配位滴定法

合集下载

配位滴定法

配位滴定法

配位滴定法任务一基础理论基本知识学习目标6.1 配位滴定法概述配位滴定法是以配位反应为基础的滴定分析方法。

配位反应常用的配位剂有无机配位剂和有机配位剂两种。

在配位滴定中常用的配位剂是有机配位剂。

因为配位反应用于配位滴定时必须具备一定的条件。

1.生成的配位化合物必须足够稳定且溶于水,一般要求K稳≥108。

2.配位反应必须按一定的计量关系定量地进行,这是滴定计算的基础。

3.配位反应必须迅速在瞬间完成。

4.有适当的方法确定滴定终点。

由于无机配位剂与金属离子反应生成的配合物稳定常数较小,且配位反应是逐级进行的,难以确定反应的计量关系,因此很难用于滴定分析。

大多数有机配位剂与金属离子反应能够满足配位滴定的反应要求,因为有机配位剂中含有两个以上的配位原子,在与金属离子配位时,形成环状结构的鳌合物,是配位滴定时常用的配位剂。

其中最常用的是乙二胺四乙酸及其二钠盐,它们都可以简称为EDTA。

因此,配位滴定法又称为EDTA滴定法。

知识链接氨羧配位剂氨羧配位剂是一类以氨基二乙酸为基体的一类有机配位剂的总称。

氨基二乙酸的结构式为N CH2CH2COOHCOOH在它的结构中含有配位能力很强的氨基氮和羧基氧两种配位原子,前者易与Co2+、Ni2+、Zn2+、Cu2+、Hg+等金属离子配位,后者几乎能与所有高价金属离子配位,因此氨羧配位剂兼有两者的配位能力,几乎能与所有金属离子配位。

目前氨羧配位剂有几十种,其中应用最广范的是乙二胺四乙酸。

6.2 乙二胺四乙酸6.2.1 乙二胺四乙酸的结构及性质乙二胺四乙酸的结构式为CH2HOOCCH2 HOOC N CH2CH2NCH2CH2COOHCOOH从结构式可知,乙二氨四乙酸分子中有4个羧基,为四元有机弱酸。

可简写成H4Y,简称为EDTA。

EDTA为白色粉末状结晶,微溶于水,在22℃时的溶解度为0.02 g/100 ml,溶液显弱酸性,pH=2.3。

EDTA虽然难溶于水,但易溶于NaOH或氨性溶液中,生成相应的盐,在实际应用中常用其二钠盐。

配位滴定法

配位滴定法
配位滴定法
第一节 概述
配位滴定法:是以形成配位化合物反应为基础的滴定分析法 多数金属离子在溶液中以配位离子形式而存在, 但只有具备滴定分析条件的配位反应才能用于滴定分析 凡是适用于滴定分析的化学反应必须具备以下三个条件: 1 反应必须定量完成,即待测物质与标准溶液之间的反应要严格按一定的化学计量关系进 行,反应定量完成的程度要达到 99.9%以上,这是定量计算的基础 2 反应必须迅速完成。 对于速度较慢的反应能够采取加热、 使用催化剂等措施提高反应速度 3 必须有适宜的指示剂或其它简便可靠的方法确定终点 除了少数例外(如银离子与氰酸根离子,铜离子与氯离子等配位反应) ,大多数无机配位剂不能用于滴定 氨羧配位剂是一类以氨基二乙酸为基体的配位剂,它的分子中含有氨氮和羧氧配位原子,前者易与钴、 镍、锌、铜、汞等金属离子配位,后者则几乎与所有高价金属离子配位,因此氨羧配位剂兼有两者的配 位能力,几乎能与所有金属离子配位 目前应用最广的是乙二胺四乙酸(EDTA) 螯合物:EDTA 与金属离子形成多基配位体的配合物 在一般情况下,这些配位化合物的配位比都是 1:1 使用 EDTA 做配位剂的优点: a) EDTA 与金属离子形成的螯合物立体结构中具有多个五元环,故此类配合物稳定性高 b) 此类配位反应速度快,生成的配合物水溶性大 c) 大多数金属与 EDTA 配合物无色,便于用指示剂确定终点。
在较低的 pH 溶液中,H4Y 的两个羧酸根可再接受 H+形成 H6Y2+,这样它相当于一个六元酸,具 有六级离解常数 在水溶液中,EDTA 总是以 H6Y2+, H5Y+ ,H4Y ,H3Y- , H2Y2- ,HY3- ,Y4-这七种形式存在,这正能与金 属离子配位的是 Y4αY(H) 是[H+]的函数,[H+]越大,αY(H)值越大 (2)共存离子效应αY(N) 共存离子效应:当溶液中存在其他离子 N 时,Y 与 N 形成 1:1 配合物,由于 N 的存在使 Y 参加 主反应能力降低的现象称为~ EDTA 与其它金属离子 N 的副反应系数αY(N)取决于干扰离子 N 的浓度以及第二种金属离子 N 与 EDTA 的稳定常数 KNY 当αY(N) 与αY(H)相差几个数级时,可以只考虑一项副反应系数而忽略另一项 2 金属离子 M 的副反应系数 配位效应系数αM(L):溶液中存在其它配位剂 L 时,L 与 M 发生副反应,形成 ML,由于其他配位剂 L 的存在,溶液中金属离子 M 与配位剂 Y 进行主反应能力降低的现象称为~ L 可能是滴定时所需缓冲剂或为了防止金属离子水解所加的辅助配位剂,也可能是为了消除干扰而加 的掩蔽剂 3 配合物 MY 的副反应系数 在溶液酸度较高时,MY 能与 H+发生副反应,生成酸式配合物 MHY\ αMY(H) =1+KMHY*[H+] 在溶液碱度较高时,MY 能与 H+发生副反应,生成酸式配合物 M(OH)Y αMY(OH) =1+KMOHY*[OH-] (三) 条件稳定常数 在没有副反应时,M 与 EDTA 的反应进行程度可用下式表示 [MY] KMY = [M]*[Y] KMY 值越大,配合物越稳定 但是由于副反应的存在此时的反应进行程度用下式表示 [MY’] K’MY = [M’]*[Y’] K’MY 称为条件稳定常数,它表示在一定条件下有副反应发生时主反应进行的程度 αMY K’MY = KMY αY αM lgK’MY= lgKMY-lgαM-lgαY+lgαMY 只有不发生副反应时,α均为 1,K’MY= KMY,此时的 KMY 才能反映 M 与 Y 反应的实际情况 二、配位滴定曲线 在配位滴定中,若被滴定的是金属离子,则随着 EDTA 的加入,金属离子浓度不断减小,到达化学计 量点附近时,溶液的 pM’值发生突变,产生滴定突跃 (一) 滴定曲线的计算 配位滴定的滴定突跃大小取决于两个因素: 一 条件稳定常数 K’MY 二 被滴定金属离子的浓度 CM 在浓度一定的条件下,K’MY 越大,突跃也越大 在 K’MY 一定的条件下,金属离子的浓度越低,滴定曲线的起点越高,滴定突跃随之减小

配位滴定法

配位滴定法

=αY(H)+αY(N)-1
当αY(H)或αY(N)>>1,αY≈αY(H)+αY(N) 或αY(H)>>αY(N) ,αY≈αY(H): αY(N)>>αY(H),αY≈αY(N) 例 某溶液中含有EDTA、Pb2+和(1)Ca2+,(2)Mg2+, 浓度均为0.010mol/L。在pH=5.0时,对于EDTA与Pb2+ 的反应,计算两种情况下的 αY 和lgαY值。
M+Y MY
稳定常数 K MY
MY M Y
讨论: KMY↑大,配合物稳定性↑高,配合 反应完全
某些金属离子与EDTA的形成常数
lgK
Na+ 1.7
lgK
lgK
14.3 15.4 16.1 16.5 16.5 18.0 18.8
lgK
Hg2+ Th4+ Fe3+ Bi3+ ZrO2+ 21.8 23.2 25.1 27.9 29.9
HOOCH 2CH2C N HOOCH 2CH2C CH2CH2COOH H2 C H2 C N CH2CH2COOH
3.乙二胺二乙醚四乙酸(EGTA)
Ethylene glyceroldiamine tetraacetic acid 对Ca2+的选择性强
HOOCH 2C N HOOCH 2C H2 C H2 C O H2 C H2 C O H2 C H2 C N CH 2COOH CH 2COOH
O C
O CH2 CH2 Ca CH2 O C O O C CH2 O N
O
二、金属离子-EDTA配位化合物的特点 1.配合物结构为五元环螯合物。 2.配位比较简单,多为1:1

第十章 滴定分析法(三)———配位滴定法

第十章 滴定分析法(三)———配位滴定法


(3)待测金属离子的 浓度 在条件稳定常数一 定的条件下,金属离子的 起始浓度大小对滴定突跃 也有影响,金属离子的起 始浓度越小,滴定曲线的 起点越高,因而其突跃部 分就越短,从而使滴定突 跃变小。
EDTA滴定不同浓度 M 的滴定曲线
n+
c (M) Θ K MY Θ c
≥106为配位滴定中准确测定单一金属


2. 金属离子的配位效应和配位效应系数
由于共存的配位剂L与金属离子的配位反应而使主 反应能力降低,这种现象叫配位效应。配位效应的大 小用配位效应系数αM(L)来表示,它是指未与EDTA配合
的金属离子M的各种存在型体的总浓度 与游离金属离 子浓度之比。 表示为:

αM(L)
ceq (M') ceq (M)
EDTA的–pH曲线
由于EDTA在水中溶解度较小(室温下,每 100 mL水中溶解0.02 g),所以在分析工作中通常
使用它的二钠盐(Na2H2Y· 2O),也称EDTA二 2H
钠盐,它在水中的溶解度较大(室温下,每100
mL水中溶解11.1 g),饱和溶液的浓度约 为0.3
mol· –1,由于主要存在型体是H2Y2-,故溶液的 L pH约为4.4。
Θ c(Ca ) lg K CaY 10.69 0.01 10.68
2
Θ K CaY 1010.68 4.8 1010
(1)滴定前 pCa取决于起始
2 c · 1 c(Ca 2 ) 浓度, (Ca ) 0.01000 mol L
pCa = 2.0
• •
(2)滴定开始到计量点前 Θ 由于 K CaY很大,则由 CaY 解离产生的 Ca 2 极少, 2 pCa 取决于配位反应剩余后 Ca 的浓度。 可忽略,即 设加入EDTA溶液19.98 mL,此时还剩余0.1%的 Ca 2 未 被配位:

第五章 配位滴定法

第五章  配位滴定法

第五章 配位滴定法§5-1概述配位滴定法是以配位反应为基础的一种滴定分析方法。

在配位滴定中,一般用配位剂做标准溶液来滴定金属离子。

当金属离子M 与配位剂L 形成MLn 型配合物时,MLn 型配合物是逐级形成的,其逐级形成产物的逐级稳定常数为:ML L M ⇔+第一级稳定常数[][][]L M ML K 1= (均略去电荷)2ML L ML ⇔+第二级稳定常数[][][]L ML ML 22K =……….n 1ML L ML ⇔+-n第n 级稳定常数[][]LML ML 1n n K -n =将逐级稳定常数依次相乘,就可得到各级累积稳定常数β。

[][][]L M ML K 11==β[][][][][][][][]2222212L M ML L ML ML [L]M ML K K ===β[][][]nn K L M ML ...n21nK K ==β最后一级累积稳定常数又叫配合物的总稳定常数。

各种配合物的总稳定常数及各级的累积稳定常数见P416, 附录四,注意是对数值。

配位剂分为无机配位剂和有机配位剂。

无机配位剂应用于滴定分析的不多,其主要原因是许多无机配位化合物不够稳定,不符合滴定反应的要求,在形成配合物时,有逐级配位现象,容易形成配位数不同的配合物,无法定量计算。

例如:Cu 2+与NH 3形成的配合物,存在[Cu(NH 3)2]2+、[Cu(NH 3)3]2+、[Cu(NH 3)3]2+、[Cu(NH 3)4]2+等几种配合物,因而无机配位剂的应用受到了限制。

有机配位剂在分析化学中应用非常广泛,特别是氨羧类配位剂,与金属离子形成稳定的、而且组成一定的配合物,是目前配位滴定中应用最多的配位剂。

氨羧配位剂大部分含有氨基二乙酸基团: CH 2COOH NCH 2COOH其中氨氮和羧氧是具有很强配位能力的原子,它们能与多数金属离子形成稳定的配合物。

其中最主要应用最广泛的是乙二胺四乙酸,简称EDTA 。

配位滴定法

配位滴定法
在多重平衡体系内,精确计算是相当复杂的,在分析化学中, 人们引用了副反应及副反应系数的概念,以简化计算方式。
主反应:
M
+
Y
MY
副反应:
L
OH - H +
N
H+
OH -
ML
MOH HY
NY
ML2
M(OH)2? H2Y
MHY
M(OH)Y
MLn
辅助配 位效应
M(OH)n H6Y
羟基配 酸效应 位效应
干扰离 子效应
E、溶解度大; F、EDTA 与无色金属离子生成无色螯合物。与有色金属
离子生成颜色更为深的螯合物。
★ EDTA与金属离子的配合性,在分析化学中得到广泛应用。
络合滴定法就是以 EDTA 为络合滴定剂的分析方法。
二、配位反应的副反应系数(难点)
在配位主反应体系中,配合物所解离出来的各组分,往往会 与溶剂或溶剂中其它的共存组分发生化学反应。从而影响配合主 反应的进行程度。
混合配位效应
1、EDTA与金属离子的主反应
在分析化学中,我们将 EDTA(Y4-)与被测金属离 子(Mn+)之间的配位反应,称为络合滴定的主反应。
Mn+ + Y4- = MYn-4
K MY

[ MY n4 ] [ M n ][ Y 4 ]
(P 432 附录,附录五)
EDTA 与不同的金属离子配合,其配离子的稳定性各不
10 -10.26
2、EDTA 的分步曲线
★ 在一定的酸度及PH下,各种存在形式都有其相应的分布系数。 当 PH>10.3 时,Y4-的分布系数约等于1。(P105,图 5-1)
4、EDTA 与金属离子螯合物的特点

第五章 配位滴定

第五章 配位滴定

特点: 特点: 与金属离子多形成 1:1的配合物。 的配合物。 配合物稳定性高。 配合物稳定性高。 配合物水溶性好,配位反应迅速。 配合物水溶性好,配位反应迅速。 大多数配合物无色,有利于指示剂确定终点。 大多数配合物无色,有利于指示剂确定终点。 与有色金属离子配位生成的配合物颜色则加深。 与有色金属离子配位生成的配合物颜色则加深。
配位剂
无机配位剂: 无机配位剂:F , Cl , CN , NH3;很少用于滴定分析 有机配位剂:氨羧类配位剂(最常用) 有机配位剂:氨羧类配位剂(最常用)
-
氨羧配位剂:含有氨基二乙酸——N(CH 氨羧配位剂:含有氨基二乙酸——N(CH2COOH)2 基团的有机化合物。分子中含有氨基氮和羧基氧两 基团的有机化合物。 种配位能力很强的配位原子。 种配位能力很强的配位原子。
一 .EDTA滴定曲线 .EDTA滴定曲线 在配位滴定过程中,随着配位剂的加入, 在配位滴定过程中,随着配位剂的加入, 由于配合物的形成,溶液中金属离子的浓 由于配合物的形成, 度不断减少,如以pM为纵坐标 为纵坐标, 度不断减少,如以pM为纵坐标,加入配位 剂的量为横坐标作图,可以得到与酸碱滴 剂的量为横坐标作图, 定相类似的滴定曲线。 定相类似的滴定曲线。
ቤተ መጻሕፍቲ ባይዱ
2. 金属离子的配位效应及其副反应系数αM 金属离子的配位效应及其副反应系数α
金属离子的配位效应:由于其它配位剂的存在使金属 金属离子的配位效应: 离子参加主反应的能力降低的现象。 离子参加主反应的能力降低的现象。 副效应系数α 副效应系数αM:没有参加主反应的金属离子总浓度 [M’]与游离金属离子浓度[M]的比值。 [M’ 与游离金属离子浓度[M]的比值 的比值。
αM =[M’]/[M] =[M’ αM(OH)=1+β1[OH-]+ β2[OH-]2+…..+ βn[OH-]n =1+β αM(L) =1+β1[L]+ β2[L]2+…..+ βn[L]n =1+β αM = αM(OH)+ αM(L)-1

配位滴定法

配位滴定法

第五章 配位滴定法§5.1 概述早期以 AgNO 3为标准溶液的配位滴定反应: Ag + + 2CN - — [Ag(CN)2]-终点时的反应:[Ag(CN)2]- + Ag + — Ag[Ag(CN)2]↓白两类配位剂:无机配位剂(较少使用);有机配位剂(氨羧类配位剂为主)。

以氨基二乙酸基团[—N(CH 2COOH)2]为基体的有机配位剂。

最常见: 乙二胺四乙酸,简称: EDTA ( H 4Y)氨羧配位剂的特点:1、多元弱酸,如EDTA 本身是四元酸,但还可获得两个质子,生成六元弱酸;2、配位能力强,氨氮和羧氧两种配位原子;3、与金属离子1∶1配位,计算方便;4、配合物的稳定性高,与金属离子能形成多个多元环;5、配合物水溶性好(大多带电荷)。

§5.2 EDTA 与金属离子的配合物及其稳定性 一、 EDTA 的性质 1、一般特性(1) 多元酸,可用 H 4Y 表示;(2) 在水中的溶解度很小(22℃, 0.02 g /100 mL 水),也难溶于酸和一般的有机溶剂,但易溶于氨溶液和苛性碱溶液中,生成相应的盐;(3) 常用其二钠盐 Na 2H 2Y·2H 2O ,(22℃, 11.1 g / 100 mL 水),饱和水溶液的浓度约为 0.3 mol·L -1,pH 约为 4.5。

1212210]][CN [Ag ][Ag(CN).K ==-+-稳2.EDTA在水溶液中的存在形式在高酸度条件下,EDTA是一个六元弱酸,在溶液中存在有六级离解平衡和七种存在形式:不同pH溶液中,EDTA各种存在形式的分布曲线:(1) 在pH >12时,以Y4-形式存在;(2) Y4-形式是配位的有效形式;二、EDTA与金属离子的配合物金属离子与EDTA的配位反应,略去电荷,可简写成:M + Y = MY稳定常数:K MY = [MY]/[M][Y]稳定常数具有以下规律:①碱金属离子的配合物最不稳定,lg K MY<3;②碱土金属离子的lgK MY = 8~11;③过渡金属、稀土金属离子和Al3+的lgK MY=15~19④三价,四价金属离子及Hg2+的lgK MY>20.表中数据是指无副反应的情况下的数据, 不能反映实际滴定过程中的真实状况。

第四讲配位滴定法

第四讲配位滴定法

配位滴定法大纲要求:1.了解配位滴定法的特点及应用;2.掌握条件稳定常数的概念及其应用;3.了解金属指示剂的变色原理,常用指示剂及指示剂使用条件;4.掌握单一金属离子能被准确滴定的条件,配位滴定所允许的最低pH 及提高配位滴定选择性的方法;5.掌握配位滴定的有关计算。

基本内容:一.配位滴定法概述配位滴定法是以形成配位化合物的配位反应为基础的滴定分析方法。

它是用配位剂作标准溶液直接或间接地滴定被测物质,形成配合物,并选用适当的指示剂来确定滴定终点。

用于配位滴定的配位反应应具备的条件:1) 形成的配合物(或配离子)要相当稳定;2) 在一定反应条件下,配位数须固定;3) 配位反应速度要快;4) 有适当的方法确定滴定终点。

作为滴定用的配位剂可分为无机配位剂和有机配位剂两类:无机配位剂:如: Ag + + 2CN - = [Ag(CN)2]-Ag + + [Ag(CN)2]- = Ag[Ag(CN)2]↓(白色)有机配位剂:使用较广泛的为氨羧配位剂( 含有氨基二乙酸基团的有机化合物 ―N COOH CHCOOH CH 22)此配位剂中同时含有氨基氮和羧基氧两种配位能力很强的配位原子,故它几乎可以和所有的金属离子相配位。

目前研究过的氨羧配位剂有30多种,其中重要的有:氨基乙酸(NTA)乙二胺四乙酸(EDTA)、 乙二胺四丙酸(EDTP) …………其中,乙二胺四乙酸(EDTA)是应用最广的一种,故通常所说的配位滴定法主要是指以EDTA 为滴定剂的EDTA 滴定法。

二.EDTA 的性质及其配合物(一).EDTA 的性质EDTA 为四元酸,常用H 4Y 表示,它在水溶液中分四步电离:H 4Y = H + + H 3Y - K θ=10-2.0 H 3Y - = H + + H 2Y 2- K θ=10-2.67H 2Y 2- = H + + HY 3- K θ=10-6.16 HY 3- = H + + Y 4- K θ=10-10.26 可见,EDTA 具有中强二元酸的性质。

配位滴定法

配位滴定法

例7 用2.00×10-2mol/L EDTA溶液滴定同浓度 的 Fe3+溶液时,允许的最低酸度是多少? 解:已知 Ksp,Fe(OH) =[Fe3+][OH-]3=4.0×1038; [Fe3+]=2.00×10-2mol/L
3
故滴定允许的最低酸度为pH=2.11。
滴定某一金属离子的允许最高酸度与允许 最低酸度的这一pH范围,就是滴定该金属 离子的适宜酸度范围。
(三)配合物MY的副反应系数:MHY;M(OH)Y 通常可以忽略
三、配合物的条件稳定常数
K'MY在一定条件下是个常数。K'MY值的大 小说明了配合物的实际稳定程度。因此, K'MY是判断配合物MY稳定性的最重要的依 据之一。 在一般情况下,K'MY<KMY,只有当pH> 12[αY(H)=1],溶液中无其他副反应时, K'MY=KMY。
三、化学计量点时pM'SP值的计算 由于生成物MY的副反应系数近似为1,可 认为[MY']=[MY],则有:
若配合物比较稳定,则化学计量点时 [MY]≈CM(SP) CM(SP)表示化学计量点时金属离子M的总浓 度。 另外,化学计量点时:[M']=[Y']
例5 用EDTA溶液(2.0×10-2mol/L)滴定相 同浓度Cu2+,若溶液pH=10,游离氨浓度为 0.20mol/L,计算化学计量点时的pCu'。
第七节 应用与示例 一、滴定方式 (一)直接滴定法:简便、快速、引入误差 较少 (1)lgC⋅K'MY≥6。 (2)配位反应速度快。 (3)有变色敏锐的指示剂且无封闭现象。 (4)在选用的滴定条件下,被测离子不发生 水解和沉淀反应。
(二)返滴定法(回滴法) 返滴定剂(如锌标准溶液)与EDTA生成的 配合物应有足够的稳定性,但不宜超过被 测离子的EDTA配合物的稳定性。否则,在 滴定过程中返滴定剂会置换出被测离子而 引起误差,且终点不敏锐。

第五章 配位滴定法

第五章  配位滴定法

- OOCH2 C .. -
..
..
N
OO CH2 C
CH2
..
CH2 N
CH2 OOCH2 OO-
..
..
由 于 H4Y 的 溶 解 度 很 小 , 常 用 它 的 二 钠 盐 Na2H2Y· 2O,也称为EDTA。因此,也可用H2Y22H 来代表EDTA。
分析化学课件
第四章
酸碱滴定法
EDTA本身是四元酸,在高酸度溶液中,H4Y 的两个胺基可以再接受质子,形成H6Y2+。这样 EDTA就相当于六元酸,有六级解离平衡: H6Y2+ H5Y+ H4Y H3YH2Y2HY3-
第四章
酸碱滴定法
环己烷二胺四乙酸(简称CyDTA)
乙二醇二乙醚二胺四乙酸(简称EGTA)
乙二胺四丙酸(简称EDTP)
分析化学课件
第四章
酸碱滴定法
五、EDTA及其螯合物 1、EDTA的存在形式: 在氨羧配位剂(NO型螯合剂)中最重要的是 乙二胺四乙酸(简称EDTA 或 EDTA酸)EDTA的 结构:
计算,然后比较在相同的起始浓度条件下,它们解
离出来的金属离子平衡浓度的大小,解离出来的金 属离子平衡浓度越小,配离子越稳定。
分析化学课件
第四章
酸碱滴定法
例 : CuY2- 的 K 稳 =6.3×1018 , Cu(en)22+ 的 β2=4.0×1019。若CuY2-和Cu(en)22+的起始浓度均为 0.10 mol· -1 ,比较这两种配离子在溶液中的稳定 L 性。 解:设CuY和Cu(en)22+溶液中 [Cu2+]分别为 x和 ymol/L: CuY Cu + Y C平/mol/L 0.10-x x x

配位滴定法

配位滴定法
平衡关系式:
VM M' MY' cM VM VY
滴定曲线的计算
假设:Y滴定M cM——M的初始浓度
VM——初始体积(ml)
cY——Y的初始浓度 VY——加入的Y的体积
VY Y' MY' cY VM VY
MY' K' MY M'Y'
第五章
第五章
配位滴定法
化学分析
累积稳定常数:MLn型配合物
M + L ML + L
…..
ML ML2
[ML] K1 [M][L]
[ML2 ] K2 [ML][L]
[MLn ] Kn [MLn -1 ][L]
MLn-1 + L
MLn
第五章
配位滴定法
化学分析
累积稳定常数() : 将逐级稳定常数相乘得到。

pCu(SP) 2.00
第五章
配位滴定法
化学分析
第二步:
计算Cu2+的副反应系数M(配位效应:NH3,OH-)
1 NH3 SP 0.20 0.10(mol/L ) 2 2 3 4 α Cu(NH 3 ) 1 β1 NH3 β 2 NH3 β 3 NH3 β 4 NH3 1 104.13 0.10 107.61 0.102 1010.48 0.103 1012.59 0.104 108.62
第五章
配位滴定法
化学分析
小结:
pH
pH pH
<1 , 以 H6Y 的型体存在。
>10.26, 主 要以Y4-形式存在。 ≥12 时,几 乎完全以Y4-形式 存在。

配位滴定分析法

配位滴定分析法


2、 EDTA配合物特点
(1 )普遍性 EDTA分子中共含有六个可配位原子(两 个氨基氮,四个羧基氧),所以,它既可以作 为四基配位体,也可以作为六基配位体,以不 同的方式与周期表中绝大多数金属离子形成螯 合物。
(2)稳定性 EDTA与大多数金属离子配位时,可形成具有 五个五员环的螯合物,即四个O—C—C—N五员环 和一个N—C—C—N五员环。 螯合效应的大小与螯合环的数目和形状有关。 根据有机结构的张力学说,由五个原子组成的五员 环以及由六个原子组成的六员环的张力小,故稳定 性高,而且是环数愈多,稳定性就愈高。
二、影响配位平衡的主要因素
主反应: 副反应: L
M OH
-
+ H+
Y N NY H+ MHY
MY OH
-
ML ML2
MOH
HY
M(OH)Y
M(OH)2? H2Y
MLn 辅助配 位效应
M(OH)n 羟基配 位效应
H6Y 酸效应 干扰离 子效应 混合配位效应
不利于主反应进行
利于主反应进行
注:副反应的发生会影响主反应发生的程度 副反应的发生程度以副反应系数加以描述
2+ = Cu(NH3 )3
K3 K4
2+ +NH3 = Cu(NБайду номын сангаас3 )4
二、MLn型配合物的累积稳定常数 各级稳定常数
M+L ML + L ML ML2
K1 ceq (ML) ceq (M)ceq (L) ceq (ML2 ) ceq (ML)ceq (L) ceq (MLn ) ceq (MLn-1 )ceq (L)
Ca-EDTA螯合物的立体构型

配位滴定法

配位滴定法

水溶液易聚合 + 三乙醇胺
2. 钙指示剂(NN)
pH <8 紫色
pH 8~13 蓝色
pH>13 酒红色
pH=12~13 M-NN
pH≈12~13 (强碱液),酒红→ 纯蓝 配制: 1 NN: 100 NaCl
3. 二甲酚橙(XO)
pH<6.3 M-XO
pH>6.3
pH<6.3 (酸性液),紫红→ 黄
常用 饱和溶液的浓度约为0.3 mol·L-1
二、 EDTA的离解平衡
-H+
H6Y2++H+
-H+
H5Y+ +H+
-H+
H4Y +H+
H3Y-
-H+ +H+
H2Y2-
--H+H+ ++HH+ +
-H+
HY3-
+H+
Y4-
[H+]↑, pH↓, 平衡向左移动, [H6Y2+]↑ [H+]↓, pH↑, 平衡向右移动, [Y4-]↑
N··-CH2-CH2-N··
CH2COOH CH2COOH
HOOCCH2 -OOCCH2
N··-CH2-CH2-N··
H+
H+
相当于6元酸
CH2COO- CH2COOH
3. EDTA的性质
室温
EDTA :
每100 mL水中溶解0.02 g
Na2H2Y·2H2O: 每100 mL水中溶解11.1 g
配制0.5%水溶液,保存2~3周 p272 表13-5
四、实例:水中总硬度含量测定

配位滴定法

配位滴定法



Lewis碱是能够给出电子对形成配位键的物质,又称为电子 对的给体。
根据路易斯的酸碱电子理论,酸碱反应的实质是碱提供电子对, 酸以空轨道接受电子对形成配位键: A+:B A:B
金属阳离子即缺电子的是酸,而与金属离子结合 的阴离子或中性分子都是碱。
能够进行配位滴定的配位反应需具备以下条件:
1、反应进行的非常完全,配合物相当稳定(K值大)。 2、反应必须按照一定的计量关系完成(配位数固定)。 3、反应速度快。
MY
稳定常数具有以下规律: 碱金属 < 碱土金属 < 过渡金属、稀有金属 < 高价金属
lgK: < 5

8 ~ 11
15 ~ 19
>20
KMY↑大,配合物稳定性越高,配合反应越完全
(2)、MLn型配合物的累积稳定常数
M+L
ML
一级稳定常数
ML K1 M L
19.3
配位滴定法
19.3.1概述
配位(络合)滴定法是以配位反应为基础的
滴定分析方法。配位反应是路易士酸碱反应,所
以配位滴定法与酸碱滴定法有许多相似之处,但
更为复杂。
配位反应在分析化学中应用非常广泛,除作滴 定反应外,还常用于显色反应、萃取反应、沉淀反 应及掩蔽反应。
酸碱电子理论

1923年,路易斯(lewis)提出酸碱的电子理论,并定义了 路易斯酸碱: Lewis酸是能够接受电子对形成配位键的物质,又称为电子 对的受体;
8-羟基喹啉几乎可以和所有的金属离子络合.
氨羧配位剂:
常用的配位滴定剂是氨羧配位剂 [-N(CH2COOH)2],含
有氨氮和羧氧配位原子,几乎能与大多数金属离子络合。

第六章 配位滴定法

第六章 配位滴定法

28
若有P个配位剂与金属离子发生副反应:

M
M(L ) M(L ) (1 - P)
1 2
29
例:计算pH=11,[NH3]=0.1mol/L时的Zn值。
查表得: Zn(NH3)42+的lg1~lg 4 = 2.27、4.61、7.01、9.06 pH=11时,lgZn(OH) = 5.4
Ka,3=1.0 ×10-2=10-2.0 Ka,4=2.14×10-3=10-2.67
H2Y2HY3-
H++HY3H++Y4-
Ka,5=6.92×10-7=10-6.16
Ka,6=5.50×10-11=10-10.26
EDTA在水溶液中的存在形式: H6Y2+, H5Y+, H4Y, H3Y-, H2Y2-, HY3-, Y4
• 1/ KMY为配合物的不稳定常数(离解常数)。
碱土金属离子。
9
某些金属离子与EDTA的形成常数
lgK
Na+ 1.7
lgK
lgK
14.3 15.4 16.1 16.5 16.5 18.0 18.8
lgK
Hg2+ Th4+ Fe3+ Bi3+ ZrO2+ 21.8 23.2 25.1 27.9 29.9

32
溶液碱度较高时:
MY + OH MOHY
[MOHY] KMOHY [MY][H]

[MY' ] [MY] [MOHY] MY(H) [MY] [MY]
1 KMOHY [OH ]
33
(三) 条件稳定常数 KMY

分析化学第五章配位滴定法

分析化学第五章配位滴定法

滴定Fe3+时,最可能发生干扰的是Al3+
假定它们的浓度均为10-2 mol· L-1, 则 lg K lg KFeY lg K AlY
25.1 16.3 8.8 5
所以Al3+不干扰。
查P112酸效应曲线,滴定Fe3+最低pH约为1.0, 考虑Fe3+水解,pH<2.2 滴定Fe3+适宜范围 pH 1.0~2.2 pH=1.8, lgαY(H)=14.27
6
Y (H )
H K
6 5
5 a1
K a1 K a 2 K a 6
a1
K a1 K a 2 K a 3 K a 4 K a 5 K a 6
Y (H )
H H K
K a1 K a 2 K a 3 K a 4 K a 5 K a 6 K a1 K a 2 K a 3 K a 4 K a 5 K a 6
利用公式可计算不同pH值的酸效应系数,制成表,使 用时查表。
2016/9/29
结论:
2016/9/29
无酸效应
2、EDTA的干扰离子效应:
Y除与M反应外,也与N(干扰离子)反应。
K NY
[ NY ] [ N ][Y ]
EDTA的干扰离子效应系数:
2016/9/29
Y ( N )
[Y '] [ NY ] [Y ] [ NY ] 1 KNY [ N ] 1 [Y ] [Y ] [Y ]
酸,不同酸度存在型体不同,显示不同的颜色。
H2In- ⇌ HIn2- ⇌ In3-H+ -H+
+H+
+H+

配位滴定法

配位滴定法

[Y ]
[Y ' ]
Y ( H )
0.02 6.60 7 109 mol / L 10
练习 在配位滴定中,下列有关酸效应系数叙述 正确的是____(2002) A 酸效应系数越大,配位物的稳定性越大 B 酸效应系数越小,配位物的稳定性越大 C pH值越大,酸效应系数越大 D 酸效应系数越大,配位滴定曲线的pM突跃 范围越大
双极离子
四元酸
六元酸

EDTA的物理性质
水中溶解度小,难溶于酸和有机溶剂; 易溶于NaOH或NH3溶液—— Na2H2Y•2H2O
续前
EDTA配合物特点:
1. 广泛配位性→五元环螯合物→稳定、完全、迅速 2. 具6个配位原子,与金属离子多形成1:1配合物 3. 与无色金属离子形成的配合物无色,利于指示终点 与有色金属离子形成的配合物颜色更深
三、指示剂的封闭、僵化现象及消除方法

指示剂的封闭现象:化学计量点时不见指示剂变色
产生原因: 干扰离子: KNIn > KNY →指示方法:加入掩蔽剂 例如:滴定Ca2+和Mg2+时加入三乙醇胺掩蔽Fe3+,AL3+ 以消除其对EBT的封闭
待测离子: KMY < KMIn→M与In反应不可逆或过慢

概述

配位滴定法: 又称络合滴定法
以生成配位化合物为基础的滴定分析方法

常用有机氨羧配位剂 ——乙二胺四乙酸
乙二胺四乙酸:EDTA
EDTA(乙二胺四乙酸)结构 H H OOCH2C H N
+
-
CH2
CH2
H N
+
CH2COO
-
两个氨氮 四个羧氧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 混合离子测定时溶液酸度的控制
(1)最高允许酸度:
Y Y(H) Y(N) 1
为使K
' MY
最大应使Y
(
H
)
足够小
即对应Y (H )
Y
(
N
时酸度
)
最高酸度
(2)最低允许酸度:
[OH ] n Ksp [M ]
(3)最佳酸度:
查pM
' t
pH曲线
对应pM
' t
pM
' 时的酸度
sp
最佳酸度
(二) 使用掩蔽剂的选择性滴定
pH
5时,lg
K' ZnY
16.50 6.45 10.05
第二节 配位滴定基本原理
一、配位滴定曲线
以VY ~ [M ']作图 配位滴定曲线
滴定突跃:5.3 7.69
图示
浓度改变仅影响配位滴定曲线的前侧, 与酸碱滴定中一元弱酸碱滴定情况相似
条件稳定常数改变仅影响滴定曲线 后侧,化学计量点前按反应剩余的 [M’]计算pM’,与K’MY无关
MY MY
lg
K
' MY
lg
KMY
lg M
lg Y
lg MY
lg KMY lgM lgY
➢ 讨论: M ,Y ,K‘MY ,配合物稳定性
练习
例:在NH3-NH4CL缓冲溶液中(pH=9),用EDTA 成 滴定Zn2+,若[NH3]=0.10mol/L,并避免生
Zn(OH) 2沉淀,计算此条件下的lgK’ZnY
最佳配位型体
续前
➢ EDTA配合物特点:
1. 广泛配位性→五元环螯合物→稳定、完全、迅速 2. 具6个配位原子,与金属离子多形成1:1配合物 3. 与无色金属离子形成的配合物无色,利于指示终
点 与有色金属离子形成的配合物颜色更深
二.副反应及副反应系数
示意图
主反应:
M
+
Y
副反应:
L
OH - H +
前提:K NY K MY 甚至K NY K MY
1. 配位掩蔽法:利用配位反应降低或消除干扰离子 例:Ca2+,Mg2+,加入三乙醇胺掩蔽Fe2+和AL3+
2. 沉淀掩蔽法:加入沉淀剂,使干扰离子生成沉淀而 被掩蔽,从而消除干扰
EBT,用Zn2+标液回滴
续前
❖ 指示剂的僵化现象:化学计量点时指示剂变色缓慢
产生原因 MIn溶解度小→与EDTA置换速度缓慢→终点拖后 消除方法:加入有机溶剂或加热→提高MIn溶解度
→加快置换速度
五、常用金属离子指示剂
1. 铬黑T(EBT) 终点:酒红→纯蓝 适宜的pH:7.0~11.0(碱性区) 缓冲体系:NH3-NH4CL 封闭离子:AL3+,Fe2+,(Cu2+,Ni2+) 掩蔽剂:三乙醇胺,KCN
三、条件稳定常数
(表观稳定常数,有效稳定常数)
配位反应
M+Y
MY
副反应系数 M Y
MY
稳定常数
K MY
[MY ] [M ][Y ]
条件稳定常数
K
' MY
[MY '] [M '][Y ']

Y(H)
[Y '] [Y ]

M(L)
[M '] [M ]
K
' MY
MY MY M M Y Y
K MY
Y(H)
Y' Y
H6Y 2
H5Y Y 4
Y 4
Y(H)
1
Y
,Y
H 6
Ka1Ka2 Ka6 H 5 Ka1 Ka1Ka2Ka3Ka4Ka5Ka6
Y(H)
H
6
H
5
Ka1
Ka1Ka2 Ka3Ka4 Ka5Ka6
Ka1Ka2 Ka3Ka4 Ka5Ka6
练习
例:计算pH=2和pH=5时,ZnY的条件稳定常 数
解:查表可知:
pH 2时,lg Y(H) 13.51 ;pH 5时,lg Y(H) 6.45
查表 lg K ZnY 16.50
lg
K' ZnY
lg
K ZnY
lg Y(H)
pH
2时,lg
K' ZnY
16.50 13.51
2.99

K
' MY
小,pM'
CL
大,M(L) 大
K
' MY
小,pM' 小
注:借助调节pH,控制[L],可以增大
K
' MY
,从而增大滴定突跃
3、配位滴定曲线与酸碱滴定曲线的比较
三、终点误差
准确滴定的判定式:
pM 0.2,TE% 0.1%
满足CMsp
K
' MY
106

lg
CMsp
K
' MY
6
准确滴定判别式
EDTA(乙二胺四乙酸)结构 H
-
OOCH2C H+ N CH2 CH2
HOOCH2C
H
-
H+ CH2COO N
CH2COOH
两个氨氮 四个羧氧
双极离子
四元酸 H4Y
+ 2 H+
H6Y2+ 六元酸
➢ EDTA的物理性质
水中溶解度小,难溶于酸和有机溶剂; 易溶于NaOH或NH3溶液—— Na2H2Y•2H2O
第十二章 配位滴定法
第一节 概述
➢配位滴定法: 又称络合滴定法
以生成配位化合物为基础的滴定分析方法
➢滴定条件:
定量、完全、迅速、且有指示终点的方法
➢配位剂种类:
无机配位剂:形成分级络合物,简单、不稳定 有机配位剂:形成低络合比的螯合物,复杂而稳定 ➢ 常用有机氨羧配位剂 ——乙二胺四乙酸
乙二胺四乙酸:EDTA
一、金属离子指示剂及特点:
➢ 金属离子指示剂:配位滴定中,能与金属离子生成 有色配合物从而指示滴定过程中金属离子浓度变化 的显色剂(多为有机染料、弱酸)
✓ 特点:(与酸碱指示剂比较) 金属离子指示剂——通过[M]的变化确定终点 酸碱指示剂——通过[H+] 的变化确定终点
二、指示剂配位原理
终点前 M + In 滴定过程 M + Y
lg Y (N )
lg
K MY
lg
K NY
CN
lg K pCN 忽略酸效应
续前
讨论:酸效应会影响配位反应的完全程度 但可利用酸效应以提高配位滴定的选择性
例:EDTA→Bi3+,Pb2+ 调pH≈1时,EDTA→Bi3+(Pb2+不干扰) 再调pH=5~6时,EDTA→Pb2+
2. 混合离子分步滴定的可能性
控制酸度分步滴定 使用掩蔽剂选择性滴定
(一) 控制酸度分步滴定
前提:K MY K NY
1. 条件稳定常数与酸度关系 2. 混合离子分步滴定的可能性 3. 混合离子测定时溶液酸度的控制
1. 条件稳定常数与酸度关系
不考虑M副反应
lg
K
' MY
lg
K MY
lg Y
Y Y(H) Y(N) 1
Y (N)
➢ EDTA的副反应:酸效应
共存离子(干扰离子)效应
➢ EDTA的副反应系数:
✓ 酸效应系数 ✓ 共存离子(干扰离子)效应系数 ✓ Y的总副反应系数
EDTA的酸效应:由于H+存在使EDTA与金属离子 配位反应能力降低的现

M+Y
MY
H+
HY
H+
H+
H2Y
主反应
H+ H6Y
酸效应引起的副反应
1. EDTA的酸效应系数
1)MIn与In颜色明显不同,显色迅速,变色可逆性 好 2)MIn的稳定性要适当:KMY / KMIn >102
a. KMIn太小→置换速度太快→终点提前 b. KMIn >KMY→置换难以进行→终点拖后或无终点 3) In本身性质稳定,便于储藏使用 4)MIn易溶于水,不应形成胶体或沉淀
四、指示剂的封闭、僵化现象及消除方法
解:
lg
K
' ZnY
lg
KZnY
lg Zn(NH3 )
lg Y (H )
Zn(NH3) 3.1105 lg Zn(NH3) 5.49
pH 9 Y (H ) 101.28 lgY (H ) 1.28
查表 lg KZnY 16.50
所以 lg KZ' nY 16.50 5.49 1.28 9.73
若 TE% 0.10%,pM ' 0.2
须满足 lg CMsp KM' Y 6

K
' MY
KMY
Y (N)
lg
CMsp
K
' MY
lg
CMsp KMY K NY CN
lg K lg CM 6 CN
若CM CN 则 分步滴定判别式 lg K 6
若CM 10CN 则 分步滴定判别式 lg K 5
1 H
H 6
Ka6
Ka6 Ka5Ka4 Ka3Ka2 Ka1
✓ 注:[Y’]——EDTA所有未与M 配位的七种型体总浓度 [Y] ——EDTA能与 M 配位的Y4-型体平衡浓度
➢ 结论:pH ,[H ] Y (H ) ,[Y 4 ] 副反应越严重
相关文档
最新文档