2014年12月数学真题(全国首发解析)
2014年普通高等学校招生全国统一考试数学理试题(四川卷,解析版)

2014年普通高等学校招生全国统一考试理科参考答案〔四川卷〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一个是符合题目要求的。
1.集合2{|20}A x x x =--≤,集合B 为整数集,如此A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 【答案】A【解析】因为,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.假设0a b >>,0c d <<,如此一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c < 【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c <5.执行如图1所示的程序框图,如果输入的,x y R ∈,如此输出的S 的最大值为A .0B .1C .2D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否如此,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,如此不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
2014年(大纲全国卷)数学(理科) 高考真题及答案解析

函数是( ).
A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x)
【答案】D
【解析】因为函数 y=f(x)的图像与函数 y=g(x)的图像关于直线 x+y=0 对称,
而函数图像与其反函数的图像关于直线 y=x 对称,
所以这两个函数的反函数图像也关于直线 x+y=0 对称.
设函数 y=f(x)的反函数图像上任一点 P(x,y),
62
是
.
【答案】(-∞,2]
4
【解析】f(x)=cos 2x+asin x=1-2sin2x+asin x.
令 t=sin x,∵x∈
π,π
62
,∴t∈
1 2
,1
,
∴g(t)=1-2t2+at=-2t2+at+1
1 2
<
t
<
1
,
由题意知2×(-2)
≤
1 ,∴a≤2,
2
∴a 的取值范围为(-∞,2].
11.(2014 大纲全国,理 11)已知二面角α-l-β为 60°,AB⊂α,AB⊥l,A 为垂足,CD⊂β,C∈l,∠ACD=135°,则
异面直线 AB 与 CD 所成角的余弦值为( ).
A.1
B. 2
C. 3
D.1
4
4
4
2
【答案】B
【解析】如图,在平面α内过 C 作 CE∥AB,
则∠ECD 为异面直线 AB 与 CD 所成的角或其补角,
【答案】C
【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=csoins3355°°, ∴csoins3355°°>sin 35°>sin 33°. ∴c>b>a,选 C.
(完整word版)2014年(全国卷II)(含答案)高考文科数学,推荐文档

2014年普通高等学校招生全国统一考试(2新课标H 卷)数学(文)试题一、选择题( 本大题共12题, 共计60分)1.已知集合A { 2,0,2}, B {x|x 2 x 20},则 A n B=()A. B. 2 C. {0}D. { 2}2.1 3i (1 i)A.1 2iB. 1 2iC. 1 2iD. 1 2i3.函数f (x)在x X o 处导数存在,若p: f(X o ) 0 : q:x X o 是f (x)的极值点,贝U( )A • p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件 4. 设向量 a,b 满足 a b J T0 , a b 76,则 a b=() A. 1 B. 2 C. 3 D. 55.等差数列{a n }的公差是2,若a 2,a 4,a 8成等比数列,贝U {a n }的前n 项和S n()1 (表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,贝U 切削的部分的体积A. n(n 1)B. n(n 1)C.咛D n(n 1)26.如图,网格纸上正方形小格的边长为27 D.1与原来毛坯体积的比值为( )7•正三棱柱ABC ABQ i 的底面边长为2,侧棱长为.3 , D 为BC 中点,则三棱锥A BQ® 的体积为A.3B.32C.128•执行右面的程序框图,如果输入的 x ,t 均为2, 则输出的S (A.4B.5C.6D. 7x 3y 3 0,10•设F 为抛物线C:y 2+3x 的焦点,过F 且倾斜角为是( )A 迈3B.6C.12D.7,311若函数f xkx Inx 在区间1,单调递增, 则k 的取值范围是()A., 2B., 1C. 2,D. 1,AB ()12.设点 M x o ,1,若在圆 O:x 2+y 2 1上存在点N ,使得 OMNx y 19.设x , y 满足约束条件x y 10,0,则z x 2y 的最大值为(A.8B.7C.2D.130的直线交C 于A, B 两点,则 45,则x o 的取值范围二、填空题:本大题共4小题,每小题5分.13•甲,乙两名运动员各自等可能地从红、白、蓝 3种颜色的运动服中选择1种,则他们 选择相同颜色运动服的概率为 ________ .14.函数 f(x) sin(x ) 2sin cosx 的最大值为 __________________ . 15•偶函数y f(x)的图像关于直线x 2对称,f(3)3,则f( 1)= __________ .116. ----------------------------------数列{a n }满足 a n 1 __________ ,a 8 2,则 &1 a n三、解答题:17. (本小题满分12分)四边形ABCD 的内角A 与C 互补,AB 1, BC 3, CD DA 2 . (1) 求 C 和 BD ; (2) 求四边形ABCD 的面积.A.[ -1,1]B. c.D. T-718. (本小题满分12分)如图,四棱锥P ABCD中,底面ABCD为矩形,PA 平面ABCD,E是PD的中点.(1)证明:PB〃平面AEC ;(2)设AP 1,AD 3,三棱锥P ABD的体积V求A到平面PBC的距离.19. (本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲輻门1-乙邯门3594404 4S97J1224566777X9976653321)0i 6«1 f 23 4 6昌E98K77766555554443J321007001134496655200S12334563222090 H 45610000(1) 分别估计该市的市民对甲、乙两部门评分的中位数;(2) 分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3) 根据茎叶图分析该市的市民对甲、乙两部门的评价.2 2设F I,F2分别是椭圆C:冷每1(a b 0)的左右焦点,M是C上一点且MF2与x轴a b垂直,直线MF i与C的另一个交点为N.3(1) 若直线MN的斜率为上,求C的离心率;4(2) 若直线MN在y轴上的截距为2,且|MN | 5| F i N |,求a,b.21.(本小题满分12分)已知函数f (x) x3 3X2 ax 2,曲线y f (x)在点(0,2)处的切线与x轴交点的横坐标为2.(1)求 a ;(2)证明:当k 1时,曲线y f (x)与直线y kx 2只有一个交点.20.(本小题满分12分)如图,P是eO外一点,PA是切线,A为切点,割线PBC与eO相交于B,C , PC 2PA , D为PC的中点,AD的延长线交eO于点E.证明:(1)BE EC ;2(2) AD DE 2PB2在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos , [0,].2(1)求C得参数方程;(2)设点D在C 上, C在D处的切线与直线l : y ,3x 2垂直,根据(1)中你得到的参数方程,确定D的坐标•23.(本小题满分10分)选修4-4:坐标系与参数方程24.(本小题满分10分)选修4-5:不等式选讲1设函数 f (x) |x | | x a | (a 0)a(1)证明:f(x) 2 ;(2)若f (3)5,求a的取值范围.2014年普通高等学校招生全国统一考试(2新课标U卷)1. B【解析】试题分析:由已知得,B 2, -1 ,故AI B 2,选B. 考点:集合的运算. 2. B【解析】试题分析:由已知得, S (1 3i)(1D1 2i ,选B.1 i (1 i)(1 i) 2考点:复数的运算. 3. C【解析】试题分析:若x X o 是函数f(x)的极值点,则f (X o ) 0 ;若f (X o ) 0,则X X o 不一定是 极值点,例如f (X ) X 3,当X 0时,f (0)0,但X 0不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4. A【解析】r 2 r r r 2r 2 r r r 2r r试题分析:由已知得, a 2a b b10, a 2a b b 6,两式相减得,4a b4,r r 故 a b 1.考点:向量的数量积运算. 5. A【解析】试题分析:由已知得,a 42 a 2 a 8,又因为{a n }是公差为2的等差数列,故(a 22d)2 a ? (a ? 6d),@ 4)2a ? (a ?12),解得 a ? 4,所以务 a ? (n 2)d 2n ,故 S n n(a1 an) n(n 1).2【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6. C【解析】试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体. 其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为 224 32 2 34而圆柱形毛坯体积为 32 6参考答案:数学(文)试题参考答案102754 ,故切削部分体积为20 ,从而切削的部分的体积与原来毛坯体积的比值为54 考点:三视图.7. C【解析】试题分析:如下图所示,连接AD,因为ABC是正三角形,且D为BC中点,则AD BC,又因为BB i 面ABC ,故BB i AD ,且BB i I BC B ,所以AD 面BCC i B i ,所以AD 是 三棱锥 A B 1DC 1 的高,所以 V A ^DS -S B ^DC . AD - ,3 -、3 1 .33考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8. D【解析】试题分析:输入x 2,t 2,在程序执行过程中,M,S,k 的值依次为M 1,S 3,k 1 ;M 2,S 5,k2 ;M 2,S 7,k3,程序结束,输出S 7 .考点:程序框图. 9. B【解析】试题分析:画出可行域,如图所示,将目标函数 z x 2y 变形为y lx -,当Z 取到2 2最大值时,直线y lx Z 的纵截距最大,故只需将直线 ylx 经过可行域,尽可能2 2 2平移到过A 点时,Z 取到最大值.10. C【解析】试题分析:由题意,得F (― ,0).又因为k tan300 -—,故直线AB 的方程为y —3 (x ―),43 3 4与抛物线y 2=3x 联立,得16x 2 168x 90,设A(x 1, y 1), B(x 2,y 2),由抛物线定义得,x 1 x 2 p3—12,选 C.21、抛物线的标准方程; 11. D【解析】x y 1 0x 3y 3 0,得A(3,2),所以ZmaxAB168 16 考点: 2、抛物线1 1 试题分析:f '(x ) k —,由已知得f '(x ) 0在x 1, 恒成立,故k —,因为x 1 ,xx所以0 1 1,故k 的取值范围是1,•x【考点】利用导数判断函数的单调性. 12. A【解析】试题分析:依题意,直线 MN 与圆0有公共点即可,即圆心0到直线MN 的距离小于等于1 即可,过0作OA MN,垂足为 A ,在Rt OMA 中,因为 OMA 45°,故 0A| OM|sin45° 亍|0M | 1,所以 0M 迈,则 J x °2 1 V2,解得 1 x 0 1 .【解析】试题分析:甲,乙两名运动员各自等可能地从红、 白、蓝3种颜色的运动服中选择1种有 9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白, 蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有 3种不同的结果,即 (红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为 P --.9 3考点:古典概型的概率计算公式. 14. 1 【解析】 试 题分 析: 由 已 知 得13.13sin( x)f (x) sin xcos cosxs in 2cos xs in sin xcos cosxs in1,故函数f(x) sin(x ) 2sin cosx的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15. 3【解析】试题分析:因为y f (x)的图像关于直线x 2对称,故f (3) f (1) 3,又因为y f(x)是偶函数,故f( 1)f(1) 3.考点:1、函数图象的对称性;2、函数的奇偶性.三、解答题(17) 解:(I )由题设及余弦定理得B D 2BC 2 CD 22BC CD cosC=13 12cosC①B D 22 2AB DA2AB DA cos A5 4cosC .②1._由①,②得 cosC —,故 C 600, BD 。
2014年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)

2014年普通高等学校招生全国统一考试(某某卷)圆柱的体积公式:Sh V =圆柱, 其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合A={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则(第3题)100 80 90 110 120 底部周长/cm(第6题)21V V 的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值X 围是▲ .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值X 围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第12题)PDCA17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a b y a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程; (2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,某某数m 的取值X 围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:∠OCB= ∠D .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵 1 2 1 1,1 x 2 -1A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,向量 2a y ⎡⎤=⎢⎥⎣⎦,x ,y 为实数. 若Aa =Ba ,求x+y 的值.C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线 l 的参数方程为 212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与抛物线24y x =相交于A ,B 两点,求线段AB 的长.D .[选修4-5:不等式选讲](本小题满分10分)已知x>0,y>0,证明: 22(1)(1)9x y x y xy ++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同. (l)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出 4个球,其中红球、黄球、绿球的个数分别记为 123,,x x x ,随机 变量X 表示123,,x x x 中的最大数,求X 的概率分布和数学期望E(X). 23.(本小题满分10分) 已知函数 0sin ()(0)xf x x x=>,设 ()n f x 为 1()n f x -的导数,n N *∈. (1)求 122222f f πππ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的值; (2)证明:对任意的 n N *∈,等式 124442n n nf f πππ-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭都成立.。
2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试〔江苏卷〕答案解析数 学Ⅰ一、填空题:本大题共14小题,每一小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1、集合}4,3,1,2{A --=,}3,2,1{B -=,如此B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】此题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
属于根底题,难度系数较小。
2、复数2)25(i z -=(i 为虚数单位〕,如此z 的实部为▲ .【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。
【点评】此题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。
属于根底题,难度系数较小。
〔第33、右图是一个算法流程图,如此输出的n 的值是▲ . 【答案】5【解析】根据流程图的判断依据,此题202>n是否成立,假设不成立,如此n 从1开始每次判断完后循环时,n 赋值为1+n ;假设成立,如此输出n 的值。
此题经过4次循环,得到203222,55>===n n ,成立,如此输出的n 的值为5【点评】此题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。
属于根底题,难度系数较小。
4、从6,3,2,1这4个数中一次随机地取2个数,如此所取2个数的乘积为6的概率是▲ .【答案】31【解析】将随机选取2个数的所有情况“不重不漏〞的列举出来:〔1,2〕,〔1,3〕〔1,6〕,〔2,3〕,〔2,6〕,〔3,6〕,共6种情况,满足题目乘积为6的要求的是〔1,6〕和〔2,3〕,如此概率为31。
【点评】此题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。
2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷试卷及参考答案与试题解析

2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷全国1卷试卷及参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[1,2)B.[-1,1]C.[-1,2)D.[-2,-1]2.(5分)=( )A.1+iB.1-iC.-1+iD.-1-i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A. B. C. D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A. B. C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B. C. D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则( )A.3α-β=B.3α+β=C.2α-β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p 1:∀(x,y)∈D,x+2y≥-2 p2:∃(x,y)∈D,x+2y≥2p 3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤-1其中真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )A. B.3 C. D.211.(5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)D.(-∞,-2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(Ⅰ)证明:an+2-an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.20.(12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB =CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[1,2)B.[-1,1]C.[-1,2)D.[-2,-1]【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x-3)(x+1)≥0,解得:x≥3或x≤-1,即A=(-∞,-1]∪[3,+∞),∵B=[-2,2),∴A∩B=[-2,-1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=( )A.1+iB.1-iC.-1+iD.-1-i【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==-(1+i)=-1-i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(-x)=-f(x),g(-x)=g(x),f(-x)•g(-x)=-f(x)•g(x),故函数是奇函数,故A错误,|f(-x)|•g(-x)=|f(x)|•g(x)为偶函数,故B错误,f(-x)•|g(-x)|=-f(x)•|g(x)|是奇函数,故C正确.|f(-x)•g(-x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2-my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A. B. C. D.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况, 周六、周日都有同学参加公益活动,共有24-2=16-2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A. B. C.D.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B. C. D.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则( )A.3α-β=B.3α+β=C.2α-β=D.2α+β=【分析】化切为弦,整理后得到sin(α-β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α-β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α-β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α-β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p 1:∀(x,y)∈D,x+2y≥-2 p2:∃(x,y)∈D,x+2y≥2p 3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤-1其中真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p3【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可. 【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x-2y=4相交的上部角型区域,p1:区域D在x+2y≥-2 区域的上方,故:∀(x,y)∈D,x+2y≥-2成立;p 2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p 3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y≤3错误;p 4:x+2y≤-1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤-1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )A. B.3 C. D.2【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为-=-2,∵F(2,0),∴直线PF的方程为y=-2(x-2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)D.(-∞,-2)【分析】由题意可得f′(x)=3ax2-6x=3x(ax-2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3-3x2+1,∴f′(x)=3ax2-6x=3x(ax-2),f(0)=1;①当a=0时,f(x)=-3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3-3x2+1在(-∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3-3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3-3x2+1在(-∞,0)上没有零点;而当x=时,f(x)=ax3-3x2+1在(-∞,0)上取得最小值;故f()=-3•+1>0;故a<-2;综上所述,实数a的取值范围是(-∞,-2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6B.6C.4D.4【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x-y)(x+y)8的展开式中x2y7的系数为-20 .(用数字填写答案)【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x-y)(x+y)8的展开式中x2y7的系数为:8-28=-20.故答案为:-20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°. 【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.【分析】由正弦定理化简已知可得2a-b2=c2-bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA-sinB)=(c-b)sinC⇒(2+b)(a-b)=(c-b)c⇒2a-b2=c2-bc,又因为:a=2,所以:,△ABC面积,而b2+c2-a2=bc⇒b2+c2-bc=a2⇒b2+c2-bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(Ⅰ)证明:an+2-an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.【分析】(Ⅰ)利用an an+1=λSn-1,an+1an+2=λSn+1-1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{an}为等差数列,设公差为d.可得λ=an+2-an=(an+2-an+1)+(an+1-an)=2d,.得到λSn=,根据{an}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵an an+1=λSn-1,an+1an+2=λSn+1-1,∴an+1(an+2-an)=λan+1∵an+1≠0,∴an+2-an=λ.(Ⅱ)解:①当λ=0时,an an+1=-1,假设{an}为等差数列,设公差为d.则an+2-an=0,∴2d=0,解得d=0,∴an =an+1=1,∴12=-1,矛盾,因此λ=0时{an}不为等差数列.②当λ≠0时,假设存在λ,使得{an}为等差数列,设公差为d.则λ=an+2-an=(an+2-an+1)+(an+1-an)=2d,∴.∴,,∴λSn=1+=,根据{an}为等差数列的充要条件是,解得λ=4.此时可得,an=2n-1.因此存在λ=4,使得{an}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544. 【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y 轴的正方向,的方向为z 轴的正方向建立空间直角坐标系,∵∠CBB 1=60°,∴△CBB 1为正三角形,又AB =BC, ∴A(0,0,),B(1,0,0,),B 1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(-1,,0),设向量=(x,y,z)是平面AA 1B 1的法向量,则,可取=(1,,), 同理可得平面A 1B 1C 1的一个法向量=(1,-,),∴cos <,>==,∴二面角A -A 1B 1-C 1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,-2),椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的右焦点,直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P,Q 两点,当△OPQ 的面积最大时,求l 的方程. 【分析】(Ⅰ)通过离心率得到a 、c 关系,通过A 求出a,即可求E 的方程; (Ⅱ)设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2)将y =kx -2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ 的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ) 设F(c,0),由条件知,得又,所以a =,b 2=a 2-c 2=1,故E 的方程.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2)将y=kx-2代入,得(1+4k2)x2-16kx+12=0,当△=16(4k2-3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x-2或y=-x-2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min >h(x)max,利用导数可分别求得g(x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>-,∴f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=-.设函数h(x)=xe-x-,则h′(x)=e-x(1-x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB =CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x-2,代入②并整理得:2x+y-6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值. (Ⅱ)根据 ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。
2014年数学(理)参考答案

数学(理)(北京卷)参考答案 第 1 页(共 6 页)绝密★考试结束前2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D(6)D(7)D(8)B二、填空题(共6小题,每小题5分,共30分) ( 9 )1-(10(11)221312x y -= 2y x =± (12)8 (13)36(14)π三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)在ADC △中,因为1cos 7ADC ∠=,所以sin ADC ∠=所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠1127=-=. (Ⅱ)在ABD △中,由正弦定理得8sin 3sin AB BAD BD ADB⋅∠===∠. 在ABC △中,由余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=. 所以7AC =.(16)(共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(Ⅱ)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C AB AB=,,A B独立.根据投篮统计数据,3()5P A=,2()5P B=.()()()P C P AB P AB=+33225555=⨯+⨯1325=.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为13 25.(Ⅲ)EX x=.数学(理)(北京卷)参考答案第 2 页(共6 页)数学(理)(北京卷)参考答案 第 3 页(共 6 页)(17)(共14分)解:(Ⅰ)在正方形AMDE 中,因为B 是AM 的中点,所以//AB DE .又因为AB ⊄平面PDE , 所以//AB 平面PDE .因为AB ⊂平面ABF ,且平面ABF 平面PDE FG =, 所以//AB FG .(Ⅱ)因为PA ⊥底面ABCDE ,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,(1,1,0)BC −−→=.设平面ABF 的法向量为(,,)n x y z =,则0,0,AB AF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.x y z =⎧⎨+=⎩ 令1z =,则1y =-.所以(0,1,1)=-n . 设直线BC 与平面ABF 所成角为α,则 sin |cos ,|||||BCBC BC α−−→−−→−−→⋅=〈〉=n n n 12=. 因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(,,)u v w .因为点H 在棱PC 上,所以可设PH PC λ−−→−−→= (01λ<<), 即(,,2)(2,1,2)u v w λ-=-.所以2u λ=,v λ=,22w λ=-.因为n 是平面ABF 的法向量,所以0AH −−→⋅=n ,即(0,1,1)(2,,22)0λλλ-⋅-=.解得23λ=,所以点H 的坐标为422(,,)333.所以2PH =.数学(理)(北京卷)参考答案 第 4 页(共 6 页)(18)(共13分)解:(Ⅰ)由()cos sin f x x x x =-得()cos sin cos sin f x x x x x x x '=--=-.因为在区间π(0,)2上()sin 0f x x x '=-<,所以()f x 在区间π[0,]2上单调递减.从而()(0)0f x f =≤.(Ⅱ)当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“s i n xb x<”等价于“sin 0x bx -<”.令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π(0,)2x ∈恒成立.当1c ≥时,因为对任意π(0,)2x ∈,()cos 0g x x c '=-<,所以()g x 在区间π[0,]2上单调递减.从而()(0)0g x g <=对任意π(0,)2x ∈恒成立.当01c <<时,存在唯一的0π(0,)2x ∈使得00()cos 0g x x c '=-=.()g x 与()g x '在区间π(0,)2上的情况如下:因为(g x 00.进一步,“()0g x >对任意π(0,)2x ∈恒成立”当且仅当ππ()1022g c =-≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π(0,)2x ∈恒成立;当且仅当1c ≥时,()0g x <对任意π(0,)2x ∈恒成立.所以,若sin x a b x <<对任意π(0,)2x ∈恒成立,则a 的最大值为2π,b 的最小值为1.数学(理)(北京卷)参考答案 第 5 页(共 6 页)(19)(共14分)解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=. 所以24a =,22b =,从而2222c a b =-=. 因此2a =,c 故椭圆C的离心率c e a ==.(Ⅱ)直线AB 与圆222x y +=相切.证明如下:设点,A B 的坐标分别为00(,),(,2)x y t ,其中00x ≠. 因为OA OB ⊥,所以0OA OB −−→−−→⋅=,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =-,代入椭圆C的方程,得t =故直线AB的方程为x =O 到直线AB的距离d 此时直线AB 与圆222x y +=相切. 当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--, 即0000(2)()20y x x t y x ty ---+-=. 圆心O 到直线AB 的距离d =.又220024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切.数学(理)(北京卷)参考答案 第 6 页(共 6 页)(20)(共13分)解:(Ⅰ)1()257T P =+=,21()1max{(),24}1max{7,6}8T P T P =++=+=.(Ⅱ)2()max{,}T P a b d a c d =++++,2()max{,}T P c d b c a b '=++++.当m a =时,2()max{,}T P c d b c a b c d b '=++++=++.因为a b d c b d ++++≤,且a c d c b d ++++≤,所以22()()T P T P '≤. 当m d =时,2()max{,}T P c d b c a b c a b '=++++=++.因为a b d c a b ++++≤,且a c d c a b ++++≤,所以22()()T P T P '≤. 所以无论m a =还是m d =,22()()T P T P '≤都成立.(Ⅲ)数对序列:(4,6),(11,11),(16,11),(11,8),(5,2)P 的5()T P 值最小,12345()10,()26,()42,()50,()52T P T P T P T P T P =====.。
2014年全国卷数学试题及答案(理)

工.设集合 M = {x | x 2 − 3 x − 4 < 0} , N = {x | 0 ≤ x ≤ 5} ,则 M I N = A. (0, 4] B. [0, 4)
0
C. [ −1, 0)
0
D. ( −1, 0]
0
左.设 a = sin 33 , b = cos 55 , c = tan 35 ,则 A. a > b > c 4.若向 B. b > c > a C. c > b > a D. c > a > b
C.75 种
D.150 种
x2 y2 3 + 2 = 1 (a > b > 0) 的 、右焦点为 F1 、 F2 ,离心率为 ,过 F2 的 2 a b 3
直线 l 交 C 于 A、B 两点,若 ∆AF1 B 的周长为 4 3 ,则 C 的方程为 A.
x2 y 2 + =1 3 2
B.
x2 + y2 = 1 3
r r r r r r r r r r a, b 满足 | a |= 1 , (a + b) ⊥ a , (2a + b) ⊥ b ,则 | b |=
B. 2 男 生、5 C.1 D.
A.2 5.有 6
2 2
男 生、1 女 生组成 个 疗小组,则
女 生,从中选出 工
工1 教育网
的选法共有 A.60 种 6.已知椭圆 C B.70 种
已知抛物线 C
y 2 = 2 px( p > 0) 的焦点为 F,直线 y = 4
Q,且 | QF |=
5 | PQ | . 4
1 求 C 的方程 2 过 F 的直线 l C 相交于 A、B 两点,若 AB 的 垂直平 线 l
MBA联考数学真题2014年12月_真题(含答案与解析)-交互

MBA联考数学真题2014年12月(总分75, 做题时间90分钟)一、问题求解题(下列每题给出的A、B、C、D、E五个选项中,只有一项是符合试题要求的) 1.若实数a、b、c满足a:b:c=1:2:5,且a+b+c=24,则a 2 +b 2 +c 2 =______.SSS_SINGLE_SELA 30B 90C 120D 240E 270该题您未回答:х该问题分值: 3答案:E[解析] 设a=k,b=2k,c=5k,代入a+b+c=24,k+2k+5k=24,因k=2,则a=3,b=6,c=15,得a 2 +b 2 +c 2 =3 2 +6 2 +15 2 =270.2.某公司共有甲、乙两个部门,如果从甲部门调10人到乙部门,那么乙部门的人数是甲部门的2倍;如果把乙部门的调到甲部门,那么两个部门的人数相等,该公司总人数为______.SSS_SINGLE_SELA 150B 180C 200D 240E 250该题您未回答:х该问题分值: 3答案:D[解析] 设甲、乙两个部门各有x,y人,3.设m、n是小于20的质数,满足条件|m-n|=2的{m,n}共有______.SSS_SINGLE_SELA 2组B 3组C 4组D 5组E 6组该题您未回答:х该问题分值: 3答案:C[解析] 枚举质数:2,3,5,7,11,13,17,19发现满足|m-n|=2的集合有{3,5},{5,7},{11,13},{17,19}共4组.4.如图所示,BC是半圆的直径,且BC=4,∠ABC=30°,则图中阴影部分的面积为______.A.B.C.D.E.SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:A[解析] 如下图所示,易得∠AOB=120°,5.某人驾车从A地赶往B地,前一半路程比计划多用了45min,速度只有计划的80%,若后一半路程的平均速度为120km/h,此人还能按原定时间到达B地,则A、B两地距离为______.SSS_SINGLE_SELA 450kmB 480kmC 520kmD 540kmE 600km该题您未回答:х该问题分值: 3答案:D[解析] 设A,B两地距离为Skm,原定时间为t,6.在某次考试中,甲、乙、丙三个班的平均成绩为80,81,81.5,三个班的学生分数之和为6592,三个班共有学生______人.SSS_SINGLE_SELA 85B 86C 87D 88E 90该题您未回答:х该问题分值: 3答案:B[解析] 设甲、乙、丙三个班分别有x,y,z人,则80x+81y+81.5z=6952,若85人,按照每班均分最多81.5分算:85×81.5=6927.5<6952,不可能;若87人,按照每班均分最少80分算:87×80=6960>6952,不可能;所以,应该是86人.或估算:人数应该介于两者之间,应该是86人.7.有一根圆柱形铁管,厚度为0.1m,内径为1.8m,长度为2m,若将其熔化后做成长方体,则长方体的体积为______m 3.SSS_SINGLE_SELA 0.38B 0.59C 1.19D 5.09E 6.28该题您未回答:х该问题分值: 3答案:C[解析] 长方体的体积和圆柱体积相同,(注意内径为圆柱内圆的直径),8.如图所示,梯形ABCD的上底与下底分别为5,7.E为AC与BD的交点,MN过点E且平行于AD,则MN=______.A.B.C.D.E.SSS_SIMPLE_SINA B C D E 该题您未回答:х该问题分值: 3答案:C[解析]9.已知x1,x2是方程x 2 -ax-1=0的两个实根,则=______.•**+2•**+1•**•****+2SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:A[解析]10.一件工作,甲、乙两人合作需要2天,人工费2900元;乙、丙两人合作需要4天,人工费2600元;甲、丙两人合作2天完成全部工作量的,人工费2400元;则甲单独完成这件工作需要的时间与人工费为______.SSS_SINGLE_SELA 3天,3000元B 3天,2580元C 4天,3000元D 4天,2700元E 4天,2900元该题您未回答:х该问题分值: 3答案:A[解析] 设甲、乙、丙单独做各需x,y,z天,每天各需a,b,c元,即甲单独做需3天.11.若直线y=ax与圆(x-a) 2 +y 2 =1相切,则a 2 =______.A.B.C.D.E.SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:E[解析] 圆心(a,0),直线方程ax-y=0,半径r=1,利用圆心到直线的距离d等于半径r,代入解得12.设点A(0,2)和B(1,0),在线段AB上取一点M(x,y)(0<x<1),则以x,y 为两边的矩形面积的最大值为______.A.B.C.D.E.SSS_SIMPLE_SINA B C D E该题您未回答:х该问题分值: 3答案:B[解析] 直线AB方程为:2x+y=2,利用均值不等式得:即13.某新兴产业在2005年末至2009年末产值的年平均增长率为q,在2009年末至2013年末产值的年平均增长率比前年下降了40%,2013年末产值约为2005年产值的14.46(≈1.95 4 )倍,则q为______.SSS_SINGLE_SELA 30%B 35%C 40%D 45%E 50%该题您未回答:х该问题分值: 3答案:E[解析] 设2005年末产值为a,则2009年末产值为a(1+q) 4,2013年末产值为a(1+q) 4 (1+0.6q) 4,列方程即12q 2 +32q-19≈0,(2q-1)(6q+19)≈0,q≈50%.14.某次网球比赛的四强对阵为甲对乙、丙对丁,两场比赛的胜者将争夺冠军,选手之间相互获胜的概率如下,则甲获得冠军的概率为______.SSS_SINGLE_SELA 0.165B 0.245C 0.275D 0.315E 0.330该题您未回答:х该问题分值: 3答案:A[解析] 分两种情况讨论:(1)甲胜乙:且丙胜丁、最后甲胜丙;(2)甲胜乙:且丁胜丙、最后甲胜丁.甲获得冠军的概率为P(A)=0.3×(0.5+0.8+0.5×0.3)=0.165.15.平面上有5条平行直线,与另一组n条平行直线垂直,若两组平行线共构成280个矩形,则n=______.SSS_SINGLE_SELA 5B 6C 7D 8E 9该题您未回答:х该问题分值: 3答案:D[解析] 所以n=8.二、条件充分性判断(要求判断每题给出的条件(1)与条件(2)能否充分支持题干中陈述的结论.A、B、C、D、E五个选项为判断结果,请选择一项符合试题要求的判断)• A.条件(1)充分,但条件(2)不充分.• B.条件(2)充分,但条件(1)不充分.• C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.• D.条件(1)充分,条件(2)也充分.• E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.SSS_SIMPLE_SIN1.信封中装有10张奖券,只有一张有奖.从信封中同时抽取2张,中奖概率为P;从信封中每次抽取1张奖券后放回,如此重复抽取n次,中奖概率为Q,则P<Q.(1)n=2. (2)n=3.A B C D E该题您未回答:х该问题分值: 3答案:B[解析] 同时抽取2张,等可能事件概率,则中奖概率为从信封中每次抽取1张奖券后放回,属于独立重复试验,正面比较麻烦,考虑反面做比较好.条件(1)n=2时,中奖概率为P>Q,故不充分.条件(2)n=3时,中奖概率为所以P<Q,故充分.SSS_SIMPLE_SIN2.已知p,q为非零实数,则能确定的值.(1)p+q=1. (2)A B C D E该题您未回答:х该问题分值: 3答案:B[解析] (1)p+q=1,得p=1-q,代入不确定.SSS_SIMPLE_SIN3.已知a,b为实数,则a≥2或b≥2.(1)a+b≥4.(2)ab≥4.A B C D E该题您未回答:х该问题分值: 3答案:A[解析] a,b两数平均数大于或等于2,则a,b至少有一个大于或等于2.或画出图形,如下图所示,容易观察:a+b≥4 a≥2或b≥2,充分.(2)ab≥4,举反例:a=-3,b=-4,显然不满足a≥2或b≥2,不充分.SSS_SIMPLE_SIN4.圆盘x 2 +y 2≤2(x+y)被直线L分成面积相等的两部分.(1)L:x+y=2. (2)L:2x-y=1.A B C D E该题您未回答:х该问题分值: 3答案:D[解析] x 2 +y 2≤2(x+y),即(x-1) 2 +(y-1) 2≤2,过其圆心(1,1)即可.(1)x+y=2满足;(2)2x-y=1满足.SSS_SIMPLE_SIN5.已知{an }是公差大于零的等差数列,Sn是{an}的前n项和,则Sn≥S10,n=1,2,…(1)a10 =0. (2)a11a10<0.A B C D E 该题您未回答:х该问题分值: 3答案:D[解析](1)a10 =0,d>0,说明a1,a2…a9<0,即(Sn)min=S10=S9,则Sn≥S10,充分.(2)a11 a10<0,因为d>0,所以a10<0,a11>0,(Sn)min=S10,故Sn ≥S10,充分.SSS_SIMPLE_SIN6.几个朋友外出游玩,购买了一些瓶装水,则能确定购买的瓶装水数量.(1)若每人分三瓶,则剩余30瓶.(2)若每人分10瓶,则只有1人不够.A B C D E该题您未回答:х该问题分值: 3答案:C[解析] 设有x 个朋友,y 瓶水,显然(1)与(2)均不充分, 由题意得3x+30=y ,又 代入y=3x+30到不等式中,解得所以x=5即y=45.SSS_SIMPLE_SIN7.已知M=(a 1 +a 2 +…a n-1 )(a 2 +a 3 +…a n ),N=(a 1 +a 2 +…a n )(a 2 +a 3 +…a n-1 ),则M >N .(1)a 1 >0. (2)a 1 a n >0.A B C D E 该题您未回答:х 该问题分值: 3 答案:B[解析] 作差:整体代入法,设S=a 1 +a 2 +…+a n ,M-N=(a 1 +a 2 +…+a n-1 )(a 2 +a 3 +…+a n )-(a 1 +a 2 +…+a n )(a 2 +a 3 +-…+a n-1 )=(S-a n )(S-a 1 )-S(S-a 1 -a n )=S 2 -a 1 S-a n S+a n a 1 -S 2+a 1 S+a n S =a 1 a n , M >Na 1 a n >0,(1)a 1 >0不充分;(2)a 1 a n >0充分.SSS_SIMPLE_SIN8.设{a n }是等差数列,则能确定数列{a n }. (1)a 1 +a 6 =0. (2)a 1 a 6 =-1.A B C D E 该题您未回答:х 该问题分值: 3 答案:E[解析] a 1 、a 6 为方程x 2 -1=0的两根,x=1或x=-1, 所以 因为有两个数列,显然无法确定.SSS_SIMPLE_SIN9.已知x 1 ,x 2 ,x 3 都是实数,x 为x 1 ,x 2 ,x 3 的平均数,则 k=1,2,3.(1)|x k |≤1,k=1,2,3. (2)x 1 =0.A B C D E 该题您未回答:х 该问题分值: 3 答案:C[解析] (1)|x k |≤1,k=1,2,3, x 1 ,x 2 ,x 3 ∈[-1,1],依次取1,-1,-1,则不充分.(2)x 1 =0,显然不充分;联合不妨以x 2 为例:即证明其最大值小于或等于1.当x2 =1,x3=-1时.取最大值且等于1,则SSS_SIMPLE_SIN10.底面半径为r,高为h的圆柱体表面积记为S1,半径为R的球体表面积记为S2,则S1≤S2.A B C D E该题您未回答:х该问题分值: 3答案:C[解析] S1=2πrh+2πr 2,S2=4πR 2,S1≤S2,代入得2πrh+2πr 2≤4πR 2,即4R 2≥2rh+2r 2,这是题干成立的充要条件.(1) 即2R≥r+h 4R 2≥(r+h) 2,(r+h) 2 -(2rh+2r 2 )=h 2 -r 2,无法判断其大小,不充分.(2) .取R→0,显然不充分.联合即相加消去R,得h≥r.即(r+h) 2≥2rh+2r,所以联合起来充分,故选C.1。
2014年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)

2014年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( )A.-5B.5C.-4+iD.-4-i3.设向量a,b满足|a+b|=√10,|a-b|=√6,则a·b=()A.1B.2C.3D.54.钝角三角形ABC的面积是12,AB=1,BC=√2,则AC=( )A.5B.√5C.2D.15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.456.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.137.执行下面的程序框图,如果输入的x,t均为2,则输出的S=( )A.4B.5C.6D.78.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0B.1C.2D.39.设x,y满足约束条件{x+y-7≤0,x-3y+1≤0,3x-y-5≥0,则z=2x-y的最大值为( )A.10B.8C.3D.210.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A.3√34B.9√38C.6332D.9411.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN 所成角的余弦值为( )A.110B.25C.√3010D.√2212.设函数f(x)=√3sinπxm.若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.(x+a)10的展开式中,x7的系数为15,则a= .(用数字填写答案)14.函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为.15.已知偶函数f(x)在[0,+∞)上单调递减, f(2)=0.若f(x-1)>0,则x的取值范围是.16.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明1a1+1a2+…+1a n<32.18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=√3,求三棱锥E-ACD的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年 份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为: b ^=∑i=1n(t i -t )(y i -y )∑i=1n(t i -t )2,a ^=y -b ^t .20.(本小题满分12分)设F 1,F 2分别是椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a,b.21.(本小题满分12分)已知函数f(x)=e x-e-x-2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.414 2<√2<1.414 3,估计ln 2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P是☉O外一点,PA是切线,A为切点,割线PBC与☉O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交☉O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)AD·DE=2PB2.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标].方程为ρ=2cos θ,θ∈[0,π2(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=√3x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.24.(本小题满分10分)选修4—5:不等式选讲|+|x-a|(a>0).设函数f(x)=|x+1a(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.D 由已知得N={x|1≤x ≤2},∵M={0,1,2},∴M∩N={1,2},故选D.2.A 由题意得z 2=-2+i,∴z 1z 2=(2+i)(-2+i)=-5,故选A.3.A 由|a+b |=√10得a 2+b 2+2a ·b =10,① 由|a-b |=√6得a 2+b 2-2a ·b =6,② ①-②得4a ·b =4,∴a ·b =1,故选A.4.B S △ABC =12AB ·BCsin B=12×1×√2sin B=12,∴sin B=√22,若B=45°,则由余弦定理得AC=1,∴△ABC 为直角三角形,不符合题意,因此B=135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BCcos B=1+2-2×1×√2×(-√22)=5,∴AC=√5.故选B.5.A 由条件概率可得所求概率为0.60.75=0.8,故选A.6.C 由三视图知该零件是两个圆柱的组合体.一个圆柱的底面半径为2 cm,高为4 cm;另一个圆柱的底面半径为3 cm,高为2 cm.设零点的体积V 1=π×22×4+π×32×2=34π(cm 3).而毛坯的体积V=π×32×6=54π(cm 3),因此切削掉部分的体积V 2=V-V 1=54π-34π=20π(cm 3),所以V 2V =20π54π=1027.故选C.评析 本题考查了三视图和圆柱的体积,考查了空间想象能力和运算求解能力,正确得到零件的直观图是求解的关键. 7.D k=1,M=11×2=2,S=2+3=5;k=2,M=22×2=2,S=2+5=7; k=3,3>t,∴输出S=7,故选D.8.D y'=a-1x+1,x=0时,y'=a-1=2,∴a=3,故选D.9.B 由约束条件得可行域如图阴影部分所示.由{x +y -7=0,x -3y +1=0得A(5,2).当直线2x-y=z 过点A 时,z=2x-y 取得最大值.其最大值为2×5-2=8.故选B.10.D 易知直线AB 的方程为y=√33(x -34),与y 2=3x 联立并消去x 得4y 2-12√3y-9=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=3√3,y 1y 2=-94.S △OAB =12|OF|·|y 1-y 2|=12×34√(y 1+y 2)2-4y 1y 2=38√27+9=94.故选D.评析 本题考查了直线与抛物线的位置关系,考查了数形结合和运算求解的能力.利用根与系数的关系进行整体运算是求解的关键.11.C 解法一:取BC 的中点Q,连结QN,AQ,易知BM ∥QN,则∠ANQ 即为所求, 设BC=CA=CC 1=2, 则AQ=√5,AN=√5,QN=√6, ∴cos∠ANQ=AN 2+NQ 2-AQ 22AN ·NQ =2√5×√6=2√30=√3010,故选C.解法二:以C 1为坐标原点,建立如图所示的空间直角坐标系,设BC=CA=CC 1=2,则A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),∴AN ⃗⃗⃗⃗⃗⃗ =(-1,0,-2),BM ⃗⃗⃗⃗⃗⃗ =(1,-1,-2),∴cos<AN ⃗⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ >=AN⃗⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗⃗ |AN ⃗⃗⃗⃗⃗⃗ ||BM ⃗⃗⃗⃗⃗⃗⃗ |=√5×√6=√30=√3010,故选C. 12.C f '(x)=√3πm cos πx m, ∵f(x)的极值点为x 0, ∴f '(x 0)=0,∴√3πm cos πx 0m=0, ∴πm x 0=kπ+π2,k ∈Z , ∴x 0=mk+m2,k ∈Z ,又∵x 02+[f(x 0)]2<m 2,∴(mk +m 2)2+[√3sin (kπ+π2)]2<m 2,k ∈Z , 即m 2(k+12)2+3<m 2,k ∈Z ,∵m≠0,∴(k +12)2<m 2-3m 2,k ∈Z ,又∵存在x 0满足x 02+[f(x 0)]2<m 2,即存在k ∈Z 满足上式,∴m 2-3m 2>[(k +12)2]min,∴m 2-3m >(12)2,∴m 2-3>m 24,∴m 2>4,∴m>2或m<-2,故选C.评析 本题考查了函数的极值问题,三角函数求值、恒成立等问题.考查分析问题、解决问题的能力. 二、填空题 13.答案12解析 T r+1=C 10r x 10-r a r ,令10-r=7,得r=3, ∴C 103a 3=15,即10×9×83×2×1a 3=15,∴a 3=18,∴a=12.14.答案 1解析 f(x)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ-2sin φcos(x+φ)=sin(x+φ)cosφ-sin φcos(x+φ)=sin(x+φ-φ)=sin x,∴f(x)的最大值为1.15.答案(-1,3)解析∵f(2)=0, f(x-1)>0,∴f(x-1)>f(2),又∵f(x)是偶函数且在[0,+∞)上单调递减,∴f(|x-1|)>f(2),∴|x-1|<2,∴-2<x-1<2,∴-1<x<3,∴x∈(-1,3).评析本题考查了偶函数的性质,利用f(|x|)=f(x)是求解的关键.16.答案[-1,1]解析解法一:当x 0=0时,M(0,1),由圆的几何性质得在圆上存在点N(-1,0)或N(1,0),使∠OMN=45°.当x0≠0时,过M作圆的两条切线,切点为A、B.若在圆上存在N,使得∠OMN=45°,应有∠OMB≥∠OMN=45°,∴∠AMB≥90°,∴-1≤x0<0或0<x0≤1.综上,-1≤x0≤1.解法二:过O作OP⊥MN,P为垂足,OP=OM·sin 45°≤1,,∴OM2≤2,∴x02+1≤2,∴x02≤1,∴-1≤x0≤1.∴OM≤1sin45°评析 本题考查了数形结合思想及分析问题、解决问题的能力.三、解答题17.解析 (Ⅰ)由a n+1=3a n +1得a n+1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列. a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(Ⅱ)由(Ⅰ)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n-1,所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32. 所以1a 1+1a 2+…+1a n <32. 评析 本题考查了等比数列的定义、数列求和等问题,放缩求和是本题的难点.18.解析 (Ⅰ)连结BD 交AC 于点O,连结EO.因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB.又EO ⊂平面AEC,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)因为PA ⊥平面ABCD,ABCD 为矩形,所以AB,AD,AP 两两垂直.如图,以A 为坐标原点,AB⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,|AP ⃗⃗⃗⃗⃗ |为单位长,建立空间直角坐标系A-xyz,则D(0,√3,0),E (0,√32,12),AE ⃗⃗⃗⃗⃗ =(0,√32,12).设B(m,0,0)(m>0),则C(m,√3,0),AC⃗⃗⃗⃗⃗ =(m,√3,0). 设n 1=(x,y,z)为平面ACE 的法向量,则{n 1·AC ⃗⃗⃗⃗⃗ =0,n 1·AE ⃗⃗⃗⃗⃗ =0,即{mx +√3y =0,√32y +12z =0, 可取n 1=(√3m ,-1,√3).又n 2=(1,0,0)为平面DAE 的法向量,由题设|cos<n 1,n 2>|=12,即√33+4m 2=12,解得m=32. 因为E 为PD 的中点,所以三棱锥E-ACD 的高为12. 三棱锥E-ACD 的体积V=13×12×√3×32×12=√38.评析 本题考查线面平行的判定,利用空间向量解二面角问题,考查了学生的空间想象能力.19.解析 (Ⅰ)由所给数据计算得 t =17×(1+2+3+4+5+6+7)=4, y =17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∑i=17(t i -t )2=9+4+1+0+1+4+9=28, ∑i=17(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i=17(t i -t)(y i -y)∑i=17(t i -t)2=1428=0.5, a ^=y -b ^t =4.3-0.5×4=2.3,所求回归方程为y ^=0.5t+2.3.(Ⅱ)由(Ⅰ)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(Ⅰ)中的回归方程,得y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.评析 本题考查了回归直线方程的求解,注意回归直线恒过点(t ,y )是关键,考查了回归系数b ^的几何意义.考查了学生的计算求解能力.20.解析 (Ⅰ)根据c=√a 2-b 2及题设知M (c,b 2a ),2b 2=3ac. 将b 2=a 2-c 2代入2b 2=3ac,解得c a =12或c a =-2(舍去).故C 的离心率为12.(Ⅱ)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a.① 由|MN|=5|F 1N|得|DF 1|=2|F 1N|.设N(x 1,y 1),由题意知y 1<0,则{2(-c -x 1)=c,-2y 1=2,即{x 1=-32c,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c=√a 2-b 2代入②得9(a 2-4a)4a 2+14a =1. 解得a=7,b 2=4a=28,故a=7,b=2√7.评析 本题考查了椭圆的几何性质,考查用代数方法研究圆锥曲线问题及向量的运算等基础知识.21.解析 (Ⅰ)f '(x)=e x +e -x -2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)上单调递增.(Ⅱ)g(x)=f(2x)-4bf(x)=e 2x -e -2x -4b(e x -e -x )+(8b-4)x,g'(x)=2[e 2x +e -2x -2b(e x +e -x )+(4b-2)]=2(e x +e -x -2)(e x +e -x -2b+2).(i)当b≤2时,g'(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.(ii)当b>2时,若x满足2<e x+e-x<2b-2,即0<x<ln(b-1+√b2-2b)时,g'(x)<0.而g(0)=0,因此当0<x≤ln(b-1+√b2-2b)时,g(x)<0.综上,b的最大值为2.-2√2b+2(2b-1)ln 2.(Ⅲ)由(Ⅱ)知,g(ln√2)=32当b=2时,g(ln√2)=3-4√2+6ln 2>0,2>0.692 8;ln 2>8√2-312+1时,ln(b-1+√b2-2b)=ln√2,当b=3√24-2√2+(3√2+2)ln 2<0,g(ln√2)=-32<0.693 4.ln 2<18+√228所以ln 2的近似值为0.693.评析本题考查了导数的应用,同时考查了分类讨论思想和运算能力.22.解析(Ⅰ)连结AB,AC,由题设知PA=PD,故∠PAD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠PAD=∠BAD+∠PAB,∠DCA=∠PAB,⏜=EC⏜.所以∠DAC=∠BAD,从而BE因此BE=EC.(Ⅱ)由切割线定理得PA2=PB·PC.因为PA=PD=DC,所以DC=2PB,BD=PB,由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.评析本题考查了圆的切割线定理,相交弦定理.考查了推理论证能力.23.解析(Ⅰ)C的普通方程为(x-1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cost,y=sint(t为参数,0≤t≤π).(Ⅱ)设D(1+cos t,sin t).由(Ⅰ)知C是以G(1,0)为圆心,1为半径的上半圆. 因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同,tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32,√32).评析本题考查了极坐标化平面直角坐标,普通方程化参数方程的方法,考查了数形结合思想.24.解析(Ⅰ)由a>0,得f(x)=|x+1a |+|x-a|≥|x+1a-(x-a)|=1a+a≥2.所以f(x)≥2.(Ⅱ)f(3)=|3+1a|+|3-a|.当a>3时,f(3)=a+1a ,由f(3)<5得3<a<5+√212.当0<a≤3时,f(3)=6-a+1a ,由f(3)<5得1+√52<a≤3.综上,a的取值范围是(1+√52,5+√212).评析本题考查了含绝对值不等式的解法,考查了分类讨论思想.。
2014年全国一卷高考理科数学试卷及答案

2014年全国⼀卷⾼考理科数学试卷及答案2014年普通⾼等学校招⽣全国统⼀考试全国课标I 理科数学第Ⅰ卷(选择题共60分)⼀.选择题:共12⼩题,每⼩题5分,共60分。
在每个⼩题给出的四个选项中,只有⼀项是符合题⽬要求的⼀项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的⼀个焦点,则点F 到C 的⼀条渐近线的距离为AB .3CD .3m5.4位同学各⾃在周六、周⽇两天中任选⼀天参加公益活动,则周六、周⽇都有同学参加公益活动的概率A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,⾓x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂⾜为M ,将点M 到直线OP 的距离表⽰为x 的函数()f x ,则y =()f x 在[0,π]上的图像⼤致为7.执⾏下图的程序框图,若输⼊的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22π9.不等式组124x y x y +≥??-≤?的解集记为D .有下⾯四个命题:1p :(,),22x y D x y ?∈+≥-, 2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤, 4p :(,),21x y D x y ?∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上⼀点,Q 是直线PF 与C 的⼀个焦点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯⼀的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,⽹格纸上⼩正⽅形的边长为1,粗实线画出的是某多⾯体的三视图,则该多⾯体的个条棱中,最长的棱的长度为A .B .D .4第Ⅱ卷(⾮选择题共90分)本卷包括必考题和选考题两个部分。
2014年普通高等学校招生全国统一考试数学卷(四川.理)含详解

绝密★启用前2014年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B) =P(A)+P(B) 24s R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么243v R π=在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)k k n kn P k C p p k n -=-= 第一部分(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16 (B)13 (C)12 (D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
2、复数1i i-+=(A)2i - (B )12i (C )0 (D )2i 答案:A解析:12i i i i i-+=--=- 3、1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A)12l l ⊥,23l l ⊥13l l ⇒ (B )12l l ⊥,23l l ⇒13l l ⊥ (C)233l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 答案:B解析:A 答案还有异面或者相交,C 、D 不一定 4、如图,正六边形ABCDEF 中,BA CD EF ++=(A)0 (B)BE (C)AD (D)CF答案D 解析:B AC ++=+5、5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件 答案:B解析:连续必定有定义,有定义不一定连续。
2014全国统一高考数学真题及逐题详细解析(理科)—辽宁卷

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6. 6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-.若对所有,[0,1x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12 B .14 C .12π D .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求: (1)a 和c 的值; (2)cos()BC -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的x 0有01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤. 参考答案一、选择题1. D [解析] 由题意可知,A ∪B ={x |x ≤0或x ≥1},所以∁U (A ∪B )={x |0<x <1}.2. A [解析] 由(z -2i)(2-i)=5,得z -2i =52-i,故z =2+3i.3. C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .4. B [解析] B [解析] 由题可知,若m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误.若m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与a 相交,故D 错误. 5. A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.6. D [解析] 这是一个元素不相邻问题,采用插空法,A 33C 34=24.7. B [解析] 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分⎝⎛⎭⎫占圆柱的14后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π8. C [解析] 令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以b n +1b n =2a 1a n +12a 1a n=2a 1(a n +1-a n )=2a 1d <1,所得a 1d <0.9. B [解析] 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度得到函数y =3sin ⎝⎛⎭⎫2x -23π的图像,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增10. D [解析] 因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,所以p =4.设直线AB 的方程为x +2=m (y -3),与抛物线方程y 2=8x 联立得到y 2-8my +24m +16=0,由题易知Δ=0,解得m =-12(舍)或者m =2,这时B 点的坐标为(8,8),而焦点F 的坐标为(2,0),故直线BF 的斜率k BF =8-08-2=43. 11. C C [解析] 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4= -(x -9)(x +1)x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2.解法一:12. B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.解法二:解法三:解法四:13.299[解析] 当x =9时,y =5,则|y -x |=4;当x =5时,y =113,则|y -x |=43;当x =113时,y =299,则|y -x |=49<1.故输出y =299.14.23[解析] 正方形ABCD 的面积S =2×2=4,阴影部分的面积S 1=2⎠⎛-11(1-x 2)d x =2⎝⎛⎭⎫x -13x 31-1=83,故质点落在阴影区域的概率P =834=23. 15. 12 [解析] 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点F 1的对称点为A ,点M 关于C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.16. 2- [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.17.(Ⅰ)由2BA BC ⋅=得,cos 2c a B ⋅=,又1cos 3B =,所以ac =6.由余弦定理,得2222cos a c b ac B +=+.又b =3,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得a =2,c =3或a =3,c =2. 因为a >c ,∴ a =3,c =2. (Ⅱ)在ABC ∆中,sin 3B ===由正弦定理,得2sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此7cos9C===.于是cos()cos cos sin sinB C B C B C-=+=1723393927⋅+⋅=.18.(Ⅰ)设1A表示事件“日销售量不低于100个”,2A表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A=++⨯=.2()0.003500.15P A=⨯=.()0.60.60.1520.108P B=⨯⨯⨯=.(Ⅱ)X的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C==⋅-=,123(1)0.6(10.6)0.288P X C==⋅-=,223(2)0.6(10.6)0.432P X C==⋅-=,333(3)0.60.216P X C==⋅=,分布列为19.(Ⅰ)证明:(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=2π,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,又EF⊂面EFO,所以EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A (0,-1,),D(,-1,0),C (0,2,0),因而11(0,),,,0)22E F ,所以33(,0,),(0,2,0)22EF BC =-=,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥. (Ⅱ)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF . 因此∠EGO 为二面角E -BF -C 的平面角; 在△EOC 中,EO =12EC=12BC ·cos 30°,由△BGO ∽△BFC 知,BO OG FC BC =⋅=,因此tan ∠EGO =2EO OG =,从而sin ∠EGO,即二面角E -BF -C (方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量2(,,)n x y z =,又311(,,0),(0,,)2222BF BE ==,由220n BF nBE ⎧⋅=⎪⎨⋅=⎪⎩ 得其中一个2(1,n =,设二面角E -BF -C 的大小为θ,且由题意知θ为锐角,则121212cos |cos ,|||||||5n nn n n n θ⋅=<>==⋅因sin θ即二面角E -BF -C 20.(Ⅰ)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y =时00x y 有最大值,即S 有最小值,因此点P 得坐标为 , 由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (Ⅱ)由(Ⅰ)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+, 解得b 12=3,因此C 2方程为22163x y += 显然,l 不是直线y =0.设l 的方程为x =my1122(,),(,)A x y B x y由22163x my x y ⎧=⎪⎨+=⎪⎩得22(2)30m y ++-=,又12,y y 是方程的根,因此1212232y y y y m ⎧+=⎪⎪⎨-⎪=⎪+⎩①②,由12,3x y x m=+=+得12122221212122()266()32x x m y y m m x x m y y y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④因1122(2,2),(2)AP x y BP x y =--=-由题意知0A P B P ⋅=,所以12121212))40x x x x y y y y ++++=⑤,将①,②,③,④代入⑤式整理得22110m -+=,解得12m =-或12m =-+,因此直线l 的方程为1)0x y --=,或1)0x y +-=. 21.(Ⅰ)当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =. (Ⅱ)考虑函数3()cos 2()4ln(3),[,]1sin 2x x h x x x x ππππ-=--∈+,令t x π=-,则[,]2x ππ∈时,[0,]2t π∈, 记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()'()(2)(1sin )f t u t t t π=++ ,由(Ⅰ)得,当0(0,)t x ∈时,'()0u t >,当0(,)2t x π∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点. 在0(,)2x π上()u t 是减函数,由0()0,()4ln 202u x u π>=-<,存在唯一的10(,)2t x π∈ ,使1()0u t =.所以存在唯一的10(,)2t x π∈使1()0u t =.因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==.因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈,使1()0g x =.因1110,x t t x π=->,所以01x x π+<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(Ⅰ)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF 垂直EP ,所以∠PF A =90°,于是∠BDA =90°,故AB 是直径. (Ⅱ)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°, 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA . 又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于,,AB EP DC EP DCE ⊥⊥∠所以为直角 于是ED 是直径,由(Ⅰ)得ED =AB .23.(Ⅰ)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y +=得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t ⎧⎨⎩== (t 为参数).(Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-, 化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24.(Ⅰ)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<; 所以()1f x ≤的解集为4{|0}3M x x =≤≤.(Ⅱ)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4MN x x =≤≤.当x MN ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+2111()(1)()424x f x x x x =⋅=-=--≤.。
2014全国统一高考数学真题及逐题详细解析(理科)—新课标Ⅱ卷

2014年普通高等学校招生全国统一考试理科数学(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N =( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数12,z z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量,a b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .1B .2C .3D .54.钝角三角形ABC 的面积是12,1AB =,BC ,则AC =( )A .5B .2 D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是075.,连续两天优良的概率是06.,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .08.B .075.C .06.D .045. 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B . 59 C . 1027D . 13 7.执行右图程序框图,如果输入的,x t 均为2,则输出的S =( )A .4B .5C .6D .78.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2 D .39.设,x y 满足约束条件70,310,350.x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30的直线交C 于,A B 两点,O 为坐标原点,则OAB 的面积为( )A C .6332 D .9411.直三棱柱111ABC A B C -中,90BCA ∠=︒,M N ,分别是1111A B AC ,的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为( )A .110 B .25 C12.设函数()xf x mπ=.若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.10()x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[0,)+∞单调递减,(2)0f =.若(1)0f x ->,则x 的取值范围是______.16.设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是____.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n a a +=+.(Ⅰ)证明1{}2n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1211132n a a a +++<. 18.(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ABCD ⊥平面 ,E 为PD 的中点.(Ⅰ)证明:PB AEC ∥平面;(Ⅱ)设二面角D AE C --为60°,1AP = ,AD =,求三棱锥E ACD - 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的(Ⅰ)求关于的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆa y bt=- 20.(本小题满分12分)设12,F F 分别是椭圆22221x y a b+= (0a b >> )的左右焦点,M 是C上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b . 21.(本小题满分12分)已知函数()2x x f x e e x -=--。
2014全国统一高考数学真题及逐题详细解析(理科)—湖北卷

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B . 1 C . i - D . i 2. 若二项式7)2(xa x +的展开式中31x的系数是84,则实数=a ( ) A.2 B .54 C . 1 D .42 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( ) A . 充分而不必要条件 B . 必要而不充分条件 C . 充要条件 D . 既不充分也不必要条件 4.根据如下样本数据A.0,0>>b a B .0,0<>b a C .0,0><b a D .0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①.②.③.④的四个图,则该四面体的正视图和俯视图分别为( ) 图和俯视图分别为图1-1A .①和②B .①和③C .③和②D .④和② 6.若函数f (x ),g (x )满足()()110f x g x dx -=⎰,则称f (x ),g (x )为区间[-1,1] 上的一组正交函数,给图③ 图①图④图② 第7题图出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( ) A .0 B .1 C .2 D .37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A .81 B .41 C . 43 D .87 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A .227 B .258C .15750D .355113 9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) ABC .3D .2 10.已知函数f (x )是定义在R 上的奇函数,当0x ≥时,2221()(||)|2|3).2f x x a x a a =-+--若,(1)(),x R f x f x ∀∈-≤则实数a 的取值范围为( )A .11[,]66- B.[ C . 11[,]33- D.[二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.11.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ=________.12.直线1l :y=x+a 和2l :y=x+b 将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为________17.(本小题满分11分)某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?18(本小题满分12分)已知等差数列满足:=2,且,成等比数列.(1) 求数列的通项公式.(2) 记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.19.(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。
2014全国统一高考数学真题及逐题详细解析(理科)—湖南卷

2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一. 选择题:本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的1. 满足(z ii i z +=为虚数单位)的复数z = A .1122i + B .1122i - C .1122i -+ D .1122i--2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样.系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是123,,,p p p 则A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p == 3.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1,f x g x x x -=++(1)(1)f g +则=A .-3B .-1C .1D .3 4.51(2)2x y -的展开式中23x y 的系数是 A .-20 B .-5 C .5 D .205.已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是 A .①③ B .①④ C .②③ D .②④6.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 A .[6,2]-- B .[5,1]-- C .[4,5]- D .[3,6]-的半径等于A .1B .2C .3D .48.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为A .2p q + B .(1)(1)12p q ++- C D 1 9.已知函数230()sin(),()0,f x x f x dx πϕ=-=⎰且则函数()f x 的图象的一条对称轴是A .56x π=B .712x π=C .3x π=D .6x π= 10.已知函数221()(0)()ln()2x f x x e x g x x x a =+-<=++与的图象上存在关于y 轴对称的点,则a 的取值范围是A .(-∞ B .(-∞ C .( D .( 二.填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为4π的直线l 与曲线2cos :,(1sin x C y ααα=+⎧⎨=+⎩为参数)交于A B ,两点,则AB ||=2,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 .12.如图3,已知,AB BC 是O 的两条弦,,AO BC AB BC ⊥=则O 的半径等于 。
2014年全国统一高考数学试卷及解析(理科)(大纲版)

2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1、(5分)设z=,则z的共轭复数为()A、﹣1+3iB、﹣1﹣3iC、1+3iD、1﹣3i2、(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A、(0,4]B、[0,4)C、[﹣1,0)D、(﹣1,0]3、(5分)设a=sin33°,b=cos55°,c=tan35°,则()A、a>b>cB、b>c>aC、c>b>aD、c>a>b4、(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A、2B、C、1D、5、(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A、60种B、70种C、75种D、150种6、(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A、+=1B、+y2=1C、+=1D、+=17、(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A、2eB、eC、2D、18、(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A、B、16πC、9πD、9、(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A、B、C、D、10、(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A、6B、5C、4D、311、(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A、B、C、D、12、(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A、y=g(x)B、y=g(﹣x)C、y=﹣g(x)D、y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13、(5分)的展开式中x2y2的系数为、(用数字作答)14、(5分)设x、y满足约束条件,则z=x+4y的最大值为、15、(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于、16、(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是、三、解答题17、(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B、18、(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4、(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n、19、(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2、(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小、20、(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立、(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望、21、(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|、(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程、22、(12分)函数f(x)=ln(x+1)﹣(a>1)、(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*)、参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1、(5分)设z=,则z的共轭复数为()A、﹣1+3iB、﹣1﹣3iC、1+3iD、1﹣3i题目分析:直接由复数代数形式的除法运算化简,则z的共轭可求、试题解答解:∵z==,∴、故选:D、点评:本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题、2、(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A、(0,4]B、[0,4)C、[﹣1,0)D、(﹣1,0]题目分析:求解一元二次不等式化简集合M,然后直接利用交集运算求解、试题解答解:由x2﹣3x﹣4<0,得﹣1<x<4、∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4)、故选:B、点评:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题、3、(5分)设a=sin33°,b=cos55°,c=tan35°,则()A、a>b>cB、b>c>aC、c>b>aD、c>a>b题目分析:可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得、试题解答解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C、点评:本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题、4、(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A、2B、C、1D、题目分析:由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||、试题解答解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B、点评:本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题、5、(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A、60种B、70种C、75种D、150种题目分析:根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案、试题解答解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C、点评:本题考查分步计数原理的应用,注意区分排列、组合的不同、6、(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A、+=1B、+y2=1C、+=1D、+=1题目分析:利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程、试题解答解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1、故选:A、点评:本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题、7、(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A、2eB、eC、2D、1题目分析:求函数的导数,利用导数的几何意义即可求出对应的切线斜率、试题解答解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C、点评:本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础、8、(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A、B、16πC、9πD、题目分析:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积、试题解答解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=、故选:A、点评:本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题、9、(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A、B、C、D、题目分析:根据双曲线的定义,以及余弦定理建立方程关系即可得到结论、试题解答解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===、故选:A、点评:本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力、10、(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A、6B、5C、4D、3题目分析:利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10、再利用对数的运算性质即可得出、试题解答解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10、∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4、故选:C、点评:本题考查了等比数列的性质、对数的运算性质,属于基础题、11、(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A、B、C、D、题目分析:首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案、试题解答解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===、故选:B、点评:本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题、12、(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A、y=g(x)B、y=g(﹣x)C、y=﹣g(x)D、y=﹣g(﹣x)题目分析:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x 的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得、试题解答解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D、点评:本题考查反函数的性质和对称性,属中档题、二、填空题(本大题共4小题,每小题5分)13、(5分)的展开式中x2y2的系数为70、(用数字作答)题目分析:先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数、=•(﹣1)试题解答解:的展开式的通项公式为T r+1 r••=•(﹣1)r••,令8﹣=﹣4=2,求得r=4,故展开式中x2y2的系数为=70,故答案为:70、点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题、14、(5分)设x、y满足约束条件,则z=x+4y的最大值为5、题目分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案、试题解答解:由约束条件作出可行域如图,联立,解得C(1,1)、化目标函数z=x+4y为直线方程的斜截式,得、由图可知,当直线过C点时,直线在y轴上的截距最大,z最大、此时z max=1+4×1=5、故答案为:5、点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题、15、(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于、题目分析:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果、试题解答解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:、点评:本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题、16、(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2] 、题目分析:利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x 的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围、试题解答解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1、∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=、∴,解得:a≤2、∴a的取值范围是(﹣∞,2]、故答案为:(﹣∞,2]、点评:本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题、三、解答题17、(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B、题目分析:由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出、试题解答解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=、∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=点评:本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题、18、(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4、(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n、题目分析:(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n=(﹣),并项相加即可、试题解答解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=、点评:本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题、19、(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2、(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小、题目分析:(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得、试题解答解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan点评:本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题、20、(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立、(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望、题目分析:记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求、(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可、试题解答解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31、(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38、故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2点评:本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题、21、(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|、(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程、题目分析:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程、(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|、把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|、由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程、试题解答解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=、又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去)、故C的方程为y2=4x、(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4、∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1)、又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3、过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3)、故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0、点评:本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题、22、(12分)函数f(x)=ln(x+1)﹣(a>1)、(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*)、题目分析:(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式、试题解答解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数、②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数、(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立、②假设当n=k时结论成立,即,=ln(a n+1)>ln(),则当n=k+1时,a n+1a k+1=ln(a k+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年12月管理类联考数学真题解析
全国数学名师孙华明独家第一发布
一、问题求解:第1-15小题,每小题3分,共45分。
下列每题给出的A、B、C、D、E五
A、2组
B、3组
C、4组
D、5组
E、6组
解析:本题课堂反复强调的质数的掌握,列举所有20以内的质数只有2,3,5,7,11,13,17,19,那么显然只有(3,5),(5,7),(11,13),(17,19)四组,属于简单题。
选C。
4、如图1,BC 是半圆的直径,且4BC =,030=∠ABC ,则图中阴影部分的面积为( )
A 、
334-π B 、3234-π C 、332
+π D 、323
2
+π E 、322-π
解析:显然阴影部分的面积为一个120度的扇形减一个三角形,那么就是
22134223343
S ππ=⨯-⨯=-,选A 。
5、某人驾车从A 地赶往B 地,前一半路程比计划多用了45分钟,速度只有计划的80%,若后一半路程的平均速度为120千米/小时,此人还能按原定时间达到B 地,则A 、B 两地距离为( )
A 、450千米
B 、480千米
C 、520千米
D 、540千米
E 、600千米 解析:设半个路程为S ,那么列方程得:340.8S S v v +=
,和34120
S S
v -=,那么联合两个方程得:2702540S S =⇒=,选D 。
6、在某次考试中,甲、乙、丙三个班的平均成绩为80,81,81.5,三个班的学生分数之和为6952,三个班共有( )
A 、85
B 、86
C 、87
D 、88
E 、90 解析:显然答案应该在695286.980=和6952
85.381.5
=之间,选B 。
7、有一根圆柱形铁管,厚度为0.1m ,内径为1.8m ,长度为2m ,若将其熔化后做成长方体,则长方体的体积为( )
A 、0.38
B 、0.59
C 、1.19
D 、5.09
E 、6.28
解析:圆柱体的体积问题,(
)
22
10.920.38 1.19V ππ=-⨯==,属于简单题。
选C 。
8、如图2,梯形ABCD 的上底与下底分别为5,7,E 为AC 与BD 的角度,MN 过点 E 且平行于AD ,则MN=( )
A 、
526 B 、211 C 、635 D 、7
36 E 、740 解析:考查相似三角形,课堂反复强调,
5535
121212ME ME BC BC =⇒=⨯=
,而7735
121212
NE NE AD AD =⇒=⨯=
,所以
353535
12126
MN ME NE =+=+=。
选C 。
9、已知21,x x 是方程012=--ax x 的两个实根,则=+2
221x x ( )
A 、22+a
B 、12+a
C 、12-a
D 、22-a
E 、2+a 解析:韦达定理考查,反复强调,()2
2
2
2
12121222x x x x x x a +=+-=+,选A 。
属于简单题。
10、一件工作,甲、乙合作需要2天,人工费2900元,乙丙两个人合作需要4天,人工费2600元,甲、丙两人合作2天完成全部工作量的6
5
,人工费2400元,则甲单独完成这件工作需要的时间与人工费为( )
A 、3天,3000元
B 、3天,2580元
C 、4天,3000元
D 、4天,3000
E 、4天,2900元
解析:设甲、乙、丙三人的效率分别为,,x y z ,列式得:
172111214354
12x y x y z y z x y z z x ⎧+=⎪⎧⎪++=⎪⎪⎪+=⇒⇒=⎨⎨
⎪⎪+=
⎪⎪⎩+=⎪⎩
,再设甲、乙、丙三人的每天报酬分别为,,a b c ,那么()()()229001650
42600100065022400
a b x y z b c x y z x z +=⎧++=⎪⎧+=⇒⇒=⎨⎨
+=⎩⎪
+=⎩,甲完成工程所需要的人工费为3000元。
选A 。
本题计算量稍大。
11、若直线ax y =,与圆()122
=+-y a x 相切,则=2
a ( )
A 、
231+ B 、231+ C 、25 D 、351+ E 、2
5
1+ 解析:由242222215
1112
1
a d r a a a a a a +=⇒=⇒=+⇒--⇒=
+,选E 。
12、设点()2,0A 和()0,1B ,在线段AB 上取一点()()10,<<x y x M ,则以y x ,为两边的矩形面积的最大值为( )
A 、
85 B 、21 C 、83 D 、41 E 、 8
1
解析:显然AB 的直线方程为:12212
x y
x y +=⇒+=,则面积
()()2
11
2221222
x x S xy x x x x +-⎛⎫==-=-≤= ⎪⎝⎭,选B 。
13、某新兴产业在2005年末至2009年末产值的年平均增长率为q ,在2009年末至2013年末产值的年平均增长率比前面下降了40%,2013年末产值约为2005年产值的14.46(
)4
95
.1≈倍,则q 为( )
A 、30%
B 、35%
C 、40%
D 、45%
E 、50% 列式为:()()(
)
4
4
4
24110.614.461 1.60.6 1.95q q q q
++=⇒++=
()()21
60160950619105050%2
q q q q q +-=⇒+-=⇒=
=,选E 。
本题由于计算量稍大,可以使用选项验证的方法,其实明显只有50%最为适合。
14、某次网球比赛的四强对阵为甲对乙,丙对丁,两场比赛的胜者将争夺冠军,选手之间相互获胜的概率如下,
则甲获得冠军的概率为( )
A 、0.165
B 、0.245
C 、0.275
D 、0.315
E 、0.330 解析:独立性事件的概率,最后甲获胜概率有两种情况:第一种情况为:甲胜乙,丙胜丁,再甲胜丙,概率10.30.50.30.045P =⨯⨯=;第二种情况为:甲胜乙,丁胜丙,再甲胜丁,概率20.30.50.80.12P =⨯⨯=;最终的概率为:0.0450.120.165P =+=。
选A
102
919110100Q P ⎛⎫=-=< ⎪⎝⎭,不充分,条件(2)3
927110.271101000
Q P ⎛⎫
=-==> ⎪⎝⎭,充分,
选B 。
17、已知q p ,为非零实数,则能确定
()
1-p q p
的值
(1)1=+q p (2)
111=+q
p 11
出11100,0a a ><,显然也充分,选D 。
21、几个朋友外出游玩,购买了一些瓶装水,则能确定购买的瓶装水数量( ) (1)若每人分三瓶,则剩余30瓶 (2)若每人分10瓶,则只有1人不够
解析:同余问题,条件(1)说明总数被3除余30,即330N k =+,条件(2)说明总数被10除有余数,即()101N k m =-+明显两个条件都不充分,联合:
()3301017405,5N k k m k m k m =+=-+⇒+=⇒==,显然联合充分。
选C 。
)()231n n a a a a -++
(2)01>n a a
解析:本题在技巧解析会直接讲过:设2341n a a a a -+++
+=()a t a t =++,
10n a a >,明显条件(充分;条件(2)单独也不充分,只能联合,得:232322133
k x x x x
x x x +--=-=≤,充分。
选C 。
25、底面半径为r ,高为h 的圆柱体表面积记为1S ,半径为R 的球体表面积记为2S ,则
21S S ≤ A
(1)2h r R +≥
(2)3
2h
r R +≤ 解析:本题可以用蒙猜大法选C 。