a λ=代入()λ-=0E A x 得1200,00,,00.n x x x ⋅=⋅=⋅=这个方程组的系数矩阵是零矩阵, 所以任意n 个线性无关的向量都是它的基础解系, 取单位向量组12100010,,,001εεε⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n 作为基础解系, 于是A 的全部特征向量为1122 n n k k k ++ εεε(12,,,n k k k 不全为0) .注 特征方程0E A λ-=与特征方程0A λ-=E 有相同的特征根, A 的对应于特征值λ的特征向量是齐次线性方程组()λ0E A x -=的非零解, 也是()λ0A E x -=的非零解. 因此, 在实际计算特征值和特征向量时, 以上两种形式均可采用.二、特征值与特征向量的性质性质1. 1 设A 为n 阶矩阵, 则A 与A T有相同的特征值.证明 因为()T T E A E A E A λλλ-=-=-所以A 与A T有相同的特征多项式, 故它们的特征值相同.性质1. 2 设n 阶方阵()A ⨯=ij n n a 的n 个特征值为12,,,,n λλλ 则(1)121122;n nn a a a λλλ+++=+++ (2)12.n A λλλ=其中A 的主对角线的元素之和1122nn a a a +++ 称为矩阵A 的迹, 记为().A tr证明 由行列式的定义可知1112121222121122() =()()()n n n n nnnn a a a a a a f a a a a a a λλλλλλλλ------=-=------+E A其中一项是主对角线n 个元素的乘积, 而省略的各项至多含有2-n 个主对角线上的元素, 因此特征多项式中含nλ与1n λ-的项只能在主对角线元素乘积项中出现, 显然nλ的系数为1,1n λ-的系数为1122().nn a a a -+++又因为, 在特征多项式中令0λ=可得其常数项为(0),f A =-故11122()()(1).n n n nn f a a a A λλλ-=-+++++-另一方面, 由于12,,,n λλλ 是A 的n 个特征值, 所以1211212()()()() ()(1).n n n nn n f λλλλλλλλλλλλλλλλ-=-=-⋅--=-+++++-E A在上述两式中, 比较1n λ-的系数和常数项, 可得121122n nn a a a λλλ+++=+++ 和12.n A λλλ=推论 n 阶方阵A 可逆的充要条件是A 的n 个特征值都不为零. 例1. 4 设n 阶方阵A 满足等式2A A =, 证明A 的特征值为1或0. 证明 设λ为A 的特征值, 则存在非零向量α, 使,αλα=A 因此2(),ααλαλα=2A =A(A )=A由题设知22,A λαααλα===A即2()0.λλα-=因为0α≠. 所以20λλ-=, 即1λ=或0.例1. 5 设λ是方阵A 的特征值, α为对应于特征值λ的特征向量, 证明 (1)k λ是A k 的特征值(k 为任意常数); (2)对正整数,m m λ是m A 的特征值(m 为正整数); (3)若A 是可逆的, 则1λ-是1A -的特征值. 证明 由题意, 对向量0,α≠有,A αλα=(1) 因为()()(),kA k A k ααλα==所以k λ是A k 的特征值. (2)由112()(),m m m m m A A A A A A ααλαλαλα---=====知m λ是mA 的特征值.(3)当A 可逆时, 由推论可知, 0,λ≠用1A -左乘A αλα=两边, 得1,A αλα-=即11,A αλα--=所以1λ-是1A -的特征值.用例1. 5的方法, 读者可自证:若λ是方阵A 的特征值, ()g A 是矩阵多项式, 即1110()k k k k g A a A a A a A a E --=++++ ,则矩阵()g A 有特征值1110().k k k k g a a a a λλλλ--=++++例1.6 设三阶方阵A 的三个特征值分别为2, 3, 7, 求行列式5A E +.解 当i λ是A 的特征值, 可知, (51i λ+)为5A E +的特征值, 即5A E +有特征值521⨯+, 531⨯+, 571⨯+所以由性质1. 2知51116366336.A E +=⋅⋅=定理1.1 设12,,,m λλλ 是矩阵A 的m 个不同的特征值, 12,,,m ααα 是A 的分别属于12,,,m λλλ 的特征向量, 则12,,,m ααα 线性无关.证明 用数学归纳法对特征向量个数m 进行归纳证明.当1m =时, 由于10,α≠因此1α线性无关.假设对1m -个互异的特征值定理成立, 即121,,,m ααα- 线性无关. 对向量组12,,,m ααα , 设有数12,,,m k k k 使11220.m m k k k ααα+++= (4. 1)两端左乘,A 并利用条件,i i i A αλα=得1112220m m m k kk λαλαλα+++=(4. 2) 将m λ·(4. 1)-(4. 2), 得11122211()()()0m m m m m m k k k λλαλλαλλα---+-++-=由归纳假设,121,,,m ααα- 线性无关, 因此()0, 1,2,, 1.i m i k i m λλ-==-又()0,m i λλ-≠从而0(1,2,,1),i k i m ==- 代入(4. 1), 得0,m k = 从而12,,,m ααα 线性无关.推论 如果n 阶方阵A 有n 个不同的特征值, 则A 有n 个线性无关的特征向量. 类似地可以证明: 定理 1.2 设12,,,m λλλ 是矩阵A 的m 个互不相同的特征值, 12,,,ii i is ααα 是A 的属于特征值(1,2,,)i i m λ= 的线性无关的特征向量, 则向量组12111212122212,,,,,,,,,,,,ms s m m ms ααααααααα线性无关定理1.3 设λ是n 阶方阵A 的一个t 重特征值, 则λ对应的线性无关的特征向量至多有t 个.习题4. 11.求矩阵211031213A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的特征值与特征向量.2. 已知方阵A 满足2+23,A A E =试确定A 的特征值的可能取值.3. 设A 是三阶矩阵, 它的特征值是-1, 0, 4, 又知2,A B E +=求B 的特征值.4. 设矩阵122212,221A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(1)求A 的特征值. (2)求矩阵1A E -+的特征值.5. 设矩阵0011100A x y ⎛⎫ ⎪= ⎪ ⎪⎝⎭有三个线性无关的特征向量, 求,x y 应满足的条件.§4.2 相似矩阵在矩阵的运算中, 对角矩阵的运算最方便. 自然要问, 对于一个n 阶矩阵,A 是否可化为对角矩阵, 且保持矩阵A 的一些重要性质不变, 本节将讨论这个问题.一、相似矩阵的概念与性质定义2. 1 设A 和B 都是n 阶方阵, 如果存在可逆矩阵,P 使1,P AP B -=则称B 是A 的相似矩阵, 或说矩阵A 与B 相似, 记为,A B ~可逆矩阵P 称为把A 变成B 的相似变换矩阵. 对A 进行的运算1P AP -称为对A 进行相似变换. 相似是方阵之间的一种关系, 这种关系具有下列三个性质: (1)自反性:;A A ~(2)对称性:若,A B ~则;B A ~ (3)传递性:若,A B ~,B C ~则.A C ~即它是一种等价关系. 彼此相似的矩阵具有一些共性, 也称为相似不变性.定理2. 1 若n 阶矩阵A 与B 相似, 则 (1)()();R A R B =(2);A B =(3)A 和B 的特征多项式相同, 即,E A E B λλ-=-从而A 和B 的特征值相同;(4)kkA B ~(k 为正整数); (5)11A B --~ (A 可逆时).证明 这里仅证(3), 其余留给读者自行证明. 因为,A B ~ 故存在可逆矩阵,P 使1,P AP B -=于是11()E B E P AP P E A P λλλ---=-=-1.P E A PE A λλ-=-=-从而A 和B 的特征值相同.推论 若n 阶矩阵A 与对角矩阵12n λλλ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭ 相似, 则12,,n λλλ 是A 的n 个特征值.从定理2. 1可以看出相似矩阵有许多共同的性质, 若一个矩阵与一个简单矩阵相似, 可以通过研究简单矩阵的性质来得到原来矩阵的一些性质, 最简单的矩阵就是对角阵. 下面来研究矩阵A 满足什么条件与对角阵相似.定义2. 2 对n 阶方阵,A 若存在可逆矩阵,P 使1,P AP -=Λ则称A 相似于对角矩阵, 也称矩阵A 可相似对角化.如果方阵A 能够对角化, 则可简化许多运算过程. 但并不是每个矩阵都能对角化, 即矩阵的可对角化是有条件限制的. 下面将从特征向量的角度来刻画矩阵可对角化的条件.二、矩阵可对角化的条件定理2. 2 n 阶矩阵A 与对角矩阵相似(A 可对角化)的充要条件是A 有n 个线性无关的特征向量.证明 必要性设A 可对角化, 即存在可逆矩阵P 和n 阶对角阵Λ,使121.n P AP λλλ-⎛⎫ ⎪⎪=Λ= ⎪ ⎪⎝⎭ 设12(,,,),n P ααα= 由1,P AP -=Λ得AP P =Λ, 即121212121122(,,,)(,,,)(,,,) =(,,,) n n n n n n AP A A A A ααααααλλαααλλαλαλα==⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭因此, (1,2,,)i i i A i n αλα== . 由于P 可逆, 所以0, 1,2,,.i i n α≠= 故12,,,n ααα 分别是属于特征值12,,,n λλλ 的特征向量, 且由P 可逆知12,,,n ααα 线性无关.充分性设12,,,n ααα 为A 的分别属于特征值为12,,,n λλλ 的n 个线性无关的特征向量, 则有(1,2,,)i i i A i n αλα== 取12(,,,),n P ααα= 因为12,,,n ααα 线性无关, 所以P 可逆, 于是有12,n AP P λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭ 即121,n P AP λλλ-⎛⎫⎪⎪== ⎪ ⎪⎝⎭Λ 因此A 可对角化.注 因特征向量不是唯一的, 所以矩阵P 不具有唯一性.推论 若n 阶矩阵A 有n 个互异的特征值, 则A 必相似于对角矩阵.定理2. 3 n 阶矩阵A 相似于对角矩阵的充要条件是A 的每一个i t 重特征值i λ对应i t 个线性无关的特征向量, 即()i i R E A n t λ-=-这里121, ,,,mim i tn λλλ==∑ 是A 的所有互异的特征值.定理2.2不仅给出了一个矩阵可对角化的充要条件, 而且定理证明的本身给出了对角化的具体方法. 将这种方法总结如下:(1)求出矩阵A 全部互不相等的特征值12,,,,m λλλ 它们的重数依次为1212,,()m m t t t t t t n +++= ,.(2) 求A 的特征向量.对每个特征值λi , 求出齐次线性方程组()0i E A x λ-=的一个基础解系, 设为12,,, (1,2,,) ,ii i is i m ξξξ=(3)判断A 是否可对角化.若A 的i t 重特征值有i t 个线性无关的特征向量(1,2,,)i m = , 则A 可对角化, 否则A 不可对角化.例2. 1 判断下列矩阵能否相似于对角阵, 若能, 则求出相似变换矩阵P .(1)200110111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, (2)122212.221B ⎛⎫ ⎪= ⎪ ⎪⎝⎭解 (1)A 的特征多项式为2(2)(1),E A λλλ-=--故A 的特征值2,1321===λλλ.其中121==λλ为二重特征值, 又100(1)100,110E A -⎛⎫⎪⋅-=- ⎪ ⎪--⎝⎭(1)2,3(1)321,R E A R E A ⋅-=-⋅-=-=故1=λ只对应一个线性无关的特征向量, 故矩阵A 不能相似于对角阵.(2)B 的特征多项式为2(1)(5)0E B λλλ-=+-=故B 的特征值5,1321=-==λλλ.其中1-为B 的二重特征值, 又当1-=λ时222111(1)222000,222000E B ---⎛⎫⎛⎫ ⎪ ⎪-⋅-=---→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭所以3()312,R B E -+=-=故1-=λ对应2个线性无关的特征向量, 即B 可对角化, 且121-==λλ对应的线性无关特征向量为.)1,0,1(,)0,1,1(T T --由于53=λ为单特征值, 它有且仅有一个线性无关的特征向量, 由(5)0E B x -=,得线性无关的特征向量(1,1,1).T取111101,011P --⎛⎫ ⎪= ⎪ ⎪⎝⎭于是111.5P BP --⎛⎫ ⎪=- ⎪ ⎪⎝⎭习题4. 21. 设方阵12422421A x --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭与50000004y ⎛⎫ ⎪Λ= ⎪ ⎪-⎝⎭相似, 求,.x y2. 设A B 、都是n 阶方阵, 且0A ≠, 证明AB 与BA 相似.3. 判断下列矩阵能否相似于对角阵, 若能, 则求出相似变换矩阵.P(1)220212020A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭; (2)421201.110B ⎛⎫⎪=-- ⎪ ⎪⎝⎭4. 当k 为何值时, 方阵25141001k A -⎛⎫⎪=- ⎪ ⎪⎝⎭可相似对角化?§4.3 向量的内积与正交矩阵本节主要讨论向量的内积、长度、正交矩阵等概念, 并介绍它们的性质. 若不特别说明, 本章讨论的向量都是实数域上的.一、向量的内积 定义3. 1 设n 维向量1122,,n n x y x y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αβ 令 []1122,,αβ=++ n n x y x y x y称[],αβ为向量α与β的内积.由于内积是两个向量间的一种运算, 其结果是一个实数. 内积可用矩阵记号可表示为[],.T =αβαβ容易证明内积满足下列运算性质(其中,,αβγ为n 维向量, k 为实数):(1) [][],,;αββα= (2) [][],,;k k =αβαβ (3) [][][],,,;+=+αβγαγβγ(4) 当0=α时, [],0;=αα当0≠α时, [],0.>αα定义3. 2 令||||α==称||||α为n 维向量α的长度(或范数).当||||1α=时, 称α为单位向量. 对nR 中的任一非零向量α, 向量||||αα是一个单位向量, 因为1.||||=αα用非零向量α的长度去除向量α, 得到一个单位向量, 这一过程通常称为把向量α单位化.向量的长度具有下述性质:(1) 非负性 ||||0,≥α且||||00;=⇔=αα(2) 齐次性 ||||||||k k =αα (3) 三角不等式 ||||||||||+≤+αβαβ 另外, 可以证明向量的内积满足柯西-施瓦兹(Chauchy-Schwarz )不等式[][][]2,,,,≤αβααββ这里不予证明. 由此成立[],1|||| ||||≤αβαβ (当,≠≠00αβ时),于是, 可定义向量的夹角.定义3. 3 当||||0,||||0≠≠αβ时, 称[],arccos|||| ||||=αβθαβ为n 维向量α与β的夹角.定义3. 4 当向量α与β满足[],αβ=0时, 则称向量α与β正交. 显然, 若,=0α则α与任何向量都正交.定义3. 5 若12,,,r ααα 是一个非零向量组, 且12,,,r ααα 中的向量两两正交, 则称该向量组为正交向量组.例如, nR 中单位向量组()()()121,0,,0,0,1,,0,,0,0,,1===TTTn e e e 是正交向量组.定理3. 1 若n 维向量12,,,r ααα 是一组两两正交的非零向量, 则该向量组线性无关. 证明 设有12,,,r k k k 使得11220,r r k k k ++=ααα用(1,2,,)i i r =α 与上式两端作内积, 得1122(,)(0,),r r i i k k k ++=ααααα即1122(,)(,)(,)(,)0.i i i i i r r i k k k k ++++=αααααααα由于i α与1211,,,,i i r -+ααααα 均正交, 即,0,1,2,,1,1,,,i j j i i r ⎡⎤==-+⎣⎦αα 所以有[],0i i i k =αα, 再有0,i ≠α得0, 1,2,,.i k i r == 所以,12,,,r ααα 线性无关.例3. 1 已知3维向量空间3R 中两个向量()()121,1,1,1,2,1TT==-αα正交, 试求一个非零向量3α, 使123,,ααα两两正交.解 记 12111,121T T A ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭αα则3α应满足齐次方程=0Ax , 即1231110,1210x x x ⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎝⎭由111101,121010A ⎛⎫⎛⎫=→ ⎪ ⎪-⎝⎭⎝⎭得132,0,x x x =-⎧⎨=⎩ 从而有基础解系()1,0,1T-.则取()31,0,1Tα=-即为所求.定义3. 6 设n 维向量12,,, r e e e 是向量空间()nV V R ⊂的一个基, 如果12,,, r e e e 两两正交, 且都是单位向量, 则称12,,, r e e e 是V 的一个规范正交基(或标准正交基).例如 n 维向量()()()121,0,,0,0,1,,0,,0,0,,1===TTTn e e e 是nR 的一个规范正交基.再如123411,0,0,,0,0,,,,,22⎫⎫⎛⎫⎛⎫====⎪⎪ ⎪ ⎪⎭⎭⎝⎭⎝⎭TTTTe e e ε就是4R 的一个规范正交基.若12,,, r e e e 是V 的一个规范正交基, 那么V 中任一向量α都能由12,,, r e e e 线性表示, 设表示式为1122,αλλλ=+++r r e e e为求出其系数(1,,)i i r λ= , 可用i e 与上式两端作内积, 有[],.=i i e λα这就是向量在规范正交基中的坐标的计算公式.利用这个公式能方便的求出向量的坐标, 因此, 我们在给向量空间取基时常常取规范正交基.设12,,,r ααα 是向量空间V 的一个基, 要求V 的一个规范正交基. 也就是要找一组两两正交的单位向量12,,,,r e e e 使12,,, r e e e 与12,,,r ααα 等价. 该过程称为把12,,,r ααα 规范正交化.我们可以用以下的办法把12,,,r ααα 规范正交化, 具体的步骤为: (1) 正交化:取[][][][][][][][]112122111121121112211;,;,,,,,,,,----==-=----r r r r r r r r rβααββαββββαβαβαβαβββββββββ容易验证12,,,βββr 两两正交, 且12,,,βββr 与12,,,r ααα 等价. (2) 单位化:取112212111,,,,===r r re e e ββββββ则12,,, r e e e 就是向量空间V 的一个规范正交基.上述从线性无关向量组12,,,r ααα 导出正交向量组12,,,βββr 的过程称为施密特正交化过程.它不仅满足12,,,βββr 与12,,,r ααα 等价, 还满足:对任何(1)≤≤k k r , 向量组12,,,βββk 与12,,,k ααα 等价.例 3. 2 设1231142,3,1,110ααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭试用施密特正交化过程把这组向量规范正交化.解 正交化:取[][][][][][]112122111313233121122;1,51;,311,,20.,,1=-⎛⎫⎪=-= ⎪ ⎪⎝⎭⎛⎫⎪=--= ⎪ ⎪⎝⎭βααββαβββαβαββαββββββ再单位化, 取3121231231112,1,0,111-⎛⎫⎛⎫⎛⎫⎪⎪⎪======⎪⎪⎪⎪⎪⎪-⎭⎭⎭e e e ββββββ 则123,,e e e 即为所求.二、正交矩阵定义3. 7如果n 阶实矩阵A 满足T AA E =(即1T A A -=),那么, 称A 为正交矩阵, 简称正交阵. 显然, n 阶单位矩阵E 是正交矩阵.由正交矩阵的定义, 显然有下面的的性质:(1) 如果A 为正交矩阵, 则1T AA -=;(2) 如果A 为正交矩阵, 则1()TA A -也是正交矩阵;(3) 如果,A B 为同阶正交矩阵, 则它们的乘积AB 也是正交矩阵. (4) 正交矩阵的行列式等于1或-1.定理3. 2 n 阶矩阵A 是正交矩阵的充分必要条件是它的列(行)向量组是单位正交向量组.证明 设A 是实矩阵, 它的列向量组为12,,,n ααα , 则A 与TA 可表示为1212(,,,),,T T T n T n A A ⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭αααααα于是[][][][][][][][][]111212122212,,,,,,,,,,n n T n n n n A A ⎛⎫⎪ ⎪= ⎪⎪ ⎪⎝⎭αααααααααααααααααα因此, TA A E =的充分必要条件是1,;,0,.i j i j i j =⎧⎡⎤=⎨⎣⎦≠⎩αα当当即A 的列向量组是单位正交向量组.又A 正交时, TA 也正交, 因此A 是正交矩阵的充分必要条件是A 的行向量组是单位正交向量组.例3. 3 判断下列矩阵是否为正交阵 (1) 1001⎛⎫⎪-⎝⎭; (2) 1001⎛⎫ ⎪⎝⎭; (3) 184999814999447999⎛⎫-- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-- ⎪⎝⎭;(4) 0⎛ ⎝; (5) 1112310121112⎛⎫- ⎪⎪⎪ ⎪⎪ ⎪- ⎪⎝⎭;(6) 0⎛ ⎝. 解 (1)、(2)、 (3)、 (4)都是正交矩阵.因为它们的列向量组都是单位正交向量组. (5)、(6)都不是正交矩阵.因为它们的第一列都不是单位向量. 定义3. 6 若P 为正交矩阵, 则线性变换=y Px 称为正交变换.设=y Px 为正交变换, 则有||||||||.y x =====这说明正交变换后向量的长度保持不变, 这是正交变换的优良特性.习题4. 31. 已知()()1,2,1,1,2,3,1,1,TT=-=-αβ求[][],,32,23,--αβαβαβ||||α||||,βα与β的夹角.2. 设()()1,1,2,1,0,1,TT=-=-αβ求与,αβ等价的标准正交向量组.3. 设()()()123123,3,3,3,3,,3,,3,(,,),TTTk k k A m ====αααααα求,,m k 使A 为正交阵.§4. 4实对称矩阵的对角化从上一节我们看到, 一般的矩阵并不一定可对角化. 本节专门讨论一种特殊的方阵——实对称矩阵,这种矩阵一定可对角化, 并且还能正交相似于对角矩阵. 定理4.1 实对称矩阵的特征值为实数.证明 设λ是实对称矩阵A 的特征值, α为对应的特征向量. 即,0,A αλαα=≠以λ表示λ的共轭复数, α表示α的共轭复向量,则()().A A A αααλαλα====于是有(),TTTA A ααααλαα==及()()(),TTTTT TA A A ====ααααααλααλαα以上两式相减, 得 ()0,Tλλαα-=因为0,≠α所以0.Tαα≠,故λλ=即λ为实数. 对实对称矩阵A , 因其特征值λi 为实数, 故方程组()0i A E x -=λ是实系数方程组,由0i A E -=λ知它必有实的基础解系, 所以A 的特征向量可以取实向量. 定理 4.2 设12,λλ是实对称矩阵A 的两个特征值, 12,αα 依次是它们对应的特征向量.若12,≠λλ则1α与2α 正交.证明 111,=A αλα222,=A αλα 12,≠λλ 故12212().T T A ααλαα=因A 对称, 故1212112112()()(),T T T TA A ααααλααλαα===于是()12120.T λλαα-=因12≠λλ,故120,=Tαα即1α与2α正交.定理 4.3设A 为n 阶对称矩阵,λ是A 的特征方程的t 重根, 则矩阵-A E λ的秩()-=-λR A E n t ,从而特征值λ恰有t 个线性无关的特征向量.证明 略定理4.4 设A 为n 阶对称矩阵, 则必有正交矩阵P , 使1P AP Λ-=, 其中Λ是以A 的n 个特征值为对角元素的对角矩阵.证明 设A 的互不相等的特征值为12λλλm ,,,,它们的重数依次为12,,m t t t ,, 于是12m t t t n +++= . 根据定理4. 1及定理4. 3知, 对应特征值i λ恰有i t 个线性无关的实特征向量, 把它们正交单位化, 即得(1,2,,)i t i m = 个两两正交的单位特征向量, 由12m t t t n +++= 知这样的特征向量恰有n 个. 又实对称矩阵不等的特征值对应的特征向量正交, 故这n 个特征向量构成规范正交向量组. 以它们为列构成正交矩阵,P 并有1.P AP Λ-=其中对角矩阵Λ的对角元素含i t 个(1,2,,),i i s =λ 恰是A 的n 个特征值. 根据定理4. 3及定理4. 4, 我们有下述把对称阵A 对角化的步骤: (1)求出A 的全部互不相等的特征值12 m λλλ,,,,它们的重数依次为1212,,().m m t t t t t t n +++= , (2)对每个i t 重特征值i λ, 求方程()0-=i A E x λ的基础解系, 得i t 个线性无关的特征向量. 再把它们正交化、单位化, 得i t 个两两正交的单位特征向量. 因12,m r r r n +++= 故总共可得n 个两两正交的单位特征向量.(3)把这n 个两两正交的单位特征向量为列构成正交阵,P 便有1.TP AP P AP -==Λ 注 Λ中对角元的排列次序应与P 中列向量的排列次序相对应.例4. 1 设500021012A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求一正交矩阵P 使得1.P AP -=Λ解 A 的特征多项式为50021(1)(3)(5),012A E λλλλλλλ--=-=---- 故A 的特征值为12313 5.===,,λλλ对11=λ, 由12340000110,0110x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭解得基础解系为12301,1x x x ⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭单位化得10.p ⎛⎫⎪ = ⎪ ⎪⎝⎭ 对23=λ, 由12320000110,0110x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭解得基础解系为12301,1x x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭单位化得20.p ⎛⎫⎪= 对35=λ, 由12300000310,0130x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭解得基础解系为12310,0x x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭单位化得30.0p ⎪= ⎪ ⎪⎝⎭将123,,p p p 构成正交矩阵123001(,,)0,0⎛⎫⎪⎪== ⎪ ⎪ ⎪⎪⎝⎭P p p p 则 .5311⎪⎪⎪⎭⎫ ⎝⎛==-AP P AP P T例4. 2设111111111⎛⎫⎪= ⎪ ⎪⎝⎭A , 求一正交矩阵P 使1-=ΛP AP .解 A 的特征多项式为2111111(3),111A E λλλλλλ--=-=--故A 的特征值为1230, 3.===λλλ对120==λλ, 解齐次线性方程组(0)0,-=A E x 求得基础解系为:12111,0,01ξξ--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭经过施密特正交化, 再单位化得12,.0⎛⎛== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭p p对33=λ, 解齐次线性方程组3)0,-=A E x (求得基础解系为31,1ξ ⎪= ⎪ ⎪⎝⎭单位化得3.=p 取123(,,),0P p p p ⎛==⎝则.3001⎪⎪⎪⎭⎫ ⎝⎛==-AP P AP P T例4. 3 设2112-⎛⎫=⎪-⎝⎭A , 求nA解 因A 对称, 故A 可对角化, 即有可逆矩阵P 及对角阵Λ, 使1.Λ-=P AP 于是1,Λ-=A P P 从而1.Λ-=n n A P P由 22143(1)(3),12λλλλλλλ---==-+=----A E得A 的特征值为121, 3.==λλ于是1010,0303ΛΛ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭n n 对应11,=λ 由()0,-=A E x 解得基础解系为111ξ⎛⎫= ⎪⎝⎭;对应23,=λ 由(3)0,-=A E x 解得基础解系为211ξ⎛⎫=⎪-⎝⎭.并有1211(,)11ξξ⎛⎫==⎪-⎝⎭P , 再求出1111.112-⎛⎫= ⎪-⎝⎭P 于是1111011131311110311221313-⎛⎫+-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪⎪---+⎝⎭⎝⎭⎝⎭⎝⎭n n nnn n n A P P Λ. 习题4. 41. 试求一个正交矩阵P , 将下列对称矩阵化为对角矩阵.(1) 400031013⎛⎫ ⎪⎪ ⎪⎝⎭; (2) 222254245-⎛⎫⎪- ⎪ ⎪--⎝⎭. 2. 设A 为三阶实对称矩阵, 特征值是1,1,0.-而11=λ和21=-λ的特征向量分别是21,1,113⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭a a a a 求矩阵A . 3. 设三阶对称矩阵A 的特征值为6,3,3,特征值6 对应的特征向量为1(1,1,1),=T p 求A .4. 设142034,043⎛⎫⎪=- ⎪ ⎪⎝⎭A 求100.A§4.5 应用举例例5. 1 社会调查表明, 某地劳动力从业转移情况是:在从农人员中每年有3/4改为从事非农工作, 在非农从业人员中每年有1/20改为从农工作. 到2010年底该地从农工作和从事非农工作人员各占全部劳动力的1/5和4/5, 试预测到2015年底该地劳动力从业情况以及经过多年之后该地劳动力从业情况的发展趋势.解 到2011年底该地从农工作和从事非农工作人员占全部劳动力的百分比分别为1114;45205⨯+⨯31194.45205⨯+⨯ 如果引入2 阶矩阵(),ij A a =其中121/20a =表示每年非农从业人员中有1/20改为从农工作. 213/4a =表示每年从农人员中有3/4改为从事非农工作. 于是有⎪⎪⎭⎫ ⎝⎛=20/194/320/14/1A再引入 2 维列向量, 其分量依次为到某年底从农工作和从事非农工作人员各占全部劳动力的百分比.如向量1/54/5X ⎛⎫=⎪⎝⎭表示到2010年底该地从农工作和从事非农工作人员各占全部劳动力的1/5和4/5.那么, 2011年底该地从农工作和从事非农工作人员各占全部劳动力的百分比就可由下述运算得出1/41/201/53/419/204/5AX ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭1114452053119445205⎛⎫⨯+⨯⎪= ⎪ ⎪⨯+⨯ ⎪⎝⎭9/10091/100⎛⎫= ⎪⎝⎭于是, 到2015年底该地从农工作和从事非农工作人员各占全部劳动力的百分比应为5,A Xk 年后该地劳动力的从业情况可由计算k A X 而得.矩阵A 的特征多项式)1)(15(20194320141||--=--=-λλλλλE A得A 的特征值121/5, 1.λλ==所以A 能与对角矩阵相似.求特征值11/5λ=对应的特征向量为:11⎛⎫⎪-⎝⎭求特征值21λ=对应的特征向量为:115⎛⎫⎪⎝⎭取矩阵11,115P ⎛⎫=⎪-⎝⎭则P 为可逆矩阵, 且使得11/50.01P AP -⎛⎫= ⎪⎝⎭因为11511,1116P --⎛⎫=⎪⎝⎭所以 555111/50(1/5)0,0101A X P P X P P X --⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=1)5/1(151115⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-11115161⎪⎪⎭⎫ ⎝⎛5/45/1 66111151116155⎛⎫+ ⎪= ⎪⎪- ⎪⎝⎭类似的, 第k 年底该地劳动力的从业情况为111511/5(1/5)01115114/51601kk A X -⎛⎫⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--+=++11511155111161545151515511155115151161k k k k k k 按此规律发展, 多年之后该地从农工作和从事非农工作人员占全部劳动力的百分比趋于16/10011594/10016⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭即多年之后该地从农工作和从事非农工作人员各占全部劳动力的6/100 和 94/100.例5. 2 在1202年, 裴波那契在一本书中提出一个问题:如果一对兔子出生一个月后开始繁殖, 每个月生出一对后代, 现在有一对新生兔子, 假设兔子只繁殖, 没有死亡, 那么问每月月初会有多少兔子?解 假设这对兔子出生时记为零月份, 这时只有一对兔子, 一个月后即1月初, 这对兔子还未开始繁殖, 所以依然是一对兔子, 2月初, 它们生了一对兔子, 因此, 此时有两对;3月初, 它们又生了一对兔子, 而在1月初生下的那对兔子还未繁殖, 故此时共有3对, ……, 依次下去, 有1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …,这一数列称为裴波那契数列.设第n 月初有n x 对兔子, 则有12.n n n x x x --=+这是一个递推公式, 显然01 1.x x == 将上式用矩阵表示, 有11101.11n n n n n n n x x x x x x x -++⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭记101,,11n n n x X A x +⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭那么0011,1x X x ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭且21201.1n n n n n X AX A X A X A --⎛⎫===⋯== ⎪⎝⎭易知A的特征值为121122+==λλ 属于1λ的特征向量为()111,T=ξλ属于2λ的特征向量为()221.T=ξλ 令()121211,P ⎛⎫==⎪⎝⎭ξξλλ那么1120.0P AP -⎛⎫= ⎪⎝⎭λλ而 21112211211111,111P --⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭λλλλλλλλ于是1111212212211111212222212121211111111 =,n n n n n n n n n n n n X A P P -++++++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫--= ⎪⎪---⎝⎭⎭λλλλλλλλλλλλλλλλλλλλ所以11111211).22n n n n n x ++++⎛⎫⎛⎫⎛⎪=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎭λλ 这就是裴波那契数列的卢卡斯通项公式.习题四1. 求与()()()1231111,1111,2113TTTααα=-=--=正交的单位向量.2. 试用施密特正交化方法把下列向量组正交化:(1) 1231021,1,0123ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2) 123111011,,101110ααα-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3. 判断下列矩阵是不是正交矩阵, 并说明理由.(1)10;3323⎛ ⎪⎪- ⎪ ⎪⎪ ⎪ ⎪⎝⎭(2)11123111.2211132⎛⎫-- ⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭4. 设,A B 为同阶正交矩阵, 则它们的乘积AB 也是正交矩阵.5. 求下列矩阵的特征值与特征向量(1)211031;213-⎛⎫ ⎪- ⎪ ⎪⎝⎭ (2)001010;100⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)11111111;11111111⎛⎫ ⎪-- ⎪⎪-- ⎪--⎝⎭ (4)10000100;00010000a a a a ⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎝⎭6. 设,A B 为n 阶方阵, A 可逆, 证明AB 与BA 有相同的特征值.7. 设A 是三阶矩阵, 它的特征值是-1, 2, 1, 求*32A A E ++.8. 设1λ和2λ是矩阵A 的两个不同的特征值, 对应的特征向量分别为1p 和2p , 证明12p p +不是A 的特征向量.9. 设21253,102A b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭已知A A ,1-=的伴随矩阵*A 特征值0λ所对应的特征向量T )1,1,1(--=α, 求0λ和b 的值.10. 已知111p ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵21153143A a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的一个特征向量. (1) 求参数,a b 及特征向量p 所对应的特征值; (2) 问A 能不能相似对角化?并说明理由.11. 设110220,421A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭求kA12. 设n 阶方阵A 的秩为,r A A =2. (1)求A 的特征值;(2)证明E A -的秩为();n R A -(3)证明A 可相似于对角矩阵, 并写出对角矩阵.13. 设A 为3阶矩阵,12,αα为矩阵A 的分别属于特征值 -1和1 的特征向量, 3α满足323A ααα=+, 证明 123,,ααα线性无关.。
实对称矩阵的对角化线性代数课件典型实例
虽然目前已经存在多种实对称矩阵对角化的方法,但这些方法可能不适用于某些特殊情况或具有较大的计算复杂度。 因此,需要不断探索新的实对称矩阵对角化方法,以提高计算效率和精度。
扩展实对称矩阵对角化的应用领域
目前实对称矩阵对角化主要应用于自然科学和工程领域。未来可以尝试将其应用到社会科学和人文学科 等领域,以解决一些实际问题或提供新的研究视角。
总结词
利用实对称矩阵的对角化,可以求解线性方 程组。
详细描述
对于给定的线性方程组 $Ax = b$,其中 $A$ 是实对称矩阵,我们可以将其对角化。通过 对角化后的矩阵进行求解,可以得到线性方 程组的解。
实例三:矩阵分解和矩阵求逆的实例
总结词
实对称矩阵的对角化可以用于矩阵分解 和矩阵求逆。
VS
详细描述
04
典型实例分析
实例一:二次型的最小值问题
总结词
通过实对称矩阵的对角化,可以找到二次型的最小值。
详细描述
对于给定的二次型 $f(x) = x^T Ax$,其中 $A$ 是实对称矩阵,我们可以将其对角化。通过实对称矩阵对角化, 可以将二次型转换为对角线形式,从而更容易找到最小值。
实例二:线性方程组的求解问题
性质
实对称矩阵具有一些重要的性质,如特征值和特征向量都是实数,且存在正交 矩阵P,使得$P^{-1}AP$是对角矩阵。
对角化的概念和重要性
对角化
对角化是将一个矩阵转化为对角矩阵的过程。如果存在一个可 逆矩阵P,使得$P^{-1}AP$是对角矩阵,则称矩阵A可对角化。
重要性
对角化在数学和工程领域中具有广泛的应用,如求解线性方 程组、计算行列式、判断矩阵是否可逆等。此外,对角化还 可以用于解决一些优化问题,如线性回归和主成分分析等。
线代第四章之实对称矩阵
目录
• 实对称矩阵基本概念与性质 • 实对称矩阵的相似对角化 • 特征值与特征向量在实对称矩阵中的应用 • 正交变换在实对称矩阵中的应用 • 线性方程组在实对称矩阵中的解法探讨 • 总结回顾与拓展延伸
01
实对称矩阵基本概念与性质
定义及性质
性质:实对称矩阵 具有以下性质
不同特征值对应的 特征向量正交;
拓展延伸:其他类型矩阵简介
反对称矩阵
反对称矩阵是一个方阵,其转置等于它本身的相反数,即$A^T = -A$。反对称矩阵在量 子力学和刚体动力学等领域有着重要应用。
正交矩阵
正交矩阵是一个方阵,其逆等于它本身的转置,即$A^{-1} = A^T$。正交矩阵在保持向 量长度和角度不变的线性变换中扮演着重要角色。
举例说明
例子1
例子2
例子3
矩阵$A=begin{pmatrix} 1 & 2 2 & 1 end{pmatrix}$是一个实对称矩阵 ,因为$A^T=A$。
矩阵$B=begin{pmatrix} 1 & 2 -2 & -1 end{pmatrix}$不是一个实对称 矩阵,因为$B^T neq B$。
应用正交变换求解
03
04
05
首先,通过正交变换将 然后,根据对角矩阵
矩阵$A$化为对角矩阵, $D$的元素即为原实对
即求解$P^{-1}AP = D$, 称矩阵的特征值,求得
其中$D$为对角矩阵, 特征值为$lambda_1 =
$P$为正交矩阵;
1, lambda_2 = 4$;
最后,根据特征值求得 对应的特征向量,并构 造正交矩阵$P = begin{pmatrix} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} end{pmatrix}$。
1线性代数 4.4实对称矩阵的对角化
2 x2 2 x3 0,
1
解之得基础解系
3 2.
2
第三步 将特征向量正交化.
因为1, 2 , 3是属于 A的 3 个不同特征值的
特征向量, 故它们必两两正交.
第四步 将特征向量单位化.
令 i
i i
,i
1,2,3,得
2 / 3
2 / 3
1/ 3
1 2/ 3 , 2 1/ 3 , 3 2/ 3.
由的任意性, 知实对称矩阵的特征值
都是实数.
性质2 实对称矩阵对应于不同特征值的特征 向量是正交的。
证明 : 设1, 2是实对称阵 A的两个特征值 , (1 2 ),
x1, x2是对应于 1, 2的特征向量 ,
即
Ax1 1x1, Ax2 2 x2
由A AT , 有1x1T (1x1)T ( Ax1)T x1T AT x1T A
2
解之得基础解系
1 2 .
1
对 2 1,由(E A)x 0,得
x1 2 x2
0,
2
x1
2 x3 0,
2 x2 x3 0,
解之得基础解系
2
2 1 .
2
对 3 2,由(2E A)x 0,得
4 x1 2 x2
0,
2 x1 3 x2 2 x3 0,
i , (i 1,2,, n)
,解齐次
线性方程组 (i E A)x 0
找出基础解系 pi1 , pi2 ,, pis
3)、将 p1, p2 ,, pn 正交化,单位化 ,
得一组正交单位
向量 1,2 ,,n ,这组列向量就构成了
正交矩阵 P
例4.4.2
已知1 6,2 3 3是实对称矩阵A的三个特征值,
线性代数—实对称矩阵的对角化
T
9
1 − 1 4 例4 将向量组 α 1 = 2 , α 2 = 3 , α 3 = − 1 − 1 1 0 标准正交化. 标准正交化. 解 β1 = α1 , − 1 1 − 1 − 1 4 5 (α 2 , β 1 ) β2 = α2 − β1 = 3 − 2 = 1 , β2 = 1 , ′ ( β1 , β1 ) 1 6 − 1 3 1 1 ′ (α 3 , β 1 ) (α 3 , β 2 ) ′ β3 = α3 − β1 − β2 ′ ′ ( β1 , β1 ) (β 2 , β 2 )
6 1 4 1 − 1 2 − 5 1 ′ = − 1 − 2 − 1 = 0 , β3 = 0 , 1 0 6 − 1 3 1 3 6
10
1 − 1 1 β1 = 2 , β 2 = 1 , β 3 = 0 , ′ ′ − 1 1 1
再单位化, 再单位化
1 1 − 1 1 1 1 γ1 = 2 , γ2 = 0 . 1 , γ3 = 6 2 3 − 1 1 1
n维基本单位向量组 ε 1 , ε 2 , ⋯ , ε n 是两两正交的。 是两两正交的。
ε 1 = (1, 0, ⋯ , 0)T , ε 2 = (0, 1, ⋯ , 0)T , ⋯ ,
ε n = (0, 0, ⋯ , 1)T ,
线性代数第三章第四节实对称矩阵的正交对角化
思考题1解答
解由 A 2A 可A 的 得特1或 征 0,又 值 A 是为 实对
阵 ,且秩 r,故 为 存在 P ,使 可 得 逆阵
P1AP Er 0, 0 0
其中 Er是 r阶单位 . 阵 从 d 2 E 而 e A ) d t 2 P ( P e 1 P t P 1 ) (
矩P 阵 1,使得 P 1 1 A P 1 d ( n , i 0 , a , 0 )g ,
还可求得
de B tE ()(n )( )n 1,
即B与A有相同的特征 . 值
对应特 2 征 值 n0,有 n1个线性无
特征,故 向存量 在可逆 P2矩 ,使阵 得 P2 1BP2 ,
从而 P 1 1 A P 1 P 2 1 B P 2 ,
3. 将特征向量正交化; 4. 将特征向量单位化.
2 2 0 例 设A2 1 2,求一个正交矩阵P,
0 2 0 使得P1AP为对角矩阵.
解 (1)第一步 求 A的特征值
2 2 0
AE 2 1 2 4 1 2 0
0 2
得 1 4 ,2 1 ,3 2 .
第二 由 A i步 E x 0 ,求 A 的 出 特征
1 Tx1x2x30.
解之得基础解系
2
-1
1
,
3
-1
0
.
0
1
, 即 与 特 征 值 = - 1 相 对 应 的 线 性 无 关 的 特 征 向 量 .
2 3
将特征向量正交化
令 1=1,2=2,
3=
3
2 , 3 2 , 2
2
1 2
1 2
1
.
实对称矩阵正交对角化证明
实对称矩阵正交对角化证明实对称矩阵正交对角化是线性代数中非常重要的一个结果,它将一个实对称矩阵通过一个正交矩阵相似变换为对角矩阵。
这个结果在矩阵理论、物理学等领域有着广泛的应用。
下面我们将通过引入必要的定义、定理和证明,来生动、全面地讨论实对称矩阵正交对角化的证明。
首先,我们需要引入一些必要的定义。
一个矩阵是实对称矩阵,当且仅当它是一个方阵,并且满足矩阵的转置等于它本身。
一个矩阵是正交矩阵,当且仅当它是一个方阵,并且满足矩阵的转置乘以矩阵等于单位矩阵。
一个矩阵是对角矩阵,当且仅当它是一个方阵,并且除了对角线上的元素外,其他元素都为零。
接下来,我们引入一个非常重要的定理,即实对称矩阵的特征值是实数,且特征向量对应不同特征值的特征向量是正交的。
这个定理的证明可以通过使用实对称矩阵对特征值问题的标准解法,即求解矩阵的特征多项式的根来完成。
我们不再详细证明这个定理。
有了上述定义和定理,我们可以开始证明实对称矩阵正交对角化的结论。
证明:对于一个n阶实对称矩阵A,我们需要证明存在一个正交矩阵P,使得P的逆矩阵乘以A再乘以P结果为一个对角矩阵。
首先,我们考虑实对称矩阵A的特征值和特征向量。
根据前面提到的定理,特征值都是实数,且对应特征值的特征向量是正交的,即如果特征值λ1和λ2不相等,则对应的特征向量v1和v2满足v1·v2=0,其中·表示向量的内积。
另外,不同特征值对应的特征向量也是线性无关的。
我们将这些特征向量组成一个矩阵P,其中每一列是一个特征向量。
显然,P是一个正交矩阵,因为P的每一列都是单位长度的,并且两两正交。
同时,由于不同特征值对应的特征向量是线性无关的,所以P是可逆的。
下面我们证明P的逆矩阵乘以A再乘以P结果为一个对角矩阵D。
对于P的第i列,设其对应的特征值为λi,则有AP=PD,其中D是一个对角矩阵,对角线上的元素就是A的特征值。
左乘P的逆矩阵P-1,我们得到了P-1AP=DP-1,即A=PDP-1。
线性代数3.3实对称矩阵的特征值和特征向量
05
实对称矩阵的应用举例
在二次型中的应用
二次型的标准型
通过实对称矩阵的正交变换,可 以将二次型化为标准型,从而简 化问题的求解。
二次型的正定性
利用实对称矩阵的特征值性质, 可以判断二次型的正定性,进而 解决优化问题。
二次曲面分类
实对称矩阵的特征值和特征向量 可用于二次曲面的分类,如椭球 面、双曲面等。
1. 求出矩阵$A$的特征多项式$f(lambda)$。
3. 对于每个特征值$lambda_i$,求出对应的特征向量 $alpha_{i1}, alpha_{i2}, ldots, alpha_{ik}$,其中$k$是 $lambda_i$的重数。
5. 计算$P^{-1}AP = Lambda$,其中$Lambda = text{diag}(lambda_1, lambda_2, ldots, lambda_n)$。
线性代数3.3实对称 矩阵的特征值和特征
向量
目录
• 引言 • 实对称矩阵的应用举例 • 总结与展望
01
引言
课程背景与目标
课程背景
线性代数是数学的一个重要分支,广泛应用于各个学科领域。实对称矩阵作为一 类特殊的矩阵,具有很多重要的性质和应用。特征值和特征向量是矩阵理论中的 核心概念,对于理解矩阵的性质和解决实际问题具有重要意义。
迭代法
通过构造迭代序列来逼近特 征值和特征向量,如幂法、 反幂法等。
特征值与矩阵性质的关系
特征值与矩阵的行列式
矩阵的所有特征值的乘积等于其行列式 的值。
特征值与矩阵的秩
如果矩阵至少有一个非零特征值,则 其秩大于等于1;如果矩阵所有特征
值都为零,则其秩为零。
特征值与矩阵的迹
实对称矩阵的正交对角化
实对称矩阵的正交对角化摘要:实对称矩阵一定可以对角化,并且可以要求相似变换矩阵是正交矩阵,即实对称矩阵可以正交对角化。
本文对该正交矩阵的构成进行了说明,并做了详细的解释。
关键词:实对称矩阵;正交对角化;特征值;特征向量;正交规范化作为数学基础课之一,线性代数是最抽象、最难的一门课。
线性代数的难点在于不同章节之间隐藏的联系,只有把这种联系在各个章节之间打通,才能真正地学好线性代数。
在学习的过程中,基础要扎实,遇到问题要寻根究底,对于一些证明过程要真正弄明白。
如果对一些本来就比较难的部分,证明过程解释的比较粗糙,学生就会对内容感觉似是而非,从而导致学生基础不牢,只能靠死记硬背。
因此,教师在上课过程中,应对一些重点内容进行必要的解释。
本文就实对称的正交对角化,正交矩阵的构成过程进行了详细的解释,希望能帮助学生真正地理解这部分内容。
Th设A是实对称矩阵,则A可正交对角化,即存在正交矩阵P,使P-1AP=PTAP=∧。
下面说明正交矩阵的求解过程:先求一般的相似变换矩阵P1,然后由P1构造正交矩阵P,使P仍然是相似变换矩阵。
(1)由|A-λE|=0求A的k(k≤n)个不同的特征值λ1,λ2,…,λk,重数分别为n1,n2,…,nk,则■ni=n。
(2)对于A的每一个ni重特征值λi,由(A-λiE)x=0求基础解系Ii――含ni个向量。
Ii:αi1,αi2,…,αini则Ii为A的对应于特征值λi的ni个线性无关的特征向量。
令P1=(I1,I2,…,Ik),则P1可逆,且P-11AP1=∧=diag(■,■,…,■)。
(3)对上述每组基础解系Ii分别进行正交规范化得向量组Ji。
Ji:ei1,ei2,…,eini则Ji为A的对应于特征值λi的ni个长度为1且两两正交的特征向量。
说明:由施密特正交化过程,Ii:αi1,αi2,…,αini正交化得:βi1=αi1,βi2=αi2-■βi1,…,βil=αil-■■βim(l=2,3,…,ni)规范化得,eil=■(l=1,2,,…,ni)从上述过程易知,向量组Ji可由向量组Ii表出,即Ji中的任何向量都是αi1,αi2,…,αini的线性组合,从而一定是A的对应于特征值λi的特征向量。
线性代数中正交变换与对角化
线性代数中正交变换与对角化线性代数是数学中的一个重要分支,它研究的是向量空间及其线性变换。
正交变换和对角化是线性代数中的两个重要概念,它们在矩阵理论、物理学、工程学等领域中具有广泛的应用。
本文将深入探讨线性代数中的正交变换和对角化。
1. 正交变换正交变换是指保持向量的长度和两向量之间的夹角不变的线性变换。
具体来说,设T为一个线性变换,如果对于任意向量u和v,有内积⟨Tu, Tv⟩ = ⟨u, v⟩,则称T为正交变换。
在二维空间中,常见的正交变换有旋转和翻转。
旋转变换保持向量的长度不变,翻转变换则改变向量的方向。
在三维空间中,正交变换可以通过矩阵表示。
一个3×3的实数矩阵A如果满足A^T · A = I(式中 I 是单位矩阵),则称A为正交矩阵。
正交矩阵表示了三维空间中的旋转和翻转变换。
2. 对角化对角化是线性代数中另一个重要的概念,它是指通过选择合适的坐标系,使得线性变换的矩阵表示具有对角形式。
具体来说,设T为一个线性变换,如果存在一个可逆矩阵P,使得P^-1 · A · P = D(式中 A 是线性变换T的矩阵表示,D是对角矩阵),则称T是可对角化的。
对角化的一个重要应用是简化线性变换的计算。
对于可对角化的线性变换,我们可以通过对角矩阵D来计算其作用,而不需要直接计算线性变换的矩阵表示。
这在很多实际问题中具有重要意义。
3. 正交变换与对角化的关系在线性代数中,正交矩阵具有非常有用的性质。
如果一个矩阵是正交矩阵,那么它的逆等于它的转置,即A^-1 = A^T。
这意味着一个正交矩阵同时也是一个酉矩阵(复数域上的正交矩阵)。
对于一个实对称矩阵,我们可以通过正交变换将其对角化。
具体来说,设A是一个实对称矩阵,存在正交矩阵P,使得P^-1 · A · P = D,其中D是对角矩阵。
对角矩阵的对角元素恰好是矩阵A的特征值,而P的列向量是对应的特征向量。
线性代数考研讲义完整版(完整资料).doc
【最新整理,下载后即可编辑】考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲 基本概念1.线性方程组的基本概念线性方程组的一般形式为: a 11x 1+a 12x 2+…+a 1n x n =b 1,a 21x 1+a 22x 2+…+a 2n x n =b 2,… … … …a m1x 1+a m2x 2+…+a mn x n =b m ,其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足:当每个方程中的未知数x i 都用k i 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组.n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m ⨯n 个数排列成的一个m 行n 列的表格,两边界以圆括号或方括号,就成为一个m ⨯n 型矩阵.例如2 -1 0 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a 11 a 12 … a 1n a 11 a 12 … a 1nb 1A = a 21 a 22 … a 2n 和(A |)= a 21 a 22 … a 2n b 2… … … … … … …a m1 a m2 … a mn a m1 a m2 … a mnb m为其系数矩阵和增广矩阵. 增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i 行第j 列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A 和B 相等(记作A =B ),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n 个数构成的有序数组称为一个n 维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a 1,a 2,⋯ ,a n 的向量可表示成a 1(a 1,a 2,⋯ ,a n )或 a 2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量; 每一列是一个m 维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为1,2,⋯ ,n 时(它们都是表示为列的形式!)可记A =(1,2,⋯ ,n ).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m ⨯n 的矩阵A 和B 可以相加(减),得到的和(差)仍是m ⨯n 矩阵,记作A +B (A -B ),法则为对应元素相加(减).数乘: 一个m ⨯n 的矩阵A 与一个数c 可以相乘,乘积仍为m ⨯n 的矩阵,记作c A ,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:① 加法交换律: A +B =B +A .② 加法结合律: (A +B )+C =A +(B +C ).③ 加乘分配律: c(A +B )=c A +c B .(c+d)A =c A +d A .④ 数乘结合律: c(d)A =(cd)A .⑤ c A =0⇔ c=0 或A =0.转置:把一个m ⨯n 的矩阵A 行和列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T (或A ').有以下规律:① (A T )T = A .② (A +B )T =A T +B T .③ (c A )T =c A T .转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T 表示行向量,当是行向量时, T 表示列向量.向量组的线性组合:设1,2,…,s 是一组n 维向量, c 1,c 2,…,c s 是一组数,则称c 11+c 22+…+c s s 为1,2,…,s 的(以c 1,c 2,…,c s 为系数的)线性组合.n 维向量组的线性组合也是n 维向量.(3) n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n 阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n 阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E (或I ).数量矩阵: 对角线上的的元素都等于一个常数c 的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式:a 11 a 12 … a 1na 21 a 22 … a 2n… … … .a n1 a n2 … a nn 如果行列式的列向量组为1,2, … ,n ,则此行列式可表示为|1,2, … ,n |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项nnj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 0023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(nn n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑nj j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如 |,1+2|=|,1|+|,2|.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦ 如果A 与B 都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |)作初等行变换,使得A 变为单位矩阵:(A |)→(E |η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1③1+a 1 1 1a 2 a a a 1 1+x 1 12 2+a 2 2a a 2 a a . 1 1 1+x 1 .3 3 3+a 3 .a a a 2 a 1 1 1 1+x4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 111 1 .1 1+x211 1 1+x31 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A |=2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n i i i i i n i i a c c c a b c c -+==-∑∏.… … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i i i a b a b a b ++-=-=-∑(当a ≠b 时).0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲 矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A 的列数和B 的行数相等时,和A 和B 可以相乘,乘积记作AB . AB 的行数和A 相等,列数和B 相等. AB 的(i,j)位元素等于A 的第i 个行向量和B 的第j 个列向量(维数相同)对应分量乘积之和.设 a 11 a 12 … a 1n b 11 b 12 … b 1s c 11c 12 … c 1sA = a 21 a 22 … a 2nB = b 21 b 22 … b 2sC =AB =c 21 c 22 … c 2s… … … … … …… … …a m1 a m2 … a mn ,b n1 b n2 … b ns ,c m1c m2 … c ms ,则c ij =a i1b 1j +a i2b 2j +…+a in b nj .矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件.② 矩阵乘法无交换律.③ 矩阵乘法无消去律,即一般地由AB =0推不出A =0或B =0.由AB =AC 和A ≠0推不出B =C .(无左消去律)由BA =CA 和A ≠0推不出B =C . (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:① 加乘分配律 A (B +C )= AB +AC , (A +B )C =AC +BC .② 数乘性质 (c A )B =c(AB ).③ 结合律 (AB )C = A (BC ).④ (AB )T =B T A T .2. n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:|AB |=|A ||B |.如果AB =BA ,则说A 和B 可交换.方幂 设k 是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A的连乘积.规定A 0=E .显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则:① A k A h = A k+h .② (A k )h = A kh .但是一般地(AB )k 和A k B k 不一定相等!n 阶矩阵的多项式设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22A 21 A 22B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等.准对角矩阵的乘法:形如A 1 0 0A = 0 A 2 0… … …0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 ... 0 , B = 0 B 2 0… … … … … …0 0 … A k 0 0 … B k如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 .… … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为1,2,…,n ,B的列向量组为1,2,…,s , AB 的列向量组为1,2,…,s ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:i =A i ,i=1,2,…,s.即A (1,2,…,s )= (A 1,A 2,…,A s ).② =(b 1,b 2,…,b n )T ,则A = b 11+b 22+…+b n n .应用这两个性质可以得到:如果i =(b 1i ,b 2i ,…,b ni )T ,则i =A I =b 1i 1+b 2i 2+…+b ni n .即:乘积矩阵AB 的第i 个列向量i 是A 的列向量组1,2,…,n 的线性组合,组合系数就是B 的第i 个列向量i的各分量.类似地, 乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c 倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s 列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.)“⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E,CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)② 如果A 和B 都可逆,则AB 也可逆,并且(AB )-1=B -1A -1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E (i,j)-1= E (i,j), E (i(c))-1=E (i(c -1)), E (i,j(c))-1= E (i,j(-c)).(4) 逆矩阵的计算和伴随矩阵① 计算逆矩阵的初等变换法当A 可逆时, A -1是矩阵方程AX =E 的解,于是可用初等行变换求A -1:(A |E )→(E |A -1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.② 伴随矩阵若A 是n 阶矩阵,记A ij 是|A |的(i,j)位元素的代数余子式,规定A的伴随矩阵为A 11 A 21 … A n1A *= A 12 A 22 … A n2 =(A ij )T .… … …A 1n A 2n … A mn请注意,规定n 阶矩阵A 的伴随矩阵并没有要求A 可逆,但是在A 可逆时, A *和A -1有密切关系.基本公式: AA *=A *A =|A |E .于是对于可逆矩阵A ,有A -1=A */|A |, 即A *=|A |A -1.因此可通过求A *来计算A -1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc ≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A=T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1T,求a. (03三,四)④n维向量=(1/2,0,⋯,0,1/2)T,A=E-T,B=E+2T,求AB. (95四)⑤A=E-T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n =A n-2+A 2-E . (2) 求A n .例4设A 为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足 A1=1+2+3, A 2=22+3,A 3=22+33.求作矩阵B ,使得A (1,2,3)=(1,2,3)B . (2005年数学四)例5设3阶矩阵A =(1,2,3),|A |=1,B =(1+2+3,1+22+33,1+42+93),求|B |.(05)例6 3维向量1,2,3,1,2,3满足1+3+21-2=0,31-2+1-3=0,2+3-2+3=0,已知1,2,3|=a,求|1,2,3|.例7设A 是3阶矩阵, 是3维列向量,使得P =(,A ,A 2)可逆,并且A 3=3A -2A 2.又3阶矩阵B 满足A =PBP -1.(1)求B .(2)求|A +E |.(01一)2 1 0例8 3阶矩阵A ,B 满足ABA *=2BA *+E ,其中A = 1 2 0 ,求|B |.(04一)0 0 1例9 3 -5 1设3阶矩阵A = 1 -1 0 , A -1XA =XA +2A ,求X .-1 0 2例10 1 1 -1设3阶矩阵A = -1 1 1 , A *X =A -1+2X ,求X .1 -1 1例11 4阶矩阵A ,B 满足ABA -1=BA -1+3E ,已知1 0 0 0A *= 0 1 0 0 ,求B . (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A = 2 1 0 , B = 0 0 0 , XA +2B =AB +2X ,求X 11.2 13 0 0 -1例13 设1=(5,1,-5)T ,2=(1,-3,2)T ,3=(1,-2,1)T ,矩阵A满足A 1=(4,3) T , A 2=(7,-8) T , A 3=(5,-5) T ,求A .2.概念和证明题例14 设A 是n 阶非零实矩阵,满足A *=A T .证明:(1)|A |>0.(2)如果n>2,则|A |=1.例15 设矩阵A =(a ij )3 3满足A *=A T ,a 11,a 12,a 13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A⇔T =1.(2)T =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵,E+AB可逆,证明(E+AB)-1A 也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C 为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例 3 (1)提示:A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例4 1 0 0B= 1 2 2 .1 1 3例5 2.例6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 1 .1 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系 设1,2,…,s 是一个n 维向量组.如果n 维向量等于1,2,…,s 的一个线性组合,就说可以用1,2,…,s 线性表示.如果n 维向量组1,2,…,t 中的每一个都可以可以用1,2,…,s 线性表示,就说向量 1,2,…,t 可以用1,2,…,s 线性表示.判别“是否可以用1,2,…,s 线性表示? 表示方式是否唯一?”就是问:向量方程x 11+x 22+…+x s s =是否有解?解是否唯一?用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A 为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB 的每个列向量都可以表示为A 的列向量组的线性组合,从而AB 的列向量组可以用A 的列向量组线性表示;反之,如果向量组1,2,…,t 可以用1,2,…,s 线性表示,则矩阵(1,2,…,t )等于矩阵(1,2,…,s )和一个s ⨯t 矩阵C 的乘积. C 可以这样构造: 它的第i 个列向量就是i 对1,2,…,s 的分解系数(C 不是唯一的).向量组的线性表示关系有传递性,即如果向量组1,2,…,t 可以用1,2,…,s 线性表示,而1,2,…,s 可以用γ1,γ2,…,γr 线性表示,则1,2,…,t 可以用γ1,γ2,…,γr 线性表示.当向量组1,2,…,s 和1,2,…,t 互相都可以表示时就说它们等价并记作1,2,…,s ≅1,2,…,t. 等价关系也有传递性.。
线性代数知识点简化版
线性代数知识点总结()00 0 A r A n A Ax A A ⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解 是的特征值的列(行)向量组线性相关12()00, s i A r A n Ax A A p p p p A A A ⎧⎪=⎪⎪=⎪≠⇔=⋅⋅⋅⎨⎪⎪⎪⎪⎩可逆只有零解是初等矩阵的列(行)向量线性无关与同阶单位阵等价的特征值全不为零⎫⎪−−−→⎬⎪⎭具有向量组等价矩阵相似反身性、对称性、传递性矩阵合同 √ 行列式的计算:① 若A B 与分别是m 和n 阶方阵(不必同阶),则0000(1)0mn A A A A B B B B AA B B*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)2112121121110(1)0*n n nnn n n nn n n a a a a a a a a a ---*==-√ 逆矩阵的求法:①1A A A*-=②1( : ) ( : )A I I A -−−−−→初等行变换 ③11ab d b cd c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦(当ad -bc ≠0)④12111121naan aaaa-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,21111211naan aaaa-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n nA AA AA A----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,11121211nnA AAAA A----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√初等矩阵:11011(,)11011 E i j⎛⎫⎪⎪⎪⎪⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭11(())(0)11E i k kk⎛⎫⎪⎪⎪⎪=≠⎪⎪⎪⎪⎪⎝⎭11(())11kE i j k⎛⎫⎪⎪⎪⎪+= ⎪⎪⎪⎪⎪⎝⎭① 初等矩阵都可逆,且1111(,)(,),(())(()),(())(())E i j E i j E i k E i E i j k E i j k k---==+=+-.② A 是m ×n 阶矩阵, 对A 施行一次初等行变换, 相当于在A 的左边乘以相应的m 阶初等矩阵; 对A 施行一次初等列变换, 相当于在A 的右边乘以相应的 n 阶初等矩阵。
第4.4节 实对称矩阵的对角化
注 ①实对称矩阵A的重特征值对应的正交特征向量组的取法 不唯一,故Q不唯一; ②由于实对称矩阵A的不同特征值对应的特征向量必正交, 故只需对对应于同一特征值的线性无关的向量正交化即可.
例2 设3阶实对称矩阵A的特征值为 1 0, 2 3 1,
A对应于1的特征向量为1 (0,1,1)T ,求A.
第4.4节
实对称矩阵的对角化
一、实对称矩阵特征值与特征向量的性质 二、实对称矩阵的对角化
一、实对称矩阵特征值与特征向量的性质
定理1 (1) 实对称矩阵A的特征值都是实数;
(2) 实对称矩阵A的对应于不同特征值的特征向量相互正交;
(3) 实对称矩阵A的每个k重特征值恰好有k个对应于此特征值的 线性无关的特征向量. 证 (2) 设1, 2为A的两个不同特征值,1,2为对应的特征向量, 即 Ai = ii ( i = 1,2).
例如
1 2 2 A 2 1 2 是实对称矩阵,其特征值 5, 1. 1 2 3 2 2 1 1 对应特征值5的线性无关的特征向量只有一个 1 1 ; 1
对应特征值1的线性无关的特征向量一定有两个
解 A为实对称矩阵,故A必可对角化,对应于二重特征 值2= 3=1的特征向量应该有两个,设为2,3, 则2,3
都与1正交.
T 设与1正交的向量为 ( x1 , x 解得方程组的基础解系为 2 0 , 3 1 . 0 1
1 1 得 x1 x2 x3 , 线性无关的特征向量为 1 1 , 2 0 . 0 1
当3 3,解(3 E A) x 0.由
2 1 1 1 0 1 3 E A 1 2 1 0 1 1 1 1 2 0 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ap l p
那么称数 l 为 A 的特征值, 特征值 l 的特征向量. • p 为方阵 A 对应于特征值 l 的特征向量, 也即 p 为方 称非零向量 p 为 A 对应于
程组 (lE A) x 0 的任一非零解.
• l 为方阵 A 的特征值的充分必要条件是 |lE A | 0. • 对应于 n 阶方阵 A的特征值 l 有 nR(lEA) 个线性 无关的特征向量, 称属于 l 的线性无关特征向量组.
k 2
5
n
设 A (aij) 为 n 阶方阵, l 为变元, 则有
| l E A | l n c1l n1
其中
cn
c1 (a11 a22
ann ).
• 称 n 次多项式 |lE A| 为 A 的特征多项式. • 称 n 次方程 |lE A| 0 为 A 的特征方程. • 在复数范围内, n 阶方阵有 n 个特征值(重根按重数算). • 设 l1,…, ln 为 A 的所有特征值, 则有
| l E A | (l l1 )
特征值的性质 (1) (2)
(l ln ) l ( l i )l
n i 1
n
n 1
ck l n k
k 2
n
| A | l1
ln ;
ann . A 的迹, 记为 tr(A).
6
l1
ln a11 a22
A P L P 1 , Ak P L k P 1 , f ( A) Pf ( L ) P 1
而对于对角阵 L diag(l1,…, ln), 有
k L k diag (l1k , , ln ), f ( L ) diag[ f ( l1 ), , f ( ln )]
由此可方便地计算 A 的多项式. 定理1 n阶方阵 A与对角阵 L diag(l1,…, ln) 相似 的充分必要条件是存在线性无关向量组 p1,…, pn 满足
2015/10/22 4
设 A (aij) 为 n 阶方阵, l 为变元, 则有
| l E A | l n c1l n1
其中
cnc1 (Biblioteka 11 a22 ann ).
• 称 n 次多项式 |lE A| 为 A 的特征多项式. • 称 n 次方程 |lE A| 0 为 A 的特征方程. 注: 方阵 A 的特征多项式也记为 | AlE | , 除了可能差 一个负号外与 |lE A| 并无本质性的差异.
线性代数讲义4
特征值与实对称矩阵的正交变换对角化(精简版)
张宏浩
2015/10/22
1
相似矩阵
设
f ( x ) an x n
a1 x a0 ,
记
f ( A) a n A n
称 f (A) 为方阵 A 的多项式. 对于方阵
a1 A a0 E
B P 1 AP , 有 B k P 1 A k P , f ( B ) P 1 f ( A) P
2015/10/22 7
9 2 2 练习1 求方阵 A 2 6 4 的特征值和特征向量. >>> 2 4 6
解 方阵 A 的特征多项式为
|lE A|
l 9
2 2
2 2 l 6 4 4 l 6
l 9
2 2
2 0 l 9 2 0 l 6 l 10 4 l2 0 4 l 10 2 4 l 10
P 1 AP B , 故
| l E B | | l E P 1 AP | | P 1 (l E A) P | | P 1 | | l E A | | P | | l E A |
推论 若对角阵L 是 A 的相似矩阵, 则L 以 A 的特征值 为对角元素.
相似矩阵 设 A, B 为 n 阶方阵, 若存在可逆矩阵 P, 使
P 1 AP B
则称 B 是 A 的相似矩阵. 称 P 为相似变换矩阵.
• 矩阵的相似具有反身性、对称性和传递性.
2015/10/22 2
可相似对角化方阵的多项式计算 若存在可逆矩阵 P, 使 P1AP 为对角矩阵 L, 则称 方阵 A 可相似对角化. 此时有
2015/10/22
设 A (aij) 为 n 阶方阵, l 为变元, 则有
| l E A | l n c1l n1
其中
cn
c1 (a11 a22
ann ).
• 称 n 次多项式 |lE A| 为 A 的特征多项式. • 称 n 次方程 |lE A| 0 为 A 的特征方程. 定理2 相似矩阵有相同的特征多项式(特征值). 证明 设 A 与 B 相似, 即有可逆阵 P, 使
Api li pi ( i 1,
提示: 当 P ( p1,…, pn )可逆时, 是 AP PL.
2015/10/22
, n) , ln pn )
3
P1AP L 的充要条件
AP ( Ap1 ,
, Apn ), PΛ (l1 p1 ,
方阵的特征值与特征向量
方阵的特征值与特征向量 设 A 为方阵, 如果存在数 l 和非零向量 p, 使
(l 10)(l 2 11l 10) (l 1)(l 10)2
方阵 A 的特征值为
2015/10/22
l1 1, l2 l3 10.
8
9 2 2 练习1 求方阵 A 2 6 4 的特征值和特征向量. >>> 2 4 6
解 当 l1 1 时, 解方程组 ( E A) x 0. 由
l a11
|lE A| a21 an1
a12 l a22 an 2
n n k k 2
a1n a2 n
l ann
l ( aii )l
n i 1 n n 1
(l a11 )
2015/10/22
(l ann ) bk l
ck l n k