人工智能课后答案解析

合集下载

《人工智能》课后答案

《人工智能》课后答案

《人工智能》课后答案第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图。

有两个无刻度标志的水壶,分别可装5升和2升的水。

设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。

已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。

3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。

5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

人工智能课后习题答案

人工智能课后习题答案
优化方法
可采用批量梯度下降、随机梯度下降、小批量梯度下降等优化算法,以及动量 法、AdaGrad、RMSProp、Adam等自适应学习率优化方法。
课后习题解答与讨论
• 习题一解答:详细阐述感知器模型的原理及算法实现过程,包括模型结构、激 活函数选择、损失函数定义、权重和偏置项更新方法等。
• 习题二解答:分析多层前馈神经网络的结构特点,讨论隐藏层数量、神经元个 数等超参数对网络性能的影响,并给出一种合适的超参数选择方法。
发展历程
人工智能的发展大致经历了符号主义、连接主义和深度学习三个阶段。符号主义认为人工智能源于对人类思 维的研究,尤其是对语言和逻辑的研究;连接主义主张通过训练大量神经元之间的连接关系来模拟人脑的思 维;深度学习则通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
机器学习原理及分类
深度学习框架与应用领域
深度学习框架
深度学习框架是一种用于构建、训练和部署深度学习模型的开发工具。目前流行的深度学习框架包括 TensorFlow、PyTorch、Keras等。
应用领域
深度学习已广泛应用于图像识别、语音识别、自然语言处理、推荐系统等多个领域,并取得了显著的 成果。
课后习题解答与讨论
习题四解答
讨论人工智能的伦理问题,如数据隐私、算法偏见等,并 提出可能的解决方案。
02 感知器与神经网络
感知器模型及算法实现
感知器模型
感知器是一种简单的二分类线性模型 ,由输入层、权重和偏置项、激活函 数(通常为阶跃函数)以及输出层组 成。
感知器算法实现
通过训练数据集,采用梯度下降法更 新权重和偏置项,使得感知器对训练 样本的分类误差最小化。
时序差分方法

人工智能何泽奇课后答案

人工智能何泽奇课后答案

人工智能何泽奇课后答案1、什么是智能?智能包含哪几种能力?解:智能主要是指人类的自然智能。

一般认为,智能是是一种认识客观事物和运用知识解决问题的综合能力。

智能包含感知能力,记忆与思维能力,学习和自适应能力,行为能力。

2、人类有哪几种思维方式?各有什么特点?解:人类思维方式有形象思维、抽象思维和灵感思维形象思维也称直感思维,是一种基于形象概念,根据感性形象认识材料,对客观对象进行处理的一种思维方式。

抽象思维也称逻辑思维,是一种基于抽象概念,根据逻辑规则对信息或知识进行处理的理性思维形式。

灵感思维也称顿悟思维,是一种显意识与潜意识相互作用的思维方式。

3、什么是人工智能?它的研究目标是什么?解:从能力的角度讲,人工智能是指用人工的方法在机器(计算机)上实现智能;从学科的角度看,人工智能是一门研究如何构造智能机器或智能系统,使它能模拟、延伸和扩展人类智能的学科研究目标:对智能行为有效解释的理论分析,解释人类智能;构造具有智能的人工产品;4、什么是图灵实验?图灵实验说明了什么?解:图灵实验可描述如下,该实验的参加者由一位测试主持人和两个被测试对象组成。

其中,两个被测试对象中一个是人,另一个是机器。

测试规则为:测试主持人和每个被测试对象分别位于彼此不能看见的房间中,相互之间只能通过计算机终端进行会话。

测试开始后,由测试主持人向被测试对象提出各种具有智能性的问题,但不能询问测试者的物理特征。

被测试对象在回答问题时,都应尽量使测试者相信自己是“人”,而另一位是”机器”。

在这个前提下,要求测试主持人区分这两个被测试对象中哪个是人,哪个是机器。

如果无论如何更换测试主持人和被测试对象的人,测试主持人总能分辨出人和机器的概率都小于50%,则认为该机器具有了智能。

5、人工智能的发展经历了哪几个阶段?解:孕育期,形成期,知识应用期,从学派分立走向综合,智能科学技术学科的兴起。

《人工智能》--课后习题答案

《人工智能》--课后习题答案

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。

人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和机器思维”解决需要人类专家才能处理的问题。

1.2答:智能”一词源于拉丁Legere ”意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。

所谓自然智能就是人类和一些动物所具有的智力和行为能力。

智力是针对具体情况的,根据不同的情况有不同的含义。

智力”是指学会某种技能的能力,而不是指技能本身。

1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。

即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。

1.4 答:自然语言处理一语言翻译系统,金山词霸系列机器人一足球机器人模式识别一Microsoft Cartoon Maker博弈一围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S, 0, S0, G):S—状态集合;0—操作算子集合;S0—初始状态,S0 S;G —目的状态,G S,(G可若干具体状态,也可满足某些性质的路径信息描述)从SO结点到G结点的路径被称为求解路径。

状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0 S1 S2 ……G其中O1 ,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。

与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。

(3)语义网络是一种采用网络形式表示人类知识的方法。

即用一个有向图表示概念和概念之间的关系,其中节点代表概念,节点之间的连接弧(也称联想弧)代表概念之间的关系。

(完整word版)人工智能课后习题答案(清华大学出版社)

(完整word版)人工智能课后习题答案(清华大学出版社)

第1章 1.1 解图如下:(1) 1->2(2) 1->3(3) 2->3(6) 3->2(5) 3->1(4) 2->1 8数码问题 启发函数为不在位的将牌数启发函数为不在位的将牌数距离和S(4)S(5)第2章 2.1 解图:第3章 3.18(1)证明:待归结的命题公式为()P Q P ∧→,合取范式为:P Q P ∧∧,求取子句集为{,,}S P Q P =,对子句集中的子句进行归结可得:① P ② Q③P ④ ①③归结 由上可得原公式成立。

(2)证明:待归结的命题公式为())(()())P Q R P Q P R →→∧→→→(,合取范式为:()()P Q R P Q P R ∨∨∧∨∧∧,求取子句集为{,,,}S P Q R P Q P R =∨∨∨,对子句集中的子句进行归结可得:① P Q R ∨∨ ② P Q ∨③ P ④R ⑤ Q②③归结⑥ P R ∨ ①④归结⑦ R ③⑥归结 ⑧ ④⑦归结 由上可得原公式成立。

(3)证明:待归结的命题公式为()(())Q P Q P Q →∧→→,合取范式为:()()Q P Q P Q ∨∧∨∧,求取子句集为{,,}S Q P Q P Q =∨∨,对子句集中的子句进行归结可得:① Q P ∨ ② Q③ Q P ∨④ P ①②归结 ⑤ P ②③归结 ⑥ ④⑤归结 由上可得原公式成立。

3.19 答案(1) {/,/,/}mgu a x b y b z = (2) {(())/,()/}mgu g f v x f v u = (3) 不可合一(4) {/,/,/}=mgu b x b y b z3.23 证明R1:所有不贫穷且聪明的人都快乐:(()()())∀∧→x Poor x Smart x Happy x R2:那些看书的人是聪明的:(()())∀→x read x Smart xR3:李明能看书且不贫穷:()()∧read Li Poor LiR4:快乐的人过着激动人心的生活:(()())∀→x Happy x Exciting x 结论李明过着激动人心的生活的否定:()Exciting Li将上述谓词公式转化为子句集并进行归结如下:由R1可得子句:①()()()Poor x Smart x Happy x∨∨由R2可得子句:②()()read y Smart y∨由R3可得子句:③()read Li④()Poor Li由R4可得子句:⑤()()∨Happy z Exciting z有结论的否定可得子句:⑥()Exciting Li根据以上6条子句,归结如下:⑦()Happy Li⑤⑥Li/z⑧()()∨⑦①Li/xPoor Li Smart Li⑨()Smart Li⑧④⑩()read Li⑨②Li/y⑩③⑪第4章4.9 答案4.11 答案第5章 5.9 答案 解:把该网络看成两个部分,首先求取(1|12)P T S S ∧。

人工智能课后答案

人工智能课后答案
条件:ONTABቤተ መጻሕፍቲ ባይዱE(x),HANDEMPTY,CLEAR(x)
动作:删除表:ONTABLE(x),HANDEMPTY
添加表:HANDEMPTY(x)
Putdown(x)
条件:HANDEMPTY(x)
动作:删除表:HANDEMPTY(x)
添加表:ONTABLE(x),CLEAR(x) ,HANDEMPTY
将知识用谓词表示为: S(x):x是计算机系学生
(?x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅L(x, pragramming):x喜欢编程序 花)∧L(x, 菊花)) U(x,computer):x使用计算机
(2) 解:定义谓词 将知识用谓词表示为: P(x):x是人 ? (?x) (S(x)→L(x, pragramming)∧U(x,computer)) B(x):x打篮球 (5)解:定义谓词
2.9 设有如下语句,请用相应的谓词公式分别把他NC(x):x是新型计算机 们表示出来: F(x):x速度快
(1)解:定义谓词 B(x):x容量大
P(x):x是人 将知识用谓词表示为: L(x,y):x喜欢y (?x) (NC(x)→F(x)∧B(x)) 其中,y的个体域是{梅花,菊花}。 (4) 解:定义谓词
A(y):y是下午 P(x):x是人
将知识用谓词表示为: L(x, y):x喜欢y
将知识用谓词表示为: (?x )(?y) (A(y)→B(x)∧P(x))
(3)解:定义谓词 (?x) (P(x)∧L(x,pragramming)→L(x, computer))
2.10解:(1) 先定义描述状态的谓词
Stack(x, y)

《人工智能》--课后习题答案

《人工智能》--课后习题答案

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。

人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。

1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。

所谓自然智能就是人类和一些动物所具有的智力和行为能力。

智力是针对具体情况的,根据不同的情况有不同的含义。

“智力”是指学会某种技能的能力,而不是指技能本身。

1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。

即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。

1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。

状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。

与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。

(3)语义网络是一种采用网络形式表示人类知识的方法。

人工智能课后习题答案

人工智能课后习题答案

1.1 解图如下:(1) 1->2(2) 1->3(3) 2->3(6) 3->2(5) 3->1(4) 2->11.2h(n)=∑每个W 左边B 的个数;h(n)满足A*条件;h(n)满足单调限制(大家分析)。

1.3h1(n)= c ij ,一般情况不满足A*条件,但此题满足;ACDEBA=34; h2(n)=|c ij -AVG{(c ij )|,不满足A*条件;ACBDEA=42; 1.4此题最优步数已定,具有A*特征的启发函数对搜索无引导作用。

1.5此题启发式函数见P41。

1.10规定每次一个圆盘按固定方向(如逆时针)转动45°;可用盲目搜索算法构造搜索树;也可构造启发式函数如:h(n)=8个径向数字和与12的方差。

1.11状态空间数:9!=362880;有用的启发信息:1)平方数为3位数的数字:10~31;2)平方的结果数字各位不能重复:13,14,16,17,18,19,23,24,25,27,28,29,31; 只需校验313C =286种状态。

2.1 解图:2.5后手只要拿走余下棋子-1的个数即可。

第3章 3.18以下符号中□表示⌝(1)证明:待归结的命题公式为)(P Q P →⌝∧,求取子句集为},,{P Q P ⌝,对子句集中的子句进行归结可得可得原公式成立。

(2)证明:待归结的命题公式为())(()())P Q R P Q P R →→∧→→→ (,合取范式为:()()P Q R P Q P R ∨∨∧∨∧∧ ,求取子句集为{,,,}S P Q R P Q P R =∨∨∨ ,对子句集中的子句进行归结可得:① P Q R ∨∨ ② P Q ∨③ P ④ R ⑤ Q②③归结⑥ P R ∨ ①④归结 ⑦ R ③⑥归结 ⑧ ④⑦归结 由上可得原公式成立。

(3)证明:待归结的命题公式为()(())Q P Q P Q →∧→→ ,合取范式为:()()Q P Q P Q ∨∧∨∧ ,求取子句集为{,,}S Q P Q P Q =∨∨ ,对子句集中的子句进行归结可得:① Q P ∨ ② Q③ Q P ∨④ P ①②归结 ⑤ P ②③归结 ⑥ ④⑤归结由上可得原公式成立。

(完整版)人工智能(部分习题答案及解析)

(完整版)人工智能(部分习题答案及解析)

1.什么是人类智能?它有哪些特征或特点?定义:人类所具有的智力和行为能力。

特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。

2.人工智能是何时、何地、怎样诞生的?解:人工智能于1956年夏季在美国Dartmouth大学诞生。

此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。

3.什么是人工智能?它的研究目标是?定义:用机器模拟人类智能。

研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。

4.人工智能的发展经历了哪几个阶段?解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。

5.人工智能研究的基本内容有哪些?解:知识的获取、表示和使用。

6.人工智能有哪些主要研究领域?解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。

7.人工智能有哪几个主要学派?各自的特点是什么?主要学派:符号主义和联结主义。

特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。

8.人工智能的近期发展趋势有哪些?解:专家系统、机器人学、人工神经网络和智能检索。

9.什么是以符号处理为核心的方法?它有什么特征?解:通过符号处理来模拟人类求解问题的心理过程。

特征:基于数学逻辑对知识进行表示和推理。

11.什么是以网络连接为主的连接机制方法?它有什么特征?解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。

特征:研究神经网络。

(完整版)人工智能习题解答

(完整版)人工智能习题解答

人工智能第1部分绪论1-1.什么是人工智能?试从学科和能力两方面加以说明。

答:从学科方面定义:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。

它的近期目标在于研究用机器来模拟和执行人脑的某些智力功能,并开发相关理论和技术从能力方面定义:人工智能是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。

1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?答:1)数理逻辑和关于计算本质的新思想,提供了形式推理概念与即将发明的计算机之间的联系;2)1956年第一次人工智能研讨会召开,标志着人工智能学科的诞生;3)控制论思想把神经系统的工作原理与信息理论、控制理论、逻辑以及计算联系起来,影响了许多早期人工智能工作者,并成为他们的指导思想;4)计算机的发明与发展;5)专家系统与知识工程;6)机器学习、计算智能、人工神经网络和行为主义研究,推动人工智能研究的近一步发展。

1-3.为什么能够用机器(计算机)模仿人的智能?答:物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件迁移6种功能。

反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。

物理符号系统的假设伴随有3个推论。

推论一:既然人具有智能,那么他(她)就一定是各物理符号系统;推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能;推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。

1-4.人工智能的主要研究内容和应用领域是什么?其中,哪些是新的研究热点?答:研究和应用领域:问题求解(下棋程序),逻辑推理与定理证明(四色定理证明),自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学(星际探索机器人),模式识别(手写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输高度,列车编组指挥),系统与语言工具。

(完整word版)人工智能课后答案

(完整word版)人工智能课后答案

第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图.有两个无刻度标志的水壶,分别可装5升和2升的水.设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌.已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来.3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉.5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正”或”反、反、反”状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

7、设可交换产生式系统的一条规则R可应用于综合数据库D来生成出D',试证明若R存在逆,则可应用于D’的规则集等同于可应用于D的规则集。

《人工智能基础》课后习题及答案

《人工智能基础》课后习题及答案

1.什么是智能?智能有什么特征?答:智能可以理解为知识与智力的总和。

其中,知识是一切智能行为的基础,而智力是获取知识并运用知识求解问题的能力,即在任意给定的环境和目标的条件下,正确制订决策和实现目标的能力,它来自于人脑的思维活动。

智能具有下述特征:(1)具有感知能力(系统输入)。

(2)具有记忆与思维的能力。

(3)具有学习及自适应能力。

(4)具有行为能力(系统输出)。

2.人工智能有哪些学派?他们各自核心的观点有哪些?答:根据研究的理论、方法及侧重点的不同,目前人工智能主要有符号主义、联结主义和行为主义三个学派。

符号主义认为知识可用逻辑符号表达,认知过程是符号运算过程。

人和计算机都是物理符号系统,且可以用计算机的符号来模拟人的认知过程。

他们认为人工智能的核心问题是知识表示和知识推理,都可用符号来实现,所有认知活动都基于一个统一的体系结构。

联结主义原理主要是神经网络及神经网络间的连接机制与学习算法。

他们认为人的思维基元是神经元,而不是符号运算。

认为人脑不同于电脑,不能用符号运算来模拟大脑的工作模式。

行为主义原理为控制论及“感知—动作”型控制系统。

该学派认为智能取决于感知和行动,提出智能行为的“感知—动作”模式,他们认为知识不需要表示,不需要推理。

智能研究采用一种可增长的方式,它依赖于通过感知和行动来与外部世界联系和作用。

3.人工智能研究的近期目标和远期目标是什么?它们之间有什么样的关系?答:人工智能的近期目标是实现机器智能,即主要研究如何使现有的计算机更聪明,使它能够运用知识去处理问题,能够模拟人类的智能行为。

人工智能的远期目标是要制造智能机器。

即揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能。

人工智能的近期目标与远期目标之间并无严格的界限,二者相辅相成。

远期目标为近期目标指明了方向,近期目标则为远期目标奠定了理论和技术基础。

4.人工智能的研究途径有哪些?答:人工智能的研究途径主要有:(1)心理模拟,符号推演;(2)生理模拟,神经计算;(3)行为模拟,控制进化论。

人工智能课后习题答案

人工智能课后习题答案
课后作业
3.15 设已知: 如果x是y的父亲,y是z的父亲,则x是z的祖父; 每个人都有一个父亲。 使用归结演绎推理证明:对于某人u,一定存在一个 人v,v是u的祖父。
• 解:先定义谓词 • F(x,y):x是y的父亲 • GF(x,z):x是z的祖父 • P(x):x是一个人
• F1: (x) (y)(z)( F(x,y)∧F(y,z))→GF(x,z)) • F2:(y)(P(x)→F(x,y)) • 求证结论G: (u) (v)( P(u)→GF(v,u))

• 然后再将F1,F2和¬G化成子句集: • ① ¬F(x,y)∨¬F(y,z)∨GF(x,z) • ② ¬P(r)∨F(s,r) • ③ P(u) • ④ ¬GF(v,u))
对上述扩充的子句集,其归结推理过程如下:
3.19 设已知: 能阅读的人是识字的; 海豚丌识字; 有些海豚是很聪明的。 请用归结演绎推理证明:有些很聪明的人并丌识字。


• • • •
¬R(x))∨K(x) ¬K (y) W(z) ¬W(z)∨K(x))
• 用归结演绎推理进行证明
• • • 设R(x)表示x是能阅读的; K(y)表示y是识字的; W(z) 表示z是很聪明的;
• 能阅读的人是识字的: (x)(R(x))→K(x)) • 海豚丌识字: (y)(¬K (y)) • 有些海豚是很聪明的: (z) W(z)z)∧¬K(x))

《人工智能》--课后习题答案

《人工智能》--课后习题答案

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。

人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。

1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。

所谓自然智能就是人类和一些动物所具有的智力和行为能力。

智力是针对具体情况的,根据不同的情况有不同的含义。

“智力”是指学会某种技能的能力,而不是指技能本身。

1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。

即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。

1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。

状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。

与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。

(3)语义网络是一种采用网络形式表示人类知识的方法。

《人工智能》 课后习题答案

《人工智能》 课后习题答案
盘子,所以共有 种可能。即问题的状态规模为 。
2.14 解答:
(1)定义谓词 G(x,y):x 比 y 大,个体有张三(zhang)、李四(li),将这些个体带入谓词中,
得到 G(zhang,li)和 G(zhang,li),根据语义用逻辑连接词将它们联结起来就得到表示上
述知识的谓词公式:G(zhang,li)
第二章 知识表达技术
2.1 解答: (1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的
符号体系,状态空间是一个四元组(S,O,S0,G): S—状态集合;O—操作算子集合;S0—初始状态,S0S;G—目的状 态 ,GS,(G 可若干 具
体状态,也可满足某些性质的路径信息描述) 从 S0 结点到 G 结点的路径被称为求解路径。 状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:
2.5 解答:符号微积分基本公式为
b a
f (x)
F(b) F(a) F(x) |ba
用产生式表示为:If f(x) and (a,b) Then F(b)-F(a)
2.6 解答:题中描述的情况用谓词形式可表达如下: DOG(X) X 是狗 SOUND(X) X 会吠叫 BIT(X,Y) X 咬 Y ANIMAL(X) X 是动物
Marry(A,B)
(Male(A)∧Female(B))∨(Male(B)∧Female(A))
(3) 定义谓词 Honest(x):x 是诚实的,Lying(x):x 会说谎。个体有张三(zhang),将这些
个体带入谓词中,得到 Honest(x)、 Lying(x)、Lying(zhang)、 Honest(zhang),根
为了方便表示规则集,引入以下几个函数: first(L):取表的第一个元素,对于空表,first 得到一个很大的大于 N 的数值。 tail(L):取表除了第一个元素以外,其余元素组成的表。 cons(x, L):将 x 加入到表 L 的最前面。 规则集: r1: IF (A, B, C) and (first(A) < first(B)) THEN (tail(A), cons(first(A), B), C) r2: IF (A, B, C) and (first(A) < first(C)) THEN (tail(A), B, cons(first(A), C)) r3: IF (A, B, C) and (first(B) < first(C)) THEN (A, tail(B), cons(first(B), C)) r4: IF (A, B, C) and (first(B) < first(A)) THEN (cons(first(B), A), tail(B), C) r5: IF (A, B, C) and (first(C) < first(A)) THEN (cons(first(C), A), B, tail(C)) r6: IF (A, B, C) and (first(C) < first(B)) THEN (A, cons(first(C), B), tail(C)) (3)初始状态:((1,2,...,N),(),()) (4)结束状态:((),(),(1,2,...,N)) 问题的状态规模:每一个盘子都有三种选择:在 A 上、或者在 B 上、或者在 C 上,共 N 个

《人工智能》--课后习题问题详解

《人工智能》--课后习题问题详解

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。

人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。

1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。

所谓自然智能就是人类和一些动物所具有的智力和行为能力。

智力是针对具体情况的,根据不同的情况有不同的含义。

“智力”是指学会某种技能的能力,而不是指技能本身。

1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。

即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。

1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。

状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。

与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。

(3)语义网络是一种采用网络形式表示人类知识的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图。

有两个无刻度标志的水壶,分别可装5升和2升的水。

设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。

已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。

3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。

5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

7、设可交换产生式系统的一条规则R可应用于综合数据库D来生成出D',试证明若R存在逆,则可应用于D'的规则集等同于可应用于D的规则集。

8、一个产生式系统是以整数的集合作为综合数据库,新的数据库可通过把其中任意一对元素的乘积添加到原数据库的操作来产生。

设以某一个整数子集的出现作为目标条件,试说明该产生式系统是可交换的。

第二章课后习题第二章课后习题1、用回溯策略求解如下所示二阶梵塔问题,画出搜索过程的状态变化示意图。

对每个状态规定的操作顺序为:先搬1柱的盘,放的顺序是先2柱后3柱;再搬2柱的盘,放的顺序是先3柱后1柱;最后搬3柱的盘,放的顺序是先1柱后2柱。

2、滑动积木块游戏的棋盘结构及某一种将牌的初始排列结构如下:其中B表示黑色将牌,W表示白色将牌,E表示空格。

游戏的规定走法是:(1)任意一个将牌可以移入相邻的空格,规定其耗散值为1;(2)任意一个将牌可相隔1个或2个其他的将牌跳入空格,规定其耗散值等于跳过将牌的数目;游戏要达到的目标是使所有白将牌都处在黑将牌的左边(左边有无空格均可)。

对这个问题,定义一个启发函数h(n),并给出利用这个启发函数用算法A求解时所产生的搜索树。

你能否辨别这个h(n)是否满足下界范围?在你的搜索树中,对所有的节点满足不满足单调限制?3、对1.4节中的旅行商问题,定义两个h函数(非零),并给出利用这两个启发函数用算法A求解1.4节中的五城市问题。

讨论这两个函数是否都在h*的下界范围及求解结果。

4、2.1节四皇后问题表述中,设应用每一条规则的耗散值均为1,试描述这个问题h*函数的一般特征。

你是否认为任何h函数对引导搜索都是有用的?5、对N=5,k≤3的M-C问题,定义两个h函数(非零),并给出用这两个启发函数的A算法搜索图。

讨论用这两个启发函数求解该问题时是否得到最佳解。

6、证明OPEN表上具有f(n)<f*(s)的任何节点n,最终都将被A*选择去扩展。

7、如果算法A*从OPEN表中去掉任一节点n,对n有f(n)>F(F>f*(s)),试说明为什么算法A*仍然是可采纳的。

8、用算法A逆向求解图2.7中的八数码问题,评价函数仍定义为f(n)=d(n)+w(n)。

逆向搜索在什么地方和正向搜索相会。

9、讨论一个h函数在搜索期间可以得到改善的几种方法。

10、四个同心圆盘的扇区数字如图所示,每个圆盘可单独转动。

问如何转动圆盘使得八个径向的4个数字和均为12。

第三章课后习题1、数字重写问题的变换规则如下:6→3,3 4→3,16→4,2 3→2,14→2,2 2→1,1问如何用这些规则把数字6变换成一个由若干个1组成的数字串。

试用算法AO*进行求解,并给出搜索图。

求解时设k-连接符的耗散值是k个单位,h函数值规定为:h(1)=0,h(n)=n(n≠1)。

2、余一棋的弈法如下:两棋手可以从5个钱币堆中轮流拿走一个、两个或三个钱币,拣起最后一个钱币者算输。

试通过博弈证明,后走的选手必胜,并给出一个简单的特征标记来表示取胜策略。

3、对下图所示的博弈树,以优先生成左边节点顺序来进行α-β搜索,试在博弈树上给出何处发生剪枝的标记,并标明属于α剪枝还是β剪枝。

4、AO*算法中,第7步从S中选一个节点,要求其子孙不在S中出现,讨论应如何实现对S的控制使得能有效地选出这个节点。

如下图所示,若E的耗散值发生变化时,所提出的对S的处理方法应能正确工作。

5、如何修改AO*算法使之能处理出现回路的情况。

如下图所示,若节点C的耗散值发生变化时,所修改的算法能正确处理这种情况。

6、对3×3的一字棋,设用+1和-1分别表示两选手棋子的标记,用0表示空格,试给出一字棋产生式系统的描述。

7、写一个α-β搜索的算法。

8、用一个9维向量C来表示一字棋棋盘的格局,其分量根据相应格内的×,空或○的标记分别用+1,0,或-1来表示。

试规定另一个9维向量W,使得点积C·W可作为MAX选手(棋子标记为×)估计非终端位置的一个有效的评价函数。

用这个评价函数来完成几步极小-极大搜索,并分析该评价函数的效果。

第四章课后习题1、化下列公式成子句形式:(1)(x)[P(x)→P(x)](2){~{(x)P(x)}}→(x)[~P(x)](3)~(x){P(x)→{(y)[P(y)→P(f(x,y))]∧~(y)[Q(x,y)→P(y)]}}(4)(x)(y){[P(x,y)→Q(y,x)]∧[Q(y,x)→S(x,y)]}→(x)(y)[P(x,y)→S(x,y)]2、以一个例子证明置换的合成是不可交换的。

3、找出集{P(x,z,y),P(w,u,w),P(A,u,u)}的mgu。

4、说明下列文字集不能合一的理由:(1){P(f(x,x),A),P(f(y,f(y,A)),A)}(2){~P(A),P(x)}(3){P(f(A),x),P(x,A)}5、已知两个子句为Loves(father(a),a)~Loves(y,x)∨Loves(x,y)试用合一算法求第一个子句和第二个子句的第一个文字合一时的结果。

6、用归结反演法证明下列公式的永真性:(1)(x){[P(x)→P(A)]∧[P(x)→P(B)]}(2)(z)[Q(z)→P(z)]→{(x)[Q(x)→P(A)]∧[Q(x)→P(B)]} (3)(x)(y){[P(f(x))∧Q(f(B))]→[P(f(A))∧P(y)∧Q(y)]} (4)(x)(y)P(x,y)→(y)(x)P(x,y)(5)(x){P(x)∧[Q(A)∨Q(B)]}→(x)[P(x)∧Q(x)]7、以归结反演法证明公式(x)P(x)是[P(A 1)∨P(A2)]的逻辑推论,然而,(x)P(x)的Skolem形即P(A)并非[P(A1)∨P(A2)]的逻辑推论,请加以证明。

8、给定下述语句:John likes all kinds of food.Apples are food.Anything anyone eats and isn't killed by is food.Bill eats peanuts and is still alive.Sue eats everything Bill eats.(1)用归结法证明"John likes peanuts。

"(2)用归结法提取回答"What food does Sue eat?"9、已知事实公式为((x)(y)(z)(Gt(x,y)∧Gt(y,z)→Gt(x,z))(u)(v)(Succ(u,v)→Gt(u,v)(x)(~Gt(x,x))求证Gt(5,2)试判断下面的归结过程是否正确?若有错误应如何改进:10、设公理集为(u)LAST(cons(u,NIL),u)(cons是表构造函数)(x)(y)(z)(LAST(y,z)→LAST(cons(x,y),z))(LAST (x,y)代表y是表x的最末元素)(1)用归结反演法证明如下定理:(v)LAST(cons(2,cons(1,NIL)),v)(2)用回答提取过程求表(2,1)的最末元素v。

(3)简要描述如何使用这个方法求长表的最末元素。

11、对一个基于规则的几何定理证明系统,把下列语句表示成产生式规则:(1)两个全等的三角形的对应角相等。

(2)两个全等的三角形的对应边相等。

(3)如果两个三角形对应边是相等的,则这两个三角形全等。

(4)一个等腰三角形的底角是相等的。

12、我们来考虑下列一段知识:Tony、Mike和John属于Alpine俱乐部,Alpine俱乐部的每个成员不是滑雪运动员就是一个登山运动员,登山运动员不喜欢雨而且任一不喜欢雪的人不是滑雪运动员,Mike讨厌Tony所喜欢的一切东西,而喜欢Tony所讨厌的一切东西,Tony喜欢雨和雪。

以谓词演算语句的集合表示这段知识,这些语句适合一个逆向的基于规则的演绎系统。

试说明这样一个系统怎样才能回答问题"有没有Alpine俱乐部的一个成员,他是一个登山运动员但不是一个滑雪运动员呢?"13、一个积木世界的状态由下列公式集描述:ONTABLE(A)CLEAR(E)ONTABLE(C)CLEAR(D)ON(D,C)HEAVY(D)ON(B,A)WOODEN(B)HEAVY(B)ON(E,B)绘出这些公式所描述的状态的草图。

下列语句提供了有关这个积木世界的一般知识:每个大的蓝色积木块是在一个绿色积木块上。

每个重的木制积木块是大的。

所有顶上没有东西的积木块都是蓝色的。

所有木制积木块是蓝色的。

以具有单文字后项的蕴涵式的集合表示这些语句。

绘出能求解"哪个积木块是在绿积木块上"这个问题的一致解图(用B规则)。

相关文档
最新文档